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Abstract

We present a generalization of Nesterov’s accelerated gradient descent algorithm.
Our algorithm (AGNES) provably achieves acceleration for smooth convex and
strongly convex minimization tasks with noisy gradient estimates if the noise
intensity is proportional to the magnitude of the gradient at every point. Nesterov’s
method converges at an accelerated rate if the constant of proportionality is below
1, while AGNES accommodates any signal-to-noise ratio. The noise model is
motivated by applications in overparametrized machine learning. AGNES requires
only two parameters in convex and three in strongly convex minimization tasks,
improving on existing methods. We further provide clear geometric interpretations
and heuristics for the choice of parameters.

1 Introduction

The recent success of deep learning [LeCun et al., 2015] is built on stochastic first order optimization
methods such as stochastic gradient descent [LeCun et al., 1998] and ADAM [Kingma and Ba, 2014],
which have enabled the large-scale training of neural networks. While such tasks are generally
non-convex, accelerated first order methods for convex optimization have proved practically useful.
Specifically, Nesterov [1983]’s accelerated gradient descent has become a standard training method
[Sutskever et al., 2013].

Modern neural networks tend to operate in the overparametrized regime, i.e. the number of model
parameters exceeds the number of data points to be fit [Belkin, 2021]. In this setting, minibatch
gradient estimates are exact (namely, exactly 0) on the set of global minimizers since data can be
interpolated exactly. Motivated by such applications, Vaswani et al. [2019] proved that Nesterov
[2012]’s accelerated coordinate descent method (ACDM) achieves acceleration in (strongly) convex
optimization with multiplicative noise, i.e. when assuming stochastic gradient estimates for which the
noise intensity scales linearly with the magnitude of the gradient. Conversely, Liu and Belkin [2018]
show that the original version of Nesterov [1983]’s method generally does not achieve acceleration in
this setting.

Another algorithm with a similar goal is the continuized Nesterov method (CNM), which has been
studied by Even et al. [2021], Berthier et al. [2021] in convex optimization (deterministic or with
additive noise) and with multiplicative noise for overparametrized linear least squares regression. For
a more extensive discussion of the context of our work in the literature, please see Section 2.

Vaswani et al. [2019]’s algorithm is a four parameter scheme in the strongly convex case, which
reduces to a three parameter scheme in the convex case. Liu and Belkin [2018] introduce a simpler
three parameter scheme, but only prove that it achieves acceleration for overparametrized linear
problems. In this work, we demonstrate that it is possible to achieve the same theoretical guarantees
as Vaswani et al. [2019] with a simpler scheme, which can be considered as a reparametrized version
of Liu and Belkin [2018]’s Momentum-Added Stochastic Solver (MaSS) method. More precisely, we
prove the following:
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1. We show that Nesterov’s accelerated gradient descent achieves an accelerated convergence
rate, but only with noise which is strictly smaller than the gradient in the L2-sense. We also
show numerically that when the noise is larger than the gradient, the algorithm diverges for
a choice of step size for which gradient descent remains convergent.

2. Motivated by this, we introduce a generalization of Nesterov’s method, which we call
Accelerated Gradient descent with Noisy EStimators (AGNES), which provably achieves
acceleration no matter how large the noise is relative to the gradient, both in the convex and
strongly convex cases.

3. When moving from NAG to AGNES, the learning rate ‘bifurcates’ to two parameters in order
to accommodate stochastic gradient estimates. The extension requires three hyperparameters
in the strongly convex case and two in the convex case.

4. We provide a transparent geometric interpretation of the AGNES parameters in terms of
their scaling with problem parameters (Appendix F.3) and the continuum limit models for
various scaling regimes (Appendix C).

5. We build strong intuition for the choice of hyperparameters for machine learning applications
and empirically demonstrate that AGNES improves the training of CNNs relative to SGD
with momentum and Nesterov’s accelerated gradient descent.

2 Literature Review

Accelerated first order methods. Accelerated first order methods have been extensively studied in
convex optimization. Beginning with the conjugate gradient (CG) algorithm introduced by Hestenes
and Stiefel [1952], the Heavy ball method of Polyak [1964], and Nesterov [1983]’s seminal work
on accelerated gradient descent, many authors have developed and analyzed accelerated first order
methods for convex problems, including Beck and Teboulle [2009], Nesterov [2012, 2013], Chambolle
and Dossal [2015], Kim and Fessler [2018] to name just a few.

An important line of research is to gain an understanding of how accelerated methods work. After
Polyak [1964] derived the original Heavy ball method as a discretization of an ordinary differential
equation, Alvarez et al. [2002], Su et al. [2014], Wibisono et al. [2016], Zhang et al. [2018], Siegel
[2019], Shi et al. [2019], Muehlebach and Jordan [2019], Wilson et al. [2021], Shi et al. [2021],
Suh et al. [2022], Attouch et al. [2022], Aujol et al. [2022b,a], Dambrine et al. [2022] studied
accelerated first order methods from the point of view of ODEs. This perspective has facilitated
the use of Lyapunov functional analysis to quantify the convergence properties. We remark that
in addition to the intuition provided by differential equations, Joulani et al. [2020] and Gasnikov
and Nesterov [2018] have also proposed interesting ideas for explaining and deriving accelerated
first-order methods. In addition, there has been a large interest in deriving adaptive accelerated first
order methods, see for instance Levy et al. [2018], Cutkosky [2019], Kavis et al. [2019].

Stochastic optimization. Robbins and Monro [1951] first introduced optimization algorithms
where gradients are only estimated by a stochastic oracle. For convex optimization, Nemirovski
et al. [2009], Ghadimi and Lan [2012] obtained minimax-optimal convergence rates with additive
stochastic noise.

In deep learning, stochastic algorithms are ubiquitous in the training of deep neural networks, see
[LeCun et al., 1998, 2015, Goodfellow et al., 2016, Bottou et al., 2018]. Here, the additive noise
assumption not usually appropriate. As Wojtowytsch [2023], Wu et al. [2022a] show, the noise is
of low rank and degenerates on the set of global minimizers. Stich [2019], Stich and Karimireddy
[2022], Bassily et al. [2018], Gower et al. [2019], Damian et al. [2021], Wojtowytsch [2023], Zhou
et al. [2020] consider various non-standard noise models and [Wojtowytsch, 2021, Zhou et al., 2020,
Li et al., 2022] study the continuous time limit of stochastic gradient descent. These include noise
assumptions for degenerate noise due to Bassily et al. [2018], Damian et al. [2021], Wojtowytsch
[2023, 2021], low rank noise studied by Damian et al. [2021], Li et al. [2022] and noise with heavy
tails explored by Zhou et al. [2020].

Acceleration with stochastic gradients. Kidambi et al. [2018] prove that there are situations in
which it is impossible for any first order oracle method to improve upon SGD due to information-
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theoretic lower bounds. More generally, lower bounds in the stochastic first order oracle (SFO) model
were presented by Nemirovski et al. [2009] (see also [Ghadimi and Lan, 2012]).

A partial improvement on the state of the art is given by Jain et al. [2018], who present an accelerated
stochastic gradient method motivated by a particular low-dimensional and strongly convex problem.
Laborde and Oberman [2020] obtain faster convergence of an accelerated method under an additive
noise assumption by a Lyapunov function analysis. Bollapragada et al. [2022] study an accelerated
gradient method for the optimization of a strongly convex quadratic objective function with minibatch
noise.

Closest to our work are Liu and Belkin [2018], Vaswani et al. [2019], Even et al. [2021], Berthier
et al. [2021] who study generalizations of Nesterov’s method in stochastic optimization. Liu and
Belkin [2018], Even et al. [2021] obtain guarantees with noise of approximately multiplicative noise
in overparametrized linear least squares problems and for general convex objective functions with
additive noise and in deterministic optimization. Vaswani et al. [2019] obtain comparable guarantees
for the more complicated method of Nesterov [2013].

3 Algorithm and Convergence Guarantees

3.1 Assumptions

In the remainder of this article, we consider the task of minimizing an objective function f : Rm → R
using stochastic gradient estimates g. We assume that f , g and the initial condition x0 satisfy:

1. The initial condition x0 is a (potentially random) point such that E[f(x0) + ∥x0∥2] <∞.
2. f is L−smooth, i.e. ∇f is L−Lipschitz continuous with respect to the Euclidean norm.
3. There exists a probability space (Ω,A,P) and a gradient estimator, i.e. a measurable function
g : Rm × Ω→ Rm such that for all x ∈ Rm the properties

• Eω[g(x, ω)] = ∇f(x) (unbiased gradient oracle) and
• Eω

[
∥g(x, ω)−∇f(x)∥2

]
≤ σ2 ∥∇f(x)∥2 (multiplicative noise scaling) hold.

A justification of the multiplicative noise scaling is given in Section 4. In the setting of machine
learning, the space Ω is given by the random subsampling of the dataset. A rigorous discussion of the
probabilistic foundations is given in Appendix D.

3.2 Nesterov’s Method with Multiplicative Noise

First we analyze Nesterov [1983]’s accelerated gradient descent algorithm (NAG) in the setting of
multiplicative noise. NAG is given by the initialization x0 = x′0 and the two-step iteration

xn+1 = x′n − ηg′n, x′n+1 = xn+1 + ρn
(
xn+1 − xn

)
= xn+1 + ρn(x

′
n − ηg′n − xn) (1)

where g′n = g(x′n, ωn) and the variables ωn are iid samples from the probability space Ω, i.e. g′n is
an unbiased estimate of∇f(x′n). We write ρ instead of ρn in cases where a dependence on n is not
required. We show that this scheme achieves an O(1/n2) convergence rate for convex functions but
only in the case that σ < 1. To the best of our knowledge, this analysis is optimal.
Theorem 1 (NAG, convex case). Suppose that xn and x′n are generated by the time-stepping scheme
(1), f and g satisfy the conditions laid out in Section 3.1, f is convex, and x∗ is a point such that
f(x∗) = infx∈Rm f(x). If σ < 1 and the parameters are chosen such that

0 < η ≤ 1− σ2

L(1 + σ2)
, and ρn =

n

n+ 3
, then E[f(xn)− f(x∗)] ≤

2E[∥x0 − x∗∥2]
ηn2

.

The expectation on the right hand side is over the random initialization x0.

The proof of Theorem 1 is given in Appendix E. Note that the constant 1/η blows up as σ ↗ 1 and
the analysis yields no guarantees for σ > 1. This mirrors numerical experiments in Section 5.
Theorem 2 (NAG, strongly convex case). In addition to the assumptions in Theorem 1, suppose that
f is µ-strongly convex and the parameters are chosen such that

0 < η ≤ 1− σ2

L(1 + σ2)
and ρ =

1−√µη
1 +
√
µη
, then E[f(xn)−f(x∗)] ≤ 2(1−√µη)n E [f(x0)− f(x∗)] .

3
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Just like in the convex case, the step size η decreases to zero as σ ↗ 1, and we fail to obtain
convergence guarantees for σ ≥ 1. We argue in the proof of Theorem 2, given in Appendix F, that it
is not possible to modify the Lyapunov sequence analysis to obtain a better rate of convergence. This
motivates our introduction of the more general AGNES method below.

Notably, there cannot be a diverging lower bound for NAG since gradient descent arises in the special
case ρ = 0, and gradient descent converges for small stepsize with multiplicative noise [Wojtowytsch,
2023]. On the other hand, Liu and Belkin [2018] show that NAG does not achieve accelerated
convergence with multiplicative type noise even for quadratic strongly convex functions.

3.3 AGNES Descent algorithm

The proofs of Theorems 1 and 2 suggest that the momentum step in (1) is quite sensitive to the step
size used for the gradient step, which severely restricts the step size η. We propose the Acceler-
ated Gradient descent with Noisy EStimators (AGNES) scheme, which addresses this problem by
introducing an additional parameter α in the momentum step:

x0 = x′0, xn+1 = x′n − ηg′n, x′n+1 = xn+1 + ρn
(
x′n − αg′n − xn

)
, (2)

where g′n = g(x′n, ωn) as before. Equivalently, AGNES can be formulated as a three-step scheme
with an auxiliary velocity variable vn, initialized as v0 = 0:

x′n = xn + αvn, xn+1 = x′n − ηg′n, vn+1 = ρn(vn − g′n). (3)

We show that the two formulations of AGNES are equivalent in Appendix B.1. However, we find
(3) more intuitive (see Appendix C for a continuous time interpretation) and easier to implement
as an algorithm without storing past values of xn. The pseudocode and a set of suggested default
parameters are given in Algorithm 1.

Algorithm 1: Accelerated Gradient descent with Noisy EStimators (AGNES)

Input: f (objective/loss function), x0 (initial point), α = 10−3 (learning rate), η = 10−2

(correction step size), ρ = 0.99 (momentum), N (number of iterations)
n← 0
v0 ← 0
while n < N do

gn ← ∇xf(xn) // gradient estimate
vn+1 ← ρ(vn − gn)
xn+1 ← xn + αvn+1 − ηgn
n← n+ 1

end
gN ← ∇xf(xN )
xN ← xN − ηgn
Return: xN

From (1) and (2), we note that NAG is AGNES with the special choice α = η. Allowing α and
η to be different helps AGNES achieve an accelerated rate of convergence for both convex and
strongly convex functions, no matter how large σ is. While for gradient descent, only the product
L(1 + σ2) has to be considered, this is not the case for momentum-based schemes. We consider first
the convergence rate in the convex case.
Theorem 3 (AGNES, convex case). Suppose that xn and x′n are generated by the time-stepping
scheme (3), f and g′n = g(x′n, ωn) satisfy the conditions laid out in Section 3.1, f is convex, and x∗
is a point such that f(x∗) = infx∈Rm f(x). If the parameters are chosen such that

0 < η <
1

L(1 + σ2)
, α =

η

1 + σ2
, ρn =

n

n+ 1 + a0
, for a0 ≥

2(1− ηL)
1− ηL(1 + σ2)

, then

E
[
f(xn)− f(x∗)

]
≤
a20 E

[
∥x0 − x∗∥2

]
2αn2

.

In particular, if η ≤ 1
L(1+2σ2) , we may make the universal choice a0 = 4, i.e. ρn = n

n+5 . Only the
parameters η, α depend on the specific problem. The proof of Theorem 3 is given in Appendix E.
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There, we also present an alternative version of Theorem 3 for a different choice of parameters

η ≤ 1

L(1 + σ2)
, α <

η

1 + σ2
, ρn =

n+ n0
n+ n0 + 3

for a potentially large n0 ≥ 2ησ2

η−α(1+σ2) ≥ 2σ2. The convergence guarantees are similar in both cases.

The benefit of the accelerated scheme is an improvement from a decay rate of O(1/n) to the rate
O(1/n2), which is optimal under the given assumptions even in the deterministic case. While the
noise can be orders of magnitude larger than the quantity we want to estimate, it only affects the
constants in the convergence, not the rate. We get an analogous result for strongly convex functions.

Theorem 4 (AGNES, strongly convex case). In addition to the assumptions in Theorem 3, suppose
that f is µ-strongly convex and the parameters are chosen such that

0 < η ≤ 1

L(1 + σ2)
, ρ =

1−
√

µη
1+σ2

1 +
√

µη
1+σ2

, and α =
1−

√
µ
L

1−
√

µ
L + σ2

η then

E[f(xn)− f(x∗)] ≤ 2

(
1−

√
µη

1 + σ2

)n

E[f(x0)− f(x∗)].

Choosing η too small can be interpreted as overestimating L or σ. Choosing α too small (with respect
to η) can be interpreted as overestimating σ. Since every L-Lipschitz function is L′-Lipschitz for
L′ > L, and since the multiplicative noise bound with constant σ implies the same bound with
σ′ > σ, exponential convergence still holds at a generally slower rate.

We note that since |∇f(x)|2 ≤ 2L(f(x)− inf f) (Lemma 12 in Appendix D), Theorems 3 and 4 lead
to analogous convergence results for E[∇f(xn)] as well. Due to the summability of the sequences
n−2 and rn for r < 1, we get not only convergence in expectation but also almost sure convergence.
The proof is given in Appendix E.

Corollary 5. In the setting of Theorems 3 and 4, f(xn)→ inf f with probability 1.

In the deterministic case σ = 0, we have α = η in both Theorems 3 and 4. In Theorem 4, the
parameters coincide with the usual choice for NAG, while we opted for a simple statement in Theorem
3 which does not exactly recover the standard choice η = 1/L and ρn = n/(n + 3). The proofs
below easily cover these special cases as well. If 0 < σ < 1, both AGNES and NAG converge with
the same rate n−2 in the convex case, but the constant of NAG is always larger. In the strongly convex
case, even the decay rate of NAG is slower than AGNES for σ ∈ (0, 1) since 1− σ2 < (1 + σ2)−1.
We see the real power of AGNES in the stochastic setting where it converges for very high values of
σ when Nesterov’s method may diverge. For the optimal choice of parameters, we summarize the
results in terms of the time-complexity of SGD and AGNES in Figure 1. For the related guarantee for
SGD, see Theorems 17 and 22 in Appendices E and F respectively.
Remark 6 (Batching). Let us compare AGNES with two families of gradient estimators:

1. g′n = g(x′n, ωn) as studied in Theorems 3 and 4.

2. A gradient estimator g′n := 1
nb

∑nb

j=1 g(x
′
n, ωn,j) which averages multiple independent

estimates to reduce the variance.

The second gradient estimator falls into the same framework with Ω̃ = Ωnb and σ̃2 = σ2/nb.
Assuming vector additions cost negligible time, optimizer steps are only as expensive as gradient
evaluations. In this setting – which is often realistic in deep learning – it is appropriate to compare
E[f(xnbn)] (nb · n iterations using g′n) and E[f(Xn)] (n iterations with g′n). For the strongly convex

case, we note that
(
1−

√
µ
L

1
1+σ2

)nb

≤ 1−
√

µ
L

1
1+σ2/nb

if and only if

nb ≥
log
(
1−

√
µ
L

1
1+σ2/nb

)
log
(
1−

√
µ
L

1
1+σ2

) ≈

√
µ
L

1
1+σ2/nb√
µ
L

1
1+σ2

=
1 + σ2

1 + σ2/nb
=

1 + σ2

nb + σ2
nb.
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Time complexity Convex µ-strongly convex

SGD O
(
L
ε (1 + σ2)

)
O
(

L
µ (1 + σ2)| log ε|

)
AGNES O

(√
L
ε (1 + σ2)

)
O
(√

L
µ (1 + σ2)| log ε|

)
Figure 1: The minimal n for AGNES and SGD such that E[f(xn)− inf f ] < ε when minimizing
an L-smooth function with multiplicative noise intensity σ in the gradient estimates and under a
convexity assumption. The SGD rate of the µ-strongly convex case is achieved more generally under
a PL condition with PL-constant µ. While SGD requires the optimal choice of one variable to achieve
the optimal rate, AGNES requires three (two in the determinstic case).

The approximation is well-justified in the important case that µ≪ L. In particular, the upper bound
for non-batching AGNES is always favorable compared to the batching version as nb ∈ N≥1, and the
two only match for the optimal batch size nb = 1. The optimal batch size for minimizing f is the
largest one that can be processed in parallel without increasing the computing time for a single step.
A similar argument holds for the convex case.

With a slight modification, the proof of Theorem 3 extends to the situation of convex objective
functions which do not have minimizers. Such objectives arise for example in linear classification
with the popular cross-entropy loss function and linearly separable data.
Theorem 7 (Convexity without minimizers). Let f be a convex objective function satisfying the
assumptions in Section 3.1 and xn be generated by the time-stepping scheme (3). Assume that η, α
and ρn are as in Theorem 3. Then lim infn→∞ E[f(xn)] = infx∈Rm f(x).

The proof and more details are given in Appendix E. For completeness, we consider the case
of non-convex optimization in Appendix G. As a limitation, we note that multiplicative noise is
well-motivated in machine learning for global minimizers, but not at generic critical points.

3.4 Geometric Interpretation

Let us briefly discuss the parameter choices in Theorem 4. As we consider larger σ for fixed µ and L,
the decay factor ρ moves closer to 1. This slows the ‘forgetting’ of past gradients in vn, allowing us
to better average out stochastic noise. The price we pay is computing with more outdated gradients,
slowing convergence. Our choice balances these effects.

In AGNES, ρ inadvertently also governs magnitude of the momentum variable vn, which scales as
(1 − ρ)−1 for objective functions with constant gradient and n ≫ 1. To compensate, we choose
α smaller compared to η when σ (and thus (1 − ρ)−1) is large. Nevertheless, the effect of the
momentum step does not decrease. For further details, see Appendix F.3.

For further interpretability, we obtain several ODE and SDE continuous time descriptions of AGNES
in Appendix C.

4 Motivation for Multiplicative Noise

In supervised learning applications, the learning task often corresponds to minimizing a risk or
loss function R(w) = 1

N

∑N
i=1 ℓ

(
h(w, xi), yi

)
=: 1

N

∑N
i=1 ℓi(w), where h : Rm × Rd → Rk,

(w, x) 7→ h(w, x) and ℓ : Rk × Rk → [0,∞) are a parametrized function of weights w and data x
and a loss function measuring compliance between h(w, xi) and yi respectively.1 Safran and Shamir
[2018], Chizat and Bach [2018], Du et al. [2018] show that working in the overparametrized regime
m≫ N simplifies the optimization process and Belkin et al. [2019, 2020] illustrate that it facilitates
generalization to previously unseen data. Cooper [2019] shows that fitting N constraints with m
parameters typically leads to an m−N -dimensional submanifoldM of the parameter space Rm

1 Both ℓ and R are commonly called a ‘loss function’ in the literature. To distinguish between the two, we
will borrow the terminology of statistics and refer to R as the risk functional and ℓ as the loss function. The
notation L, which is often used in place of R, is reserved for the Lipschitz constant in this work.

6

20699https://doi.org/10.52202/079017-0653



Figure 2: To be able to quantify the gradient noise exactly, we choose relatively small models and
data sets. Left: A ReLU network with four hidden layers of width 250 is trained by SGD to fit
random labels yi (drawn from a 2-dimensional standard Gaussian) at 1, 000 random data points xi
(drawn from a 500-dimensional standard Gaussian). The variance σ2 of the gradient estimators is
∼ 105 times larger than the loss function and ∼ 106 times larger than the parameter gradient. This
relationship is stable over approximately ten orders of magnitude. Right: A ReLU network with two
hidden layers of width 50 is trained by SGD to fit the Runge function 1/(1 + x2) on equispaced data
samples in the interval [−8, 8]. Also here, the variance in the gradient estimates is proportional to
both the loss function and the magnitude of the gradient.

such that all given labels yi are fit exactly by h(w, ·) at the data points xi for w ∈M, i.e.R ≡ 0 on
the smooth set of minimizersM = R−1({0}).

If N is large, it is computationally expensive to evaluate the gradient ∇R(w) = 1
N

∑N
i=1∇ℓi of the

risk functionR exactly and we commonly resort to stochastic estimates

g =
1

nb

∑
i∈Ib

∇ℓi(w) =
1

nb

∑
i∈Ib

k∑
j=1

(∂hj ℓ)
(
h(w, xi), yi

)
∇whj(w, xi),

where Ib ⊆ {1, . . . , N} is a subsampled collection of nb data points (a batch or minibatch). Minibatch
gradient estimates are very different from the stochasticity we encounter e.g. in statistical mechanics:

1. The covariance matrix Σ = 1
N

∑N
i=1

(
∇ℓi−∇R)⊗ (∇ℓi−∇R) of the gradient estimators

∇ℓi has low rank N ≪ m.
2. Assume specifically that ℓ is a loss function which satisfies ℓ(y, y) = 0 for all y ∈ Rk, such

as the popular ℓ2-loss function ℓ(h, y) = ∥h−y∥2. Then∇ℓi(w) = 0 for all i ∈ {1, . . . , N}
and all w ∈M = R−1(0). In particular, minibatch gradient estimates are exact onM.

The following Lemma makes the second observation precise in the overparameterized regime and
bounds the stochasticity of mini-batch estimates more generally.
Lemma 8 (Noise intensity). Assume that ℓ(h, y) = ∥h − y∥2 and h : Rm × Rd → Rk satisfies
∥∇wh(w, xi)∥2 ≤ C

(
1 + ∥w∥

)p
for some C, p > 0 and all w ∈ Rm and i = 1, . . . , N . Then for

all w ∈ Rm:
1

N

N∑
i=1

∥∥∇ℓi −∇R∥∥2 ≤ 4C2 (1 + ∥w∥)2p R(w).

Lemma 8 is proved in Appendix H. It is a modification of [Wojtowytsch, 2023, Lemma 2.14] for
function models which are locally, but not globally Lipschitz-continuous in the weights w, such as
deep neural networks with smooth activation function. The exponent p may scale with network depth.

Lemma 8 describes the variance of a gradient estimator which uses a random index i ∈ {1, . . . , N}
and the associated gradient ∇ℓi is used to approximate ∇R. If a batch Ib of nb indices is selected
randomly with replacement, then the variance of the estimates scales in the usual way:

EIb

∥∥∥∥∥ 1

nb

∑
i∈Ib

∇ℓi −∇R

∥∥∥∥∥
2
 ≤ 4C2(1 + ∥w∥)2p

nb
R(w). (4)
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Figure 3: We plot E
[
fd(xn)

]
on a loglog scale for SGD (blue), AGNES (red), NAG (green), ACDM

(orange) and CNM (maroon) with d = 4 (left) and d = 16 (right) for noise levels σ = 0 (solid
line), σ = 10 (dashed) and σ = 50 (dotted). The initial condition is x0 = 1 in all simulations.
Means are computed over 200 runs. After an initial plateau, AGNES, CNM and ACDM significantly
outperform SGD in all settings, while NAG (green) diverges if σ is large. The length of the initial
plateau increases with σ.

As noted by Wu et al. [2019, 2022b],R and ∥∇R∥2 often behave similarly in overparametrized deep
learning. We illustrate this in Figure 2 together with Lemma 8. Heuristically, we therefore replaced
(4) by a more manageable assumption akin to E[ 1N

∑N
i=1 ∥∇ℓi −∇R∥2] ≤ σ2∥∇R∥2 in Section

3.1. The setting where the signal-to-noise ratio (the quotient of estimate variance and true magnitude)
is Ω(1) is often referred to as ‘multiplicative noise’, as it resembles the noise generated by estimates
of the form g = (1 + σZ)∇R, where Z ∼ N (0, 1). When the objective function is L-smooth and
satisfies a PL condition (see e.g. [Karimi et al., 2016]), both scaling assumptions are equivalent.

5 Numerical Experiments

5.1 Convex optimization

We compare the optimization algorithms for the family of objective functions

fd : R→ R, fd(x) =

{
|x|d if |x| < 1

1 + d(|x| − 1) else

for d ≥ 2 with gradient estimators g = (1 + σN)f ′(x), where N is a unit normal random variable.
The functions are convex and their derivatives are Lipschitz-continuous with L = d(d− 1). Various
trajectories are compared for different values of d and σ in Figure 3. We run AGNES with the
parameters α = η

1+σ2 , η = 1
L(1+2σ2) , ρn = n

n+5 derived above and SGD with the optimal step size
η = 1

L(1+σ2) (see Lemmas 16 and 17). For NAG, we select η = 1
L(1+σ2) and ρn = n

n+3 . We present
a similar experiment in the strongly convex case in Appendix A.

We additionally compare to two other methods of accelerated gradient descent which were recently
proposed for multiplicative noise models: The ACDM method of Nesterov [2012], Vaswani et al.
[2019], and the continuized Nesterov method (CNM) of Even et al. [2021], Berthier et al. [2021] with
the proposed parameters. In this simple setting where all constants are known, AGNES, ACDM and
CNM perform comparably in the long run and on average.

5.2 Neural network regression

We generated n = 100, 000 12-dimensional random vectors. Using a fixed, randomly initialized
neural network f∗ (with 10 hidden layers, each with width 10, and output dimension 1), we produced
labels yi = f∗(xi). The resulting dataset was split into 90% training and 10% testing data. We then
trained identically initialized copies of a larger neural network (15 hidden layers, each with width 15)
using Adam, NAG, SGD with momentum, and AGNES to minimize the mean-squared error (MSE)
loss.
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Figure 4: We report the training loss as a running average with decay rate 0.99 (top row) and test
loss (bottom row) for batch sizes 100 (left column), 50 (middle column), and 10 (right column)
in the setting of Section 5.2. The horizontal axis represents the number of optimizer steps. The
performance gap between AGNES and other algorithms widens for smaller batch sizes, where the
gradient estimates are more stochastic and the two different parameters α, η add the most benefit.

We selected the learning rate 10−3 for Adam as it performed poorly at higher or lower rates 10−2

and 10−4. For AGNES, NAG, and SGD, based on initial exploratory experiments, we used a learning
rate of 10−4, a momentum value of 0.99, and for AGNES, a correction step size η = 10−3. The
experiment was repeated 10 times each for batch sizes 100, 50, and 10, and run for 45,000 optimizer
steps each time. The average loss and standard deviation for each algorithm are reported in Figure 4.
The results show that AGNES performs better than SGD and NAG for all batch sizes. With large
batch size, Adam performs well with default hyperparameters. The performance of AGNES relative
to other algorithms especially improves as the batch size decreases.

5.3 Image classification

We trained ResNet-34 [He et al., 2016] with batch sizes 50 and 10, and ResNet-50 with batch
size 50 on the CIFAR-10 image dataset [Krizhevsky et al., 2009] with standard data augmentation
(normalization, random crop, and random flip) using Adam, SGD with momentum, NAG, and
AGNES. The model implementations were based on [Liu, 2017]. Each algorithm was provided
an identically initialized model and the experiment was repeated 5 times for 50 epochs each. The
averages and standard deviations of training loss and test accuracy are reported in Figure 5. We used
the same initial learning rate 10−3 for all the algorithms, which was dropped to 10−4 after 25 epochs.
A momentum value of 0.99 was used for SGD, NAG, and AGNES and a constant correction step size
η = 10−2 was used for AGNES.

AGNES reliably outperforms SGD and NAG both in terms of training loss and test accuracy. The gap
in performance appears to increase as model size increases or batch size decreases, suggesting that
AGNES primarily excels in situations where gradients are harder to estimate accurately. For the sake
of completeness, we include Adam with default hyperparameters as a comparison.

In congruence with convergence guarantees from convex optimization, grid search suggests that α is
the primary learning rate and η should be chosen larger than α. We tried NAG and Adam with higher
learning rates 10−2 and 10−1 as well to ensure a fair comparison with AGNES, but found that they
become unstable or perform worse for larger learning rates in our experiments. The AGNES default
parameters α = 10−3, η = 10−2, ρ = 0.99 in Algorithm 1 give consistently strong performance on
different models but can be further tuned to improve performance. While the numerical experiments
we performed support our theoretical predictions, we acknowledge that our focus lies on theoretical
guarantees and we did not test these predictions over a broad set of benchmark problems.
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Figure 5: We report the training loss as a running average with decay rate 0.99 (top row) and test
accuracy (bottom row) for ResNet-34 trained on CIFAR-10 with batch sizes 50 (left column) and
10 (middle column), and ResNet-50 trained with batch size 50 (right column). The performance of
AGNES with the proposed hyperparameters is stable over the changes in model and batch size.

Figure 6: We report the average training loss after each epoch for six epochs for training LeNet-5
on MNIST with AGNES for various combinations of the hyperparameters α and η to illustrate that
α is the algorithm’s primary learning rate. Left: For a given α (color coded), the difference in the
trajectory for the three values of η (line style) is marginal. On the other hand, choosing α well
significantly affects performance. Middle: For any given α, the largest value of η performs much
better than the other three values which have near-identical performance. Nevertheless, the worst
performing value of η with well chosen α = 5 · 10−3 performs better than the best performing value
of η with α = 5 · 10−4. Right: When α is too large, the loss increases irrespective of the value of η.

We present a more thorough comparison of NAG and AGNES with various parameter selections
in Figure 8 in Appendix A. With default parameters or minimal parameter tuning, AGNES reliably
achieves superior performance compared to NAG (training loss) and smoother curves, suggesting
more stable behavior (test accuracy).

5.4 Hyperparameter comparison

We tried various combinations of AGNES hyperparameters α and η to train LeNet-5 on the MNIST
dataset to determine which hyperparameter has a greater impact on training. With a fixed batch size
of 60 and a momentum value ρ = 0.99, we trained independent copies of the model for 6 epochs for
each combination of the hyperparameters. The average training loss over the epoch was recorded
after each epoch. The results are reported in Figure 6. We see that α has the largest impact on the
rate of decay of the loss, which establishes it as the ‘primary learning rage’. If α is too small, the
algorithm converges slowly and if α is too large, it diverges. If α is chosen correctly, a good choice
of the correction step size η (which can be orders of magnitude larger than α) further accelerates
convergence, but η cannot compensate for a poor choice of α.

10

20703https://doi.org/10.52202/079017-0653



Acknowledgements

Portions of this research were conducted with the advanced computing resources provided by Texas
A&M High Performance Research Computing. This research was also supported in part by the
University of Pittsburgh Center for Research Computing, RRID:SCR_022735, through the resources
provided. Specifically, this work used the H2P cluster, which is supported by NSF award number
OAC-2117681.

References

Felipe Alvarez, Hedy Attouch, Jérôme Bolte, and Patrick Redont. A second-order gradient-like
dissipative dynamical system with Hessian-driven damping: Application to optimization and
mechanics. Journal de mathématiques pures et appliquées, 81(8):747–779, 2002.

Hedy Attouch, Zaki Chbani, Jalal Fadili, and Hassan Riahi. First-order optimization algorithms via
inertial systems with hessian driven damping. Mathematical Programming, pages 1–43, 2022.

J. F. Aujol, Ch. Dossal, and A. Rondepierre. Convergence rates of the heavy-ball method under the
łojasiewicz property. Mathematical Programming, 2022a. doi: 10.1007/s10107-022-01770-2.
URL https://doi.org/10.1007/s10107-022-01770-2.

J.-F. Aujol, Ch. Dossal, and A. Rondepierre. Convergence rates of the heavy ball method for quasi-
strongly convex optimization. SIAM Journal on Optimization, 32(3):1817–1842, 2022b. doi:
10.1137/21M1403990. URL https://doi.org/10.1137/21M1403990.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of SGD in non-convex
over-parametrized learning. CoRR, abs/1811.02564, 2018. URL http://arxiv.org/abs/1811.
02564.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 30:203–248, 2021.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

Raphaël Berthier, Francis Bach, Nicolas Flammarion, Pierre Gaillard, and Adrien Taylor. A con-
tinuized view on nesterov acceleration. arXiv preprint arXiv:2102.06035, 2021.

Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch heavy ball
momentum. arXiv preprint arXiv:2206.07553, 2022.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Antonin Chambolle and Charles H Dossal. On the convergence of the iterates of FISTA. Journal of
Optimization Theory and Applications, 166(3):25, 2015.

Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
a1afc58c6ca9540d057299ec3016d726-Paper.pdf.

Y. Cooper. The loss landscape of overparameterized neural networks, 2019. URL https://
openreview.net/forum?id=SyezvsC5tX.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International conference
on machine learning, pages 1446–1454. PMLR, 2019.

11

20704 https://doi.org/10.52202/079017-0653

https://doi.org/10.1007/s10107-022-01770-2
https://doi.org/10.1137/21M1403990
http://arxiv.org/abs/1811.02564
http://arxiv.org/abs/1811.02564
https://proceedings.neurips.cc/paper/2018/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://openreview.net/forum?id=SyezvsC5tX
https://openreview.net/forum?id=SyezvsC5tX


Marc Dambrine, Ch Dossal, Bénédicte Puig, and Aude Rondepierre. Stochastic differential equations
for modeling first order optimization methods. HAL preprint hal-03630785, 2022.

Alex Damian, Tengyu Ma, and Jason D. Lee. Label noise SGD provably prefers flat global minimizers.
In Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=x2TMPhseWAW.

Jelena Diakonikolas and Michael I Jordan. Generalized momentum-based methods: A hamiltonian
perspective. SIAM Journal on Optimization, 31(1):915–944, 2021.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv:1810.02054 [cs.LG], 2018.

Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Pierre Gaillard, Hadrien
Hendrikx, Laurent Massoulié, and Adrien Taylor. A continuized view on Nesterov acceleration for
stochastic gradient descent and randomized gossip. arXiv preprint arXiv:2106.07644, 2021.

Alexander Vladimirovich Gasnikov and Yu E Nesterov. Universal method for stochastic composite
optimization problems. Computational Mathematics and Mathematical Physics, 58:48–64, 2018.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization i: A generic algorithmic framework. SIAM Journal on
Optimization, 22(4):1469–1492, 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. Sgd: General analysis and improved rates. In International conference on machine
learning, pages 5200–5209. PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
stochastic gradient descent for least squares regression. In Conference On Learning Theory, pages
545–604. PMLR, 2018.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998. doi: 10.1137/
S0036141096303359. URL https://doi.org/10.1137/S0036141096303359.

Pooria Joulani, Anant Raj, Andras Gyorgy, and Csaba Szepesvári. A simpler approach to accelerated
optimization: iterative averaging meets optimism. In International conference on machine learning,
pages 4984–4993. PMLR, 2020.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Lojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in neural information processing
systems, 32, 2019.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insufficiency of existing
momentum schemes for stochastic optimization. In 2018 Information Theory and Applications
Workshop (ITA), pages 1–9. IEEE, 2018.

Donghwan Kim and Jeffrey A Fessler. Another look at the fast iterative shrinkage/thresholding
algorithm (fista). SIAM Journal on Optimization, 28(1):223–250, 2018.

12

20705https://doi.org/10.52202/079017-0653

https://openreview.net/forum?id=x2TMPhseWAW
https://openreview.net/forum?id=x2TMPhseWAW
https://doi.org/10.1137/S0036141096303359


Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer London, 2013.
ISBN 978-1-4471-5361-0.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Maxime Laborde and Adam Oberman. A lyapunov analysis for accelerated gradient methods: from
deterministic to stochastic case. In International Conference on Artificial Intelligence and Statistics,
pages 602–612. PMLR, 2020.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and accelera-
tion. Advances in neural information processing systems, 31, 2018.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss? –a
mathematical framework. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=siCt4xZn5Ve.

Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-parameterized learning.
arXiv preprint arXiv:1810.13395, 2018.

Kuang Liu. Train cifar10 with pytorch. https://github.com/kuangliu/pytorch-cifar, 2017.
[Online; accessed 16-May-2024].

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2018. URL https:
//openreview.net/forum?id=rk6qdGgCZ.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov acceleration.
In International Conference on Machine Learning, pages 4656–4662. PMLR, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical programming,
140(1):125–161, 2013.

Mark A Peletier. Variational modelling: Energies, gradient flows, and large deviations. arXiv preprint
arXiv:1402.1990, 2014.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

13

20706 https://doi.org/10.52202/079017-0653

https://openreview.net/forum?id=siCt4xZn5Ve
https://github.com/kuangliu/pytorch-cifar
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ


Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural net-
works. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4430–4438. PMLR, 2018. URL http://proceedings.mlr.press/
v80/safran18a.html.

Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretization of
high-resolution differential equations. Advances in Neural Information Processing Systems, 32,
2019.

Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration phenomenon
via high-resolution differential equations. Mathematical Programming, pages 1–70, 2021.

Jonathan W Siegel. Accelerated first-order methods: Differential equations and Lyapunov functions.
arXiv preprint arXiv:1903.05671, 2019.

Jonathan W Siegel and Stephan Wojtowytsch. A qualitative difference between gradient flows of con-
vex functions in finite-and infinite-dimensional Hilbert spaces. arXiv preprint arXiv:2310.17610,
2023.

Sebastian U. Stich. Unified Optimal Analysis of the (Stochastic) Gradient Method. arXiv e-prints,
art. arXiv:1907.04232, July 2019. doi: 10.48550/arXiv.1907.04232.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed updates. J. Mach. Learn. Res., 21(1), jun 2022. ISSN
1532-4435.

Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov’s
accelerated gradient method: theory and insights. Advances in neural information processing
systems, 27, 2014.

Jaewook J Suh, Gyumin Roh, and Ernest K Ryu. Continuous-time analysis of accelerated gradient
methods via conservation laws in dilated coordinate systems. In International Conference on
Machine Learning, pages 20640–20667. PMLR, 2022.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pages 1139–
1147. PMLR, 2013.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pages 1195–1204. PMLR, 2019.

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):E7351–E7358,
2016.

Ashia C Wilson, Ben Recht, and Michael I Jordan. A lyapunov analysis of accelerated methods in
optimization. The Journal of Machine Learning Research, 22(1):5040–5073, 2021.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. Part II:
Continuous time analysis. arXiv:2106.02588 [cs.LG], 2021.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. Part I:
Discrete time analysis. Journal of Nonlinear Science, 33, 2023.

Lei Wu, Mingze Wang, and Weijie J Su. The alignment property of sgd noise and how it helps select
flat minima: A stability analysis. In Advances in Neural Information Processing Systems, 2022a.

Xiaoxia Wu, Simon S Du, and Rachel Ward. Global convergence of adaptive gradient methods for an
over-parameterized neural network. arXiv preprint arXiv:1902.07111, 2019.

Xiaoxia Wu, Yuege Xie, Simon Shaolei Du, and Rachel Ward. Adaloss: A computationally-efficient
and provably convergent adaptive gradient method. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8691–8699, 2022b.

14

20707https://doi.org/10.52202/079017-0653

http://proceedings.mlr.press/v80/safran18a.html
http://proceedings.mlr.press/v80/safran18a.html


Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct runge-kutta discretization
achieves acceleration. Advances in neural information processing systems, 31, 2018.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E. Weinan. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

15

20708 https://doi.org/10.52202/079017-0653



Appendix

A Additional experiments 17

A.1 Numerical experiments for AGNES in smooth strongly convex optimization . . . . 17

A.2 Extensively comparing against NAG . . . . . . . . . . . . . . . . . . . . . . . . . 17

B Multiple versions of the AGNES scheme 18

B.1 Equivalence of the two formulations of AGNES . . . . . . . . . . . . . . . . . . . 18

B.2 Equivalence of AGNES and MaSS . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Continuous time interpretation of AGNES 20

D Background material and auxiliary results 22

D.1 A brief review of L-smoothness and (strong) convexity . . . . . . . . . . . . . . . 22

D.2 Stochastic processes, conditional expectations, and a decrease property for SGD . . 23

E Convergence proofs: convex case 25

E.1 Gradient Descent (GD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.2 AGNES and NAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F Convergence proofs: strongly convex case 34

F.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.2 AGNES and NAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.3 On the role of momentum parameters . . . . . . . . . . . . . . . . . . . . . . . . 40

G AGNES in non-convex optimization 41

H Proof of Lemma 8: Scaling intensity of minibatch noise 42

I Implementation aspects 43

I.1 The last iterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

I.2 Weight decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

16

20709https://doi.org/10.52202/079017-0653



A Additional experiments

A.1 Numerical experiments for AGNES in smooth strongly convex optimization

We compare SGD and AGNES for the family of objective functions

fµ,L : R2 → R, fµ,L(x) =
µ

2
x21 +

L

2
x22.

We considered several stochastic estimators with multiplicative gradient scaling such as

• collinear noise g = (1 + σN)∇f(x), where N is one-dimensional standard normal.

• isotropic noise g = ∇f(x) + σ ∥∇f(x)∥√
d

N , where N is a d-dimensional unit Gaussian.

• Gaussian noise with standard variation σ∥∇f(x)∥ only in the direction orthogonal to∇f(x).

• Gaussian noise with standard variation σ∥∇f(x)∥ only in the direction of the fixed vector
v = (1, 1)/

√
2.

• Noise of the form ∇f(x) +
√
1 + σ2 ∥∇f(x)∥2N v where v = (1, 1)/

√
2 and a variable

N which takes values 1 or −1 with probability 1
2

σ2 ∥∇f(x)∥2

1+σ2 ∥∇f(x)∥2 each; N = 0 otherwise.
In this setting, the noise remains macroscopically large at the global minimum, but the
probability of encountering noise becomes small.

Numerical results were found to be comparable for all settings on a long time-scale, but the geometry
of trajectories may change in the early stages of optimization depending on the noise structure.

For collinear and isotropic noise, the results obtained for fµ,L on R2 were furthermore found
comparable (albeit not identical) to simulations with a quadratic form on Rd with d = 10 and

• (d− 1) eigenvalues = µ and one eigenvalue = L

• (d− 1) eigenvalues = L and one eigenvalue = µ

• eigenvalues equi-spaced between µ and L.

The evolution of E[f(xn)] for different values of σ and L ≥ µ ≡ 1 is considered for both SGD and
AGNES in Figure 7.

The objective functions are µ = 1-convex and L-smooth. We use the optimal parameters α, η, ρ
derived above for AGNES and the optimal step size η = 1

L(1+σ2) for SGD. The mean of the objective
value at each iteration is computed over 1,000 samples for each optimizer.

A.2 Extensively comparing against NAG

We ran additional experiments testing a much wider range of hyperparameters for NAG for the task
of classifying images from CIFAR-10. The results, presented in Figure 8 indicate that AGNES
outperforms NAG with little fine-tuning of the hyperparameters.

We trained ResNet-34 using batch size of 50 for 40 epochs using NAG with learning rate in
{8 · 10−5, 10−4, 2 · 10−4, 5 · 10−4, 8 · 10−4, 10−3, 2 · 10−3, 5 · 10−3, 8 · 10−3, 10−2, 2 · 10−2, 5 ·
10−2, 8 · 10−2, 10−1, 2 · 10−1, 5 · 10−1} and momentum value in {0.2, 0.5, 0.8, 0.9, 0.99}. These
80 combinations of hyperparameters for NAG were compared against AGNES with the default
hyperparameters suggested α = 10−3 (learning rate), η = 10−2 (correction step), and ρ = 0.99
(momentum) as well as AGNES with a slightly smaller learning rate 5 · 10−4 (with the other two
hyperparameters being the same).

AGNES consistently achieved a lower training loss as well as a better test accuracy faster than any
combination of NAG hyperparameters tested. The same random seed was used each time to ensure
a fair comparison between the optimizers. Overall, AGNES remained more stable and while other
versions of NAG occasionally achieved a higher classification accuracy in certain epochs.
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Figure 7: We compare AGNES (red) and SGD (blue) for the optimization of fµ,L with µ = 1 and
L = 500 (left) / L = 104 (right) for different noise levels σ = 0 (solid line), σ = 10 (dashed) and
σ = 50 (dotted). In all cases, AGNES improves significantly upon SGD. The noise model used
is isotropic Gaussian, but comparable results are obtained for different versions of multiplicatively
scaling noise.

B Multiple versions of the AGNES scheme

B.1 Equivalence of the two formulations of AGNES

Lemma 9. The two formulations of the AGNES time-stepping scheme (2) and (3) produce the same
sequence of points.

Proof. We consider the three-step formulation (3),

v0 = 0, x′n = xn + αvn, xn+1 = x′n − ηg′n, vn+1 = ρn(vn − g′n),
and use it to derive (2) by eliminating the velocity variable vn. If v0 = 0, then x′0 = x0. From the
definition x′n, we get αvn = x′n − xn. Substituting this into the definition of vn+1,

vn+1 = ρn

(
x′n − xn

α
− g′n

)
.

Then using this expression for vn+1 to compute x′n+1,

x′n+1 = xn+1 + αvn+1

= xn+1 + αρn

(
x′n − xn

α
− g′n

)
= xn+1 + ρn(x

′
n − αg′n − xn).

Together with the definition of xn+1 and the initialization x′0 = x0, this is exactly the two-step
formulation (2) of AGNES.

B.2 Equivalence of AGNES and MaSS

After the completion of this work, we learned of Liu and Belkin [2018]’s Momentum-Added Stochas-
tic Solver (MaSS) method, which generates sequences according to the iteration

xn+1 = x′n − η1g′n, x′n+1 = (1 + γ)xn+1 − γxn + η2g
′
n

where g′n is an estimate for ∇f(x′n). This is a version of AGNES with the choice η = η1 and the
momentum step

x′n+1 = xn+1 + ρ(x′n − αg′n − xn)
= xn+1 + ρ(xn+1 + ηg′n − αg′n − xn)
= (1 + ρ)xn+1 − ρxn + (η − α)ρg′n,

i.e. MaSS coincides with AGNES for γ = ρ and η2 = (η − α)ρ.
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Figure 8: We trained ResNet34 on CIFAR-10 with batch size 50 for 40 epochs using NAG. Training
losses are reported as a running average with decay rate 0.999 in the left column and test accuracy
after every epoch is reported in the right column. Each row represents a specific value of momentum
used for NAG (from top to bottom: 0.99, 0.9, 0.8, 0.5, and 0.2) with learning rates ranging from
8 · 10−5 to 0.5. These hyperparameter choices for NAG were compared against AGNES with
the default hyperparameters suggested α = 10−3 (learning rate), η = 10−2 (correction step), and
ρ = 0.99 (momentum) as well as AGNES with a slightly smaller learning rate 5·10−4 (with ρ = 0.99,
η = 10−2 as well). The same two training trajectories with AGNES are shown in all the plots in
shades of blue. The horizontal axes represent the number of optimizer steps.
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C Continuous time interpretation of AGNES

For better interpretability, we consider the continuous time limit of the AGNES algorithm. Similar
ODE analyses of accelerated first order methods have been considered by many authors, including Su
et al. [2014], Siegel [2019], Wilson et al. [2021], Attouch et al. [2022], Aujol et al. [2022a], Zhang
et al. [2018], Dambrine et al. [2022].

Consider the time-stepping scheme

v0 = 0, x′n = xn + γ1vn, xn+1 = x′n − ηg′n, vn+1 = ρn(vn − γ2g′n), (5)

which reduces to AGNES as in (3) with the choice of parameters γ1 = α, γ2 = 1. For the derivation
of continuous time dynamics, we show that the same scheme arises with the choice γ1 = γ2 =

√
α.

Lemma 10. Let ρ ∈ (0, 1) and η > 0 parameters. Assume that γ1, γ2 and γ̃1, γ̃2 are parameters
such that γ̃1γ̃2 = γ1γ2. Consider the sequences (x̃n, x̃′n, ṽn) and (xn, x

′
n, vn) generated by the time

stepping scheme (5) with parameters (ρ, η, γ̃1, γ̃2) and (ρ, η, γ1, γ2) respectively. If x0 = x̃0 and
γ1v0 = γ̃1 ṽ0, then xn = x̃n, x′n = x̃′n and γ̃1 ṽn = γ1 vn for all n ∈ N.

Proof. We proceed by mathematical induction on n. For n = 0, the claim holds by the hypotheses
of the lemma. For the inductive hypothesis, we suppose that xn = x̃n and γ1vn = γ̃1ṽn and prove
the claim for n+ 1. Note that since x′n = xn + γ1vn, it automatically follows that x′n = x̃′n. This
implies that

xn+1 = x′n − ηg′n = x̃′n − ηg′n = x̃n+1.

Considering the velocity term,

γ1vn+1 = ρn(γ1vn − γ1γ2g′n) = ρn(γ̃1ṽn − γ̃1γ̃2g′n) = γ̃1ρn(ṽn − γ̃2g′n) = γ̃1ṽn+1.

Thus xn+1 = x̃n+1 and γ1vn+1 = γ̃1ṽn+1. The induction can therefore be continued.

Consider the choice of parameters in Theorem 4 by

η =
1

L(1 + σ2)
, α =

1−
√
µ/L

1−
√
µ/L+ σ2

η ≈ η

1 + σ2
, ρ =

√
L(1 + σ2)−√µ
√
L(1 + σ2) +

√
µ

if µ≪ L. We denote h := 1√
L(1+σ2)

and note that

γ1 = γ2 =
√
α ≈ h, η = (1 + σ2)h2 =

h√
L

and

ρ = 1− 2

√
µ

√
L(1 + σ2) +

√
µ

= 1− 2
√
µ

√
L(1 + σ2)√

L(1 + σ2) +
√
µ
h ≈ 1− 2

√
µh.

Depending on which interpretation of η we select, we obtain a different continuous time limit. First,
consider the deterministic case σ = 0. Then

(
xn+1

vn+1

)
=

(
xn
vn

)
+ h

(
vn − h∇f(xn + hvn)

−2√µ vn − (1−√µh)∇f(xn + hvn)

)
=

(
xn
vn

)
+ h

(
vn

−2√µ vn −∇f(xn)

)
+O(h2)

Keeping f fixed and taking h→ 0, this is a time-stepping scheme for the coupled ODE system(
ẋ
v̇

)
=

(
v

−2√µ v −∇f(x)

)
.

Differentiating the first equation and using the system ODEs to subsequently eliminate v from the
expression, we observe that

ẍ = v̇ = −2√µ v −∇f(x) = −2√µ ẋ−∇f(x),
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i.e. we recover the heavy ball ODE. The alternative interpretation η = h/
√
L can be analized

equivalently and leads to a system(
ẋ
v̇

)
=

(
v − 1√

L
∇f(x)

−2√µ v −∇f(x)

)
.

which corresponds to a second order ODE

ẍ = −v̇ − 1√
L
D2f(x) ẋ

= −2√µv −∇f(x)− 1√
L
D2f(x) ẋ

= −2√µ
(
ẋ+

1√
L
∇f(x)

)
−∇f(x)− 1√

L
D2f(x) ẋ

= −
(
2
√
µ Im×m +

1√
L
D2f(x)

)
ẋ−

(
1 + 2

√
µ

L

)
∇f(x).

This continuum limit is not a simple heavy-ball ODE, but rather a system with adaptive friction
modelled by Hessian damping. A related Newton/heavy ball hybrid dynamical system was studied
in greater detail by Alvarez et al. [2002]. For L-smooth functions, the ℓ2-operator norm of D2f(x)

satisfies ∥D2f(x)∥ ≤ L, i.e. the additional friction term can be as large as
√
L in directions

corresponding to high eigenvalues of the Hessian. This provides significant regularization in directions
which would otherwise be notably underdamped.

Following Appendix F.3, we maintain that the scaling

η(1− ρ)
α

= 2

√
µ

L

is ‘natural’ as we vary η, α, ρ. The same fixed ratio is maintained for the scaling choice η = h/
√
L as

η(1− ρ)
α

=
h/
√
L · 2√µh
h2

= 2

√
µ

L
.

Indeed, numerical experiments in Section A suggest that such regularization may be observed in
practice as high eigenvalues in the quadratic map do not exhibit ‘underdamped’ behavior. We
therefore believe that Hessian dampening is the potentially more instructive continuum description of
AGNES. A similar analysis can be conducted in the stochastic case with the scaling

γ1 = γ2 = h, η ∈
{
(1 + σ2)h2,

h√
L

}
, ρ = 1− 2

√
µh

for large σ. We incorporate noise as

g′n = (1 + σNn)∇f(x′n)
and write(

xn+1

vn+1

)
=

(
xn
vn

)
+ h

(
vn − (1 + σ2)h∇g′n

−2√µ vn − (1−√µh)
(
1 + σNn)∇f(xn + hvn)

)
=

(
xn
vn

)
+ h

(
vn

−2√µ vn −∇f(xn)−
√
h σ

√
h

2 Nn∇f(x)

)
+O(h2)

which can be viewed as an approximation of the coupled ODE/SDE system(
dx
dv

)
=

(
v dt(

− 2
√
µ v −∇f(x)

)
dt+ σ

√
hdB · ∇f(x)

)
under moment bounds on the noise Nn. The precise noise type depends on the assumptions on the
covariance structure of Nn – noise can point only in gradient direction or be isotropic on the entire
space. For small h, the dynamics become deterministic. Again, an alternative continuous time limit is(

dx
dv

)
=

(
(v −∇f(x)/

√
L) dt+ σ

√
h√
L

dB · ∇f(x)(
− 2
√
µ v −∇f(x)

)
dt+ σ

√
hdB · ∇f(x)

)
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if η is scaled towards zero as h/
√
L. The first limiting structure is recoverd in the limit L → ∞.

Notably, the noise in the first equation is expected to be non-negligible if σ ≫
√
L. A similar analysis

can be conducted in the convex case, noting that

n+ n0
n+ n0 + 3

= 1− 3

n+ n0 + 3
= 1− 3

(n+ n0 + 3)h
h

where (n+ n0 + 3)h roughly corresponds to the time t in the continuous time setting.

D Background material and auxiliary results

In this appendix, we gather a few auxiliary results that will be used in the proofs below. We believe
that these will be familiar to the experts and can be skipped by experienced readers.

D.1 A brief review of L-smoothness and (strong) convexity

Recall that if a function f is L-smooth, then

f(y) ≤ f(x) +∇f(x) · (y − x) + L

2
∥x− y∥2. (6)

For convex functions, this is in fact equivalent to∇f being L-Lipschitz.
Lemma 11. If f is convex and differentiable and satisfies (6), then ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
for all x and y.

Proof. Setting y = x − 1
L∇f(x) in (6) implies that f(x) − infz f(z) ≥ 1

2L∥∇f(x)∥
2. Applying

this to the modified function fy(x) = f(x)−∇f(y) · (x− y), which is still convex and satifies (6),
we get

fy(x)− inf
z
fy(z) = fy(x)− fy(y) = f(x)−∇f(y) · (x− y)− f(y)

≥ 1

2L
∥∇fy(x)∥2 =

1

2L
∥∇f(x)−∇f(y)∥2.

Note that here we have used the convexity to conclude that infz fy(z) = fy(y), i.e. that fy is
minimized at y, since by construction∇fy(y) = 0 (this is the only place where we use convexity!).
Swapping the role of x and y, adding these inequalities, and applying Cauchy-Schwartz we get

1

L
∥∇f(x)−∇f(y)∥2 ≤ (∇f(x)−∇f(y)) · (x− y) ≤ ∥∇f(x)−∇f(y)∥∥x− y∥,

which implies the result.

From the first order strong convexity condition,

f(y) ≥ f(x) +∇f(x) · (y − x) + µ

2
∥x− y∥2,

we deduce the more useful formulation ∇f(x) · (x− y) ≥ f(x)− f(y) + µ
2 ∥x− y∥

2. The convex
case arises as the special case µ = 0. We note a special case of these conditions when one of the
points is a minimizer of f .
Lemma 12. If f is an L-smooth function and x∗ is a point such that f(x∗) = infx∈Rm f(x) then for
any x ∈ Rm,

f(x)− f(x∗) ≤ L

2
∥x− x∗∥2 .

Similarly, if f is differentiable and µ-strongly convex then for any x ∈ Rm,
µ

2
∥x− x∗∥2 ≤ f(x)− f(x∗).

Proof. This follows from the two first order conditions stated above by noting that∇f(x∗) = 0 if x∗
is a minimizer of f .
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Additionally, L-smooth functions which are bounded from below satisfy the inequality

∥∇f∥2 ≤ 2L (f − inf f).

Intuitively, if the gradient is large at a point, then we reduce f quickly by walking in the gradient
direction. The L-smoothness condition prevents the gradient from decreasing quickly along our path.
Thus if the gradient is larger than a threshold at a point where f is close to inf f , then the inequality
f ≥ inf f would be violated.

Let us record a modified gradient descent estimate, which is used only in the non-convex case. The
difference to the usual estimate is that the gradient is evaluated at the terminal point of the interval
rather than the initial point.
Lemma 13. For any x, v and α: If f is L-smooth, then

f(x+ αv) ≤ f(x) + α∇f(x+ αv) · v + Lα2

2
∥v∥2.

Note that if f is convex, this follows immediately from (6) and the convexity condition (∇f(y)−
∇f(x)) · (y − x) ≥ 0.

Proof. The proof is essentially identical to the standard decay estimate. We compute

f(x) = f(x+ αv)−
∫ α

0

d

dt
f(x+ tv)dt

= f(x+ αv)−
∫ α

0

[
∇f(x+ αv) +

{
∇f(x+ tv)−∇f(x+ αv)

}]
· v dt

≥ f(x+ αv)−∇f(x+ αv) · v −
∫ α

0

L (α− t)∥v∥2 dt

= f(x+ αv)− α∇f(x+ αv) · v − Lα2

2
∥v∥2.

D.2 Stochastic processes, conditional expectations, and a decrease property for SGD

Now, we turn towards a very brief review of the stochastic process theory used in the analysis of
gradient descent type algorithms. Recall that (Ω,A,P) is a probablity space from which we draw
elements ωn for gradient estimates g(x′n, ωn) (AGNES) or g(xn, ωn) (SGD). We consider x0 as a
random variable on Rm with law Q. Let us introduce the probability space (Ω̂, Â, P̂) where

1. Ω̂ = Rd ×
∏

n∈N Ω,

2. Â is the cylindrical/product σ-algebra on Ω̂, and

3. P̂ = Q×
⊗

P.

The product σ-algebra and product measure are objects suited to events which are defined using only
finitely many variables in the product space. A more detailed introduction can be found in [Klenke,
2013, Example 1.63]. We furthermore define the filtration {Fn}n∈N where Fn is the σ-algebra
generated by sets of the form

B ×
n∏

i=1

Ai ×
∏
i∈N

Ω, B ⊆ Rm Borel, Ai ∈ A.

In particular,
⋃

n∈N Fn ⊆ σ
(⋃

n∈N Fn

)
= Â and, examining the time-stepping scheme, it is

immediately apparent that xn, x′n, vn are Fn-measurable random variables on Ω̂. In particular, they
are A-measurable. Alternatively, we can consider Fn as the σ-algebra generated by the random
variables x1, x′1, . . . , xn, x

′
n, i.e. all the information that is known after intialization and taking n

gradient steps. All probabilities in the main article are with respect to P̂.

Recall that conditional expectations are a technical tool to capture the stochasticity in a random
variable X which can be predicted from another random quantity Y . This allows us to quantify the
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randomness in the gradient estimators g′n which comes from the fact that xn is a random variable
(not known ahead of time) and which randomness comes from the fact that on top of the inherent
randomness due to e.g. initialization, we do not compute exact gradients. In particular, even at
run time when xn is known, there is additional noise in the estimators g′n in our setting due to the
selection of ωn.

In the next Lemma, we recall two important properties of conditional expectations.
Lemma 14. [Klenke, 2013, Theorem 8.14] Let g and h be A-measurable random variables on a
probability space (Ω,A,P) and F ⊆ A be a σ−algebra. Then the conditional expectations E[g | F ]
and E[h | F ] satisfy the following properties:

1. (linearity) E[αg + βh | F ] = αE[g] + β E[h | F ] for all α, β ∈ R

2. (tower identity) E[E[g | F ]] = E[g]

3. If g is F−measurable then E[gh | F ] = g E[h | F ]. In particular, E[g | F ] = g

For a more thorough introduction to filtrations and conditional expectations, see e.g. [Klenke, 2013,
Chapter 8]. E[g′n|Fn] is the mean of g′n if all previous steps are already known.
Lemma 15. Suppose g′n, xn, and x′n satisfy the assumptions laid out in Section 3.1, then the following
statements hold

1. E
[
g′n|Fn

]
= ∇f(x′n)

2. E
[
∥g′n −∇f(x′n)∥2

]
≤ σ2 E

[
∥∇f(x′n)∥2

]
.

3. E[∥g′n∥
2
] = (1 + σ2)E[∥∇f(x′n)∥

2
]

4. E[∇f(x′n) · g′n] = E[∥∇f(x′n)∥
2
]

Proof. First and second claim. This follows from Fubini’s theorem.

Third claim. The third result then follows by an application of the tower identity with Fn, expanding
the square of the norm as a dot product, and then using the linearity of conditional expectation:

E
[
∥g′n∥

2
]
= E

[
E
[
∥g′n∥

2 | Fn

]]
= E

[
E
[
∥g′n −∇f(x′n)∥

2
+ 2g · ∇f(x′n)− ∥∇f(x′n)∥

2 | Fn

]]
= E

[
E
[
∥g′n −∇f(x′n)∥

2 | Fn

]
+ 2E [g · ∇f(x′n) | Fn]− E

[
∥∇f(x′n)∥

2 | Fn

]]
≤ E

[
σ2∇f(x′n) + 2 ∥∇f(x′n)∥

2 − ∥∇f(x′n)∥
2
]

= (1 + σ2)E
[
∥∇f(x′n)∥

2
]
.

Fourth claim. For the fourth result, we observe that since f is a deterministic function and x′n is
Fn-measurable, ∇f(x′n) is also measurable with respect to the σ-algebra. Then using the tower
identity followed by the third property in Lemma 14,

E [∇f(x′n) · g′n] = E [E [∇f(x′n) · g′n | Fn]]

= E [∇f(x′n) · E [g′n | Fn]]

= E [∇f(x′n) · ∇f(x′n)]

= E
[
∥∇f(x′n)∥

2
]
.

As a consequence, we note the following decrease estimate.
Lemma 16. Suppose that f, x′n, and g′n = g(x′n, ωn) satisfy the conditions laid out in Section 3.1,
then

E
[
f(x′n − ηg′n)

]
≤ E

[
f(x′n)

]
− η

(
1− L(1 + σ2)η

2

)
E
[
∥∇f(x′n)∥

2
]
.
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Proof. Using L-smoothness of f ,

f(x′n − ηg′n) ≤ f(x′n)− ηg′n · ∇f(x′n) +
Lη2

2
∥g′n∥

2
.

Then taking the expectation and using the results of the previous lemma,

E [f(x′n − ηg′n)] ≤ E[f(x′n)]− ηE
[
∥∇f(x′n)∥

2
]
+
Lη2

2
(1 + σ2)E

[
∥∇f(x′n)∥

2
]

≤ E
[
f(x′n)

]
− η

(
1− L(1 + σ2)η

2

)
E
[
∥∇f(x′n)∥

2
]

In particular, if η ≤ 1
L(1+σ2) , then

E
[
f(x′n − ηg′n)

]
≤ E

[
f(x′n)

]
− η

2
E
[
∥∇f(x′n)∥2

]
.

E Convergence proofs: convex case

E.1 Gradient Descent (GD)

We first present a convergence result for stochastic gradient descent for convex functions with
multiplicative noise scaling. To the best of our knowledge, convergence proofs for this type of noise
which degenerates at the global minimum have been given by Bassily et al. [2018], Wojtowytsch
[2023] under a Polyak-Lojasiewicz (or PL) condition (which holds automatically in the strongly
convex case), but not for functions which are merely convex. We note that, much like AGNES, SGD
achieves the same rate of convergence in stochastic convex optimization with multiplicative noise
as in the deterministic case (albeit with a generally much larger constant). In particular, SGD with
multiplicative noise is more similar to deterministic gradient descent than to SGD with additive noise
in this way.

Analyses of SGD with non-standard noise under various conditions are given by Stich and Karim-
ireddy [2022], Stich [2019].

Theorem 17 (GD, convex case). Assume that f is a convex function and that the assumptions laid
out in Section 3.1 are satisfied. If the sequence xn is generated by the gradient descent scheme

gn = g(xn, ωn), xn+1 = xn − ηgn, η ≤ 1

L(1 + σ2)
,

then for any x∗ ∈ Rm and any n0 ≥ 1 + σ2,

E[f(xn)− f(x∗)] ≤
ηn0 E[f(x0)− f(x∗)] + 1

2 E
[
∥x0 − x∗∥2

]
η(n+ n0)

.

In particular, if η = 1
L(1+σ2) , n0 = 1 + σ2, and x∗ is a point such that f(x∗) = infx∈Rm f(x), then

E[f(xn)− f(x∗)] ≤
L(1 + σ2)E

[
∥x0 − x∗∥2

]
2(n+ 1 + σ2)

.

Proof. Let n0 ≥ 0 and consider the Lyapunov sequence

Ln = E
[
η(n+ n0)

(
f(xn)− inf f

)
+

1

2
∥xn − x∗∥2

]
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We find that

Ln+1 = E
[
η(n+ n0 + 1)

{
f(xn − ηgn)− inf f

}
+

1

2
∥xn − ηgn − x∗∥2

]
≤ E

[
η(n+ n0 + 1)

{
f(xn)−

η

2
∥∇f(xn)∥2 − inf f

}
+

1

2
∥xn − x∗∥2 − η (xn − x∗) · gn +

η2

2
∥gn∥2

]
= E

[
η(n+ n0)

{
f(xn)− inf f

}
+

1

2
∥xn − x∗∥2 + f(xn)− inf f + η∇f(xn) · (x∗ − xn)

− η2(n+ n0)

2
∥∇f(xn)∥2 +

η2

2
∥gn∥2

]
≤ Ln + 0− η2

2

(
n+ n0 − (1 + σ2)

)
E
[
∥∇f(xn)∥2

]
by the convexity of f . The result therefore holds if n0 is chosen large since

E[f(xn)− f(x∗)] ≤
Ln

η(n+ n0)
≤ L0

η(n+ n0)
=
ηn0 E[f(x0)− f(x∗)] + 1

2 E
[
∥x0 − x∗∥2

]
η(n+ n0)

.

If x∗ is a minimizer of f then the last claim in the theorem follows by using the upper bound
f(x0)− f(x∗) ≤ L

2 ∥x0 − x
∗∥2 from Lemma 12 and substituting η = 1

L(1+σ)2 , n0 = 1 + σ2.

E.2 AGNES and NAG

The proofs of Theorems 1 and 3 in this section are constructed in analogy to the simplest setting of
deterministic continuous-time optimization. As noted by Su et al. [2014], Nesterov’s time-stepping
scheme can be seen as a non-standard time discretization of the heavy ball ODE ẍ = − 3

t ẋ−∇f(x) t > 0
ẋ = 0 t = 0
x = x0 t = 0

with a decaying friction coefficient. The same is true for AGNES, which reduces to Nesterov’s method
in the determinstic case. Taking the derivative and exploiting the first-order convexity condition, we
see that the Lyapunov function

L (t) := t2
(
f(x(t))− f(x∗)

)
+

1

2

∥∥tẋ+ 2
(
x(t)− x∗

)∥∥2 (7)

is decreasing in time along the heavy ball ODE, see e.g. [Su et al., 2014, Theorem 3]. Here x∗ is a
minimizer of the convex function f . In particular

f(x(t))− f(x∗) ≤ L (t)

t2
≤ L (0)

t2
=

2 ∥x0 − x∗∥2

t2
.

To prove Theorems 1 and 3, we construct an analogue to L in (7). Note that αvn = x′n − xn is a
discrete analogue of the velocity ẋ in the continuous setting. Both the proofs follow the same outline.
Since Nesterov’s algorithm is a special case of AGNES, we first prove Theorem 3. We present the
Lyapunov sequence in a fairly general form, which allows us to reuse calculations for both proofs
and suggests the optimality of our approach for Nesterov’s original algorithm.

For details on the probalistic set-up and useful properties of gradient estimators, see Appendix D.2.
Let us recall the two-step formulation of AGNES, which we use for the proof,

x0 = x′0, xn+1 = x′n − ηg′n, x′n+1 = xn+1 + ρn
(
x′n − αg′n − xn

)
. (2)

We first prove the alternative version mentioned after Theorem 3 in the main text. Both proofs proceed
initially identically and only diverge in Step 3. The reader interested mainly in Theorem 3 is invited
to read the first two steps of the proof of Theorem 18 and then skip ahead to the proof of Theorem 3
below.
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Theorem 18 (AGNES, convex case, n0 version). Suppose that xn and x′n are generated by the
time-stepping scheme (3), f and g′n = g(x′n, ωn) satisfy the conditions laid out in Section 3.1, f is
convex, and x∗ is a point such that f(x∗) = infx∈Rm f(x). If the parameters are chosen such that

η ≤ 1

L(1 + σ2)
, α <

η

1 + σ2
, n0 ≥

2σ2η

η − α(1 + σ2)
, ρn =

n+ n0
n+ n0 + 3

,

then

E
[
f(xn)− f(x∗)

]
≤

(αn0 + 2η)n0 E
[
f(x0)− inf f

]
+ 2E

[
∥x0 − x∗∥2

]
α (n+ n0)2

.

In particular, if α ≤ η
1+2σ2 then it suffices to choose n0 ≥ 2η/α ≥ 2(1 + 2σ2).

Proof. Set-up. Mimicking the continuous time model in (7), we consider the Lyapunov sequence
given by

Ln = P (n)E [f(xn)− f(x∗)] +
1

2
E
[
∥b(n)(x′n − xn) + a(n)(x′n − x∗)∥

2
]

where P (n) some function of n, a(n) = a0 + a1n, and b(n) = b0 + b1n for some coefficients
a0, a1, b0, b1. Our goal is to choose these in such a way that Ln is a decreasing sequence.

Step 1. If we denote the first half of the Lyapunov sequence as L 1
n = P (n)E [f(xn)− f(x∗)], then

L 1
n+1 −L 1

n = P (n+ 1)E[f(xn+1)− f(x∗)]− P (n)E[f(xn)− f(x∗)]
≤ (P (n+ 1) + k)E[f(xn+1)− f(x∗)]− P (n)E[f(xn)− f(x∗)],

where k is a positive constant that can be chosen later to balance out other terms. Using Lemma 15,

L 1
n+1 −L 1

n ≤ (P (n+ 1) + k)E
[
f(x′n)− cη,σ,L ∥∇f(x′n)∥

2 − f(x∗)
]
− P (n)E[f(xn)− f(x∗)]

= P (n)E [f(x′n)− f(xn)] + (P (n+ 1) + k − P (n))E[f(x′n)− f(x∗)]

− (P (n+ 1) + k)cη,σ,LE[∥∇f(x′n)∥
2
]

where cη,σ,L = η
(
1− L(1+σ2)η

2

)
. Using convexity,

L 1
n+1 −L 1

n ≤ P (n)E [∇f(x′n) · (x′n − xn)] + (P (n+ 1) + k − P (n))E[∇f(x′n) · (x′n − x∗)]

− (P (n+ 1) + k)cη,σ,LE[∥∇f(x′n)∥
2
]. (8)

Step 2. We denote
wn = b(n)(x′n − xn) + a(n)(x′n − x∗)

and use the definition of x′n+1 from (2),

wn+1 = b(n+ 1)(x′n+1 − xn+1) + a(n+ 1)(x′n+1 − x∗)
= b(n+ 1)ρn (x

′
n − αg′n − xn) + a(n+ 1) (xn+1 + ρn(x

′
n − αg′n − xn)− x∗)

= (b(n+ 1) + a(n+ 1))ρn (x
′
n − αg′n − xn) + a(n+ 1)(xn+1 − x∗).

We will choose

ρn =
b(n)

b(n+ 1) + a(n+ 1)
,

such that the expression becomes

wn+1 = b(n) (x′n − αg′n − xn) + a(n+ 1)(xn+1 − x∗)
= b(n) (x′n − αg′n − xn) + (a0 + a1n+ a1)(x

′
n − ηg′n − x∗)

= wn + a1(x
′
n − x∗)− (αb(n) + ηa(n+ 1))g′n.

Then
1

2
∥wn+1∥2 −

1

2
∥wn∥2 = wn · (wn+1 − wn) +

1

2
∥wn+1 − wn∥2

= wn · (a1(x′n − x∗)− (αb(n) + ηa(n+ 1))g′n)

+
1

2
∥a1(x′n − x∗)− (αb(n) + ηa(n+ 1))g′n∥

2
.
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We want the terms in this expression to balance the terms in L 1
n+1 −L 1

n , so we choose a1 = 0, i.e.
a(n) = a0 is a constant. This implies,

E
[
1

2
∥wn+1∥2−

1

2
∥wn∥2

]
= E

[
−(αb(n) + ηa0)wn · g′n +

1

2
(αb(n) + ηa0)

2 ∥g′n∥
2
]

≤ −(αb(n) + ηa0)E[wn · ∇f(x′n)] +
1

2
(αb(n) + ηa0)

2(1 + σ2)E[∥∇f(x′n)∥
2
]

= −(αb(n) + ηa0)b(n)E[(x′n − xn) · ∇f(x′n)]
− (αb(n) + ηa0)a0E[(x′n − x∗) · ∇f(x′n)]

+
1

2
(αb(n) + ηa0)

2(1 + σ2)E[∥∇f(x′n)∥
2
]. (9)

Step 3. Combining the estimates (8) and (9) from the last two steps,

Ln+1 −Ln ≤ (P (n)− (αb(n) + ηa0)b(n))E [∇f(x′n) · (x′n − xn)]
+ (P (n+ 1) + k − P (n)− (αb(n) + ηa0)a0)E[∇f(x′n) · (x′n − x∗)]

+

(
1

2
(αb(n) + ηa0)

2(1 + σ2)− (P (n+ 1) + k)cη,σ,L

)
E[∥∇f(x′n)∥

2
].

Since ∥∇f(x′n)∥
2 ≥ 0 and ∇f(x′n) · (x′n − x∗) ≥ f(x′n)− f(x∗) ≥ 0, we require the coefficients

of these two terms to be non-positive and the coefficient of ∇f(x′n) · (x′n − xn) to be zero. That
gives us the following system of inequalities,

P (n) = (αb(n) + ηa0)b(n) (10)
P (n+ 1) + k − P (n) ≤ (αb(n) + ηa0)a0 (11)

1

2
(αb(n) + ηa0)

2(1 + σ2) ≤ (P (n+ 1) + k)η

(
1− L(1 + σ2)η

2

)
. (12)

Step 4. Now we can choose values that will satisfy the above system of inequalities. We substitute
a0 = 2, b1 = 1, b0 = n0, and k = 2η − α. From (10), we get P (n) = (α(n+ n0) + 2η) (n+ n0).
Next, we observe that

P (n+ 1) = P (n) + α+ 2α(n+ n0) + 2η.

Then (11) holds because

P (n+ 1) + k − P (n) = α+ 2α(n+ n0) + 2η + 2η − α
= 2(α(n+ n0) + 2η)

= (αb(n) + ηa0)a0.

We now choose η to satisfy η ≤ 1
L(1+σ2) , which ensures that η

2 ≤ η
(
1− L(1+σ2)η

2

)
. Consequently,

for (12), it suffices to ensure that

(αb(n) + ηa0)
2(1 + σ2) ≤ (P (n+ 1) + k)η,

which is equivalent to showing that the polynomial,

q(z) =
(
αz2 + 2ηz + α+ 2αz + 2η + 2η − α

)
η

−
(
α2z2 + 4η2 + 4αηz

)
(1 + σ2),

is non-negative for all z ≥ n0. q(z) simplifies to

q(z) = α(η − α(1 + σ2))z2 + 2η(η + α− 2α(1 + σ2))z − 4η2σ2.

To guarantee that q is non-negative for z = n+ n0 ≥ n0, we require that

1. the leading order coefficient is strictly positive2 and
2 In principle, it would suffice if the quadratic coefficient vanished and the linear coefficient were strictly

positive. However, if η−α(1+σ2) = 0, then the coefficient of the linear term is negative since η+α− 2α(1+
σ2) = −ασ2 < 0. We therefore require the coefficient of the quadratic term to be positive.
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2. n0 ≥ 0, q(n0) ≥ 0.

Since q(0) < 0 and q is quadratic, this suffices to guarantee that q is increasing on [n0,∞). The first
condition reduces to the fact that

η − α(1 + σ2) > 0.

We can find the minimal admissible value of n0 by the quadratic formula. We first consider the term
outside the square root:

−2η(η + α− 2α(1 + σ2))

2α(η − α(1 + σ2))
= − η

α

(
1− ασ2

η − α(1 + σ2)

)
and thus

n0 ≥ −
η

α

(
1− ασ2

η − α(1 + σ2)

)
+

√
η2

α2

(
1− ασ2

η − α(1 + σ2)

)2

+
4η2σ2

α(η − α(1 + σ2))

=
η

α


√
1− 2

ασ2

η − α(1 + σ2)
+

(
ασ2

η − α(1 + σ2)

)2

+ 4
ασ2

η − α(1 + σ2)
−
(
1− ασ2

η − α(1 + σ2)

)
=
η

α


√(

1 +
ασ2

η − α(1 + σ2)

)2

−
(
1− ασ2

η − α(1 + σ2)

)
=
η

α

2ασ2

η − α(1 + σ2)

=
2η σ2

η − α(1 + σ2)
.

In particular, in the deterministic case σ = 0, the choice n0 = 0 is admissible. Notably, we require
n0 ≥ 2σ2 η

η = 2σ2. Furthermore, if α ≤ η
1+2σ2 , then

2σ2η

η − α(1 + σ2)
≤ 2σ2η

ασ2
=

2η

α
,

so it suffices to choose n0 ≥ 2η/α in this case.

Step 5. We have shown that the Lyapunov sequence,

Ln = ((n+n0)α+2η)(n+n0)E [f(xn)− f(x∗)]+
1

2
E
[
∥(n+ n0)(x

′
n − xn) + 2(x′n − x∗)∥

2
]
,

is monotone decreasing. It follows that

E
[
f(xn)− f(x∗)

]
≤ Ln

P (n)
≤ L0

P (n)
≤

E
[
(n0α+ 2η)n0

(
f(x0)− f(x∗)

)
+ 2 ∥x0 − x∗∥2

]
α (n+ n0)2

.

If 2η ≤ αn0, we get

E
[
f(xn)− f(x∗)

]
≤

2αn20 E
[
f(x0)− inf f

]
+ 2E

[
∥x0 − x∗∥2

]
α (n+ n0)2

.

Finally, if η = 1
L(1+σ2) , α = 1

L(1+σ2)(1+2σ2) , and n0 = 2(1 + 2σ2), then using Lemma 12, the
expression above simplifies to

E
[
f(xn)− f(x∗)

]
≤

2L(1 + 2σ2)(3 + 5σ2)E
[
∥x0 − x∗∥2

]
n2

.

Remark 19. Note that SGD arises as a special case of this analysis if we consider α = 0, n0 ≥ 2σ2

since P (n) is a linear polynomial in this case.
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Remark 20. Note that the proof of Theorem 18 implies more generally that

Ln+1 ≤ Ln − q(n+ n0)E
[
∥∇f(x′n)∥2

]
,

even if n0 is not chosen such that q(n+n0) ≥ 0 for all n. However, q(n+n0) ≥ 0 for all sufficiently
large n ∈ N, i.e. Ln decreases eventually (assuming that Ln <∞ for all finite n) . More precisely,
for given η, α if

n+ n0 ≥ n∗ :=

⌈
ησ2

η − α(1 + σ2)

⌉
, then Ln ≤

Ln∗

α (n+ n0)2
.

Thus a poor choice of n0 will not prevent convergence, but it may delay it.

We now prove the version of this result stated in the main text, for which ρn = n
n+a0+1 with a0 > 2,

i.e. with slightly more friction.
Theorem 3 (AGNES, convex case). Suppose that xn and x′n are generated by the time-stepping
scheme (3), f and g′n = g(x′n, ωn) satisfy the conditions laid out in Section 3.1, f is convex, and x∗
is a point such that f(x∗) = infx∈Rm f(x). If the parameters are chosen such that

0 < η <
1

L(1 + σ2)
, α =

η

1 + σ2
, ρn =

n

n+ 1 + a0
, for a0 ≥

2(1− ηL)
1− ηL(1 + σ2)

, then

E
[
f(xn)− f(x∗)

]
≤
a20 E

[
∥x0 − x∗∥2

]
2αn2

.

Proof. The proof for this version of Theorem 3 is identical to the proof of Theorem 18 until Step 3,
after which we take an alternate approach. Let us recall the expression we got in the beginning of
Step 3.

Step 3. We want to show that the bound on the right hand side of the inequality

Ln+1 −Ln ≤ (P (n)− (αb(n) + ηa0)b(n))E [∇f(x′n) · (x′n − xn)]
+ (P (n+ 1) + k − P (n)− (αb(n) + ηa0)a0)E[∇f(x′n) · (x′n − x∗)] (13)

+

(
1

2
(αb(n) + ηa0)

2(1 + σ2)− (P (n+ 1) + k)cη,σ,L

)
E[∥∇f(x′n)∥

2
]

is non-positive. Using convexity and L-smoothness in the form of [Wojtowytsch, 2023, Lemma B.1],
we get the inequality

∇f(x′n) · (x′n − x∗) ≥ f(x′n)− f(x∗) ≥
1

2L
∥∇f(x′n)∥

2
,

which allows us to combine the second and third line in (13), assuming that the coefficient in the
second line is non-positive. If this is the case, then the entire right hand side of (13) is bounded from
above by

(P (n)− (αb(n) + ηa0)b(n))E [∇f(x′n) · (x′n − xn)]

+

{
{P (n+ 1) + k − P (n)− (αb(n) + ηa0)a0}

1

2L

+

(
1

2

(
αb(n) + ηa0

)2
(1 + σ2)− (P (n+ 1) + k)cη,σ,L

)}
E[∥∇f(x′n)∥

2
].

As E [∇f(x′n) · (x′n − xn)] does not have a sign, we choose to set its coefficient to zero, and we
require both the coefficient in the second line of (13) and the coefficient of E[∥∇f(x′n)∥

2
] in the

combined version to be non-positive. Noting that cη,σ,L ≥ η/2 if η ≤ 1/L(1 + σ2), this leads to the
system of inequalities

P (n) = (αb(n) + ηa0)b(n) (14)
P (n+ 1) + k − P (n) ≤ (αb(n) + ηa0)a0 (15)

P (n+ 1) + k − P (n)− (αb(n) + ηa0)a0 ≤ L
(
(P (n+ 1) + k)η − (αb(n) + ηa0)

2(1 + σ2)
)
.

(16)
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In principle, this approach is more general than that of Theorem 3 as we do not require two terms to
be individually non-positive, but only one of them and their weighted sum. In the proof of Theorem
3, a similar role was played by the parameter k, which allowed to shift a small positive term between
expressions.

Step 4. Now we can choose the parameters and variables so as to satisfy the inequalities above. We
begin by setting b1 = 1, b0 = 0, k = 0, and choosing α, η, a0 as in the theorem statement. Using
(14) as the definition of P (n), we note that

P (n+ 1)− P (n) = 2αn+ α+ ηa0.

Thus, (15) simplifies to
2αn+ α+ ηa0 ≤ a0(αn+ ηa0),

which holds since a0 ≥ 2 and η ≥ α. The right hand side of (16) simplifies to

L
(
η(n+ 1)(α(n+ 1) + ηa0)− L

(
αn+ ηa0)

2(1 + σ2)
)

= L
({
ηα− (1 + σ2)α2

}
n2 +

{
η(2α+ ηa0)− 2ηa0α(1 + σ2)

}
n− η2a20(1 + σ2) + η(α+ ηa0)

)
= L

({
η(2α+ ηa0)− 2ηa0α(1 + σ2)

}
n− η2a20(1 + σ2) + η(α+ ηa0)

)
,

where the last equality holds since α = η/(1 + σ2). Thus for (16) to hold, it suffices that

2αn+ α+ ηa0 − a0(αn+ ηa0) ≤ L
({
η(2α+ ηa0)− 2ηa0α(1 + σ2)

}
n− η2a20(1 + σ2) + η(α+ ηa0)

)
,

which is equivalent to{
α(2− a0)− Lη(2α+ ηa0) + 2Lηa0α(1 + σ2)

}
n+

{
α+ ηa0 − a20η + Lη2a20(1 + σ2)− Lη(α+ ηa0)

}
≤ 0.

(17)

A linear polynomial is non-negative for all n ≥ 0 if and only if both of its coefficients are. The
leading order coefficient in (17) is

α(2− a0)− Lη(2α+ ηa0) + 2Lηa0α(1 + σ2) = α(2− a0)− Lη(2α+ ηa0) + 2Lη2a0

= 2α− 2Lηα+ a0(−α+ Lη2)

=
η

1 + σ2

(
2(1− Lη) + a0(Lη(1 + σ2)− 1)

)
,

which is non-positive if and only if a0 ≥ 2(1−Lη)
1−Lη(1+σ2) . We remark that it is this part of the computation

that forces us to choose η strictly smaller than 1
L(1+σ2) . In the deterministic case σ = 0, we would

encounter no such limitation as the term would be automatically zero for η = 1/L. Finally, we
consider the constant term in (17) and use the fact that 1 < a0 and α ≤ η

α+ ηa0 − a20η + Lη2a20(1 + σ2)− Lη(α+ ηa0) = (α+ ηa0)(1− Lη) + a20η(Lη(1 + σ2)− 1)

≤ 2ηa0(1− Lη) + a20η(Lη(1 + σ2)− 1)

≤ ηa0
(
2(1− Lη) + a0(Lη(1 + σ2)− 1)

)
≤ 0,

using again that a0 ≥ 2 1−Lη
1−Lη(1+σ2) . This shows that Ln+1 ≤ Ln.

Step 5. The conclusion again follows as in the proof of Theorem 18.

In addition to convergence in expectation, we get almost sure convergence as well.
Corollary 5. In the setting of Theorems 3 and 4, f(xn)→ inf f with probability 1.

The same is of course true for Theorem 18.

Proof. The conclusion follows by standard arguments from the fact that the sequence of expectations
E[f(xn)− inf f ] is summable: By the previous argument, the estimate

E
[∣∣f(xn)− f(x∗)∣∣] = E

[
f(xn)− f(x∗)

]
≤ C

n2
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holds for some C > 0. Since

P
(
lim
n→∞

f(xn) ̸= inf f
)
= P

(
lim sup
n→∞

|f(xn)− inf f | > 0

)
= P

( ∞⋃
k=1

{
lim sup
n→∞

|f(xn)− inf f | > 1

k

})

≤
∞∑
k=1

P
(
lim sup
n→∞

|f(xn)− inf f | > 1

k

)
,

it suffices to show that P (lim supn→∞ |f(xn)− inf f | > ε) = 0 for any ε > 0. We further note that
for any N ∈ N we have

P
(
lim sup
n→∞

|f(xn)− inf f | > ε

)
≤ P (∃ n ≥ N s.t. |f(xn)− inf f | > ε)

= P

( ∞⋃
n=N

{|f(xn)− inf f | > ε}

)

≤
∞∑

n=N

P (|f(xn)− inf f | > ε)

≤
∞∑

n=N

E
[
|f(xn)− inf f |

]
ε

≤ C

ε

∞∑
n=N

1

n2

by Markov’s inequality. As the series over n−2 converges, the expression on the right can be made
arbitrarily small by choosing N sufficiently large. Thus the quantity on the left must be zero, which

concludes the proof. In the strongly convex case, the series
∑∞

n=1

(
1−

√
µ
L

1
1+σ2

)n
converges and

thus the same argument applies there as well.

Next we turn to NAG. Let us recall the statement of Theorem 1.

Theorem 1 (NAG, convex case). Suppose that xn and x′n are generated by the time-stepping scheme
(1), f and g satisfy the conditions laid out in Section 3.1, f is convex, and x∗ is a point such that
f(x∗) = infx∈Rm f(x). If σ < 1 and the parameters are chosen such that

0 < η ≤ 1− σ2

L(1 + σ2)
, and ρn =

n

n+ 3
, then E[f(xn)− f(x∗)] ≤

2E[∥x0 − x∗∥2]
ηn2

.

The expectation on the right hand side is over the random initialization x0.

Proof. We consider a Lyapunov sequence of the same form as before,

Ln = P (n)E [f(xn)− f(x∗)] +
1

2
E
[
∥b(n)(x′n − xn) + a(n)(x′n − x∗)∥

2
]

where P (n) is some function of n, a(n) = a0 + a1n, and b(n) = b0 + b1n.

Since Nesterov’s algorithm is a special case of AGNES, after substituting α = η, the analysis in steps
1, 2, and 3 of the proof of Theorem 3 remains valid. With that substitution, we get the following
system of inequalities corresponding to step 3,

P (n) = η(b(n) + a0)b(n) (18)
P (n+ 1) + k − P (n) ≤ η(b(n) + a0)a0 (19)

η2

2
(b(n) + a0)

2(1 + σ2) ≤ (P (n+ 1) + k)η

(
1− L(1 + σ2)η

2

)
. (20)
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Using the definition of P (n) from (18), (20) is equivalent to

(1 + σ2) ≤
2(b1n+ b1 + b0 + a0 + k)(b1n+ b0)

(
1− L(1+σ2)η

2

)
(b1n+ b0 + a0)2

which should still hold in limit as n→∞,

(1 + σ2) ≤ lim
n→∞

2(b1n+ b1 + b0 + a0 + k)(b1n+ b0)
(
1− L(1+σ2)η

2

)
(b1n+ b0 + a0)2

= 2

(
1− L(1 + σ2)η

2

)
.

This implies

η ≤ 1− σ2

L(1 + σ2)
.

We can choose a0 = 2, b(n) = n, and k = η. Then (18) implies that P (n) = ηn(n+ 2). (19) holds
because

P (n+ 1) + k − P (n) = η(2n+ 4) = η(b(n) + a0)a0

and (20) holds because

η

2
(b(n) + a0)

2(1 + σ2) =
η(n+ 2)2(1 + σ2)

2

≤ η((n+ 1)(n+ 3) + 1)(1 + σ2)

2

= (P (n+ 1) + k)

(
1− L(1 + σ2)η

2

)
.

We have shown that the Lyapunov sequence

Ln = ηn(n+ 2)E[f(xn)− f(x∗)] +
1

2
E[∥n(x′n − xn) + 2(x′n − x∗)∥

2
],

where η ≤ 1−σ2

L(1+σ2) , is monotonically decreasing. It follows that

ηn(n+ 2)E[f(xn)− f(x∗)] ≤ Ln ≤ L0 = 2E[∥x0 − x∗∥2].

We emphasize again that this analysis works only if σ < 1. The condition that η ≤ 1−σ2

L(1+σ2) is
imposed by (20) and does not depend on any specific choice of a0, b0, or b1. On the other hand, (18)
forces the rate of convergence to be inversely proportional to η. This means that as σ approaches 1,
the step size η decreases to zero, and the rate of convergence blows up to infinity. On the other hand,
as the proof of Theorem 3 shows, AGNES does not suffer from this problem. Having an additional
parameter enables AGNES to converge even if the noise σ is arbitrarily large.

Let us point out how the same techniques used in Theorem 3 can be adapted to prove convergence
f(xn)→ inf f , even if a global minimizer does not exist. We recall the main statement.
Theorem 7 (Convexity without minimizers). Let f be a convex objective function satisfying the
assumptions in Section 3.1 and xn be generated by the time-stepping scheme (3). Assume that η, α
and ρn are as in Theorem 3. Then lim infn→∞ E[f(xn)] = infx∈Rm f(x).

Proof. The first step follows along the same lines as the proof of Theorem 18 with minor modifica-
tions. Note that we did not use the minimizing property of x∗ except for Step 5.2. Assume for the
moment that inf f > −∞.

Assume first that ε := lim infn→∞ E[f(xn)]− inf f > 0. Select x∗ such that f(x∗) < inf f + ε/4
and define the Lyapunov sequence Ln just as in the proof of Theorem 3 with the selected point x∗.

We distinguish between two situations. First, assume that n satisfies E
[
f(x′n)

]
≥ f(x∗). In this case

we find that also E
[
f(xn+1) ≤ E

[
f(x′n)

]
≤ f(x∗).
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On the other hand, assume that E
[
f(x′n)

]
≥ f(x∗) for n = 0, . . . , N . In that case, the proof of Theo-

rem 3 still applies, meaning that E[f(xN )] cannot remain larger than f(x∗)+ε/2 indefinitely. In either
case, we find that there exists N ∈ N such that E

[
f(xN )

]
≤ f(x∗) + ε/2 < lim infn→∞ E[f(xn)].

Note that the proof of Theorem 3 applies with n′ ≥ n0 as a starting point and a non-zero initial
velocity vn. The argument therefore shows that, for every n′ ∈ N there exists N ∈ N such that
E[f(xN )] ≤ lim infn→∞ E[f(xn)]. Inserting the definition of the lower limit, we have reached a
contradiction.

We conjecture that the statement holds with the limit in place of the lower limit, but that it is
impossible to guarantee a rate of convergence O(n−β) for any β > 0 in this setting. When following
this strategy, the key question is how far away the point x∗ must be chosen. For very flat functions
such as

fα : R→ R, fα(x) =

{
x−α x > 1

1 + α(1− x) x ≤ 1,

x∗ may be very far away from the initial point x0, and the rate of decay can be excrutiatingly slow if
minimizers do not exist. For an easy example, we turn to the continuous time model. The solution to
the heavy ball ODE  x′′ = − 3

t x
′ − f ′α(x) t > 1

x = 1 t = 1
x′ = −β t = 1

is given by

x(t) =

(
4 (3 + α)

α(2 + α)2

) 2
2+α

t
2

2+α

for β = 2
2+α

(
4 (3+α)
α(2+α)2

) 2
2+α

> 0. Ignoring the complicated constant factor, we see that

fα(x(t)) = x(t)−α ∼ t−
2α

2+α ,

the decay rate can be as close to zero as desired for α close to zero, and indeed Siegel and Wojtowytsch
[2023] show that no rate of decay can be guaranteed even beyond the situation of algebraic rates. For
comparison, the solution of the gradient flow equation{
z′ = −f ′α(z) t > 0
z = 1 t = 0

is given by z(t) =
(
1+α(2+α)t

) 1
2+α ⇒ fα(z(t)) ∼ t−

α
2+α .

Thus, while both the heavy ball ODE and the gradient flow can be made arbitrarily slow in this setting,
the heavy ball remains much faster in comparison.

F Convergence proofs: strongly convex case

F.1 Gradient Descent

Bassily et al. [2018], Wojtowytsch [2023] analyze stochastic gradient descent under the PL condition

µ
(
f(x)− inf f

)
≤ 1

2
∥∇f(x)∥2 ∀ x ∈ Rm (21)

and the noise scaling assumption

Eω

[
∥g(x, ω)−∇f(x)∥2

]
≤ σ

(
f(x)− inf f

)
motivated by Lemma 8. The assumption is equivalent to multiplicative noise scaling within a constant
since every L-smooth function which satisfies a PL condition satisfies

2µ
(
f(x)− inf f

)
≤ ∥∇f(x)∥2 ≤ 2L

(
f(x)− inf f

)
.

For completeness, we provide a statement and proof directly in the multiplicative noise scaling regime
which attains the optimal constant.

34

20727https://doi.org/10.52202/079017-0653



Additionally, we note that strong convexity implies the PL condition. The PL condition holds in many
cases where convexity is false, e.g.

f(x, y) = (y − sinx)2, ∥∇f∥2 ≥ |∂yf |2 = 4 f.

The set of minimizers {(x, y) : y = sinx} is non-convex, so f cannot be convex. While this result is
well-known to the experts, we have been unable to locate a reference and hence provide a proof.
Lemma 21. Assume that f : Rm → R is µ-strongly convex and C2-smooth. Then f satisfies the
PL-condition with constant µ > 0.

Proof. Let x, y ∈ Rd. Strong convexity combined with the Cauchy-Schwartz inequality means that

f(x)− f(y) ≤ −⟨∇f(x), y − x⟩ − µ

2
∥x− y∥2 ≤ ∥∇f(x)∥∥y − x∥ − µ

2
∥x− y∥2

≤ max
z∈R
∥∇f(x)∥z − µ

2
z2

=
1

2µ
∥∇f(x)∥2.

(22)

Since this is true for y = x∗, the result follows.

Several results in this vein are also collected in [Karimi et al., 2016, Theorem 2] together with
additional generalizations of convexity, but with a suboptimal implication (µ-strongly convex &
L-smooth)⇒ µ/L-PL. The additional implication (convexity & PL)⇒ strong convexity can also be
found there.
Theorem 22 (GD, PL condition). Assume that f satisfies the PL-condition (21) and that the assump-
tions laid out in Section 3.1 are satisfied. Let xn be the sequence generated by the gradient descent
scheme

gn = g(xn, ωn), xn+1 = xn − ηg′n, η ≤ 1

L(1 + σ2)
,

where ω1, ω2, . . . are elements of Ω which are drawn independently of each other and the initial
condition x0. Then the estimate

E
[
f(xn)− inf

x∈Rm
f(x)

]
≤
(
1− µη

)n E[f(x0)− inf f
]

holds for any n ∈ N. Additionally, the sequence xn converges to a limiting random variable x∞
almost surely and in L2 such that f(x∞) ≡ inf f almost surely.

Proof. We denote
Ln := E

[
f(xn)− inf f

]
and compute by Lemma 16 that

Ln+1 ≤ E
[
f(xn)−

η

2
∥∇f(xn)∥2 − inf f

]
≤ E

[
f(xn)− µη

(
f(xn)− f(x∗)

)
− inf f

]
=
(
1− µη

)
Ln.

The proof of almost sure convergence is identical to the corresponding argument in [Wojtowytsch,
2023, Theorem 2.2] and similar in spirit to that of Corollary 5.

As usual, the optimal step-size is η = 1
L(1+σ2) as used in Figure 1.

F.2 AGNES and NAG

Just like the convex case, we first prove Theorem 4 and set up the Lyapunov sequence with variable
coefficients that can be chosen as per the time-stepping scheme. The continuous time analogue in
this case is the heavy-ball ODE{

ẍ = −2√µ ẋ−∇f(x) t > 0
ẋ = 0 t = 0
x = x0 t = 0
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For µ-strongly convex f , a simple calculation shows that the Lyapunov function

L (t) = f(x(t))− f(x∗) + 1

2

∥∥ẋ+
√
µ
(
x(t)− x∗

)∥∥2
satisfies L ′(t) ≤ −√µL (t) and thus

f(x(t))− f(x∗) ≤ L (t) ≤ e−
√
µ tL (0) = e−

√
µ t
(
f(x0)− f(x∗) +

µ

2
∥x0 − x∗∥2

)
.

See for instance [Siegel, 2019, Theorem 1] for details.

Here, we state and prove a slightly generalized version of Theorem 4 in the main text. While we
assumed an optimal choice of parameters in the main text, we allow for a suboptimal selection here.
Theorem 4 (AGNES, strongly convex case – general version). In addition to the assumptions in
Theorem 3, suppose that f is µ-strongly convex and that

0 < η ≤ 1

L(1 + σ2)
, 0 < ψ ≤

√
η

1 + σ2
, ρ =

1−√µψ
1 +
√
µψ

, α =
ψ − η√µ
1−√µψ

ψ,

then
E
[
f(xn)− f(x∗)

]
≤
(
1−√µψ

)n E [f(x0)− f(x∗) + µ

2
∥x0 − x∗∥2

]
.

Note that E
[
f(x0)− f(x∗) + µ

2 ∥x0 − x
∗∥2
]
≤ 2E [f(x0)− f(x∗)] due to Lemma 12. A discus-

sion about the set of admissible parameters is provided after the proof. We note several special cases
here.

1. If ψ is selected optimally as
√
η/(1 + σ2) for η, the order of decay is 1−

√
µη

1+σ2 , strongly
resembling Theorem 3.

2. If additionally η = 1/(L(1 + σ2)) is chosen optimally, then we recover the decay rate
1−

√
µ/L/(1 + σ2) claimed in the main text.

3. We recover the gradient descent algorithm with the choice α = 0 which is achieved for
ψ = η

√
µ. This selection is admissible in our analysis since

√
µη ≤

√
µ

L

1

1 + σ2
≤
√

1

1 + σ2
⇒ η

√
µ ≤

√
η

1 + σ2
.

As expected, the constant of decay is 1−√µψ = 1− µη, as achieved in Theorem 22. In
this sense, our analysis of AGNES interpolates fully between the optimal AGNES scheme
(a NAG-type scheme in the deterministic case) and (stochastic) gradient descent. However,
this proof only applies in the strongly convex setting, but not under a mere PL assumption.

4. If µ < L – i.e. if f(x) ̸≡ A + µ∥x − x∗∥2 for some A ∈ R and x0 ∈ Rm – then we can
choose 0 < ψ <

√
µ η, corresponding to α < 0. In this case, the gradient step is sufficiently

strong to compensate for momentum taking us in the wrong direction. Needless to say, this
is a terrible idea and the rate of convergence is worse than that of gradient descent.

Proof. Set-up. Consider the Lyapunov sequence

Ln = E
[
f(xn)− f(x∗)

]
+

1

2
E
[∥∥b(x′n − xn) + a(x′n − x∗)∥2

]
for constants b, a to be chosen later. We want to show that there exists some decay factor 0 < δ < 1
such that Ln+1 ≤ δLn.

Step 1. Let us consider the first term. Note that

E
[
f(xn+1)

]
= E

[
f(x′n − ηg′n)

]
≤ E

[
f(x′n)

]
− cη,σ,LE

[
∥∇f(x′n)∥2

]
where cη,σ,L = η

(
1− Lη(1+σ2)

2

)
≥ η/2 if η ≤ 1

L(1+σ2) .
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Step 2. We now turn to the second term and use the definition of x′n+1 from (2),

b(x′n+1 − xn+1) + a(x′n+1 − x∗) = bρ(x′n − αg′n − xn) + a(xn+1 + ρ(x′n − αg′n − xn)− x∗)
= (b+ a)ρ(x′n − αg′n − xn) + a(x′n − ηg′n − x∗)
= (b+ a)ρ(x′n − xn) + a(x′n − x∗)− ((b+ a)ρα+ ηa)g′n.

To simplify notation, we introduce two new dependent variables:

c := (b+ a)ρ, ψ := (b+ a)ρα+ ηa = αc+ ηa.

With these variables, we have

b
(
x′n+1 − xn+1

)
+ a
(
x′n+1 − x∗

)
= c (x′n − xn) + a(x′n − x∗)− ψg′n.

Taking expectation of the square, we find that

E
[∥∥b(x′n+1 − xn+1

)
+ a
(
x′n+1 − x∗

)∥∥2]
= c2 E

[
∥x′n − xn∥2

]
+ 2acE

[
(x′n − xn) · (x′n − x∗)

]
+ a2E

[
∥(x′n − x∗)∥2

]
− 2cψ E

[
g′n · (x′n − xn)

]
− 2aψ E

[
g′n · (x′n − x∗)

]
+ ψ2 E

[
∥g′n∥2

]
≤ c2 E

[
∥x′n − xn∥2

]
+ 2acE

[
(x′n − xn) · (x′n − x∗)

]
+ a2E

[
∥(x′n − x∗)∥2

]
− 2cψ E

[
∇f(x′n) · (x′n − xn)

]
− 2aψ E

[
∇f(x′n) · (x′n − x∗)

]
+ ψ2(1 + σ2)E

[
∥∇f(x′n)∥2

]
Step 3. We now use strong convexity to deduce that

E
[∥∥b(x′n+1 − xn+1

)
+ a
(
x′n+1 − x∗

)∥∥2]
≤ c2 E

[
∥x′n − xn∥2

]
+ 2acE

[
(x′n − xn) · (x′n − x∗)

]
+ a2E

[
∥(x′n − x∗)∥2

]
− 2cψE

[
f(x′n)− f(xn) +

µ

2
∥x′n − xn∥2

]
− 2aψ E

[
f(x′n)− f(x∗) +

µ

2
∥x′n − x∗∥2

]
+ ψ2(1 + σ2)E

[
∥∇f(x′n)∥2

]
= (c2 − cψµ)E

[
∥x′n − xn∥2

]
+ 2acE

[
(x′n − xn) · (x′n − x∗)

]
+
(
a2 − aψµ

)
E
[
∥x′n − x∗∥2

]
− 2cψE [f(x′n)− f(xn)]− 2aψ E [f(x′n)− f(x∗)] + ψ2(1 + σ2)E

[
∥∇f(x′n)∥2

]
.

Step 4. We now add the estimates of Steps 1 and 3:

Ln+1 = E
[
f(xn+1)− f(x∗) +

1

2
∥b(x′n+1 − xn+1) + a(x′n+1 − x∗)∥2

]
≤ (1− cψ − aψ) E

[
f(x′n)

]
+ cψ E

[
f(xn)

]
− (1− aψ)E

[
f(x∗)

]
+

1

2
(c2 − cψµ)E

[
∥x′n − xn∥2

]
+ acE

[
(x′n − xn) · (x′n − x∗)

]
+

1

2

(
a2 − aψµ

)
E
[
∥x′n − x∗∥2

]
+

(
ψ2(1 + σ2)

2
− cη,σ,L

)
E
[
∥∇f(x′n)∥2

]
We require the coefficient of E[f(x′n)] to be zero, i.e. 1− aψ = cψ, so the inequality simplifies to

Ln+1 ≤ cψ E
[
f(xn)− f(x∗)

]
+

1

2
(c2 − cψµ)E

[
∥x′n − xn∥2

]
+ acE

[
(x′n − xn) · (x′n − x∗)

]
+

1

2

(
a2 − aψµ

)
E
[
∥x′n − x∗∥2

]
+

(
ψ2(1 + σ2)

2
− cη,σ,L

)
E
[
∥∇f(x′n)∥2

]
.

The smallest decay factor we can get at this point is the coefficient of E[f(xn)− f(x∗)]. So we hope
to show that Ln+1 ≤ cψLn, which leads to the following system of inequalities on comparing it
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with the coefficients in the upper bound that we obtained in the previous step,

c = (b+ a)ρ (23)
ψ = αc+ ηa (24)

(c+ a)ψ = 1 (25)

c2 − cψµ ≤ cψb2 (26)
ac = cψab (27)

a2 − aψµ ≤ cψa2 (28)

(1 + σ2)ψ2

2
≤ η

(
1− L(1 + σ2)η

2

)
(29)

Step 5. Now we try to choose constants such that the system of inequalities holds. We assume that
η ≤ 1

L(1+σ2) . Then since η
2 ≤ η

(
1− L(1+σ2)η

2

)
, for (29) it suffices that (1 + σ2)ψ2 ≤ η, i.e.

ψ ≤
√

η

1 + σ2
.

Note that (27) implies ψ = 1/b and substituting that into (25), we get c = b− a. Using this, (28) is
equivalent to

a2 − aψµ ≤ cψa2 = (
1

ψ
− a)ψa2 = a2 − a2ψ,

which holds with equality if a =
√
µ. (26) holds because

c− ψµ = b− a− ψµ ≤ b = ψb2,

if µ, ψ > 0. Finally (23) implies

ρ =
b− a
b+ a

=
1−√µψ
1 +
√
µψ

,

and (24) implies

α =
1
b − ηa
b− a

=
ψ2 − η√µψ
1−√µψ

.

With these choices of parameters, Ln+1 ≤ cψLn = (1−√µψ)Ln, and thus

E[f(xn)− f(x∗)] ≤ (1−√µψ)nL0

= (1−√µψ)nE
[
f(x0)− f(x∗) +

µ

2
∥x0 − x∗∥2

]
≤ 2(1−√µψ)nE [f(x0)− f(x∗)] ,

where we have used Lemma 12 for strong convexity in the last step. When the parameters are chosen
optimally, i.e. η = 1

L(1+σ2) and ψ =
√

η
1+σ2 = 1√

L(1+σ2)
, we get ρ, α and the convergence rate as

stated in the theorem.

We focus on the meaningful case in which
√
µψ > 0. As discussed in Section 3, for given f, g we

can replace L, σ by larger values L′, σ′ and µ by a smaller value µ′. Let us briefly explore the effect
of these substitutions. The parameter range described in this version of Theorem 4 can be understood
as a three parameter family of AGNES parameters η, α, ρ parametrized by η, ψ, µ′ and constraints
given by L, µ, σ as

D :=

{
(η, ψ, µ′)

∣∣∣∣ 0 < η ≤ 1

L(1 + σ2)
, 0 < ψ ≤

√
η

1 + σ2
, 0 < µ′ ≤ µ

}
.

The parameter map is given by

(η, ψ, µ′) 7→ (η, ρ, α) =

(
η,

1−
√
µ′ψ

1 +
√
µ′ψ

,
ψ − η

√
µ′

1−
√
µ′ ψ

ψ

)
.
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We can converesely obtain
√
µ′ ψ from ρ since the function z 7→ (1− z)/(1 + z) is its own inverse

and thus
√
µ′ ψ = 1−ρ

1+ρ . In particular, in terms of the algorithms parameters, the decay rate is

1−
√
µ′ψ = 1− 1− ρ

1 + ρ
=

2ρ

1 + ρ
.

Furthermore, we see that

α =
ψ2 − η

√
µ′ψ

1−
√
µ′ψ

=
ψ2 − η 1−ρ

1+ρ

1− 1−ρ
1+ρ

=
1 + ρ

2ρ

(
ψ2 − η 1− ρ

1 + ρ

)
⇔ ψ =

√
2ρ

1 + ρ
α+ η

1− ρ
1 + ρ

since ψ > 0. Thus, at the cost of a more complicated representation, we could work directly
in the parameter variables rather than using the auxiliary quantities ψ, µ′. In particular, both the
parameter map and its inverse are continuous on D and its image respectively. Hence,despite the
rigid appearance of the parameter selection in Theorem 4, there exists an open set of admissible
parameters η, α, ρ for which we obtain exponentially fast convergence.

We provide a more general version of Theorem 2 as well. Just as in the convex case, as σ ↗ 1, the
step size η decreases to zero and the theorem fails to guarantee convergence for σ > 1.

Theorem 2 (NAG, strongly convex case). In addition to the assumptions in Theorem 1, suppose that
f is µ-strongly convex and the parameters are chosen such that

0 < η ≤ 1− σ2

L(1 + σ2)
and ρ =

1−√µη
1 +
√
µη
, then E[f(xn)−f(x∗)] ≤ 2(1−√µη)n E [f(x0)− f(x∗)] .

Proof. Consider the Lyapunov sequence

Ln = E [f(xn)− f(x∗)] +
1

2
E
[
∥b(x′n − xn) + a(x′n − x∗)∥

2
]
,

where a and b are to be determined later. Since NAG is a special case of AGNES with α = η, the
first four steps are identical to the proof of Theorem 4. We get the following system of inequalities,

c = (a+ b)ρ (30)
ψ = η(a+ c) (31)

(c+ a)ψ = 1 (32)

c2 − cψµ ≤ b2ψ (33)

a2 − aψµ ≤ a2ψ (34)
ac = abcψ (35)

ψ2(1 + σ2)

2
≤ η

(
1− Lη(1 + σ2)

2

)
(36)

Substituting (31) into (32), we get (a+ c)2 = 1
η and ψ = η/

√
η =
√
η. Thus (35) simplifies to

1− σ2

2
≤ 1− Lη(1 + σ2)

2
,

which is equivalent to

η ≤ 1− σ2

L(1 + σ2)
.

From (35), b = 1/ψ = 1/
√
η. The rest of the inequalities can be verified to work with a =

√
µ, c =

b− a, ρ = b−a
b+a . This shows that Ln+1 ≤ cψLn = (1−√µη)Ln. Finally, we get

E[f(xn)− f(x∗)] ≤ (1−√µη)n E
[
f(x0)− f(x∗) +

µ

2
∥x0 − x∗∥2

]
≤ 2(1−√µη)n E [f(x0)− f(x∗)] .
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F.3 On the role of momentum parameters

Two different AGNES parameters are associated with momentum: α and ρ. In this section, we
disentangle their respective contributions to keeping AGNES stable for highly stochastic noise.

For simplicity, first consider the case f : R→ R, f(x) = x and g(x) = (1 + σN) f ′(x) where N is
a standard normal random variable. Then

vn+1 = ρ(vn − g′n) = · · · = −ρ
n∑

i=0

ρn−ig′i.

since v0 = 0. In particular, we note that

E[vn+1] = −ρ
n∑

i=1

ρn−iE[g′i] = −ρ
n∑

i=1

ρn−i = −ρ1− ρ
n+1

1− ρ
.

and

E

[∣∣∣∣vn+1 −
(
−ρ1− ρ

n+1

1− ρ

)∣∣∣∣2
]
= ρ2E

∣∣∣∣∣
n∑

i=0

ρn−i(g′i − 1)

∣∣∣∣∣
2
 = σ2ρ2

n∑
i=0

ρ2(n−i)E
[
|g′i − 1|2

]
= σ2ρ2

n∑
i=0

ρ2(n−i) = σ2ρ2
1− ρ2(n+1)

1− ρ2

due to the independence of different gradient estimators between time steps. In particular, we see that

1. as ρ becomes closer to 1, the eventual magnitude of the velocity variable increases as
limn→∞ E∥vn∥ = ρ

1−ρ .

2. as ρ becomes closer to 1, the eventual variance of the velocity variable increases as
limn→∞ E

[
∥vn − E[vn]∥2

]
= ρ2

1−ρ2 .

3. the noise in the normalized velocity estimate asymptotically satisfies

lim
n→∞

E

[∥∥∥∥vn − E[vn]
E[∥vn∥]

∥∥∥∥2
]
= σ2 (1− ρ)2

1− ρ2
= σ2 (1− ρ)2

(1− ρ)(1 + ρ)
= σ2 1− ρ

1 + ρ

Thus, if ρ is closer to 1, both the magnitude and the variance of the velocity variable increase, but the
the relative importance of noise approaches zero as ρ→ 1. This is not surprising – if ρ is close to 1,
the sequence ρn decays much slower than if ρ is small. Gradient estimates from different times enter
at a similar scale and cancellations can occur easily. As the influence of past gradients remains large,
we say that the momentum variable has a ‘long memory’.

Of course, when minimizing a non-linear function f , the gradient is not constant, and we face a
trade-off:

1. A long memory allows us to cancel random oscillations in the gradient estimates more
easily.

2. A long memory also means we compute with more out-of-date gradient estimates from
points much further in the past along the trajectory.

Naturally, the relative importance of the first point increases with the stochasticity σ of the gradient
estimates. Even if the gradient evaluations are deterministic, we benefit from integrating historic
information gained throughout the optimization process, but the rate at which we ‘forget’ outdated
information is much higher.

Thus the parameter ρ corresponds to the rate at which we forget old information. It also impacts
the magnitude of the velocity variable. The parameter α compensates for the scaling of vn with
1/(1 − ρ). We can think of ρ as governing the rate at which we forget past gradients, and α as a
measure of the confidence with which we integrate past gradient information into time-steps for x.
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Let us explore this relationship in strongly convex optimization. In Theorem 4, the optimal choice of
hyper-parameters is given by η = 1

L(1+σ2) and

α =
1−

√
µ/L

1−
√
µ/L+ σ2

η, ρ =

√
L (1 + σ2)−√µ
√
L(1 + σ2) +

√
µ

= 1−
2
√
µ

√
L(1 + σ2) +

√
µ
.

Let us consider the simplified regime µ≪ L in which

α ≈ η

1 + σ2
, ρ ≈ 1− 2

√
µ

L

1

1 + σ2
⇒ α

1− ρ
=

η

2
√
µ/L

.

In particular, we note: The larger σ, the closer ρ is to 1, i.e. the longer the memory we keep. The
relative importance of the momentum step compared to the gradient step, on the other hand, remains
constant, depending only on the ‘condition number’ L/µ.

We note that also in the convex case, high stochasticity forces n0 to be large, meaning that ρn is
always close to 1. Notably for generic non-convex objective functions, it is unclear that past gradients
along the trajectory would carry useful information, as there is no discernible geometric relationship
between gradients at different points. This mirrors an observation of Appendix G, just after Theorem
23.

G AGNES in non-convex optimization

We consider the case of non-convex optimization. In the deterministic setting, momentum methods
for non-convex optimization have recently been studied by Diakonikolas and Jordan [2021]. We
note that the algorithm may perform worse than stochastic gradient descent, but that for suitable
parameters, the performance is comparable to that of SGD within a constant factor.
Theorem 23 (Non-convex case). Assume that f satisfies the assumptions laid out in Section 3.1. Let
η, α, ρ be such that

η ≤ 1

L(1 + σ2)
, α <

η

1 + σ2
, (Lα+ 1)ρ2 ≤ 1.

Then

min
0≤i≤n

E
[
∥∇f(xi)∥2

]
≤

2E
[
f(x0)− inf f + 1

αρ2 ∥v0∥2
]

(n+ 1) (η − α(1 + σ2))
.

If v0 = 0, the bound is minimal for gradient descent (i.e. α = 0) since the decay factor ε =
η − α(1 + σ2) is maximal.

Proof. Consider

Ln = E
[
f(xn) +

λ

2
∥x′n − xn∥2

]
.

for a parameter λ > 0 to be fixed later. We have

E
[
f(xn+1)

]
≤ E

[
f(x′n)

]
− η

2
E
[
∥∇f(x′n)∥2

]
≤ E

[
f(xn) +∇f(x′n) · (x′n − xn) +

Lα2

2
∥vn∥2 −

η

2
∥∇f(x′n)∥2

]
E
[
∥x′n+1 − xn+1∥2

]
= ρ2E

[
∥(x′n − xn)∥2 − 2α (x′n − xn) · g′n + α2 ∥g′n∥2

]
by Lemmas 13 and 16. We deduce that

Ln+1 ≤ E
[
f(xn)

]
+
(
1− λαρ2

)
E
[
∇f(x′n) · (x′n − xn)

]
+
L+ λρ2

2
E
[
∥x′n − xn∥2

]
+
λρ2α · α(1 + σ2)− η

2
E
[
∥∇f(x′n)∥2

]
≤ Ln +

λρ2α · α(1 + σ2)− η
2

E
[
∥∇f(x′n)∥2

]
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under the conditions
1− λαρ2 = 0, L+ λρ2 ≤ λ.

The first condition implies that λ = (αρ2)−1, so the second one reduces to

(1− ρ2)λ =
1− ρ2

ρ2α
≥ L ⇔ 1− ρ2 ≥ Lρ2α ⇔ 1 ≥ (1 + Lα)ρ2.

Finally, we consider the last equation. If

ε := η − λρ2α · α(1 + σ2) = η − α(1 + σ2) > 0,

then we find that

E
[
f(x0) +

1

αρ2
∥v0∥2 − inf f

]
≥ L1 −Ln+1 =

n∑
i=0

(Li −Li+1) ≥
ε

2

n∑
i=1

E
[
∥∇f(xi)∥2

]
and hence

min
0≤i≤n

E
[
∥∇f(xi)∥2

]
≤ 1

n+ 1

n∑
i=1

E
[
∥∇f(xi)∥2

]
≤

2E
[
f(x0)− inf f + 1

αρ2 ∥v0∥2
]

ε(n+ 1)
.

H Proof of Lemma 8: Scaling intensity of minibatch noise

In this appendix, we provide theoretical justification for the multiplicative noise scaling regime
considered in this article. Recall our main statement:

Lemma 8 (Noise intensity). Assume that ℓ(h, y) = ∥h − y∥2 and h : Rm × Rd → Rk satisfies
∥∇wh(w, xi)∥2 ≤ C

(
1 + ∥w∥

)p
for some C, p > 0 and all w ∈ Rm and i = 1, . . . , N . Then for

all w ∈ Rm:

1

N

N∑
i=1

∥∥∇ℓi −∇R∥∥2 ≤ 4C2 (1 + ∥w∥)2p R(w).

Proof. Since ∇R = 1
n

∑n
i=1∇ℓi, we observe that

1

n

n∑
i=1

∥∇ℓi −∇R∥2 ≤
1

n

n∑
i=1

∥∇ℓi∥2

as the average of a quantity is the unique value which minimizes the mean square discrepancy:
EX = argmina∈R E

[
|X − a|2

]
. We further find by Hölder’s inequality that

1

n

n∑
i=1

∥∇ℓi∥2 =
1

n

n∑
i=1

∥∥∥∥∥∥
k∑

j=1

2
(
hj(w, xi)− yi,j

)
∇whj(w, xi)

∥∥∥∥∥∥
2

≤ 4

n

n∑
i=1

 k∑
j=1

(
hj(w, xi)− yi,j

)2 k∑
j=1

∥∥∇whj(w, xi)
∥∥2
2


=

4

n

n∑
i=1

∥h(w, xi)− yi∥22 ∥∇wh(w, xi)∥2

≤ 4C2
(
1 + ∥w∥2

)2p 1

n

n∑
i=1

∥h(w, xi)− yi∥22

= 4C2
(
1 + ∥w∥2

)2pR(w).
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I Implementation aspects

We discuss some implementation in this section. All the code used for the experiments in the paper
has been provided in the supplementary materials. The experiments in section Section 5 and Appendix
A were run on Google Colab for compute time less than an hour. The experiments in Section 5.2
were run on a laptop CPU with compute time less than an hour. The experiments in Sections 5.3 and
5.4 were run on a single current generation GPU in a local cluster for up to 50 hours. An additional
compute of no more than 200 hours on a single GPU was used for experiments which were ultimately
not used in the submitted version.

I.1 The last iterate

All neural-network based experiments were performed using the PyTorch library. Gradient-based
optimizers in PyTorch and TensorFlow are implemented in such a way that gradients are computed
outside of the optimizer and the point returned by an optimizer step is the point for the next gradient
evaluation. This strategy facilitates the manual manipulation of gradients by scaling, clipping or
masking to train only a subset of the network parameters.

The approach is theoretically justified for SGD. Guarantees for NAG and AGNES, on the other
hand, are given for f(xn) rather than f(x′n), i.e. not at the point where the gradient is evaluated. A
discrepancy arises between theory and practice.3 In Algorithm 1, this discrepancy is resolved by
taking a final gradient descent step in the last time step and returning the sequence x′n at intermediate
steps. In our numerical experiments, we did not include the final gradient descent step. Skipping the
gradient step in particular allows for an easier continuation of simulations beyond the initially specified
stopping time, if so desired. We do not anticipate major differences under realistic circumstances.
This can be justified analytically in convex and strongly convex optimization, at least for a low
learning rate.

Lemma 24. If η < 1
3L , then

E
[
f(x′n)− f(x∗)

]
≤ E[f(xn+1)− f(x∗)]

1− 3Lη
.

Proof. By essentially the same proof as Lemma 16, we have

E
[
f(x′n)−

3η

2
∥∇f(x′n)∥2

]
≤ E

[
f(xn+1)

]
≤ E

[
f(x′n)−

η

2
∥∇f(x′n)∥2

]
,

since the correction term to linear approximation is bounded by the L-Lipschitz continuity of ∇f
both from above and below. Recall furthermore that

∥∇f(x)∥2 ≤ 2L
(
f(x)− f(x∗)

)
for all L-smooth functions. Thus

(1− 3Lη)E
[
f(x′n)− f(x∗)

]
≤ E

[
f(x′n)−

3η

2
∥∇f(x′n)∥2

]
≤ E

[
f(xn+1)

]
.

In particular, if 1− 3Lη > 0, then

E
[
f(x′n)− f(x∗)

]
≤ 1

1− 3Lη
E[f(xn+1)− f(x∗)].

The condition η < 1/(3L) is guaranteed if the stochastic noise scaling satisfies σ >
√
2 since then

1− 3Lη ≥ 1− 3
1+σ2 . For η = 1/((1 + σ2)L, we than find that

E
[
f(x′n)− f(x∗)

]
≤ E[f(xn+1)− f(x∗)]

1− 3
1+σ2

=
σ2 + 1

σ2 − 2
E[f(xn+1)− f(x∗)].

3 For instance, the implementations of NAG in PyTorch and Tensorflow return x′
n rather than xn.
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I.2 Weight decay

Weight decay is a machine learning tool which controls the magnitude of the coefficients of a neural
network. In the simplest SGD setting, weight decay takes the form of a modified update step

xn+1 = (1− λη)xn − ηgn
for λ > 0. A gradient flow is governed by (1) an energy to be minimized and (2) an energy dissipation
mechanism [Peletier, 2014]. It is known that different energy/dissipation pairings may induce the
same dynamics – for instance, Jordan et al. [1998] show that the heat equation is both the L2-gradient
flow of the Dirichlet energy and the Wasserstein gradient flow of the entropy function.

In this language, weight decay can be interpreted in two different ways:

1. We minimize a modified objective function x 7→ f(x) + λ
2 ∥x∥

2 which includes a Tikhonov
regularizer. The gradient estimates are stochastic for f and deterministic for the regularizer.
This perspective corresponds to including weight decay as part of the energy.

2. We dynamically include a confinement into the optimizer which pushes back against large
values of xn. This perspective corresponds to including weight decay as part of the dissipa-
tion.

In GD, both perspectives lead to the same optimization algorithm. In advanced minimizers, the two
perspectives no longer coincide. For Adam, Loshchilov and Hutter [2018, 2019] initiated a debate on
the superior strategy of including weight decay. We note that the two strategies do not coincide for
AGNES, but do not comment on the superiority of one over the other:

1. Treating weight decay as a dynamic property of the optimizer leads to an update rule like

x′n = xn + αvn, vn+1 = ρ
(
vn − g′n

)
, xn+1 = (1− λη)x′n − ηg′n.

2. Treating weight decay as a component of the objective function to be minimized leads to the
update rule

x′n = xn + αvn, vn+1 = ρ (vn − g′n − λ x′n) , xn+1 = (1− λη)x′n − ηg′n.

In our numerical experiments, we choose the second approach, viewing weight decay as a property
of the objective function rather than the dissipation. This coincides with the approach taken by the
SGD (and SGD with momentum) optimizer as well as Adam (but not AdamW).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We wrote the abstract and introduction with the goal to summarize our main
contributions accurately and precisely.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We compare the algorithm proposed to commonly used methods both in
convex optimization and deep learning. We dedicate Section 3 to the derivation of the noise
modelling assumption and illustrate the heuristics which are being made.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are summarized in Section 3.1. Wherever additional assump-
tions are made, they are stated clearly in the proof. Complete and correct proofs for all the
lemmas and theorems are provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code from experiments is provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code as well as the synthetically generated data used for the regression
experiments are provided in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are described in the article and its supplementary
materials. They can also be inferred in the code provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments were repeated multiple times. We provide means and standard
deviations over all runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).
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experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Justification: The work presented here is primarily theoretical. No human subjects were
involved. The datasets used are standard benchmark datasets (MNIST, CIFAR-10) or purely
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The main contribution of the work is an algorithm for smooth convex opti-
mization. Foundational as the topic at large may be in various fields, it is impossible to link
directly to societal impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The main contribution of the work is theoretical and no data or models with a
high risk for misuse are produced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the MNIST and CIFAR-10 datasets, which are cited accurately. We also
use an implementation of ResNets, for which we cite the GitHub repository and reproduce
the license terms in the code provided.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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