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Abstract

The deep operator networks (DeepONet), a class of neural operators that learn
mappings between function spaces, have recently been developed as surrogate mod-
els for parametric partial differential equations (PDEs). In this work we propose
a derivative-enhanced deep operator network (DE-DeepONet), which leverages
derivative information to enhance the solution prediction accuracy and provides a
more accurate approximation of solution-to-parameter derivatives, especially when
training data are limited. DE-DeepONet explicitly incorporates linear dimension
reduction of high dimensional parameter input into DeepONet to reduce training
cost and adds derivative loss in the loss function to reduce the number of required
parameter-solution pairs. We further demonstrate that the use of derivative loss can
be extended to enhance other neural operators, such as the Fourier neural operator
(FNO). Numerical experiments validate the effectiveness of our approach.

1 Introduction

Using neural networks to approximate the maps between functions spaces governed by parametric
PDEs can be very beneficial in solving many-query problems, typically arising from Bayesian
inference, optimization under uncertainty, and Bayesian optimal experimental design. Indeed, once
pre-trained on a dataset, neural networks are extremely fast to evaluate given unseen inputs, compared
to traditional numerical methods like the finite element method. Recently various neural operators
are proposed to enhance the learning capacity, with two prominent examples deep operator network
(DeepONet) [1] and Fourier neural operator (FNO) [2], which are shown to be inclusive of each
other in their more general settings [3, 4], see also their variants and other related neural operator
architectures in [5, 6, 7, 8, 9, 10]. Though these work demonstrate to be successful in approximating
the output function, they do not necessarily provide accurate approximation of the derivative of the
output with respect to the input, which are often needed for many downstream tasks such as PDE-
constrained optimization problems for control, inference, and experimental design [11, 12, 13, 14].

In this paper, we propose to enhance the performance of DeepONet through derivative-based dimen-
sion reduction for the function input inspired by [15, 16, 17, 18] and the incorporation of derivative
information in the training to learn both the output and its derivative with respect to the input inspired
by [19, 20]. These two derivative-enhanced approaches can significantly improve DeepONet’s ap-
proximation accuracy for the output function and its directional derivative with respect to the input
function, especially when the training samples are limited. We provide details on the computation of
derivative labels of the solution of PDEs in a general form as well as the derivative-based dimension
reduction to largely reduce the computational cost. We demonstrate the effectiveness of our proposed
method (DE-DeepONet) compared to three other neural operators, including DeepONet, FNO, and
derivative-informed neural operator (DINO) [20], in terms of both test errors and computational cost.
In addition, we apply derivative learning to train the FNO and also compare its performance with
other methods. The code for data generation, model training and inference, as well as configurations
to reproduce the results in this paper can be found at https://github.com/qy849/DE-DeepONet.
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2 Preliminaries

This section presents the problem setup, high-fidelity approximation using finite element for finite
dimensional discretization, and the DeepONet architecture in learning the solution operator.

2.1 Problem setup

Let Ω ⊂ Rd denote an open and bounded domain with boundary ∂Ω ⊂ Rd−1, where the dimension
d = 1, 2, 3. We consider a PDE of the general form defined in Ω as

R(m,u) = 0, (1)
prescribed with proper boundary conditions. Here m ∈ V in is an input parameter function defined in
a separable Banach space V in with probability measure ν and u ∈ V out is the output as the solution
of the PDE defined in a separable Banach space V out. Our goal is to construct a parametric model
û(m; θ) to approximate the solution operator that maps the parameter m to the solution u.

Once constructed, the parametric model û(m; θ) should be much more computationally efficient to
evaluate compared to solving the PDE with high fidelity approximation.

2.2 High fidelity approximation

For the high fidelity approximation of the solution, we consider using a finite element method [21]
in this work. We partition the domain Ω into a finite set of subregions, called cells or elements.
Collectively, these cells form a mesh of the domain Ω. Let h represent the diameter of the largest
cell. We denote V in

h indexed by h as the finite element space for the approximation of the input space
V in with Lagrange basis {ϕin

1 , · · · , ϕin
N in

h
} of dimension N in

h such that ϕin
i (x

(j)) = δij at the finite

element node x(j), with δij being the Kronecker delta function. Similarly, we denote V out
h as the

finite element space for the approximation of the solution space V out with basis {ϕout
1 , · · · , ϕout

N out
h
}

of dimension N out
h . Note that for the approximation to be high fidelity, N in

h and N out
h are often very

large. To this end, we can write the high fidelity approximation of the input and output functions as

mh(x) =

N in
h∑

i=1

miϕ
in
i (x) and uh(x) =

N out
h∑

i=1

uiϕ
out
i (x),

with coefficient vectorsm = (m1, · · · ,mN in
h
)T ∈ RN in

h and u = (u1, · · · , uN out
h
)T ∈ RN out

h , whose
entries are the nodal values of m and u at the corresponding nodes.

2.3 DeepONet

We briefly review the DeepONet architecture [1] with a focus on learning the solution operator of
the PDE in Equation (1). To predict the evaluation of solution function u at any point x ∈ Ω ∪ ∂Ω
for any given input function m, [1] design a network architecture that comprises two separate neural
networks: a trunk net t(· ; θt), which takes the coordinate values of the point x at which we want
to evaluate the solution function as inputs, and a branch net b(· ; θb), which takes the vector m
encoding the parameter function m as inputs. In [1], the vector m is the function evaluations at
a finite set of fixed points {x(j)}N

in
h

j=1 ⊆ Ω ∪ ∂Ω, that is, m = (m(x(1)), · · · ,m(x(N
in
h )))T , which

corresponds to coefficient vector in the finite element approximation with Lagrange basis at the same
nodes. If the solution function is scalar-valued, then both neural networks output vectors of the
same dimensions. The prediction is obtained by taking the standard inner product between these two
vectors and (optionally) adding a real-valued bias parameter, i.e,

û(m; θ)(x) = ⟨b(m; θb), t(x; θt)⟩+ θbias,

with θ = (θb, θt, θbias). If the solution u is vector-valued of Nu components, i.e., u =
(u(1), . . . , u(Nu)), as in our experiments, we can use one of the four approaches in [3] to con-
struct the DeepONet. Specifically, for each solution component, we use the same outputs of branch
net with dimension Nb and different corresponding groups of outputs of trunk net to compute the
inner product. More precisely, the solution u(i) of component i = 1, . . . , Nu, is approximated by

û(i)(m; θ)(x) = ⟨b(m; θb), t
(i)(x; θt)⟩+ θ

(i)
bias, (2)

2
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where t(i)(x; θt) = t(x; θt)[(i − 1)Nb + 1 : iNb], the vector slice of t(x; θt) with indices ranging
from (i− 1)Nb + 1 to iNb, i = 1, . . . , Nu.

For this construction, the outputs of the branch net can be interpreted as the coefficients of the basis
learned through the trunk net. By partitioning the outputs of the trunk net into different groups, we
essentially partition the basis functions used for predicting different components of the solution.
The DeepONet is trained using dataset D = {(m(i), u(i))}ND

i=1 with ND samples, where m(i) are
random samples independently drawn from ν and u(i) are the solution of the PDE (with slight abuse
of notation from the vector-valued solution) at m(i), i = 1, . . . , ND.

3 DE-DeepONet

The DeepONet uses the input parameter and output solution pairs as the labels for the model training.
The approximation for the derivative of the solution with respect to the parameter (and the coordinate)
are not necessarily accurate. However, in many downstream tasks such as Bayesian inference and
experimental design, the derivatives are required. We consider incorporating the the Fréchet derivative
du(m; ·) for the supervised training of the DeepONet, which we call derivative-enhanced DeepONet
(DE-DeepONet). By doing this we hope the optimization process can improve the neural network’s
ability to predict the derivative of the output function with respect to the input function. Let θ denote
the trainable parameters in the DE-DeepONet. We propose to minimize the loss function

L(θ) = λ1Em∼ν∥u(m)− û(m)∥2L2(Ω) + λ2Em∼ν∥du(m; ·)− dû(m; ·)∥2HS, (3)

where the L2(Ω) norm of a square integrable function f is defined as ∥f∥2L2(Ω) =

(
∫
Ω
∥f(x)∥22 dx)1/2, the Hilbert–Schmidt norm of an operator T : H → H that acts on a Hilbert

space H is defined as ∥T∥2HS =
∑

i∈I ∥Tei∥2H , where {ei}i∈I is an orthonormal basis of H . Here,
λ1, λ2 > 0 are hyperparameters that balance different loss terms.

The main challenge of minimizing the loss function (3) in practice is that with high fidelity
approximation of the functions m and u using high dimensional vectors m and u, the term
∥du(m; ·)− dû(m; ·)∥2HS (approximately) becomes ∥∇mu−∇mû∥2F , where the Frobenius norm
of a matrix M ∈ Rm×n is defined as ∥M∥2F =

∑m
i=1

∑n
j=1M

2
ij . It is a critical challenge to both

compute and store the Jacobian matrix at each sample as well as to load and use it for training since it
is often very large with size N out

h ×N in
h , with N in

h , N
out
h ≫ 1.

To tackle this challenge, we employ dimension reduction for the high dimensional input vectorm.
The reduced representation of m is given by projecting m into a low dimensional linear space
spanned by a basis ψin

1 , . . . ,ψ
in
r ∈ RN in

h , with r ≪ N in
h , that is,

m̃ = (⟨ψin
1 ,m⟩, . . . , ⟨ψin

r ,m⟩)T ∈ Rr.

To better leverage the information of both the input probability measure ν and the map u : m→ u(m),
we consider the basis generated by active subspace method (ASM) using derivatives [22]. ASM iden-
tifies directions in the input space that significantly affect the output variance, or in which the output is
most sensitive. See Section 3.3 for the detailed construction. In this case, the term Em∼ν∥du(m; ·)−
dû(m; ·)∥2HS can be approximated by 1

N1N2

∑N1

i=1

∑N2

j=1 ∥∇m̃u(m
(i))(x(j))−∇m̃û(m

(i))(x(j))∥22
with a small amount of functions m(i) sampled from input probability measure ν and points x(j) in
the domain Ω. Note that ∇m̃û(m

(i))(x(j)) is vector of size r, which is computationally feasible. For
comparison, we also conduct experiments if the basis is the most commonly used Karhunen–Loève
Expansion (KLE) basis.

We next formally introduces our DE-DeepONet, which uses dimension reduction for the input of the
branch net and incorporates its output-input directional derivative labels as additional soft constraints
into the loss function.

3.1 Model architecture

We incorporate dimension reduction into DeepONet to construct a parametric model for approximat-
ing the solution operator. Specifically, if the solution is scalar-valued (the vector-valued case can be
constructed similar to (2)), the prediction is given by

û(m; θ)(x) = ⟨b(m̃; θb), t(x; θt)⟩+ θbias, (4)

3
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where θ = (θb, θt, θbias) are the parameters to be learned. The branch net b(·; θb) and trunk net
t(·; θt) can be chosen as an MLP, ResNet, etc. Note that the branch net takes a small vector of
the projected parameter as input. We also apply the Fourier feature embeddings [5], defined as
γ(x) = [cos(Bx), sin(Bx)], to the trunk net, where each entry in B ∈ Rm×d is sampled from a
Gaussian distribution N (0, σ2) and m ∈ N+, σ ∈ R+ are hyper-parameters.

3.2 Loss function

In practical training of the DE-DeepONet, we formulate the loss function as follows

L(θ) =
λ1
ND

ND∑
i=1

err({(û(m(i); θ)(x(j)), u(m(i))(x(j)))}Nx
j=1)

+
λ2
ND

ND∑
i=1

err({(∇mû(m
(i); θ)(x(j))Ψin,Φout(x(j))(∇mu(m

(i))Ψin)}Nx
j=1),

(5)

where {x(j)}Nx
j=1 are the nodes of the mesh, Ψin = (ψin

1 | · · · |ψin
r ) is the matrix collecting the nodal

values of the reduced basis of the input function space, and Φout(x) = (ϕout
1 (x), . . . , ϕout

N out
h
(x)) is the

vector-valued function consisting of the finite element basis functions of the output function space.
The err({(a(i), b(i))}ni=1) denotes the relative error between any two groups of vectors a(i) and b(i),
computed as

err({(a(i), b(i))}ni=1) =
(
∑n

i=1 ∥a(i) − b(i)∥22)1/2

ε+ (
∑n

i=1 ∥b(i)∥22)1/2
,

where ε > 0 is some small positive number to prevent the fraction dividing by zero.

In the following, we explain how to compute different loss terms in Equation (5)

• The first term is for matching the prediction of the parametric model û(m(i); θ) evaluated at
any set of points {x(j)}Nx

j=1 ⊆ Ω ∪ ∂Ω with the high fidelity solution u(m(i)) evaluated at
the same points. The prediction û(m(i); θ)(x(j)) is straightforward to compute using Equa-
tion (4). This involves passing the reduced branch inputs m̃(i) and the coordinates of point
x(j) into the branch net and trunk net, respectively. The label u(m(i))(x(j)) is obtained
using finite element method solvers.

• The second term is for learning the directional derivative of the evaluation u(x(j)) with
respect to the input function m, in the direction of the reduced basis ψin

1 , . . . , ψ
in
r . It can be

shown that

∇mû(m
(i); θ)(x(j))Ψin = ∇m̃û(m

(i); θ)(x(j)).

Thus, the derivative of the outputs of the parametric model can be computed as the par-
tial derivatives of the output with respect to the input of the branch net via automatic
differentiation. On the other hand, the derivative labels

Φout(x(j))(∇mu(m
(i))Ψin) = (du(m(i);ψin

1 )(x
(j)), . . . , du(m(i);ψin

r )(x
(j)))

are obtained by first computing the Gateaux derivatives du(m(i);ψin
1 ), . . . , du(m

(i);ψin
r )

and then evaluating them at x(j). See Appendix B.3 for details about the computation of the
Gâteaux derivative du(m;ψ).

• We initialize the loss weights λ1 = λ2 = 1 and choose a loss balancing algorithm called the
self-adaptive learning rate annealing algorithm [23] to update them at a certain frequency.
This ensures that the gradient of each loss term have similar magnitudes, thereby enabling
the neural network to learn all these labels simultaneously.

Remark. For the training, the computational cost of the second term of the loss function (and its
gradients) largely depends on the number of points used in each iteration. To reduce the computational
and especially memory cost, we can use a subset of points, N batch

x = αNx, where α is small number
between 0 and 1 (e.g., α = 0.1 in our experiments), in a batch of functions, though their locations
could vary among different batches in one epoch. We find that this approach has little impact on the
prediction accuracy of the model when Nx is large enough.

4
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3.3 Dimension reduction

Throughout the paper, we assume that the parameter functions m are independently drawn from some
Gaussian random field [24]. In particular, we consider the case where the covariance function is the
Whittle-Matérn covariance function, that is, m i.i.d.∼ N (m̄, C), where m̄ is the (deterministic) mean
function and C = (δI − γ∆)−2 (I is the identity and ∆ is the Laplacian) is an operator such that the
square root of its inverse, C− 1

2 , maps random function (m− m̄) to Gaussian white noise with unit
variance [25]. The parameters δ, γ ∈ R+ jointly control the marginal variance and correlation length.

We consider two linear projection bases for dimension reduction of the parameter function.

Karhunen–Loève Expansion (KLE) basis. The KLE basis is optimal in the sense that the
mean-square error resulting from a finite representation of the random field m is minimized [26]. It
consists of eigenfunctions determined by the covariance function of the random field. Specifically, an
eigenfunction ψ of the covariance operator C = (δI − γ∆)−2 satisfies the differential equation

Cψ = λψ. (6)

When solved using the finite element method, Equation (6) is equivalent to the following linear
system (See Appendix A.2 for the derivation)

M in(Ain)−1M in(Ain)−1M inψ = λM inψ, (7)

where the (i, j)-entries of matices Ain and M in are given by

Ain
ij = δ⟨ϕin

j , ϕ
in
i ⟩+ γ⟨∇ϕin

j ,∇ϕin
i ⟩, M in

ij = ⟨ϕin
j , ϕ

in
i ⟩.

Here, we recall that V in
h is the finite element function space of input function, ϕin

i , i = 1, . . . , N in
h

for the finite element basis of V in
h , and ⟨·, ·⟩ for the L2(Ω)-inner product. We select the first r

(typically r ≪ N in
h ) eigenfunctions ψin

1 , . . . , ψ
in
r corresponding to the r largest eigenvalues for the

dimension reduction. Let Ψin = (ψin
1 | · · · |ψin

r ) denote the corresponding nodal values of these
eigenfunctions. Since the eigenvectors ψin

i are M in-orthogonal (or equivalently, eigenfunctions ψin
i

are L2(Ω)-orthogonal), the reduced representation of m can be computed as m̃ = (Ψin)TM inm,
that is, the coefficients of the low rank approximation of m in the linear subspace spanned by the
eigenfunctions ψin

1 , . . . , ψ
in
r .

Active Subspace Method (ASM) basis. The active subspace method is a gradient-based dimension
reduction method that looks for directions in the input space contributing most significantly to
the output variability [27]. In contrast to the KLE basis, the ASM basis is more computationally
expensive. However, since the ASM basis captures sensitivity information in the input-output map
rather than solely the variability of the input space, it typically achieves higher accuracy in predicting
the output than KLE basis. We consider the case where the output is a multidimensional vector [22],
representing the nodal values of the output function u. The ASM basis ψi, i = 1, . . . , r, are the
eigenfunctions corresponding to the r largest eigenvalues of the generalized eigenvalue problem

Hψ = λC−1ψ, (8)

where the action of operator H on function ψ is given by

Hψ = Em∼ν(m)[d
∗u(m; du(m;ψ))]. (9)

Here, du(m;ψ) is the Gâteaux derivative of u at m ∈ V in
h in the direction of ψ ∈ V in

h , defined
as limε→0(u(m + εψ) − u(m))/ε, and d∗u(m; ·) is the adjoint of the operator du(m; ·). When
solved using finite element method, Equation (8) is equivalent to the following linear system
(See Appendix A.3 for the derivation)

Hψ = λC−1ψ, (10)

where the action of matrix H on vector ψ is given by

Hψ = Em∼ν(m)[(∇mu)
TM out(∇mu)ψ], (11)

and the action of matrix C−1 on vector ψ is given by

C−1ψ = Ain(M in)−1Ainψ. (12)

5
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Here, M out denotes the mass matrix of the output function space, i.e., M out
ij = ⟨ϕout

j , ϕout
i ⟩. In practice,

when solving Equation (10), we obtain its left hand side through computing

(⟨Hψ, ϕin
1 ⟩, . . . , ⟨Hψ, ϕin

N in
h
⟩)T

and its right hand side through the matrix-vector multiplication in Equation (12) (See Appendix A.3
for details). Similar to the KLE case, let Ψin denote the nodal values of r dominant eigenfunctions.
Since the eigenvectors ψin

i are C−1-orthogonal, the reduced representation ofm can be computed
as m̃ = (Ψin)TC−1m. We use a scalable double pass randomized algorithm [28] implemented in
hIPPYlib to solve the generalized eigenproblems Equation (7) and Equation (10).

To this end, we present the computation of the derivative label and the action of H as follows.

Theorem 1. Suppose the PDE in the general form of (1) is well-posed with a unique solution map
from the input function m ∈ V in to the output function u ∈ V out with dual (V out)′. Suppose the
PDE operator R : V in × V out → (V out)′ is differentiable with derivatives ∂mR : V in → (V out)′ and
∂uR : V out → (V out)′, and in addition ∂uR is invertible with invertible adjoint (∂uR)∗. Then the
directional derivative p = du(m;ψ) for any function ψ ∈ V in, and an auxillary variable q such that
d∗u(m; p) = −(∂mR)∗q can be obtained as the solution of the linearized PDEs

(∂uR)p+ (∂mR)ψ = 0, (13)
(∂uR)∗q = p. (14)

Proof sketch. We perturb m with εψ for any small ε > 0 and obtain R(m+ εψ, u(m+ εψ)) = 0.
Using Taylor expansion to expand it to the first order and letting ε approach 0, we obtain Equation (13),
where p = du(m;ψ). Next we compute d∗u(m; p). By Equation (13), we have du(m;ψ) =
−(∂uR)−1(∂mR)ψ. Thus, d∗u(m;ψ) = −(∂mR)∗(∂uR)−∗p. Then we can first solve for q =
(∂uR)−∗p and then compute −(∂mR)∗q. See Appendix A.1 for a full proof.

4 Experiments

In this section, we present experiment results to demonstrate the derivative-enhanced accuracy and cost
of our method on two test problems of nonlinear vector-valued PDEs in comparison with DeepONet,
FNO, and DINO. Details about the data generation and training can be found in Appendix B.

4.1 Input probability measure

In all test cases, we assume that the input functions m(i) are i.i.d. samples drawn from a Gaussian
random field with mean function m̄ and covariance operator (δI − γ∆)−α. We take α = 2 in
two space dimensions so the covariance operator is of trace class [29]. It is worth noting that the
parameters γ and δ jointly control the marginal variance and correlation length, for which we take
values to have large variation of the input samples that lead to large variation of the output PDE
solutions. In such cases, especially when the mapping from the input to output is highly nonlinear as
in our test examples, a vanilla neural network approximations tend to result in relatively large errors,
particularly with a limited number of training data. To generate samples from this Gaussian random
field, we use a scalable (in mesh resolution) sampling algorithm implemented in hIPPYlib [28].

4.2 Governing equations

We consider two nonlinear PDE examples, including a nonlinear vector-valued hyperelasticity
equation with one state (displacement), and a nonlinear vector-valued Navier–Stokes equations with
multiple states (velocity and pressure). For the hyperelasticity equation, we consider an experimental
scenario where a square of hyperelasticity material is secured along its left edge while a fixed upward-
right force is applied to its right edge [30]. Our goal is to learn the map between (the logarithm of)
the material’s Young’s modulus and its displacement. We also consider the Navier–Stokes equations
that describes viscous, incompressible creeping flow. In particular, we consider the lid-driven cavity
case where a square cavity consisting of three rigid walls with no-slip conditions and a lid moving
with a tangential unit velocity. We consider that the uncertainty comes from the viscosity term and
aim to predict the velocity field. See Appendix B.1 for details.

6
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4.3 Evaluation metrics

We use the following three metrics to evaluate the performance of different methods. For the
approximations of the solution u(m), we compute the relative error in the L2(Ω) norm and H1(Ω)

norm on the test dataset Dtest = {(m(i), u(i))}Ntest
i=1 , that is,

1

Ntest

∑
m(i)∈Dtest

∥û(m(i); θ)− u(m(i))∥L2(Ω)

∥u(m(i))∥L2(Ω)

,
1

Ntest

∑
m(i)∈Dtest

∥û(m(i); θ)− u(m(i))∥H1(Ω)

∥u(m(i))∥H1(Ω)

,

where

∥u∥L2(Ω) =

∫
Ω

∥u(x)∥22 dx = uTM outu, ∥u∥H1(Ω) = (∥u∥2L2(Ω) + ∥∇u∥2L2(Ω))
1/2.

For the approximation of the Jacobian du(m; ·), we compute the relative error (for the discrete
Jacobian) in the Frobenius norm on Dtest along random directions ω = {ωi}Ndir

i=1, that is,

1

|Dtest|
∑

m(i)∈Dtest

∥dû(m(i);ω)− du(m(i);ω)∥F
∥du(m(i);ω)∥F

,

where ωi are samples drawn from the same distribution as m.

4.4 Main results

We compare the prediction errors measured in the above three evaluation metrics and computational
cost in data generation and neural network training for four neural operator architectures, including
DeepONet [1], FNO [2], DINO [20], and our DE-DeepONet. We also add experiments to demonstrate
the performance of the FNO trained with the derivative loss (DE-FNO) and the DeepONet trained
with input dimension reduction but without the derivative loss (DeepONet (ASM) or DeepONet
(KLE)). For FNO, we use additional position embedding [4] that improves its approximation accuracy
in our test cases. For DINO, we use ASM basis (v.s. KLE basis) as the input reduced basis and POD
basis (v.s. output ASM basis [20]) as the output reduced basis, which gives the best approximation
accuracy. For the input reduced basis of DE-DeepONet, we also test and present the results for both
KLE basis and ASM basis.
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Figure 1: Mean relative errors (± standard deviation) over 5 random seeds of neural network training
for a varying number of training samples for the [top: hyperelasticity; bottom: Navier–Stokes]
equation using different methods. Relative errors in the L2(Ω) norm (left) and H1(Ω) norm (middle)
for the prediction of u = (u1, u2). Right: Relative error in the Frobenius (Fro) norm for the prediction
of du(m;ω) = (du1(m;ω), du2(m;ω)).
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Figure 2: Mean relative errors (± standard deviation) over 5 random seeds versus model training
time for the Navier–Stokes equations when the number of training samples is [top: 16; bottom: 256].

Test errors. In Figure 1, we show a comparison of different methods for the hyperelasticity and
Navier–Stokes problem in predicting the solution (in L2 norm, left, and H1 norm, middle) and its
derivative (in Frobenius norm, right) with respect to parameter in the direction of Ndir = 128 test
samples {ωi}Ndir

i=1. First, we can observe significant improvement of the approximation accuracy of
DE-DeepONet compared to the vanilla DeepONet for all three metrics in all cases of training samples.
Second, we can see that FNO leads to larger approximation errors than DINO and DE-DeepONet for
all metrics except when number of training samples is 1024. We believe that the reason why FNO
performs better than DE-DeepONet and DINO when training samples are large enough is mainly due
to the use of input dimensionality reduction in DE-DeepONet and DINO (where the linear reduction
error cannot be eliminated by increasing training samples) whereas in FNO we use full inputs. We
also see that DE-FNO performs the best among all models when the training samples are sufficient
(256 or 1024), although in the compensation of much longer training time shown in Figure 2. Third,
we can see that the approximation accuracy of DINO is similar to DE-DeepONet (ASM) but requires
much longer inference time as shown in Table 5 (see Section 5 and Appendix B.3.2 for reasons). In
DINO, the output reduced basis dimension is set to be smaller than or equal to the number of training
samples as the output POD basis are computed from these samples, i.e., 16 for 16 samples and 64 for
≥ 64 samples. Increasing the output dimension beyond 64 does not lead to smaller errors in our test.
Finally, we can observe that DE-DeepONet using ASM basis leads to smaller errors than using KLE
basis, especially for the Navier-Stokes problem.

Table 1: Output reconstruction
error with 16 input reduced bases

Dataset

Relative L2 error

KLE ASM

Hyperelasticity 3.8% 2.7%
Navier–Stokes 17.4% 5.8%

Moreover, we present the output reconstruction error due to the
input dimension reduction using KLE or ASM basis in Table 1.
The errors provide the lower bound of the relative errors in L2(Ω)
norm of DINO and DE-DeepONet. We can see that using the ASM
basis results in a lower output reconstruction error than the KLE
basis (more significant difference observed in the more nonlinear
Navier–Stokes equations). See Appendix B.6 for the decay of the
reconstruction error with increasing number of reduced basis.

In addition, we provide full visualizations of the ground truth and prediction of both solution and
derivatives in Appendix B.7. Visually, DE-DeepONet (ASM) consistently provides the best estimate
(in terms of pattern and smoothness similarity with the ground truth) for both the solution and its
derivative when the training data is limited (16 or 64 samples).
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Data generation computational cost. We use MPI and the finite element library FEniCS [31]
to distribute the computational load of offline data generation to 64 processes for the PDE models
considered in this work. See Table 2 for the wall clock time in generating the samples of Gaussian
random fields (GRFs), solving the PDEs, computing the r = 16 reduced basis functions (KLE or
ASM) corresponding to the 16 largest eigenvalues, generating the derivative labels, respectively.
In Table 3, We also provide the total wall clock time of data generation of DE-DeepONet (ASM)
(we only includes the major parts – computing high fidelity solution, ASM basis and dm labels [16
directions]) when Ntrain = 16, 64, 256, 1024 using 16 CPU processors.

Table 2: Wall clock time (in seconds) for data generation on 2 × AMD EPYC 7543 32-Core Processors

Dataset

Process

GRFs PDEs KLE ASM dm labels
(Nall = 2000) (Nall = 2000) (r = 16) (r = 16) (Nall = 2000, r = 16)

(64 procs) (64 procs) (1 procs) (16 procs) (64 procs)

Hyperelasticity 1.1 9.7 0.4 1.4 19.5
Navier–Stokes 1.9 99.1 1.3 9.7 125.5

Table 3: Wall clock time (in seconds) for
data generation with different number of
training samples using 16 CPU processors

Dataset\Ntrain

PDEs + ASM basis + dm labels

16 64 256 1024

Hyperelasticity 2 5 16 61
Navier–Stokes 17 38 124 470

Table 4: Wall clock time (seconds/iteration with batch size 8)
for training on a single NVIDIA RTX A6000 GPU

Dataset Model

DeepONet FNO DINO DE-FNO DE-DeepONet

Hyperelasticity 0.007 0.015 0.007 0.215 0.022
Navier–Stokes 0.007 0.015 0.007 0.216 0.033

Table 5: Total wall clock time (in seconds) for each model inferring on 500 test samples of both the solution
and dm in 128 random directions, using a single GPU and a single CPU (except where specified)

Dataset

Model

DeepONet FNO/DE-FNO DINO1 DE-DeepONet Numerical solver
1 GPU + 1 CPU/16 CPUs 0 GPU + 16 CPUs

Hyperelasticity 3 33 69/7 10 166
Navier–Stokes 3 33 2152/151 18 1103

1 The inference time of DINO is dominated by the time required to compute evaluations of all finite element
basis functions at the grid points using FEniCS (which may not be the most efficient, see Appendix B.3.2).
Even though these grid points overlap with parts of the finite element nodes—allowing us to skip evaluations by
extracting the relevant nodes—for a fairer comparison with DE-DeepONet (in terms of its ability to evaluate at
any arbitrary point), we assume they are arbitrary points requiring explicit evaluation.

Model training computational cost. We present comparisons of the wall clock time of each
optimization iteration (with batch size 8) of different methods in Table 4 and convergence plot
(error versus training time) in Figure 2 and the figures in Appendix B.5. We find that incorporating
derivative loss leads to longer training time as expected. However, when the training data are limited,
the increased computation cost is compensated for a significant reduction of errors. We note that
there are potential ways to further reduce the training cost, e.g., by training the model with additional
derivative loss only during the later stage of training, or by using fewer points for computing the
derivative losses in each iteration. Additionally, thanks to the dimension reduction of the input, we
can define a relatively small neural network and thus are able to efficiently compute the derivatives
using automatic differentiation.

5 Related work

Our work is related to Sobolev training for neural networks [32], which was found to be effective in
their application to model distillation/compression and meta-optimization. In the domain of surrogate
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models for parametric partial differential equations, our work is more closely related to derivative-
informed neural operator (DINO) [20] which is based on a derivative-informed projected neural
network (DIPNet) [17], and presents an extension to enhance the performance of the DeepONet.
Compared to DINO, although the DeepONet architecture (and its formulation of dm loss) requires
longer training time, it offers the following advantages: (1) Potentially shorter inference time. The
additional trunk net (which receives spatial coordinates) allows us to quickly query the sensitivity
of output function at any point when input function is perturbed in any direction. While DINO can
only provide the derivative of the output coefficients respect to the input coefficients (we call reduced
dm), in order to compute the sensitivity at a batch of points, we need to post process the reduced dm
by querying the finite element basis on these points and computing large matrix multiplications; (2)
Greater flexibility and potential for improvements. Although both DeepONet and DINO approximate
solution by a linear combination of a small set of functions, these functions together in DeepONet is
essentially the trunk net, which is "optimized" via model training, whereas in DINO, they are POD
or derivative-informed basis precomputed on training samples. When using DINO, if we encounter
a case where the training samples not enough to accurately compute the output basis, the large
approximation error between the linear subspace and solution manifold will greatly restrict the model
prediction accuracy (see Figure 2 when Ntrain = 16). And the reduced dm labels only supports linear
reduction of output. However, it is possible that we can further improve DeepONet by, e.g., adding
physical losses (to enhance generalization performance) and Fourier feature embeddings (to learn
high-frequency components more effectively) on the trunk net [5] and replacing the inner product
of the outputs of two networks by more flexible operations [33, 9] (to enhance expressive power).
The dm loss formulation of our work is broadly suitable any network architecture that has multiple
subnetworks, where at least one of them receives high-dimensional inputs.

6 Discussion

In this work, we proposed a new neural operator–Derivative-enhanced Deep Operator Network
(DE-DeepONet) to address the limited accuracy of DeepONet in both function and derivative
approximations. Specifically, DE-DeepONet employs a derivative-informed reduced representation
of input function and incorporates additional loss into the loss function for the supervised learning
of the derivative of the output with respect to the inputs of the branch net. Our experiments for
nonlinear PDE problems with high variations in both input and output functions demonstrate that
adding this loss term to the loss function greatly enhances the accuracy of both function and derivative
approximations, especially when the training data are limited. We also demonstrate that the use of
derivative loss can be extended to enhance other neural operators, such as the Fourier neural operator.

We presented matrix-free computation of the derivative label and the derivative-informed dimension
reduction for a general form of PDE problems by using randomized algorithms and linearized PDE
solves. Thanks to this scalable approach, the computational cost in generating the derivative label
data is shown to be only marginally higher than generating the input-output function pairs for the test
problems, especially for the more complex Navier–Stokes equations which require more iterations in
the nonlinear solves than the hyperelasticity equation.

Limitations: We require the derivative information in the training and dimension reduction using
ASM, which may not be available if the explicit form of the PDE is unknown or if the simulation only
provides input-output pairs from some legacy code. Another limitation is that dimension reduction of
the input function plays a key role in scalable data generation and training, which may not be feasible
or accurate for intrinsically very high-dimensional problems such as high frequency wave equations.
Such problems are also very challenging and remain unsolved by other methods to our knowledge.
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A Proofs

A.1 Proof of Theorem 1

We first show how to compute p given the PDE residual R(m,u) = 0. Since u is uniquely determined
by m, we can write u = u(m) so that R(m,u(m)) ≡ 0 holds for any m ∈ V in. Thus, for any ε > 0
and ψ ∈ V in, we have

R(m+ εψ, u(m+ εψ)) = 0.

Using the Taylor expansion we obtain
(∂mR(m,u(m)))εψ + (∂uR(m,u(m)))δu ≈ 0, (15)

where δu = u(m+ εψ)− u(m). Dividing both sides of Equation (15) by ε and letting ε approach 0
yields

(∂mR(m,u(m)))ψ + (∂uR(m,u(m)))du(m;ψ) = 0.

For ease of notation, we write
∂mR = ∂mR(m,u(m)), ∂uR = ∂uR(m,u(m)).

Then p is the solution to the linear PDE
(∂mR)ψ + (∂uR)p = 0. (16)

We solve Equation (16) via its weak form
⟨(∂mR)ψ, v⟩+ ⟨(∂uR)p, v⟩ = 0, (17)

where v is a test function in V out.

Next we show how to compute d∗u(m; p). By Equation (16), we have du(m;ψ) =
−(∂uR)−1(∂mR)ψ. Thus,

w := d∗u(m; p) = (−(∂uR)−1(∂mR))∗p

= −(∂mR)∗(∂uR)−∗p.
(18)

Let q := (∂uR)−∗p. We can solve for q via the weak form
⟨(∂uR)∗q, v⟩ = ⟨p, v⟩,

or equivalently,
⟨q, (∂uR)v⟩ = ⟨p, v⟩, (19)

where v is a test function in V out.

By Equation (18), we have w = −(∂mR)∗q. For any test function v ∈ V in, it holds that
⟨w, v⟩ = ⟨−(∂mR)∗q, v⟩

= ⟨q,−(∂mR)v⟩. (20)

Note that we do not need to solve for w explicitly; we only compute ⟨w, v⟩ with v as the finite
element basis functions ϕin

1 , . . . , ϕ
in
N in

h
. The cost of computing the right hand side of Equation (20)

arises from evaluating the directional derivative and its inner product with the finite element basis
functions.
Remark. By Equation (9), we use Ngrad samples {(m(i), u(i))}Ngrad

i=1 to compute the Monte Carlo
estimate of the action of operator H on any function ψ ∈ V in, that is,

Hψ ≈ 1

Ngrad

Ngrad∑
i=1

d∗u(m(i); du(m(i);ψ)). (21)

Remark. When using the double pass randomized algorithm to obtain the first r eigenpairs in
Equation (10), we need to compute the action of H on 2(r + s) random functions in V in (e.g., their
nodal values are sampled from the standard Gaussian distribution), where s ∈ N+ is typically a
small oversampling parameter, often chosen between 5 and 20. To speed up the computation, we first
compute the LU factorization of the matrices resulting from the discretization of the linear PDEs
in Equation (17) and Equation (19). Then the action of d∗u(m(i); du(m(i); ·)) on these random
functions can be efficiently computed via the forward and backward substitution. Furthermore, the
computational time can be significantly reduced by parallelizing the computation of the average
value in Equation (21) across multiple processors.
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A.2 Proof of the equivalence of Equation (6) and Equation (7)

By the definition of C = (δI − γ∆)−2, Equation (6) is equivalent to

ψ = λ(δI − γ∆)2ψ. (22)

We first compute (δI − γ∆)ψ. To do this, let p = (δI − γ∆)ψ and multiply both sides of this
equation by a test function v and integrate∫

Ω

p(x)v(x) dx =

∫
Ω

(δI − γ∆)ψ(x)v(x) dx

= δ

∫
Ω

ψ(x)v(x) dx+ γ

∫
Ω

⟨∇ψ(x),∇v(x)⟩ dx, (23)

where, in the second equality, we use integration by parts and the assumption that the test function
vanishes on the boundary. Then we substitute v with all of the finite element basis functions
ϕin
1 , . . . , ϕ

in
N in

h
and collect the corresponding linear equations for the nodal values of p

Ainψ =M inp, (24)

where the (i, j)-entries of Ain and M in are given by

Ain
ij = δ⟨ϕin

j , ϕ
in
i ⟩+ γ⟨∇ϕin

j ,∇ϕin
i ⟩, M in

ij = ⟨ϕin
j , ϕ

in
i ⟩.

By Equation (22), function p satisfies ψ = λ(δI − γ∆)p. In the same manner we can see that

λAinp =M inψ. (25)

Note that both matrices M in and Ain are symmetric positive definite and thus nonsingular. Combin-
ing Equation (24) with Equation (25) yields

λAin(M in)−1Ainψ =M inψ, (26)

or equivalently,

M in(Ain)−1M in(Ain)−1M inψ = λM inψ. (27)

A.3 Proof of the equivalence of Equation (8) and Equation (10)

By Equation (8), for any test function v ∈ V in
h , it holds that

⟨Hψ, v⟩ = ⟨λC−1ψ, v⟩. (28)

In particular, for any m ∼ ν(m), as we let v go through all of the finite element basis functions
ϕin
i ∈ V in

h , we can show that ⟨d∗u(m; du(m;ψ)), ϕin
1 ⟩

...
⟨d∗u(m; du(m;ψ)), ϕin

N in
h
⟩

 = (∇mu)
TM out(∇mu)ψ. (29)

Indeed, by the definition of Gateaux derivative, we have

du(m;ψ) = lim
ε→0

u(m+ εψ)− u(m)

ε

= lim
ε→0

N out
h∑

i=1

ui(m+ εψ)− ui(m)

ε
ϕout
i (x)

= lim
ε→0

N out
h∑

i=1

ui(m1 + εψ1, · · · ,mN in
h
+ εψN in

h
)− ui(m1, · · · ,mN in

h
)

ε
ϕout
i (x)

=

N out
h∑

i=1

(
∂ui

∂m1
ψ1 + · · ·+ ∂ui

∂mN in
h

ψN in
h
)ϕout

i (x)

= ϕout(x)(∇mu)ψ,

(30)
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where ϕout(x) = (ϕout
1 (x), . . . , ϕN out

h
(x)) are the finite element basis functions of output function

space V out
h .

Then for any test function v ∈ V in
h , it holds that

⟨d∗u(m; p), v⟩ = ⟨p, du(m; v)⟩ (by the definition of adjoint operator)

= ⟨ϕout(x)(∇mu)ψ, ϕ
out(x)(∇mu)v⟩ (by Equation (30))

= vT (∇mu)
TM out(∇mu)ψ,

where M out is the mass matrix of output function space V out
h , i.e., M out

ij = ⟨ϕout
j , ϕout

i ⟩ for 1 ≤ i, j ≤
N out

h . Note that if we replace v by the i-th finite element basis functions ϕin
i , then v becomes the

standard unit vector ei ∈ RN in
h (with the k-th entry one and all others zero). Thus,

⟨d∗u(m; p), ϕin
i ⟩ = eTi (∇mu)

TM out(∇mu)ψ, 1 ≤ i ≤ N in
h .

Concatenating all the above equations yields ⟨d∗u(m; p), ϕin
1 ⟩

...
⟨d∗u(m; p), ϕin

N in
h
⟩

 = (∇mu)
TM out(∇mu)ψ.

Next, we prove that  ⟨λC−1ψ, ϕin
1 ⟩

...
⟨λC−1ψ, ϕin

N in
h
⟩

 = λAin(M in)−1Ainψ. (31)

Indeed, if we let w = λC−1ψ, then similar to the argument in Appendix A.2, we have

λAin(M in)−1Ainψ =M inw,

Note that

⟨w, ϕin
i ⟩ = eTi M

inw, 1 ≤ i ≤ N in
h .

Thus,  ⟨w, ϕin
1 ⟩

...
⟨w, ϕin

N in
h
⟩

 = IM inw = λAin(M in)−1Ainψ.

Combining (28), (29) and (31) yields

Em∼ν(m)[(∇mu)
TM out(∇mu)ψ] = λAin(M in)−1Ainψ.

B Experimental details

B.1 Governing equations

Hyperelasticity equation. We follow the problem setup in [30]. Write X (instead of x) for a
material point in the domain Ω and u = u(X) : R2 → R2 for the displacement of the material
point. Under the influence of internal and/or external forces, the material point is mapped to a spatial
point x = x(X) = X + u(X) : R2 → R2. Let F = ∇Xx = I +∇Xu : R2 → R2×2 denote the
deformation gradient. For a hyperelasticity material, the internal forces can be derived from a strain
energy density

W (X,C) =
µ(X)

2
(tr(C)− 3) +

λ(X)

2
(ln(J))2 − µ(X) ln(J).
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Here, C = FTF is the right Cauchy-Green strain tensor, tr(C) is the trace of matrix C, J is the
determinant of matrix F , and µ(X), λ(X) : R2 → R are the Lamé parameters which we assume to
be related to Young’s modulus of elasticity E(X) : R2 → R and Poisson ratio ν ∈ R

µ(X) =
E(X)

2(1 + ν)
, λ(X) =

νE(X)

(1 + ν)(1− 2ν)
.

We assume the randomness comes from the Young’s modulus E(X) = em(X) + 1. Let S = 2∂W
∂C

denote the second Piola-Kirchhoff stress tensor. We consider the case where the left boundary
of the material is fixed, and the right boundary is subjected to stretching by an external force
t = t(X) : R2 → R2. The strong form of the steady state PDE can be written as

∇X · (FS) = 0, X ∈ Ω,

u = 0, X ∈ Γleft,

FS · n = 0, X ∈ Γtop ∪ Γbottom,

FS · n = t, X ∈ Γright,

where Γleft,Γright,Γtop and Γbottom denote the left, right, top, and bottom boundary of the material
domain Ω, respectively, and n is the unit outward normal vector on the boundary. Our goal is to learn
the operator that maps the parameter m to the displacement u. For demonstration, we choose m̄ = 0,
δ = 0.4, γ = 0.04, Poisson ratio ν = 0.4, and the external force

t(X) =
(
0.06 exp(−0.25|X2 − 0.5|2), 0.03(1 + 0.1X2)

)T
.

In practice, we solve the PDE by first formulating the energy W̃ in the weak form

W̃ =

∫
Ω

WdX −
∫
Γright

⟨t, u⟩ ds

and then solving for u that satisfies the stationary condition, that is, the equation

dW̃ (u; v) = 0,

holds for any test function v in the state space. See Figure 3 for the visualization for one parameter-
solution pair of the hyperelasticity equation.
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Figure 3: Visualization of one parameter-solution pair of hyperelasticity equation. The color of the
output indicates the magnitude of the displacement u (which maps from domain Ω to R2) instead of
its componentwise function u1 or u2. The skewed square shows locations of any domain point after
deformation X → x. See Figures 13 and 14 for u1 and u2.
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Navier–Stokes equations. Let u = u(x) ∈ R2 and p = p(x) ∈ R denote the velocity and pressure
at point x ∈ Ω = (0, 1)2. The strong form of the PDE can be written as

−∇ · em∇u+ (u · ∇)u+∇p = 0, x ∈ Ω,

∇ · u = 0, x ∈ Ω,

u = (1, 0)T , x ∈ Γtop,

u = (0, 0)T , x ∈ Γ \ Γtop,

where Γtop and Γ denote the left and whole boundary of the cavity domain Ω, respectively. Here,
we assume that the randomness arises from the viscosity term em. Our goal is learn the operator
that maps the parameter m to the velocity u. For demonstration, we choose m̄ = 6.908 (em̄ ≈ 103,
thus the viscosity term dominates), δ = 0.6, and γ = 0.06. See Figure 4 for the visualization for one
parameter-solution pair of the Navier–Stokes equations.
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Figure 4: Visualization of one parameter-solution pair of Navier–Stokes equations.

B.2 Data generation

For all PDEs in this work, we use the class dolfin.UnitSquareMesh to create a triangular mesh
of the 2D unit square with 64 cells in horizontal direction and 64 cells in vertical direction. For the
Darcy flow equation and hyperelasticity equation, we set the direction of the diagonals as ’right’,
while for the Navier–Stokes equation, we set the direction of the diagonals as ’crossed’. See Figure 5
for a visualization of the unit square mesh with a 10 by 10 resolution.

Figure 5: Visualization of the 10 by 10 unit square mesh. Left: diagonal=‘right’; Right: diago-
nal=‘crossed’

17

20961 https://doi.org/10.52202/079017-0660



We use the class dolfin.FunctionSpace or dolfin.VectorFunctionSpace to create the finite
element function space of input function and output function. For the finite element basis functions,
we consider the Continuous Galerkin (CG) family (or the standard Lagrange family) with degree 1 or
2. See Table 6 for details.

Table 6: Configurations of data generation for different datasets

Dataset Configurations

Mesh ϕin
i ϕout

i (Ntrain, Ntest) r Ngrad s

Hyperelasticity 64 × 64, right CG (1D, deg=1) CG (2D, deg=1) (1500, 500) 16 16 10
Navier–Stokes 64 × 64, crossed CG (1D, deg=1) u: CG (2D, deg=2), p: CG (1D, deg=1) (1500, 500) 16 16 10

We generate Ntrain = 1500 and Ntest = 500 input-output pairs (m(i), u(i)) for training and testing,
respectively. We compute first r = 16 KLE basis and ASM basis using double pass randomized
algorithm with an oversampling parameter s of 10. In the computation of ASM basis, we use
Ngrad = 16 samples for the Monte Carlo estimate of the action of operator H in Equation (21). In our
method, we formulate the different labels into arrays with the shape as follows

• Evaluation labels: (Ntrain, Nx, Nu)
• Derivative m labels: (Ntrain, Nx, r, Nu)

Recall that Ntrain is the number of functions used for training, Nx is the number of nodes of the mesh,
Nu is the dimension of output function, r is the number of reduced basis, and d is the dimension of
the domain.

B.3 Computation of derivative labels and outputs

B.3.1 Derivative labels p := du(m;ψ) as ground truth

Since the PDE residual R(m,u(m)) ≡ 0 holds for any m ∈ V in
h , we have

R(m+ εψ, u(m+ εψ)) = 0, ∀ε > 0, ψ ∈ V in
h .

By the Taylor expansion and R(m,u(m)) = 0, we obtain

(∂mR(m,u(m)))εψ + (∂uR(m,u(m)))δu ≈ 0, (32)

where δu = u(m+ εψ)− u(m). Dividing both sides of Eq. (32) by ε and letting ε approach 0 yields

(∂mR)ψ + (∂uR)p = 0, (33)

where p := du(m;ψ). We solve Eq. (33) for p via its weak form

⟨(∂mR)ψ, v⟩+ ⟨(∂uR)p, v⟩ = 0,

where v is a test function in V out
h .

Example. Consider the (nonlinear) diffusion-reaction equation{
−∇ · (em∇u) + u3 = 1, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Then

• R = −∇ · (em∇u) + u3 − 1

• (∂mR)ψ = −∇ · (emψ∇u)
• (∂uR)p = −∇ · (em∇p) + 3u2p

Thus, p satisfies the linear PDE

⟨emψ∇u,∇v⟩+ ⟨em∇p,∇v⟩+ ⟨3u2p, v⟩ = 0.

Using FEniCS, we can easily derive Gâteaux derivative via automatic symbolic differentiation instead
of by hand. In this case, the Python code for representing the weak form of the residual ⟨R, v⟩ and
Gâteaux derivatives ⟨(∂mR)ψ, v⟩ and ⟨(∂uR)p, v⟩ can be written as

import dolfin as dl
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• R=(dl.inner(dl.exp(m)*dl.grad(u), dl.grad(v))*dl.dx
+(u**3-dl.Constant(1.0))*v*dl.dx)

• dl.derivative(R,m,psi)

• dl.derivative(R,u,p)

B.3.2 Derivative outputs of neural networks

DE-DeepONet. For notation simplicity, we illustrate the case where the input reduced basis is
ASM basis and the output function is real-valued. The output of the model is given by

û(m; θ)(x) = ⟨b((Ψin)TC−1m; θb), t(x; θt)⟩+ θbias,

where Ψin = (ψin
1 | · · · |ψin

rin
) ∈ RN in

h×rin are the nodal values of input (ASM) reduced basis func-
tions, C−1 is the inverse of the covariance matrix of the Gaussian random field ν where parameter m
is sampled from (Recall that the ASM basis are orthonormal in the inner product with weight matrix
C−1.) Thus, by the chain rule of derivative, for any test direction ψtest, one has

∇mû(m; θ)(x)ψtest = ∇m̃⟨b(m̃), t(x; θt)⟩(Ψin)TC−1ψtest,

where m̃ = (Ψin)TC−1m. The Jacobian matrix ∇m̃⟨b(m̃), t(x; θt)⟩ can be efficiently computed
using, e.g., torch.func.jacrev, and further parallelized with torch.vmap. Ifψtest is in Ψin during
model training, we can see that (Ψin)TC−1ψtest becomes a unit vector which frees us the need to
compute it, otherwise in the model inference stage when ψtest is (the nodal values of) a random
function sampled from ν, we compute T = (Ψin)TC−1 and then Tψtest.

DINO. The output of the model is given by

û(m; θ)(x) = Φout(x)Ψoutfθ((Ψ
in)TC−1m),

where Φout(x) = (ϕout
1 (x), . . . , ϕout

N out
h
(x)) ∈ R1×N out

h denotes the output finite element basis functions

evaluated on point x ∈ Ω, Ψout = (ψout
1 | · · · |ψout

rout
) ∈ RN out

h ×rout are the nodal values of output (POD)
reduced basis functions, similarly for Ψin denoting the input (ASM) reduced basis, and C−1 is the
inverse of the covariance matrix of the Gaussian random field where parameter m is sampled from.
Thus, by the chain rule of derivative, for any test direction ψtest, one has

∇mû(m; θ)(x)ψtest = Φout(x)Ψout∇m̃fθ(m̃)(Ψin)TC−1ψtest,

where m̃ = (Ψin)TC−1m. For fast evaluations given different x, m, and ψtest, we first compute
Tleft = Φout(x)Ψout for all points x that need to be evaluated and Tright = (Ψin)TC−1. Next, we
compute J = ∇m̃fθ(m̃) using, e.g., torch.func.jacrev, and finally compute TleftJTrightψtest.

DeepONet & FNO. Both models receive the full high dimensional parameterm, so we compute
the directional derivative ∇mû(m; θ)ψtest using the Jacobian-vector product torch.jvp instead of
the full Jacobian in DE-DeepONet and DINO. For the coordinates x as additional inputs, we pad
zeros to the tensor ψtest to match the dimension of the input tensor (m, {x(j)}Nx

j=1).

B.4 Training details

For the DeepONet, we parameterize the branch net using a CNN and the trunk net using a ResNet.
For the FNO, we use the package neuraloperator. For the DINO, we use 16 ASM basis functions
for the input dimension reduction and 64 POD basis functions for the output dimension reduction,
and parameterize the neural network using a ResNet. For the DE-DeepONet, both the branch net
and trunk net are parameterized using ResNets. We train each model for 32768 iterations (with the
same batch size 8) using an AdamW optimizer [34] and a StepLR learning rate scheduler (We disable
learning rate scheduler for DE-DeepONet). See Tables 7 to 10 for details. When the loss function
comprises two terms, we apply the self-adaptive learning rate annealing algorithm from [23], with
an update frequency of 100 and a moving average parameter of 0.9, to automatically adjust the loss
weights {λi}2i=1 in Equation (5). Additionally, we standardize the inputs and labels before training.
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Table 7: Training details for DeepONet

Dataset

Hyperelasticity Navier–Stokes

branch net CNN
6 hidden layers
256 output dim
ReLU

CNN
6 hidden layers
256 output dim
ReLU

trunk net ResNet
3 hidden layers
512 output dim
512 hidden dim
ReLU

ResNet
3 hidden layers
512 output dim
512 hidden dim
ReLU

initialization Kaiming Uniform Kaiming Uniform
AdamW (lr, weight decay) (10−3, 10−6) (10−3, 10−5)
StepLR (gamma, step size) (0.6, 10) (0.7, 10)
number of Fourier features 64 64

Fourier feature scale σ 0.5 1.0

Table 8: Training details for FNO & DE-FNO

Dataset

Hyperelasticity Navier–Stokes

number of modes (32,32) (32, 32)
in channels 3 3
out channels 2 2

hidden channels 64 64
number of layers 4 4

lifting channel ratio 2 2
projection channel ratio 2 2

activation function GELU GELU
AdamW (lr, weight decay) (5× 10−3, 10−4) (5× 10−3, 10−4)
StepLR (gamma, step size) (0.9, 25) (0.9, 50)

Table 9: Training details for DINO

Dataset

Hyperelasticity Navier–Stokes

neural network ResNet
3 hidden layers
64 output dim
128 hidden dim
ELU

ResNet
3 hidden layers
64 output dim
256 hidden dim
ELU

initialization Kaiming Normal Kaiming Normal
AdamW (lr, weight decay) (5× 10−3, 0.0) (5× 10−3, 10−12)
StepLR (gamma, step size) (0.5, 50) (0.5, 50)
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Table 10: Training details for DE-DeepONet

Dataset

Hyperelasticity Navier–Stokes

branch net ResNet
3 hidden layers
128 output dim
128 hidden dim
ELU

ResNet
3 hidden layers
256 output dim
256 hidden dim
ELU

trunk net ResNet
3 hidden layers
256 output dim
256 hidden dim
ReLU

ResNet
3 hidden layers
512 output dim
512 hidden dim
ReLU

initialization Kaiming Uniform Kaiming Uniform
AdamW (lr, weight decay) (10−3, 10−11) (10−3, 10−11)

disable lr scheduler True True
number of Fourier features 64 64

Fourier feature scale σ 0.5 1.0
N batch

x (= αNx) 422 ≈ (0.1× 652) 422 ≈ (0.1× 652)

Table 11: Number of trainable parameters in each model

Dataset # parameters

DeepONet FNO & DE-FNO DINO DE-DeepONet

Hyperelasticity 4.21 M 17.88 M 0.04 M 0.27 M
Navier–Stokes 4.21 M 17.88 M 0.15 M 1.02 M

B.5 Convergence plot

Based on the training time (seconds/iteration) of each model in Table 4, we obtain the convergence
plots when the number of training samples is either limited (Ntrain = 16, 64) or sufficient (Ntrain =
256, 1024) in Figures 6 to 9 for the hyperelasticity equation, and in Figures 2, 10 and 11 for the
Navier–Stokes equations.
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Figure 6: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
hyperelasticity equations when the number of training samples is 16.
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Figure 7: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
hyperelasticity equations when the number of training samples is 64.
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Figure 8: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
hyperelasticity equations when the number of training samples is 256.
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Figure 9: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
hyperelasticity equations when the number of training samples is 1024.

100 101 102 103 104

# Training time (seconds)
5%

10%

15%

20%

30%

40%

Er
ro

r

Relative error in L2( ) norm (N_train = 64)
FNO
DE-FNO (ASM)
DE-FNO (KLE)
DE-FNO (Random)
DeepONet
DeepONet (ASM)
DeepONet (KLE)
DE-DeepONet (ASM)
DE-DeepONet (KLE)
DINO

100 101 102 103 104

# Training time (seconds)

10%

15%

20%

30%

40%

50%

60%

Er
ro

r

Relative error in H1( ) norm (N_train = 64)
FNO
DE-FNO (ASM)
DE-FNO (KLE)
DE-FNO (Random)
DeepONet
DeepONet (ASM)
DeepONet (KLE)
DE-DeepONet (ASM)
DE-DeepONet (KLE)
DINO

100 101 102 103 104

# Training time (seconds)

30%

50%

100%

200%

300%

Er
ro

r

Relative error in Fro norm (dm) (N_train = 64)
FNO
DE-FNO (ASM)
DE-FNO (KLE)
DE-FNO (Random)
DeepONet
DeepONet (ASM)
DeepONet (KLE)
DE-DeepONet (ASM)
DE-DeepONet (KLE)
DINO

Figure 10: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
Navier–Stokes equations when the number of training samples is 64.
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Figure 11: Mean relative errors (± standard deviation) over 5 trials versus model training time for the
Navier–Stokes equations when the number of training samples is 1024.

B.6 Output reconstruction error

To measure the error induced by the projection, we define the output reconstruction error as follows

1

N

N∑
i=1

∥u(Prm
(i))− u(m(i))∥L2

∥u(m(i))∥L2

,

where Pr is the rank r linear projector. We provide the plots of the output reconstruction error vs
number of reduced basis r using KLE basis and ASM basis in Figure 12. We can see that using the
ASM basis results in a lower output reconstruction error than the KLE basis.
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rank

10 2

10 1

rel-L2-err

Ouput reconstruction error
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KLE
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rank

10 1rel-L2-err

Ouput reconstruction error
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KLE

Figure 12: Output reconstruction error using KLE and ASM basis. Left: Hyperelasticity; Right:
Navier–Stokes

B.7 Visualization of the ground truth and prediction

We present the comparisons of the ground truth of solution u, model prediction û using different
methods, and absolute value of their difference |u(x)− û(x)| in Figures 13 and 14 for the hypere-
lasticity equation, and Figures 17 and 18 for the Navier–Stokes equations. In addition, we present
the comparisons of the ground truth of the derivative of u with respect to m in the direction of ω1,
denoted as du(m;ω1), model prediction dû(m;ψin

1 ) using different methods, and absolute value
of their difference |du(m;ω1)− dû(m;ω1)| in Figures 15 and 16 for the hyperelasticity equation,
and Figures 19 and 20 for the Navier–Stokes equations.
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Figure 13: Hyperelasticity. Comparison of the predictions of u1 with (16, 64, 256, 1024) training
samples using different methods. Top row –> bottom row: DeepONet, FNO, DE-FNO (Random),
DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 14: Hyperelasticity. Comparison of the predictions of u2 with (16, 64, 256, 1024) training
samples using different methods. Top row –> bottom row: DeepONet, FNO, DE-FNO (Random),
DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 15: Hyperelasticity. Comparison of the predictions of directional derivative du1(m;ω1) with
(16, 64, 256, 1024) training samples using different methods. Top row –> bottom row: DeepONet,
FNO, DE-FNO (Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 16: Hyperelasticity. Comparison of the predictions of directional derivative du2(m;ω1) with
(16, 64, 256, 1024) training samples using different methods.Top row –> bottom row: DeepONet,
FNO, DE-FNO (Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 17: Navier–Stokes. Comparison of the predictions of velocity-x with (16, 64, 256, 1024)
training samples using different methods. Top row –> bottom row: DeepONet, FNO, DE-FNO
(Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 18: Navier–Stokes. Comparison of the predictions of velocity-y with (16, 64, 256, 1024)
training samples using different methods. Top row –> bottom row: DeepONet, FNO, DE-FNO
(Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 19: Navier–Stokes. Comparison of the predictions of directional derivative du1(m;ω1) with
(16, 64, 256, 1024) training samples using different methods. Top row –> bottom row: DeepONet,
FNO, DE-FNO (Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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Figure 20: Navier–Stokes. Comparison of the predictions of directional derivative du2(m;ω1) with
(16, 64, 256, 1024) training samples using different methods. Top row –> bottom row: DeepONet,
FNO, DE-FNO (Random), DINO, DE-DeepONet (KLE), DE-DeepONet (ASM).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include our paper’s contributions in the abstract and the second paragraph
of introduction and its scope in the first and third paragraphs of introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide one theorem with clearly stated assumptions and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss all details (including data generation and model training) that help
reproduce the experiments in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code necessary to generate the data and train and test the
different models considered in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the experimental details in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run five trails with different random seed for each method and report the
mean value and standard deviation of the corresponding relative error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the machine information and time of execution in the Tables 4
and 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics and checked that the research follows
them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work lies in the field of scientific machine learning. We do not notice any
societal impact for now.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We think our research poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the corresponding papers and respect the licenses when using the
packages FEniCS, hIPPYlib, and neuraloperator to conduct experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets at the moment.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research is in the field of the scientific machine learning and does not
involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research is in the field of the scientific machine learning and does not
involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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