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Abstract
We present RELBENCH, a public benchmark for solving predictive tasks over
relational databases with graph neural networks. RELBENCH provides databases
and tasks spanning diverse domains and scales, and is intended to be a founda-
tional infrastructure for future research. We use RELBENCH to conduct the first
comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which
combines graph neural network predictive models with (deep) tabular models that
extract initial entity-level representations from raw tables. End-to-end learned RDL
models fully exploit the predictive signal encoded in primary-foreign key links,
marking a significant shift away from the dominant paradigm of manual feature
engineering combined with tabular models. To thoroughly evaluate RDL against
this prior gold-standard, we conduct an in-depth user study where an experienced
data scientist manually engineers features for each task. In this study, RDL learns
better models whilst reducing human work needed by more than an order of mag-
nitude. This demonstrates the power of deep learning for solving predictive tasks
over relational databases, opening up many new research opportunities enabled by
RELBENCH.

1 Introduction
Relational databases are the most widely used database management system, underpinning much of
the digital economy. Their popularity stems from their table storage structure, making maintenance
relatively easy, and data simple to access using powerful query languages such as SQL. Because of
their popularity, AI systems across a wide variety of domains are built using data stored in relational
databases, including e-commerce, social media, banking systems, healthcare, manufacturing, and
open-source scientific repositories (Johnson et al., 2016; PubMed, 1996).

Despite the importance of relational databases, the rich relational information is typically foregone,
as no model architecture is capable of handling varied database structures. Instead, data is “flattened”
into a simpler format such as a single table, often by manual feature engineering, on which standard
tabular models can be used (Kaggle, 2022). This results in a significant loss in predictive signal, and
creates a need for data extraction pipelines that frequently cause bugs and add to software complexity.

To fully exploit the predictive signal encoded in the relations between entities, a new proposal is to
re-cast relational data as an exact graph representation, with a node for each entity in the database,
edges indicating primary-foreign key links, and node features extracted using deep tabular models,
an approach termed Relational Deep Learning (RDL) (Fey et al., 2024). The graph representation
allows Graph Neural Networks (GNNs) (Gilmer et al., 2017; Hamilton et al., 2017) to be used as
predictive models. RDL is the first approach for an end-to-end learnable neural network model with
access to all possible predictive signal in a relational databases, and has the potential to unlock new
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Figure 1: RELBENCH enables training and evaluation of deep learning models on relational databases.
RELBENCH supports framework agnostic data loading, task specification, standardized data splitting,
standardized evaluation metrics, and a leaderboard for tracking progress. RELBENCH also includes a
pilot implementation of the relational deep learning blueprint of Fey et al. (2024).

levels of predictive power. However, the development of relational deep learning is limited by a
complete lack of infrastructure to support research, including: (i) standardized benchmark databases
and tasks to compare methods, (ii) initial implementation of RDL, including converting data to graph
form and GNN training, and (iii) a pilot study of the effectiveness of relational deep learning.

Here we present RELBENCH, the first benchmark for relational deep learning. RELBENCH is intended
to be the foundational infrastructure for future research into relational deep learning, providing a
comprehensive set of databases across a variety of domains, including e-commerce, Q&A platforms,
medical, and sports databases. RELBENCH databases span orders of magnitude in size, from 74K
entities to 41M entities, and have very different time spans, between 2 weeks and 55 years of training
data. They also vary significantly in their relational structure, with the total number of tables varying
between 3 and 15, and total number of columns varying from 15 to 140. Each database comes with
multiple predictive tasks, 30 in total, including entity classification/regression and recommendation
tasks, each chosen for their real-world significance.

In addition to databases and tasks, we release open-source software designed to make relational deep
learning widely available. This includes (i) the RELBENCH Python package for easy database and task
loading, (ii) the first open-source implementation of relational deep learning, designed to be easily
modified by researchers, and (iii) a public leaderboard for tracking progress. We comprehensively
benchmark our initial RDL implementation on all RELBENCH tasks, comparing to various baselines.

The most important baseline we compare to is a strong “data scientist” approach, for which we
recruited an experienced individual to solve each task by manually engineering features and feeding
them into tabular models. This approach is the current gold-standard for building predictive models
on relational databases. The study, which we open source for reproducibility, finds that RDL models
match or outperform the data scientist’s models in accuracy, whilst reducing human hours worked by
96%, and lines of code by 94% on average. This constitutes the first empirical demonstration of the
central promise of RDL, and points to a long-awaited end-to-end deep learning solution for relational
data.

Our website2 is a comprehensive entry point to RDL, describing RELBENCH databases and tasks,
access to code on GitHub, the full relational deep learning blueprint, and tutorials for adding new
databases and tasks to RELBENCH to allow researchers to experiment with their problems of interest.

2 Overview and Design
RELBENCH provides a collection of diverse real-world relational databases along with a set of
realistic predictive tasks associated with each database. Concretely, we provide:

• Relational databases, consisting of a set of tables connected via primary-foreign key relation-
ships. Each table has columns storing diverse information about each entity. Some tables also
come with time columns, indicating the time at which the entity is created (e.g., transaction date).

• Predictive tasks over a relational database, which are defined by a training table (Fey et al.,
2024) with columns for Entity ID, seed time, and target labels.The seed time indicates at which
time the target is to be predicted, filtering future data.

Next we outline key design principles of RELBENCH with an emphasis on data curation, data splits,
research flexibility, and open-source implementation.

2https://relbench.stanford.edu.
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Table 1: Statistics of RELBENCH datasets. Datasets vary significantly in the number of tables,
total number of rows, and number of columns. In this table, we only count rows available for test
inference, i.e., rows upto the test time cutoff.

Name Domain #Tasks Tables Timestamp (year-mon-day)

#Tables #Rows #Cols Start Val Test

rel-amazon E-commerce 7 3 15,000,713 15 2008-01-01 2015-10-01 2016-01-01
rel-avito E-commerce 4 8 20,679,117 42 2015-04-25 2015-05-08 2015-05-14
rel-event Social 3 5 41,328,337 128 1912-01-01 2012-11-21 2012-11-29
rel-f1 Sports 3 9 74,063 67 1950-05-13 2005-01-01 2010-01-01
rel-hm E-commerce 3 3 16,664,809 37 2019-09-07 2020-09-07 2020-09-14
rel-stack Social 5 7 4,247,264 52 2009-02-02 2020-10-01 2021-01-01
rel-trial Medical 5 15 5,434,924 140 2000-01-01 2020-01-01 2021-01-01

Total 30 51 103,466,370 489 / / /

Data Curation. Relational databases are widespread, so there are many candidate predictive tasks.
For the purpose of benchmarking we carefully curate a collection of relational databases and tasks
chosen for their rich relational structure and column features. We also adopt the following principles:

• Diverse domains: To ensure algorithms developed on RELBENCH will be useful across a wide
range of application domains, we select real-world relational databases from diverse domains.

• Diverse task types: Tasks cover a wide range of real-world use-cases, including three represen-
tative task types: entity classification, entity regression, and recommendation.

RELBENCH databases are summarized in Table 1, covering E-commerce, social, medical, and sports
domains. The databases vary significantly in the numbers of rows (i.e., data scale) the number of
columns and tables, as well as the time ranges of the databases. Tasks are summarized in Table 2,
each corresponding to a predictive problem of practical interest such as predicting customer churn,
predicting the number of adverse events in a clinical trial, and recommending posts to users.

Data Splits. Data is split temporally, with models trained on rows up to VAL_TIMESTAMP, vali-
dated on the rows between VAL_TIMESTAMP and TEST_TIMESTAMP, and tested on the rows after
TEST_TIMESTAMP. Our implementation carefully hides data after TEST_TIMESTAMP during in-
ference to systematically avoid test time data leakage (Kapoor and Narayanan, 2023), and uses an
elegant solution proposed by Fey et al. (2024) to avoid time leakage during training and validation
through temporal neighbor sampling. In general, it is the designers responsibility to avoid time
leakage. We recommend using our carefully tested implementation where possible.

Research Flexibility. RELBENCH is designed to allow significant freedom in future research
directions. For example, RELBENCH tasks share the same (VAL_TIMESTAMP and TEST_TIMESTAMP)
splits across tasks within the same relational database. This opens up exciting opportunities for
multi-task learning and pre-training to simultaneously improve different predictive tasks within
the same relational database. We also expose the logic for converting databases into graphs. This
allows future work to consider modified graph constructions, or creative uses of the raw data.
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studies

nct_id numerical

start_date timestamp

target_duration text

study_type categorical

acronym text

baseline_population text

brief_title text

official_title text

phase categorical

enrollment numerical

enrollment_type categorical

source text

number_of_arms numerical

number_of_groups numerical

has_dmc categorical

is_fda_regulated_drug categorical

is_fda_regulated_device categorical

is_unapproved_device categorical

is_ppsd text

is_us_export categorical

biospec_retention categorical

biospec_description text

source_class categorical

baseline_type_units_analyzed text

fdaaa801_violation categorical

plan_to_share_ipd categorical

detailed_descriptions text

brief_summaries text

outcomes

id numerical

nct_id numerical

outcome_type categorical

title text

description text

time_frame text

population text

units text

units_analyzed text

dispersion_type text

param_type categorical

date timestamp

outcome_analyses

id numerical

nct_id numerical

outcome_id numerical

non_inferiority_type categorical

non_inferiority_description text

param_type text

param_value numerical

dispersion_type categorical

dispersion_value numerical

p_value_modifier text

p_value numerical

ci_n_sides categorical

ci_percent numerical

ci_lower_limit numerical

ci_upper_limit numerical

ci_upper_limit_na_comment text

p_value_description text

method text

method_description text

estimate_description text

groups_description text

other_analysis_description text

date timestamp

drop_withdrawals

id numerical

nct_id numerical

period text

reason text

count numerical

date timestamp

reported_event_totals

id numerical

nct_id numerical

event_type categorical

classification categorical

subjects_affected numerical

subjects_at_risk numerical

date timestamp

designs

id numerical

nct_id numerical

allocation categorical

intervention_model categorical

observational_model categorical

primary_purpose text

time_perspective categorical

masking categorical

masking_description text

intervention_model_description text

subject_masked categorical

caregiver_masked categorical

investigator_masked categorical

outcomes_assessor_masked categorical

date timestamp

eligibilities

id numerical

nct_id numerical

sampling_method categorical

gender categorical

minimum_age text

maximum_age text

healthy_volunteers categorical

population text

criteria text

gender_description text

gender_based categorical

adult categorical

child categorical

older_adult categorical

date timestamp

interventions

intervention_id numerical

mesh_term text

conditions

condition_id numerical

mesh_term text

facilities

facility_id numerical

name text

city text

state text

zip text

country text

sponsors

sponsor_id numerical

name text

agency_class categorical

interventions_studies

id numerical

nct_id numerical

intervention_id numerical

date timestamp

conditions_studies

id numerical

nct_id numerical

condition_id numerical

date timestamp

facilities_studies

id numerical

nct_id numerical

facility_id numerical

date timestamp

sponsors_studies

id numerical

nct_id numerical

sponsor_id numerical

lead_or_collaborator categorical

date timestamp

Figure 2: Example RELBENCH schema for rel-trial
database. RELBENCH databases have complex relational
structure and rich column features.

Open-source RDL Implementation.
As well as datasets and tasks, we pro-
vide the first open-source implemen-
tation of relational deep learning. See
Figure 2 of Fey et al. (2024) for a
high-level overview. A neural net-
work is learned over a heterogeneous
temporal graph that exactly represents
the database in order to make pre-
diction over nodes (for entity clas-
sification and regression) and links
(for recommendation). Our imple-
mentation is built on top of PyTorch
Frame (Hu et al., 2024) for extract-
ing initial node embeddings from raw
table features, and PyTorch Geomet-
ric (Fey and Lenssen, 2019) for GNN
modeling. See Section A for details.
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Table 2: Full list of predictive tasks for each RELBENCH dataset (introduced in Table 1).

Dataset Task name Task type #Rows of training table #Unique %train/test #Dst
Train Validation Test Entities Entity Overlap Entities

rel-amazon

user-churn entity-cls 4,732,555 409,792 351,885 1,585,983 88.0 —
item-churn entity-cls 2,559,264 177,689 166,842 416,352 93.1 —
user-ltv entity-reg 4,732,555 409,792 351,885 1,585,983 88.0 —
item-ltv entity-reg 2,707,679 166,978 178,334 427,537 93.5 —
user-item-purchase recommendation 5,112,803 351,876 393,985 1,632,909 87.4 12,562,384
user-item-rate recommendation 3,667,157 257,939 292,609 1,481,360 81.0 7,665,611
user-item-review recommendation 2,324,177 116,970 127,021 894,136 74.1 5,406,835

rel-avito

ad-ctr entity-reg 5,100 1,766 1,816 4,997 59.8 —
user-clicks entity-cls 59,454 21,183 47,996 66,449 45.3 —
user-visits entity-cls 86,619 29,979 36,129 63,405 64.6 —
user-ad-visit recommendation 86,616 29,979 36,129 63,402 64.6 3,616,174

rel-event
user-attendance entity-reg 19,261 2,014 2,006 9,694 14.6 —
user-repeat entity-cls 3,842 268 246 1,514 11.5 —
user-ignore entity-cls 19,239 4,185 4,010 9,799 21.1 —

rel-f1
driver-dnf entity-cls 11,411 566 702 821 50.0 —
driver-top3 entity-cls 1,353 588 726 134 50.0 —
driver-position entity-reg 7,453 499 760 826 44.6 —

rel-hm
user-churn entity-cls 3,871,410 76,556 74,575 1,002,984 89.7 —
item-sales entity-reg 5,488,184 105,542 105,542 105,542 100.0 —
user-item-purchase recommendation 3,878,451 74,575 67,144 1,004,046 89.2 13,428,473

rel-stack

user-engagement entity-cls 1,360,850 85,838 88,137 88,137 97.4 —
user-badge entity-cls 3,386,276 247,398 255,360 255,360 96.9 —
post-votes entity-reg 2,453,921 156,216 160,903 160,903 97.1 —
user-post-comment recommendation 21,239 825 758 11,453 59.9 44,940
post-post-related recommendation 5,855 226 258 5,924 8.5 7,456

rel-trial

study-outcome entity-cls 11,994 960 825 13,779 0.0 —
study-adverse entity-reg 43,335 3,596 3,098 50,029 0.0 —
site-success entity-reg 151,407 19,740 22,617 129,542 42.0 —
condition-sponsor-run recommendation 36,934 2,081 2,057 3,956 98.4 533,624
site-sponsor-run recommendation 669,310 37,003 27,428 445,513 48.3 1,565,463

3 RELBENCH Datasets

RELBENCH contains 7 datasets each
with rich relational structure, providing a challenging environment for developing and comparing
relational deep learning methods (see Figure 2 for an example). The datasets are carefully processed
from real-world relational databases and span diverse domains and sizes. Each database is associated
with multiple individual predictive tasks defined in Section 4. Detailed statistics of each dataset can
be found in Table 1. We briefly describe each dataset.

rel-amazon. The Amazon E-commerce database records products, users, and reviews across
Amazon’s E-commerce platform. It contains rich information about products and reviews. Products
include the price and category of each, reviews have the overall rating, whether the user has actually
bought the product, and the text of the review itself. We use the subset of book-related products.

rel-f1. The F1 database tracks all-time Formula 1 racing data and statistics since 1950. It provides
detailed information for various stakeholders including drivers, constructors, engine manufacturers,
and tyre manufacturers. Highlights include data on all circuits (e.g.geographical details), and full
historical data from every season. This includes overall standings, race results, and more specific data
like practice sessions, qualifying positions, sprints, and pit stops.

rel-stack. Stack Exchange is a network of question-and-answer websites on different topics,
where questions, answers, and users are subject to a reputation award process. The reputation system
allows the sites to be self-moderating. The database includes detailed records of activity including
user biographies, posts and comments (with raw text), edit histories, voting, and related posts. In our
benchmark, we use the stats-exchange site.

rel-trial. The clinical trial database is curated from AACT initiative, which consolidates all
protocol and results data from studies registered on ClinicalTrials.gov. It offers extensive information
about clinical trials, including study designs, participant demographics, intervention details, and
outcomes. It is an important resource for health research, policy making, and therapeutic development.

rel-hm. The H&M relational database hosts extensive customer and product data for online
shopping experiences across its extensive network of brands and stores. This database includes

4
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detailed customer purchase histories and a rich set of metadata, encompassing everything from basic
demographic information to extensive details about each product available.

rel-event. The Event Recommendation database is obtained from user data on a mobile app
called Hangtime. This app allows users to keep track of their friends’ social plans. The database
contains data on user actions, event metadata, and demographic information, as well as users’ social
relations, which captures how social relations can affect user behavior. Data is fully anonymized,
with no personally identifiable information (such as names or aliases) available.

rel-avito. Avito is a leading online advertisement platform, providing a marketplace for users
to buy and sell a wide variety of products and services, including real estate, vehicles, jobs, and
goods. The Avito Context Ad Clicks dataset on Kaggle is part of a competition aimed at predicting
whether an ad will be clicked based on contextual information. This dataset includes user searches,
ad attributes, and other related data to help build predictive models.

Data Provenance. All data is sourced from publicly available repositories with licenses permitting
usage for research purposes. See Appendix E for details of data sources, licenses, and more.

4 Predictive Tasks on RELBENCH Datasets

Table 3: Entity classification results (AUROC, higher is better) on
RELBENCH. Best values are in bold. See Table 6 in Appendix C
for standard deviations.

Dataset Task Split LightGBM RDL Rel. Gain
of RDL

rel-amazon
user-churn

Val 52.05 70.45 35.35 %
Test 52.22 70.42 34.86 %

item-churn
Val 62.39 82.39 32.06 %
Test 62.54 82.81 32.40 %

rel-avito
user-visits

Val 53.31 69.65 30.66 %
Test 53.05 66.20 24.78 %

user-clicks
Val 55.63 64.73 16.35 %
Test 53.60 65.90 22.96 %

rel-event
user-repeat

Val 67.76 71.25 5.15 %
Test 68.04 76.89 13.02 %

user-ignore
Val 87.96 91.70 4.25 %
Test 79.93 81.62 2.12 %

rel-f1
driver-dnf

Val 68.42 71.36 4.31 %
Test 68.56 72.62 5.93 %

driver-top3
Val 67.76 77.64 14.57 %
Test 73.92 75.54 2.20 %

rel-hm user-churn
Val 56.05 70.42 25.63 %
Test 55.21 69.88 26.59 %

rel-stack
user-engagement

Val 65.12 90.21 38.53 %
Test 63.39 90.59 42.91 %

user-badge
Val 65.39 89.86 37.43 %
Test 63.43 88.86 40.08 %

rel-trial study-outcome
Val 68.30 68.18 �0.19 %
Test 70.09 68.60 �2.13 %

Average Val 64.18 76.49 20.34 %
Test 63.66 75.83 20.48 %

RELBENCH introduces 30 new
predictive tasks defined over
the databases introduced in Sec-
tion 2. A full list of tasks is given
in Table 2, with high-level de-
scriptions given in Appendix B
(and our website) due to space
limitations. Tasks are grouped
into three task types: entity clas-
sification (Section 4.1), entity re-
gression (Section 4.2), and en-
tity link prediction (Section 4.3).
Tasks differ significantly in the
number of train/val/test entities,
number of unique entities (the
same entity may appear multiple
times at different timestamps),
and the proportion of test entities
seen during training. Note this
is not data leakage, since entity
predictions are timestamp depen-
dent, and can change over time.
Tasks with no overlap are pure in-
ductive tasks, whilst other tasks
are (partially) transductive.

4.1 Entity Classification

The first task type is entity-level
classification. The task is to pre-
dict binary labels of a given entity at a given seed time. We use the ROC-AUC (Hanley and McNeil,
1983) metric for evaluation (higher is better). We compare to a LightGBM classifier baseline over the
raw entity table features. Note that here only information from the single entity table is used.

Experimental results. Results are given in Table 3, with RDL outperforming or matching baselines
in all cases. Notably, LightGBM achieves similar performance to RDL on the study-outcome
task from rel-trial. This task has extremely rich features in the target table (28 columns total),
giving the LightGBM many potentially useful features even without feature engineering. It is an
interesting research question how to design RDL models better able to extract these features and
unify them with cross-table information in order to outperform the LightGBM model on this dataset.

5
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Table 4: Entity regression results (MAE, lower is better) on RELBENCH. Best values are in bold. See
Table 7 in Appendix C for standard deviations.

Dataset Task Split Global
Zero

Global
Mean

Global
Median

Entity
Mean

Entity
Median LightGBM RDL Rel. Gain

of RDL

rel-amazon
user-ltv

Val 14.141 20.740 14.141 17.685 15.978 14.141 12.132 14.21 %
Test 16.783 22.121 16.783 19.055 17.423 16.783 14.313 14.72 %

item-ltv
Val 72.096 78.110 59.471 80.466 68.922 55.741 45.140 19.02 %
Test 77.126 81.852 64.234 78.423 66.436 60.569 50.053 17.36 %

rel-avito ad-ctr
Val 0.048 0.048 0.040 0.044 0.044 0.037 0.037 2.21 %
Test 0.052 0.051 0.043 0.046 0.046 0.041 0.041 �0.18 %

rel-event user-attendance
Val 0.262 0.457 0.262 0.296 0.268 0.262 0.255 2.65 %
Test 0.264 0.470 0.264 0.304 0.269 0.264 0.258 1.97 %

rel-f1 driver-position
Val 11.083 4.334 4.136 7.181 7.114 3.450 3.193 7.44 %
Test 11.926 4.513 4.399 8.501 8.519 4.170 4.022 3.56 %

rel-hm item-sales
Val 0.086 0.142 0.086 0.117 0.086 0.086 0.065 24.50 %
Test 0.076 0.134 0.076 0.111 0.078 0.076 0.056 26.90 %

rel-stack post-votes
Val 0.062 0.146 0.062 0.102 0.064 0.062 0.059 4.19 %
Test 0.068 0.149 0.068 0.106 0.069 0.068 0.065 4.11 %

rel-trial
study-adverse

Val 57.083 75.008 56.786 57.083 57.083 45.774 46.290 �1.13 %
Test 57.930 73.781 57.533 57.930 57.930 44.011 44.473 �1.05 %

site-success
Val 0.475 0.462 0.475 0.447 0.450 0.417 0.401 3.87 %
Test 0.462 0.468 0.462 0.448 0.441 0.425 0.400 5.86 %

Average Val 17.260 19.939 15.051 18.158 16.668 13.330 11.952 8.55 %
Test 18.299 20.393 15.985 18.325 16.801 14.045 12.631 8.14 %

4.2 Entity Regression

Entity-level regression tasks involve predicting numerical labels of an entity at a given seed time. We
use Mean Absolute Error (MAE) as our metric (lower is better). We consider the following baselines:

• Entity mean/median calculates the mean/median label value for each entity in training data and
predicts the mean/median value for the entity.

• Global mean/median calculates the global mean/median label value over the training data and
predicts the same mean/median value across all entities.

• Global zero predicts zero for all entities.
• LightGBM learns a LightGBM (Ke et al., 2017) regressor over the raw entity features to predict

the numerical targets. Note that only information from the single entity table is used.

Experimental results. Results in Table 4 show our RDL implementation outperforms or matches
baselines in all cases. A number of tasks, such as driver-position and study-adverse,
have matching performance up to statistical significance, suggesting some room for improvement.
We analyze this further in Appendix D, identifying one potential cause, suggesting an opportunity for
improved performance for regression tasks.

4.3 Recommendation

Finally, we also introduce recommendation tasks on pairs of entities. The task is to predict a list of
top K target entities given a source entity at a given seed time. The metric we use is Mean Average
Precision (MAP) @K, where K is set per task (higher is better). We consider the following baselines:

• Global popularity computes the top K most popular target entities (by count) across the entire
training table and predict the K globally popular target entities across all source entities.

• Past visit computes the top K most visited target entities for each source entity within the
training table and predict those past-visited target entities for each entity.

• LightGBM learns a LightGBM (Ke et al., 2017) classifier over the raw features of the source
and target entities (concatenated) to predict the link. Additionally, global popularity and past
visit ranks are also provided as inputs.

For recommendation, it is also important to ensure a certain density of links in the training data in
order for there to be sufficient predictive signal. In Appendix B we report statistics on the average
number of destination entities each source entity links to. For most tasks the density is � 1, with the
exception of rel-stack which is more sparse, but is included to test in extreme sparse settings.
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Table 5: Recommendation results (MAP, higher is better) on RELBENCH. Best values are in bold.
See Table 8 in Appendix C for standard deviations.

Dataset Task Split Global
Popularity

Past
Visit LightGBM RDL

(GraphSAGE)
RDL

(ID-GNN)
Rel. Gain
of RDL

rel-amazon

user-item-purchase
Val 0.31 0.07 0.18 1.53 0.13 397.55 %
Test 0.24 0.06 0.16 0.74 0.10 204.74 %

user-item-rate
Val 0.16 0.09 0.22 1.42 0.15 550.12 %
Test 0.15 0.07 0.17 0.87 0.12 395.92 %

user-item-review
Val 0.18 0.05 0.14 1.03 0.11 476.06 %
Test 0.11 0.04 0.09 0.47 0.09 313.07 %

rel-avito user-ad-visit
Val 0.01 3.66 0.17 0.09 5.40 47.37 %
Test 0.00 1.95 0.06 0.02 3.66 87.09 %

rel-hm user-item-purchase
Val 0.36 1.07 0.44 0.92 2.64 145.60 %
Test 0.30 0.89 0.38 0.80 2.81 214.49 %

rel-stack
user-post-comment

Val 0.03 2.05 0.04 0.43 15.17 640.05 %
Test 0.02 1.42 0.04 0.11 12.72 795.15 %

post-post-related
Val 0.47 0.00 1.62 0.00 7.76 378.26 %
Test 1.46 1.74 2.00 0.07 10.83 440.27 %

rel-trial
condition-sponsor-run

Val 2.63 8.58 4.88 3.12 11.33 32.05 %
Test 2.52 8.42 4.82 2.89 11.36 34.89 %

site-sponsor-run
Val 4.91 15.90 10.92 14.09 17.43 9.65 %
Test 3.75 17.31 8.40 10.70 19.00 9.74 %

Average Val 1.01 3.50 2.07 2.51 6.68 297.41 %
Test 0.95 3.55 1.79 1.85 6.74 277.26 %

Experimental results. Results are given in Table 5. We find that either the RDL implementation
using GraphSAGE (Hamilton et al., 2017), or ID-GNN (You et al., 2021) as the GNN component
performs best, often by a very significant margin. ID-GNN excels in cases were predictions are
entity-specific (i.e., Past Visit baseline outperforms Global Popularity), whilst the plain GNN excels
in the reverse case. This reflects the inductive biases of each model, with GraphSAGE being able to
learn structural features, and ID-GNN able to take into account the specific node ID.

5 Expert Data Scientist User Study

To test RDL in the most challenging circumstances possible, we undertake a human trial wherein a
data scientist solves each task by manually designing features and feeds them into tabular methods
such at LightGBM or XGBoost (Chen and Guestrin, 2016; Ke et al., 2017). This represents the prior
gold-standard for building predictive models on relational databases (Heaton, 2016), and the key
point of comparison for RDL.

We structure our user study along the five main data science workflow steps:

1. Exploratory data analysis (EDA): Explore the dataset and task to understand its characteristics,
including what column features there are, and if there is any missing data.

2. Feature ideation: Based on EDA and intuition from prior experiences, propose a set of entity-
level features that the data scientist believes may contain predictive signal for the task.

3. Feature enginnering: Using query languages such as SQL to compute the proposed features,
and add them as extra columns to the target table of interest.

4. Tabular ML: Run tabular methods such as LightGBM or XGBoost on the table with extra
features to produce a predictive model, and record the test performance.

5. Post-hoc analysis of feature importance (Optional): Common tools include SHAP and LIME,
which aim to explain the contribution of each input feature to the final performance.

Consider for example the rel-hm dataset (schema in Appendix E) and the task of predicting
customer churn. Here the CUSTOMER table only contains simple biographical information such as
username and joining date. To capture more predictive information, additional features, such as time
since last purchase, can be computed using the other tables, and added to the CUSTOMER table. We
give a detailed walk-through of the data scientist’s work process for solving this specific task in
Appendix D. We strongly encourage the interested reader to review this, as it highlights the significant
amount of task-specific effort that this workflow necessitates.
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Figure 3: RDL vs. Data Scientist. Relational Deep Learning matches or outperforms the data
scientist in 11 of 15 tasks. Left shows entity classification AUROC, right shows entity regression,
reporting MAE normalized so that the RDL MAE is always 1.

Limitations of Manual Feature Engineering. This workflow suffers from several fundamental
limitations. Most obviously, since features are hand designed they only capture part of the predictive
signal in the database, useful signal is easily missed. Additionally, feature complexity is limited
by human reasoning abilities, meaning that higher-order interactions between entities are often
overlooked. Beyond predictive signal, the other crucial limitation of feature engineering is its
extremely manual nature—every time a new model is built a data scientist has to repeat this process,
requiring many hours of human labor, and significant quantities of new SQL code to design features
(Zheng and Casari, 2018). Our RDL models avoid these limitations (see Section 5).

Data Scientist. To conduct a thorough comparison to this process, we recruit a high-end data scientist
with Stanford CS MSc degree, 4.0 GPA, and 5 years of experience of building machine learning
models in the financial industry. This experience includes a significant amount of time building
machine learning models in exactly above five steps, as well as broader data science expertise.

User Study Protocol.
Because of the open-ended nature of feature engineering and model development, we follow a specific
protocol for the user study in order to standardize the amount of effort dedicated to each dataset and
task. Tracking the 5 steps outlined above, we impose the following rules:

1. EDA: The time allotted for data exploration is capped at 4 hours. This threshold was chosen
to give the data scientist enough time to familiarize themselves with the schema, visualize
key relationships and distributions, and take stock of any outliers in the dataset, while
providing a reasonable limit to the effort applied.

2. Feature ideation: Feature ideation is performed manually with pen and paper, and is limited
to 1 hour. In practice, the data scientist found that 1 hour was plenty of time to enumerate
all promising features at that time, especially since many ideas naturally arise during the
EDA process already.

3. Feature engineering: The features described during the ideation phase are then computed
using SQL queries. The time taken to write SQL code to generate the features is uncon-
strained in order to eliminate code writing speed as a factor in the study. We do, however,
record code writing time for our timing benchmarking. This stage presented the most
variability in terms of time commitment, partly because it is unconstrained, but mostly
because the implementation complexity of the features itself is highly variable.

4. Tabular ML: For tabular ML training, we provide a standardized LightGBM training script
including comprehensive hyperparameter tuning. The data scientist needs only to feed the
table full of engineered features into this training script, which returns test performance
results. However, there is some non-trivial amount of work required to transform the output
of the SQL queries from the previous section into the Python objects (arrays) required for
training LightGBM. Again, the time taken for this additional pre-preocessing is recorded.

5. Post-hoc analysis of feature importance: Finally, after successfully training a model, an
evaluation of model predictions and feature importance is carried out. This mostly serves as
a general sanity check and an interesting corollary of the data scientist’s work that provides
task-specific insights (see Appendix D). In practice, this took no more than a few minutes
per task and this time was not counted toward the total time commitment.
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Figure 4: RDL vs. Data Scientist. Relational Deep Learning reduces the hours of human work
required to solve a new task by 96% on average (from 12.3 to 0.5 hours). Left shows node-level
classification, right shows node-level regression.

Reproducibility. All of the data scientist’s workings are released3 to ensure reproducibility and
demonstrate the significant lengths gone through to build as accurate models as possible. In Appendix
D we walk through a complete example for a single dataset and task, showing the data-centric
insights it yields. An important by-product is a close analysis of which features contribute to model
performance, which we believe will help inspire future well-motivated RDL research directions.

Results. As well as (i) raw predictive power, we compare the data scientist to our RDL models in
terms of (ii) hours of human work, and (iii) number of new lines of code required to solve each task.
We measure the marginal effort, meaning that we do not include code infrastructure that is reused
across tasks, including for example data loading logic and training scripts for RDL or LightGBM
models. Accordingly, we only compare model development, not data preparation/loading. Indeed
the data loading pipeline is shared between RDL and the data scientist, so RDL does not introduce
any significant overheads for data loading/preparation over a data scientist’s approach. We believe
that accelerating model development (apart from data loading) is valuable in many use cases where
engineers need to solve many different predictive tasks over a single database.

Summary. Figures 3, 4, and 5 show that RDL learns highly predictive models, outperforming
the data scientist in 11 of 15 tasks, whilst reducing hours worked by 96% on average, and lines of
code by 94% on average. On average, it took the data scientist 12.3 hours to solve each task using
traditional feature engineering. By contrast it takes roughly 30 minutes to solve a task with RDL. This
observation is the central value proposition of relational deep learning, pointing the way to unlocking
new levels of predictive power, and potentially a new economic model for solving predictive tasks on
relational databases. Replacing hand-crafted solutions with end-to-end learnable models has been
a key takeaway from the last 15 years of AI research. It is therefore remarkable how little impact
deep learning has had on ML on relational databases, one of the most widespread applied ML use
cases. To the best of our knowledge, is RDL the first deep learning approach for relational databases
that has demonstrated efficacy compared with established data science workflows. We highlight that
all RELBENCH tasks were solved with a single set of default hyperparameters (with 2 exceptions
requiring small modifications to learning rate, number of epochs, and GNN aggregation function).
This demonstrates the robustness of RDL, and that the performance of RDL in Figure 3 is not due to
extensive hyperparamter search. Indeed, the single set of RDL hyperparameters is compared to a
carefully tuned LightGBM, which was allowed to search over 10 sets of hyperparameters.

Predictive Power. Results shown in Figures 3. Whilst outperforming the data scientist in 11 of 15
tasks, we note that RDL best outperforms the data scientist on classification tasks, struggling more
on regression. Indeed it was necessary for us to apply a “boosting” to the RDL model to improve
performance (see Appendix D). Even with boosting, the data scientist model outperforms RDL in
several cases. One cause we identify is that the MLP output head of the GNN is poorly suited to
regression tasks (see Appendix D). This suggests an opportunity for improved output heads for
regression tasks. We stress that our RDL implementation is an initial demonstration. We believe there
is significant scope for new research leading to large improvements in performance. In particular,
ideas from graph ML, deep tabular ML, and time-series modeling are well suited to advance RDL.

Human Work. Results shown in Figure 4. In our user study RDL required 96% less hours work
to solve a new task, compared to the data scientist work flow. The RDL solutions always took less

3See https://github.com/snap-stanford/relbench-user-study.
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Figure 5: RDL vs. Data Scientist. Relational Deep Learning reduces the new lines of code needed
to solve a new task by 94%. Left shows entity classification, right shows entity regression.

than an hour to write, whilst the data scientist took 12 hours on average, with a standard deviation of
1.6 hours. We emphasize that this measures marginal effort, i.e., it does not include reusable code
that can be amortized over many tasks. RDL compares favorably to data scientist because a large
majority of RDL code is reusable for new tasks (a GNN architecture and training loop needs only
to be defined once) whereas a large portion of the data scientist’s code is task specific and must be
re-done afresh for every new task that needs to be solved.

Lines of Code. Results shown in Figure 5. For the RDL model, the only new addition needed to
solve a new task is the code describing how to compute the training supervision for the RDL, which is
stored in the training table. This requires a similar number of lines of code for each task, with 56 lines
of code on average, with standard deviation 8.8, with the data scientist requiring with 878± 77. The
minimum lines of code required by RDL is 44, compared to 734 for the data scientist, and maximum
is 84 compared to 1039 for the data scientist. Examples of the RDL code for rel-amazon tasks
can be viewed here. We record the number of lines of data scientist code for EDA and SQL files, and
the manipulations needed to format data to be fed into the pre-prepared LightGBM script.

6 Related Work
Graph Machine Learning Benchmarks. Challenging and realistic benchmarks drive innovation
in methodology. A classic example is the ImageNet (Deng et al., 2009), introduced prior to the
rise of deep learning, which was a key catalyst for the seminal work of Krizhevsky et al. (2017).
In graph machine learning, benchmarks such as the Open Graph Benchmark (Hu et al., 2020),
TUDataset (Morris et al., 2020), and more recently, the Temporal Graph Benchmark (Huang et al.,
2024) have sustained the growth and maturation of graph machine learning as a field. RELBENCH
differs since instead of collecting together tasks are already recognized as graph machine learning
tasks, RELBENCH presents existing tasks typically solved using other methods, as graph ML tasks.
As a consequence, RELBENCH significantly expands the space of problems solvable using graph ML.
Whilst graph ML is a key part of this benchmark, relational deep learning is a new problem, requiring
only need good GNNs, but also innovation on tabular learning to fuse multimodal input data with the
GNN, temporal learning, and even graph construction. We believe that advancing the state-of-the-art
on RELBENCH will involve progress in all of these directions.

Relational Deep Learning. Several works have proposed to use graph neural networks for learning
on relational data (Schlichtkrull et al., 2018; Cvitkovic, 2019; Šír, 2021; Zahradník et al., 2023).
They explored different graph neural network architectures on (heterogeneous) graphs, leveraging
relational structure. Recently, Fey et al. (2024) proposed a general end-to-end learnable framework
for solving predictive tasks on relational databases, treating temporality as a core concept.

7 Conclusion
We introduce RELBENCH, a benchmark for relational deep learning (Fey et al., 2024). RELBENCH
provides diverse and realistic relational databases and define practical predictive tasks that cover
both entity-level prediction and entity link prediction. In addition, we provide the first open-source
implementation of relational deep learning and validated its effectiveness over the common practice
of manual feature engineering by an experienced data scientist. We hope RELBENCH will catalyze
further research on relational deep learning to achieve highly-accurate prediction over complex
multi-tabular datasets without manual feature engineering.
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