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Abstract

Human languages support both semantic categorization and local pragmatic inter-
actions that require context-sensitive reasoning about meaning. While semantics
and pragmatics are two fundamental aspects of language, they are typically studied
independently and their co-evolution is largely under-explored. Here, we aim to
bridge this gap by studying how a shared lexicon may emerge from local pragmatic
interactions. To this end, we extend a recent information-theoretic framework for
emergent communication in artificial agents, which integrates utility maximiza-
tion, associated with pragmatics, with general communicative constraints that are
believed to shape human semantic systems. Specifically, we show how to adapt
this framework to train agents via unsupervised pragmatic interactions, and then
evaluate their emergent lexical semantics. We test this approach in a rich visual
domain of naturalistic images, and find that key human-like properties of the lex-
icon emerge when agents are guided by both context-specific utility and general
communicative pressures, suggesting that both aspects are crucial for understanding
how language may evolve in humans and in artificial agents.

1 Introduction

Languages evolve through repeated interactions in rich contexts, where various communicative and
non-communicative goals co-exist. The conveyed meaning is often shaped by the local conversational
context of utterances (Figure 1), as captured by the pragmatic behavior of interlocutors [1]. For
example, the word ‘player’ can be interpreted as a baseball batter, catcher, or a guitar player, depending
on the conversational context that shapes the listener’s beliefs about the speaker’s state of mind. That
is, understanding meaning in context requires pragmatic reasoning about other agents’ intentions
and beliefs [1–3]. At the same time, words are associated with non-contextualized meanings, as
captured by lexical semantics. For example, we have a shared idea of what ‘player’ means, regardless
of any specific context in which this word might appear, and we can use it to communicate with new
conversational partners in new contexts. While semantics and pragmatics are widely studied, their
interface and co-evolution is largely under-explored and not well understood. In this work, we focus
on a key open question at the interface of lexical semantics and pragmatic reasoning: How can a
shared human-like lexicon emerge from local context-sensitive pragmatic interactions?

To address this question, we build on a framework for information-theoretic emergent communication
in multi-agent reinforcement learning systems [4]. This framework is particularly relevant for
addressing our question because it integrates task-specific utility maximization — a central component
in well-established models of human pragmatic reasoning [2, 3, 5], which has also been center-stage
in the literature on emergent communication in artificial agents [6–8] — with general information-
theoretic constraints that are believed to shape human lexical semantic systems [9–13] and have
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Figure 1: An example of an image from the ManyNames dataset illustrating both semantic and
pragmatic communication. Top (semantic setting): A speaker communicates a target object xt (red
box) by naming it regardless of the context induced by the image. The ManyNames dataset includes
such responses from native English speakers (in this example, 10 speakers produced ‘man’, 10
‘batter’, 5 ‘baseball player’, 4 ‘player’, and 3 ‘person’). Bottom (pragmatic setting): A speaker and a
listener observe two objects in an image (red and blue boxes). Only the speaker knows which one is
the target xt and which one is the distractor xd. The speaker’s goal is to communicate xt given this
shared context, and the listener’s goal is to discriminate the target from the distractor.

recently also been applied to human pragmatic reasoning [14]. These information-theoretic constraints
are derived from rate-distortion theory [15, 16], and more specifically, the information bottleneck (IB)
principle [17], characterizing semantic systems in terms of efficient compression of meanings into
words by optimizing the IB tradeoff between the complexity and informativeness of the lexicon [9].
Tucker et al. [4] developed a framework for training agents in emergent communication settings by
integrating utility maximization with the IB objective, yielding a multi-objective optimization problem
that trades off maximizing task-specific utilities with maximizing task-agnostic communicative
informativeness and minimizing communicative complexity.

Here, we extend that framework to explicitly model the co-evolution of semantics and pragmatics. In
our setup, artificial neural agents learn to communicate in a pragmatic setting, i.e., in the presence of
a shared conversational context that may alter the meaning of their communication signals (illustrated
intuitively in the bottom image of Figure 1). Importantly, agents are trained via self-play, without
any supervision or exposure to human languages. At test time, we assess the pragmatic competence
(i.e., utility) of the agents as well as the ‘human-likeness’ of the shared emergent lexicon that
they converged on, by invoking it in a lexical semantic setting (illustrated intuitively in the top
image of Figure 1, and see Figure 2 for a full description of our model’s architecture). Given the
substantial empirical evidence that human semantic systems are pressured to optimize the IB tradeoff,
we predict that a shared human-like lexicon will not emerge when agents are guided solely by
utility maximization but rather when they are guided by a non-trivial tradeoff between optimizing
utility, informativeness, and complexity. Our goal in this work is to test this prediction, and more
generally, to characterize the landscape of emergent communication systems induced by our novel
information-theoretic framework for the co-evolution of semantics and pragmatics.

To this end, we consider a rich visual domain of naturalistic images provided by the ManyNames
dataset [18], which also contains free-naming human data generated by native English speakers. This
domain allows us to train agents across many different conversational contexts and then evaluate
their emergent lexicon with respect to the English naming data. In support of our prediction, we find
that human-like properties of the lexicon (its size, complexity, and alignment with English speakers),
together with high pragmatic competence, emerge when agents are guided by both context-specific
utility and general communicative pressures as derived from the IB principle. Interestingly, pressure
for communicative informativeness, rather than (non-communicative) task utility, appears as the main
driver of emergent communication, but weaker pressures to minimize complexity and maximize
utility are still crucial for achieving human-like properties of the lexicon.

Our work is significant both from a cognitive science perspective and from a machine learning
perspective. From a cognitive science perspective, our work provides a novel computational frame-
work for studying the under-explored interface between lexical semantics and pragmatic reasoning,
and our findings suggest that human languages may evolve under pressure to optimize a tradeoff
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between task-specific utilities and general communicative constraints. From a machine learning
perspective, our work demonstrates how cognitively-motivated optimization principles, implemented
in neural network agents as intrinsic training objectives, can facilitate the emergence of interpretable
human-like communication systems without any human supervision.

2 Related work

Our work integrates cognitively-motivated information-theoretic principles that are believed to
underlie human language evolution, with deep learning tools for studying emergent communication in
artificial agents, in order to develop a computational account of the co-evolution of lexical semantics
and pragmatic reasoning. Semantics and pragmatics constitute two subfield in cognitive linguistics.
While both focus on meaning in language, they capture largely complementary aspects of meaning.
Lexical semantics is generally concerned with word meanings [19, 20], independent of any specific
conversational context, whereas pragmatics is concerned with language use in context, typically
assuming a known shared lexicon [1, 21, 3]. Our work focuses on the underexplored interface
between these two aspects of language, departing from the traditional assumption that the lexicon is
given a-priori and shared among pragmatic interlocutors.

Contemporary cognitive approaches to lexical semantics argue that word meanings are shaped by
pressure for efficient communication [22, 23, 10]. Most relevant to our work, is the information-
theoretic framework for semantic systems, proposed by Zaslavsky et al. [9], that predicts that
human semantic systems evolved to optimize the information bottleneck (IB) trade-off [17] between
the complexity of the lexicon (roughly, how many bits are allocated for communication) and its
informativeness (roughly, how well a listener can understand a speaker, regardless of context). This
framework has shown to account for the structure of semantic systems across hundreds of languages
and multiple domains [9, 24, 11, 12], as well as semantic change over time [13]. Here, we leverage
this empirically-supported theoretical framework to guide our interactive agents.

Research on pragmatic communication focuses on how speakers’ lexical choices and listener’s
interpretations are affected by their local conversational context [1, 3, 25, 26]. Prominent models of
pragmatics, such as the Rational Speech Act (RSA) framework [3], are grounded in game theory
(see also [2]). In this view, pragmatic behavior is formulated within a cooperative reference game,
where agents pragmatically reason about each other’s communicative intentions with the goal of
maximizing the game’s utility. While these models enjoy broad empirical support [3], they assume
that the underlying lexicon is given and shared across speakers and listeners, even when applied in
reinforcement learning settings [27]. Recently, a theoretical link between the RSA framework and
rate-distortion theory (RDT) has been derived [14], connecting pragmatic reasoning with general
informational constraints that are closely related to the aforementioned IB trade-off. However, the
RDT approach to pragmatics has also assumed a given lexicon [14], and more generally, the implied
information-theoretic link between semantics and pragmatics has not yet been explored. Our work
explored this potential link by relaxing the assumption that the lexicon is given to our agents, and
instead studying how they may develop on their own a near-optimal human-like lexicon via a training
objective that takes into account informational constraints.

Relatedly, Brochhagen et al. [28] developed a game-theoretic model for the evolution of the division
of labor between semantics and pragmatics, and tested the model in a relatively small domain. In
comparison, we consider here different learning dynamics and objective function, employ state-of-the-
art deep-learning tools for training agents at scale, and evaluate our approach with respect to actual
human data in a rich domain of naturalistic images [18]. McDowell and Goodman [29] considered
the role of pragmatics in learning lexical meanings in deep-learning agents. However, they trained
their agents in a supervised manner with respect to human-generated pragmatic data. In contrast, we
are interested in how pragmatics and lexical semantic may emerge without any human supervision.

The emergent communication literature focuses on how agents may learn to communicate in rein-
forcement learning settings, without exposure to human-generated linguistic data [6, 7, 30]. While
this body of literature largely focuses on utility (or reward) maximization, Chaabouni et al. [8] showed
that utility-based emergent communication can lead to IB-efficient systems. In their settings, however,
different complexity-informativeness tradeoffs can only be determined by external environmental
factors. Tucker et al. [4] showed how to directly integrate the IB objective function with utility
maximization in emergent communication and demonstrated the advantages of this framework for
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Figure 2: Communication model for the co-evolution of semantics and pragmatics (see Section 3).
Agents are trained in a pragmatic setting, where both observe inputs x0, x1 as shared context;
one input is randomly selected as target xt for the speaker. After training, the agent’s emergent
communication systems are evaluated in a lexical semantics setting, without shared context; the
speaker observes only xt while xd is masked, and both inputs are masked for the listener.

faster convergence rates and better out-of-distribution generalization [31]. However, they did not
study the co-emergence of semantics and pragmatics. Our work directly builds on the framework
of Tucker et al. [4, 31] and extends it for studying the interface between semantics and pragmatics.

3 A unifying model for the co-evolution of semantics and pragmatics

The information-theoretic framework for emergent communication that we build on [4, 31] consists of
an objective function that integrates utility maximization with the IB principle, and a communication
model that specifies the agents’ architectures. Our model (Figure 2) builds on Tucker et al. [4]’s
proposed method, called vector-quantized variational information bottleneck (VQ-VIB), which we
modify in order to be able to model the co-evolution of semantic and pragmatics; that is, to be able to
train agents in a pragmatic setting and evaluate their communication, at test time, in both pragmatic
and lexical semantic settings. The initial VQ-VIB architecture includes a speaker and a listener tasked
to jointly solve a reference game. In our case, the speaker is defined by (i) a pre-trained variational
autoencoder [VAE, 32] that provides a visual representation module for mapping an input x to a
‘mental’ representation m; and (ii) an encoder module S that generates a communication signal w
given the speaker’s mental state. The listener is defined by (i) a decoder D that observes w and
generates a reconstruction m̂, and (ii) a policy L for solving a downstream task.

In our pragmatic setting both agents observe a shared context (x0, x1), while the speaker also
observes which referent is the target t and which is a distractor d (more details about this step are
provided in Section 4). The speaker then aims to communicate the target xt. The VAE representation
model is applied to xt and xd independently, generating mt, the speaker’s mental representations
for the target, and md, the speaker’s mental representations for the distractor. The listener’s task
is to guess the target based on y = L(m̂, (x0, x1)). We wish to emphasize that in contrast to the
standard approach in pragmatic models, in our setup the agents are not given a shared lexicon but
rather implicitly learn it through their local, context-sensitive pragmatic interactions.

Agents are trained by optimizing a tradeoff between maximizing expected utility, maximizing
informativeness, and minimizing complexity. The utility term, U(xt, y), is task-specific, and here we
take it to be the accuracy of the listener’s downstream decisions. Informativeness and complexity are
task-agnostic communicative objectives, derived from the Information Bottleneck (IB) framework
for semantic systems [9]. In this framework, the speaker’s and listener’s mental representations,
mt and m̂, are defined as belief states (i.e., probability distributions) over features in environment.
Informativeness is related to the distortion between mt and m̂, defined by the Kullback-Leibler (KL)
divergence D[mt∥m̂], such that low expected distortion amounts to high informativeness. Complexity
corresponds to the mutual information between speaker’s meanings and words, I(mt;w), which
is roughly the number of bits that the agents will need for communication. Following [4, 31], we
optimize a bound on the IB terms for practical reasons, as direct optimization of those terms does not
scale. For informativeness, we treat mt and m̂ as the means of the agents’ mental distributions and
then approximate informativeness by their MSE. For complexity, we consider a known variational
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bound on the mutual information, denoted here for simplicty by Ĩ [for more details and full derivation
of the objective function, see 4]. Overall, the training objective is to maximize

λUE [U (xt, y)]− λIE
[
∥mt − m̂t∥2

]
− λC Ĩ(mt, f(I);w) , (1)

where the λs are non-negative tradeoff weights that sum to 1, and f(I) can be seen as a function that
extracts two objects (a target and a distractor) from an image.

Optimizing only the utility term in the objective function, without any pressure for alignment between
the speaker’s and listener’s representations (i.e., high informativeness), is expected to lead to lexical
systems that are biased towards success in the specific training downstream task, and such systems
are likely to depart from human lexical systems. On the other hand, maximizing informativeness
alone will lead to highly complex and task-agnostic systems, and minimizing complexity alone will
lead to no communication. None of these extremes seems human-like, and we therefore expect that
human-like systems will emerge when all tradeoff parameters are active (i.e., non-zero).

Our semantic setting is designed to evaluate the emergent lexicon at test time, lending a window
into how the agents use their words irrespectively of any local context. In this setting, only the target
is shown to the speaker (the distractor is masked) and then the listener reconstructs m̂t based on
the speaker’s word w, without any additional context or downstream task. This task resembles in
its nature the task with which annotations for ManyNames –our dataset of interest [18], see below–
are gathered, i.e. a naming task where annotators were asked to freely produce names for target
objects appearing in natural images, identified with bounding boxed. Thus, we can use these naming
annotations at test time to evaluate the agents’ emergent semantics.

4 Experimental setup

4.1 The ManyNames domain

We train and test our agents on the ManyNames dataset [18], which contains 25K naturalistic images
(see Figure 1 for example), each with one target object, appearing in a bounding box, annotated
with ∼ 36 names provided by English native speakers asked to freely produce a name (one word) to
describe the object.2 The name produced by the majority of the annotators for a target object is called
the topname. In the case of Figure 1, top image, ‘man’ and ‘batter’ are equally probable topnames.
Objects in the ManyNames dataset are also annotated according to their high-level semantic domain,
which can be people, animals-plants, buildings, vehicles, clothing, food, or home. Importantly, our
agents only observe the images in the dataset. They are not trained on any of the linguistic labels,
which are used only for evaluation.

4.2 Data selection for pragmatic training

With respect to the choice of the target-distractor pairs for our pragmatic training setup (Figure 1,
bottom image), our intuition is that identifying competing objects appearing in the same image, e.g.,
a batter and a baseball player in the same field, or a car and a taxi on the same street, instead of using
random objects cropped from different images, should encourage the emergence of more natural
semantic partitions, since agents will need to create lexical entries to solve naturally occurring ambi-
guities. For each image in the dataset, we consider the target object highlighted in the ManyNames
annotation; and an additional object that we individuate through automatic object detection and a few
filtering filtering steps. We used the Bottom-Up object detection model proposed by Anderson et al.
[33], which incorporates a Faster R-CNN architecture [34] for object detection, and a ResNet-101
architecture [35] for feature extraction. Since Anderson et al. [33]’s model is fine-tuned on the
VisualGenome image dataset [36], of which ManyNames images are a sample, we are guaranteed
that this model can make good quality predictions on ManyNames. After running the object detector
model on our images, we filter the detected bounding boxes keeping only those with Intersection over
Union smaller than 0.1 with the ManyNames target, and that did not have size smaller than 10% of the
target size.3 We then computed the similarity between the candidates’ visual features –automatically

2Creative Commons Attribution 4.0 International License.
3For 2.5K images, typically depicting only one large object as the ManyNames target, we do not find any

detected object with the desired properties. Being unable to use these images in the pragmatic setting, we
exclude them from our data sample.
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Model ∆Compl. ∆LexSize NID Utility MSE
λU = 1 1.76 (±0.31) 559 (±382) 0.84 (±0.02) 0.95 (±0.00) 20 (±7.18)
λI = 1 2.80 (±0.06) 1687 (±107) 0.60 (±0.00) 0.83 (±0.00) 0.13 (±0.00)
λC = 1 5.21 (±0.01) 381 (±0.98) 0.99 (±0.00) 0.58 (±0.00) 0.32 (±0.00)
λ∗

Eng 1.48 (±0.08) 22 (±35) 0.55 (±0.00) 0.72 (±0.01) 0.23 (±0.00)

Table 1: Evaluation of the model that is best aligned with English, λ∗
Eng (λU = 0.005, λI = 0.98,

λC = 0.015), in comparison with three baselines: λU = 1, corresponding to utility maximization
without any informational constraints, which is the most common objective function in the emergent
communication literature; and λI = 1 and λC = 1 which correspond to the other two extremes
of either maximizing informativeness or minimizing complexity. ∆Compl. and ∆LexSize are the
absolute value of the differences between the complexity or lexicon size of the emergent system
and English. NID measures the misalignment between the emergent system and English. For all
three measures, lower values reflect a better fit to the human data. Utility and MSE correspond to the
agent’s pragmatic competence and reconstruction error, respectively. Each cell shows the mean value
across three random seeds ± SEM.

extracted by the ResNet-101 incorporated in Anderson et al. [33]’s model– and the ManyNames
target’s features, choosing the detected object with the highest similarity value. This final selection
step based on visual similarity aims at providing our agents with some challenging cases to solve,
like the one shown in Figure 1, where communication needs to allow the discrimination between two
objects from the same semantic category, e.g. a batter and another baseball player.

At the end of this procedure, we obtained two objects per image: the ManyNames target; and the
additional object detected by us. We used these two objects to train our agents, choosing our target’s
identity randomly, making sure that in 50% of the cases the target would be the larger object, and in
the other 50% the distractor would be larger.

4.3 Multi-agent simulations

We trained 270 agent pairs with a range of combinations of λU , λC and λI . We used parameter
annealing which, besides being a computationally efficient alternative to training agents from random
initializations, has been shown to capture at least some aspects of the evolution of human semantic
systems [9]. We used a pretrained ResNet18 [35] to extract 512 dimensional features from target and
distractor objects before passing them to the agents.4 In all our experiments, we trained agents on
70% of the images (randomly sampled) in self-play, with no human supervision, batch size of 128,
and codebook initialized with 3000 trainable communication vectors (see Appendix A for further
details). 5

5 Results

5.1 Quantitative evaluation

We report quantitative results for the 5 evaluation metrics shown in Figure 3, for each set of λs, at
test time. The top panel shows the three components of the agents’ training objective: (a) the agents’
pragmatic competence, as measured by their test-time expected utility on unseen images, in the
pragmatic setting; (b) the reconstruction loss between the speaker’s and listener’s mental representa-
tions, measured by the negative MSE (values closer to 0 corresponds to higher informativeness); and
(c) the complexity of the emergent lexicon. The bottom panel of Figure 3 shows two measures for
assessing the human-likeness of the emergent systems: (d) the lexicon size of the artificial systems,

4We extract visual features with a ResNet18 model, that is a standard choice for object classification, and
choose not use the visual features from Anderson et al. [33]’s model, which we employ for the object detection
phase. This is because this model, being specialized for object detection, produces visual features for objects in
bounding boxes that carry some degree of information about the image context. This is a desirable property
when performing object detection, but not for our experiments.

5Our code is available at https://github.com/InfoCogLab/info-sem-prag-neurips2024.
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(a) Utility (b) Negative MSE (c) Complexity

(d) Lexicon size (e) Semantic alignment

Eng

Eng

Figure 3: The information-theoretic landscape of emergent communication. Each simplex shows
a test-time evaluation metric using either pragmatic (a) or semantic (b-e) settings, for the range of
models spanned by the values of λ = (λU , λI , λC). Overall, none of the extremes yield human-
like communication, and the best alignment with English is achieved for λ > 0 near the top of
the simplex. (a) Utility, reflecting the agents’ pragmatic competence in solving the discrimination
task. (b) Reconstruction loss, measured by the negative MSE between the speaker’s and listener’s
target representations; values closer to 0 correspond to more informative communication (for ease
of visualization, the model trained with λU = 1, with negative MSE −20, is ignored in this plot).
(c) Complexity, measured by the mutual information between the speaker’s inputs and communication
signals. The red arrow indicates the complexity of English as estimated from the ManyNames dataset.
(d) The effective lexicon size of the emergent systems (i.e., the number of signals that are used
with non-zero probabilities). The red arrow indicates the number of unique English terms in the
ManyNames dataset. (e) Semantic (mis)alignment between the emergent systems and English,
measure by Normalized Information Distance (NID). Lower values correspond to better alignment.
(d-e) Insets show the top of the simplex with higher resolution, revealing the importance of λC > 0
in attaining human-like lexicon sizes and better alignment with English.

in comparison to the number of English words used in the ManyNames dataset; and (e) the semantic
(mis)alignment between the emergent systems and the English naming system, measured by the Nor-
malized Information Distance [NID 37]. NID takes into account for full meaning-to-form mappings
and is bounded between [0, 1], with lower values corresponding to better alignment. The measures in
(b-e) are evaluated in the semantic setting, which was not used during training, across the full dataset.

As expected, agents trained with large weights on one of the three λs develop communication systems
skewed towards one component of the objective, yielding non-human like solutions at the extremes
of the λ simplex. Next, we characterize the landscape of the emergent systems and discuss the
human-like tradeoffs that best capture the linguistic behavior of English speakers.

High λU regime. High values of λU (bottom left corner) allow agents to achieve very high
pragmatic competence (utility > 0.9, Figure 3a), maximizing the listener’s success in solving the
downstream task (i.e., distinguishing the target from the distractor), but result in very poor alignment
between the emergent lexicon and the English lexicon (NID values > 0.8, Figure 3e). This finding
resonates well with the cognitive science literature on the role of informational constraints in the
evolution of human semantic systems [10], as well as with empirical findings that suggest that humans
do not achieve maximal utility in our task when restricted to using only lexicalized items [26].6 In
other words, in this regime, which focuses primarily on utility maximization without information

6In our settings, agents can communicate only using lexicalized items. The usage of more complex structures,
such as syntactic constructions, is beyond the scope of the present work and is left for future research.
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constraints, agents are likely to develop communication strategies that do not align with human-like
lexical semantics as they are pressured to over-compensate for the lack of syntactic constructions.

High λI regime. High values of λI (top corner) lead to highly informative communication (negative
MSE > −0.20, Figure 3b). However, as expected, this comes at the cost of large lexicon sizes and
high complexity. Agents trained with λI values close to 1 learn to use thousands of words for the
ManyNames domain (> 1.5K vs. ∼ 400 topnames used by English speakers for λI = 1, Figure 3d),
and too complex communication systems (> 6 bits vs. ∼ 5 bits in English, Figure 3c). Compared to
λU , high values of λI seem to generally favour semantic alignment (NID ∼ 0.6, Figure 3e), although
it is important to note that the best NID is not achieved with λI = 1, but rather with a non-trivial
combination of all tradeoffs, as discussed below. Finally, it is noteworthy that highly informative
lexical systems also yield high utility (e.g., utility > 0.9 and negative MSE > −0.18 for λU < 0.3,
λI > 0.7, λC = 0.0). This is in line with findings from Tucker et al. [38]. Indeed, in our framework,
utility and informativeness are not in complete competition, but rather capture complementary aspects
of successful communication that are only partially aligned.

High λC regime. High values of λC (bottom right corner) encourage minimal complexity and
lead to unsuccessful communication, both in terms of utility and informativeness, as well as to very
small lexicon sizes and low semantic alignment. In general, λC seems to act at a very small scale,
with important effects on the lexicon already perceivable at very small values (see, for instance, the
large decrease in lexicon size for λC ∼ 0.02 in Figure 3d, as well as the corresponding increase in
semantic alignment in Figure 3e).

Human-like tradeoffs (λ∗
Eng > 0). A combination of pressures fosters the emergence of natural

solutions. Table 1 summarizes key properties of the landscape that we have explored. As expected,
the three extremes on the simplex lead to unnatural, non-human-like solutions. Moving away from
the extremes, we identify a non-trivial tradeoff, λ = (λU = 0.005, λI = 0.98, λC = 0.015), that
achieves the best fit with respect to the English data. We thus refer to this model as λ∗

Eng. This
model achieves the best semantic alignment with English (Figure 3e), and roughly matches the
English lexicon size (Figure 3d) and complexity rate (Figure 3c). It also achieves good reconstruction
(Figure 3b) and high pragmatic competence (Figure 3a).

These quantitative findings support our predictions and demonstrate how our framework can advance
our understanding of the co-evolution of semantics and pragmatics. To further understand the
communication strategies learned by our agents, we next turn to a qualitative exploration of the
emergent communication systems.

5.2 Qualitative evaluation

Figure 4 offers a visualization of the agents’ communication. We plot as dots the visual features
(reduced to 2D via PCA) of 500 objects randomly sampled from 3 categories in ManyNames
(‘woman’, ‘giraffe’, and ‘train’, i.e. the most frequent names in the semantic domains of ‘people’,
‘animals/plants’, and ‘vehicles’), identified by color. White crosses correspond to the listeners’
reconstructions (m̂t, see Figure 2) in the semantic setting, which roughly represent word meanings.

Figure 4a, b, and c illustrate the solutions learnt by the models at the edges of our simplex. When
trained with λU = 1 (Fig. 4a), agents are only driven by the task-related utility, i.e., maximizing
success in pragmatic interactions. In this scenario, the listener does not learn to reconstruct a mental
representation of the object, and the solution lacks a robust, non-contextual semantics. When trained
with λI = 1 (Fig. 4b), in order to maximize informativeness, agents learn highly complex solutions,
with large lexicons mapping words to small sets of objects, and not identifying human-like categories.
When trained with λC = 1 (Fig. 4c), agents compress their lexicons at the cost of losing important
distinctions, and achieve a solution where the same word describes all the objects. This solution does
not enable successful communication.

In contrast, our λ∗
Eng model (Fig. 4d), trained with a tradeoff between utility, complexity, and

informativeness, starts approaching a natural solution, learning word meanings that roughly map
to the human categories. This solution is simple, yet it allows for informative communication and
successful pragmatic interactions. Still, the agents seem to have learnt additional words, capturing
spurious distinctions, especially for the peripheral areas of each category cluster, and for the category
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𝛌U = 1(a)

𝛌C = 1(c)

𝛌I = 1(b)

(d) 𝛌*
Eng

Figure 4: Visualization of the emergent communication systems for different combinations of λs
(best seed for each). In each plot, the colored dots correspond to a 2D PCA of the input features of
500 randomly sampled objects from 3 distinct high-frequency categories in the ManyNames dataset
(‘woman’, ‘train’, ‘giraffe’). The white crosses correspond to the listener’s reconstructions (m̂t,
see Figure 2) given the speaker’s communication signal, which roughly captures the meaning of
each signal. (a) When agents are trained only with respect to utility, the listener does not learn to
reconstruct a mental representation of the object. (b) When agents are trained only to maximize
informativeness, the emergent communication system is highly complex, essentially assigning unique
signals to much of the input space. (c) When agents are trained only to minimize complexity, a
trivial non-informative system emerges that employs only one signal. (d) When agents are trained
with respect to a non-trivial tradeoff between utility, complexity, and accuracy, a more human-like
communication system emerge. These systems are as simple as possible while maintaining sufficient
utility and informativeness.

‘woman’ (the most frequent one in ManyNames). Besides reasons related to the data distribution,
our hypothesis is that the agents may have developed human-like categorizations for prototypical
members of the human categories (i.e. those with visual features near the center of the category
cluster), but also additional, non human-like categories for atypical objects. Indeed, atypical objects
are harder to categorize for humans as well, and may not clearly belong to one single semantic
category [39, 40]. This hypothesis may also explain why our λ∗

Eng model has an NID score of 0.55,
showing moderate, but not perfect, alignment with human semantics. We gather support for this
explanation by computing the NID score only with objects prototypical for their category: on this set
of objects, the NID for λ∗

Eng decreases to 0.45 (±0.02), suggesting higher alignment –see Appendix B
for further details.

6 Conclusion

Words in the human lexicon are associated with non-contextual meanings, as well as shaped by the
local conversational context. In this work, we have addressed a key open question for language
evolution: How can a shared lexicon emerge from local context-sensitive interactions? We modeled
the semantics-pragmatics interface by building on a framework for information-theoretic emergent
communication in neural agents. We trained agents to interact in self-play in the presence of a shared
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conversational context, guiding them with combinations of cognitively-motivated pressures. We
then tested their pragmatic competence, as well as the human-likeliness of their emergent semantics.
By exploring the landscape of emerging artificial languages, we demonstrate that, if trained with
pressures for both context-specific utility and general communicative constraints, agents learn systems
with key human-like properties and that allow for successful pragmatic interactions. Our findings
inform current theories of language evolution, and show that cognitively-motivated optimization
principles can facilitate the emergence of human-like communication strategies in neural networks.

7 Limitations

Our work aims to better understand the computational principles that underlie language evolution, in
humans and artificial agents, with focus on the interface between semantics and pragmatics. While
we presented an important first step towards this goal, we were only able to evaluate our model on
English data and focused on the lexicon only. An important direction for future work is the evaluation
of our model on a larger, more diverse set of languages. In addition, our work has focused only on
the use of lexical items in communication. Therefore, another important direction for future research
is to extend our framework to more complex communication structures, such as syntax, morphology,
and compositional meaning.

One potential concern about our model is that it employs a pre-trained object classification model
[35] to extract visual features. This pre-trained model was trained with classification labels. Thus,
one might worry that our agents were implicitly exposed to some linguistic knowledge. We have
several reasons to believe that this exposure is negligible. First, the classification labels are coarse
while we evaluate the agents with respect to fine-grained naming data. Second, our agents are trained
in a pragmatic setting, whereas the classification labels are non-contextual. Third, the majority of our
agents develop non-human-like lexical systems, suggesting that the pretrained vision component is
not sufficient for alignemnt with English. Having said that, in further work we intend to explore the
influence of other types of visual features.

Finally, the NID score achieved by our agents, while encouraging, suggests that even our best-
performing agents are not yet fully aligned with (English speaking) humans. Therefore, further
research is needed to understand how to close this gap and guide our agents toward more human-like
communication systems.
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A Details about agents’ training

We started by training our agents with λU = 1 until convergence, i.e. for 10K epochs. After that,
we first annealed models by keeping λC fixed at 0, while gradually decreasing the value of λU

and increasing the value of λI , until reaching λI = 1. Then, for each trained value of λU , we
gradually annealed λC . For each annealing step, we trained until reaching variance in the training
objective lower than 0.0001 for the latest 1K epochs (as a criterion for convergence). We followed
a non-uniform annealing schedule, re-fined after an initial exploration phase, aimed at identifying
regions in the simplex showing interesting patterns with respect to our metrics. In these regions, we
sampled the combinations of parameters more densely, e.g. with steps of 0.002, while in the other
regions we sampled with steps of 0.1. Agents were trained with batch size 128, hyperparameter β
of the VQ architecture set at 1. See Tucker et al. [38] for further details about the architecture and
hyperparameters.

Experiments were run on a cluster with 12 nodes with 5 NVIDIA A30 GPUs and 48 CPUs each.
Training the λU = 1 model took around 30 minutes. Training one annealed model could take up
to 15 minutes, often less. Computing evaluation metrics took a total of 10 hours. We estimate the
overall time required to run this analysis to be around 4 days. Considering our exploration phase and
failed experiments, we estimate the total runtime required by this paper to have been around 20 days.

B Identifying prototypical objects

To identify in ManyNames objects that are prototypical members of their categories, we took the
following approach: for each topname appearing at least 30 times in ManyNames, we selected the
15 most probable images based on the human annotations (in general, visual typicality for a name
correlates with name probability [39, 40]). This process resulted in 69 words and a total of 1035
images. These images are, at worst, the 50% most typical images for their human name. On this set,
λ∗

Eng achieves NID of 0.45 (±0.02).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our research question, and how our findings contribute to
answer that question.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

21073 https://doi.org/10.52202/079017-0663



Justification: Our paper does not contain theoretical results in terms of theorems and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our code is available at https://github.com/InfoCogLab/
info-sem-prag-neurips2024. We describe in detail our model (Section 3 and
Appendix A), and reference the original paper where the model’s core components were
first presented. We provide information about our data, data selection strategies, and models’
training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is available at https://github.com/InfoCogLab/
info-sem-prag-neurips2024
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: yes, when we report the numerical results reported in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: No potential harms are identified.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: we consider this paper foundational research, with no risk of malicious use.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not train models at high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: we do not release any new dataset. The experiments’ code will be released
upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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