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Abstract

In multi-agent reinforcement learning (MARL), parameter sharing is commonly
employed to enhance sample efficiency. However, the popular approach of full
parameter sharing often leads to homogeneous policies among agents, potentially
limiting the performance benefits that could be derived from policy diversity. To
address this critical limitation, we introduce Kaleidoscope, a novel adaptive partial
parameter sharing scheme that fosters policy heterogeneity while still maintaining
high sample efficiency. Specifically, Kaleidoscope maintains one set of common
parameters alongside multiple sets of distinct, learnable masks for different agents,
dictating the sharing of parameters. It promotes diversity among policy networks by
encouraging discrepancy among these masks, without sacrificing the efficiencies of
parameter sharing. This design allows Kaleidoscope to dynamically balance high
sample efficiency with a broad policy representational capacity, effectively bridging
the gap between full parameter sharing and non-parameter sharing across various
environments. We further extend Kaleidoscope to critic ensembles in the context of
actor-critic algorithms, which could help improve value estimations. Our empirical
evaluations across extensive environments, including multi-agent particle environ-
ment, multi-agent MuJoCo and StarCraft multi-agent challenge v2, demonstrate the
superior performance of Kaleidoscope compared with existing parameter sharing
approaches, showcasing its potential for performance enhancement in MARL. The
code is publicly available at https://github.com/LXXXXR/Kaleidoscope.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has demonstrated remarkable effectiveness
in solving complex real-world decision-making problems across various domains, such as resource
allocation (Ying and Dayong, 2005), package delivery (Seuken and Zilberstein, 2007), autonomous
driving (Zhou et al., 2021), and robot control (Swamy et al., 2020). To mitigate the challenges posed
by the non-stationary and partially observable environments typical of MARL (Yuan et al., 2023),
the centralized training with decentralized execution (CTDE) paradigm (Foerster et al., 2016) has
become prevalent, inspiring many influential MARL algorithms such as MADDPG (Lowe et al.,
2017), COMA (Foerster et al., 2018), MATD3 (Ackermann et al., 2019), QMIX (Rashid et al., 2020),
and MAPPO (Yu et al., 2022).

Under the CTDE paradigm, parameter sharing among agents is a commonly adopted practice to
improve sample efficiency. However, identical network parameters across agents often lead to
homogeneous policies, restricting diversity in behaviors and the overall joint policy representational
capacity. This limitation can result in undesired outcomes in certain situations (Christianos et al.,
2021; Fu et al., 2022; Kim and Sung, 2023), as shown in Figure 1, impeding further performance
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gains. An alternative approach is the non-parameter sharing scheme, where each agent possesses its
own unique parameters. Nevertheless, while this method naturally supports heterogeneous policies,
it suffers from reduced sample efficiency, leading to significant training costs. This is particularly
problematic given the current trend towards increasingly large model sizes, with some scaling to
trillions of parameters (Zhao et al., 2023; Achiam et al., 2023). Therefore, it is imperative to develop
a parameter sharing strategy that enjoys both high sample efficiency and broad policy representational
capacity, potentially achieving significantly enhanced performance. While several efforts (Christianos
et al., 2021; Kim and Sung, 2023) have explored partial parameter sharing initiated at the start of
training, such initializations can be challenging to design without detailed knowledge of agent-specific
environmental transitions or reward functions (Christianos et al., 2021).

Food

Forest

Obstacle

Prey

Predator

Figure 1: Full parameter sharing
confines the policies to be homogeneous.
In this example, all predators pursue the
same prey, neglecting another prey in
the game World. Further game details
are in Appendix A.2.

In this work, we build upon insights from previous
studies (Christianos et al., 2021; Fu et al., 2022; Kim and
Sung, 2023) and introduce Kaleidoscope, a novel adaptive
partial parameter sharing scheme. It maintains a single
set of policy parameters and employs multiple learnable
masks to designate the shared parameters. Unlike earlier
methods that depend on fixed initializations, Kaleidoscope
dynamically learns these masks alongside MARL param-
eters throughout the training process. This end-to-end
training approach inherently integrates environmental
information, and its adaptive nature enables Kaleidoscope
to dynamically adjust the level of parameter sharing based
on the demands of the environment and the learning
progress of the agents. The learnable masks facilitate a
dynamic balance between full parameter sharing and non-
parameter sharing, offering a flexible trade-off between
sample efficiency and policy representational capacity
through enhanced heterogeneity. Initially, we build Kaleidoscope upon agent networks, where it
achieves diverse policies. Following this success, we extend it to multi-agent actor-critic algorithms
to encourage heterogeneity among the central critic ensembles for further performance enhancement.

Just like a kaleidoscope uses the reflective properties of rotating mirrors to transform simple
shapes into beautiful patterns, our proposed method leverages learnable masks to map a single
set of parameters into diverse policies, thereby enhancing task performance.

We summarize our contributions as follows:

• To enable policy heterogeneity among agents for better training flexibility, we adapt the soft
threshold reparameterization (STR) technique to learn distinct masks for different agent net-
works while only maintaining one set of common parameters, effectively balancing between full
parameter sharing and non-parameter sharing mechanisms.

• To enhance policy diversity among agents, we introduce a novel regularization term that encour-
ages the pairwise discrepancy between masks. Additionally, we design resetting mechanisms that
recycle masked parameters to preserve the representational capacity of the joint networks.

• Through extensive experiments on MARL benchmarks, including multi-agent particle environ-
ment (MPE) (Lowe et al., 2017), multi-agent MuJoCo (MAMuJoCo) (Peng et al., 2021) and
StarCraft multi-agent challenge v2 (SMACv2) (Ellis et al., 2024), we demonstrate the superior
performance of Kaleidoscope over existing parameter sharing approaches.

2 Background

Multi-agent reinforcement learning (MARL) In MARL, a fully cooperative partially
observable multi-agent task is typically formulated as a decentralized partially observable
Markov decision process (dec-POMDP) (Oliehoek and Amato, 2016), represented by a tuple
M = ⟨S, A, P,R,Ω, O,N, γ⟩. Here, N denotes the number of agents, and γ ∈ (0, 1] represents
the discount factor. At each timestep t, with the environment state as st ∈ S , agent i receives a local
observation oti ∈ Ω drawn from the observation function O(st, i) and then follows its local policy
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πi to select an action ati ∈ A. Individual actions form a joint action at ∈ AN , leading to a state
transition to the next state st+1 ∼ P (st+1|st,at) and inducing a global reward rt = R(st,at). The
overall team objective is to learn the joint policies π = ⟨π1, . . . , πN ⟩ such that the expectation of
discounted accumulated reward Gt =

∑
t γ

trt is maximized.

To learn such policies πθ , various MARL algorithms (Lowe et al., 2017; Foerster et al., 2018; Rashid
et al., 2020; Yu et al., 2022) have been developed. For instance, the off-policy actor-critic algorithm
MATD3 (Ackermann et al., 2019) serves as an example method. Specifically, the critic networks are
updated by minimizing the temporal difference (TD) error loss

Lc(ϕ) = E(st,ot,at,rt,st+1,ot+1)∼D

[(
yt −Q(st,at;ϕ)

)2]
, (1)

with
yt = rt + γ min

j=1,2
Q(st+1, π1(o

t+1
1 ; θ′1) + ϵ, . . . , πN (ot+1

N ; θ′N ) + ϵ;ϕj), (2)

where ϕ are the parameters for critics, θ are the parameters for actor policies and θ′ are the parameters
for target actor policies. And ϵ is the clipped Gaussian noise, given as clip(N (0, σ),−c, c).
The policy is updated by the deterministic policy gradient algorithm (Silver et al., 2014)

∇J (θi) = E(st,ot,at,rt,st+1,ot+1)∼D

[
∇θiπi(o

t
i; θi)∇aiQ(st, a1, . . . , aN |ai=πi(oti;θi)

;ϕ1)
]
. (3)

Soft threshold reparameterization (STR) Originally introduced in the context of model sparsifica-
tion, STR (Kusupati et al., 2020) is an unstructured pruning method that achieves notable performance
without requiring a predetermined sparsity level. Specifically, STR applies a transformation to the
original parameters W as follows

Sg(W, s) = sign(W ) · ReLU (|W | − g(s)) , (4)

where s is a learnable parameter, α = g(s) serves as the pruning threshold, and ReLU(·) = max(·, 0).
The original supervised learning problem modeled by

min
W
L(W ;D) (5)

with D as the data is now transferred to

min
W ,s
L(Sg(W , s);D). (6)

Overall, this approach optimizes the learnable pruning threshold alongside the model parameters,
facilitating dynamic adjustment to the sparsity level during training.

3 Learnable Masks for Heterogenous MARL

In this section, we propose using learnable masks as a low-cost method to enable network heterogene-
ity in MARL. The core concept, illustrated in Figure 2, is to learn a single set of shared parameters
complemented by multiple masks for distinct agents, specifying which parameters to share.

Specifically, in Section 3.1, we first adapt STR into a dynamic partially parameter sharing method,
unlocking the joint policy network’s capability to represent diverse policies among agents. In
Section 3.2, we actively foster policy heterogeneity through a novel regularization term based on the
masks. Given that the masking technique could excessively sparsify the network, potentially diminish-
ing its representational capacity, in Section 3.3, we propose a straightforward remedy to periodically
reset the parameters based on the outcomes of masking, which additionally mitigates primacy bias.
Finally, in Section 3.4, we explore how to further extend this approach within the critic components
of actor-critic algorithms to improve value estimations in MARL and further boost performance.

For the sake of clarity, we integrate the proposed Kaleidoscope with the MATD3 (Ackermann
et al., 2019) algorithm to demonstrate the concept within this section. Nevertheless, as a versatile
partial parameter-sharing technique, our method can readily be adapted to other MARL algorithms.
We defer its integration with other MARL frameworks to Appendix A.1.2 and will evaluate them
empirically in Section 4.

3
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Figure 2: Overall network architecture of Kaleidoscope. It maintains one set of parameters θ0 with
N sets of masks [Mi]

N
i=1 for actor networks, and one set of parameters ϕ0 with K sets of masks[

M c
j

]K
j=1

for critic ensemble networks, where N is the number of agents, K is the number of
ensembles, and ⊙ denotes the Hadamard product.

3.1 Adaptive partial parameter sharing ♦

The core idea of this work is to learn distinct binary masks Mi for different agents to facilitate
differentiated policies, ultimately aiming to improve MARL performance. To achieve this, we apply
the STR (Kusupati et al., 2020) technique to the policy parameters with different thresholds dedicated
to each agent:

θi = θ0 ⊙Mi, (7)

where θi parameterizes the policy for agent i, θ0 is the set of learnable parameters shared by all
agents, and Mi is the learnable mask for agent i. Specifically, assume θ0 =

[
θ
(1)
0 , . . . , θ

(Na)
0

]
,

θi =
[
θ
(1)
i , . . . , θ

(Na)
i

]
and Mi =

[
m

(1)
i , . . . ,m

(Na)
i

]
with Na being the total parameter count

of an agent’s network. In line with STR, we compute each element m(k)
i of Mi as m

(k)
i =

1

[
|θ(k)0 | > σ(s

(k)
i )

]
, where σ(·) denotes the Sigmoid function.

The benefits of such a combination are summarized as follows:

• Preservation of original MARL learning objectives: Unlike most of the methods in pruning
literature, which primarily aim to minimize the discrepancies between pruned and unpruned
networks in terms of weights, loss, or activations (Hoefler et al., 2021; Menghani, 2023; Deng
et al., 2020), STR maintains the original goal of minimizing task-specific loss, aligning directly
with our objectives to enhance MARL performance.

• Flexibility in sparsity: Many classical pruning methods require predefined per-layer sparsity
levels (Evci et al., 2020; Ramanujan et al., 2020). Such requirements can complicate our design,
with the goal not to gain extreme sparsity but rather to promote heterogeneity through masking.
The STR technique is ideal in our case as it does not require predefining sparsity levels, allowing
for adaptive learning of the masks.

• Enhanced network representational capacity: Utilizing learnable masks for adap-
tive partial parameter sharing enhances the network’s representational capacity beyond
traditional full parameter sharing. In full parameter sharing, agents’ joint policies
are parameterized as πps(·|θ0) = ⟨π1(·|θ0), . . . , πN (·|θ0)⟩. In contrast, our pro-
posed adaptive partial parameter sharing mechanism parameterizes the joint policies as
πKaleidoscope(·|θ0,M) = ⟨π1(·|θ0 ⊙M1), . . . , πn(·|θ0 ⊙MN )⟩. In the extreme case where all
the values in Mi are 1s, the function set represented by πKaleidoscope(·|θ0,M) degrades to that
of πps(·|θ0). In other scenarios, it is a superset of that represented by πps(·|θ0).

4
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(b) Critic ensembles: reset one set of masks at a time.

Figure 3: Illustration on resetting mechanisms.

3.2 Policy diversity regularization ♣

While independently learned masks enable agents to develop distinct policies, without a specific in-
centive, these policies may still converge to being homogeneous. To this end, we propose to explicitly
encourage agent policy heterogeneity by introducing a diversity regularization term maximizing the
weighted pairwise distance between network masks, which is defined as

J div(s) =
∑

i=1,...,n

∑
j=1,...,n

j ̸=i

∥θ0 ⊙ (Mi −Mj)∥1. (8)

This term is inherently non-differentiable due to the indicator function 1[·] inside M . To overcome
this difficulty, following established practices in the literature (Bengio et al., 2013; Alizadeh et al.,
2018), we utilize a surrogate function for gradient approximation:

∂J div

∂g(si)
= −tanh

[
∂J div

∂Mi

]
. (9)

We formally provide the overall training objective for actors in Appendix A.1.1.

3.3 Periodically reset ♠

As the training with masks proceeds, we observe an increasing sparsity in each agent’s network,
potentially reducing the overall network capacity. To remedy the issue, we propose a simple approach
to periodically reset the parameters that are consistently masked across all Mi with a certain
probability ρ, which is illustrated in Figure 3a. At intervals defined by t mod reset_interval == 0,
if the parameter index k satisfies ∀i,m(k)

i == 0, we apply the following resetting rule

θ
(k)
0 , s

(k)
1 , . . . , s

(k)
N ←

{
Reinitialize[θ(k)0 , s

(k)
1 , . . . , s

(k)
N ] with probability ρ

θ
(k)
0 , s

(k)
1 , . . . , s

(k)
N with probability 1− ρ

. (10)

This resetting mechanism recycles the weights masked as zeros by all the masks, preventing
the networks from becoming overly sparse. A side benefit of this resetting mechanism is the
enhancement of neural plasticity (Lyle et al., 2023; Nikishin et al., 2024), which helps alleviate
the primacy bias (Nikishin et al., 2022) in reinforcement learning. Unlike methods that reinitialize
entire layers resulting in abrupt performance drops (Nikishin et al., 2022), our resetting approach
selectively targets weights as indicated by the learnable masks, thus avoiding significant performance
disruptions, as shown in Section 4.

3.4 Critic ensembles with learnable masks

In actor-critic algorithm frameworks, we further apply Kaleidoscope to central critics as an efficient
way to implement ensemble-like critics. By facilitating dynamic partial parameter sharing, Kalei-
doscope enables heterogeneity among critic ensembles. Furthermore, by regularizing the diversity

5

22085 https://doi.org/10.52202/079017-0695



among critic functions, we can control ensemble variances. This approach is elaborated in subsequent
paragraphs.

♦ Adaptive partial parameter sharing for critic ensembles In the standard MATD3 algo-
rithm (Ackermann et al., 2019), two critics with independent parameters are maintained to mitigate
overestimation risks. However, using separate parameters typically results in a low update-to-data
(UTD) ratio (Hiraoka et al., 2022). To address this issue, we propose to enhance the UTD ratio by
employing Kaleidoscope parameter sharing among ensembles of critics. Specifically, we maintain a
single set of parameters ϕ0 and K masks

[
M c

j

]K
j=1

to distinguish the critic functions, resulting in K

ensembles [Q(·;ϕj)]
K
j=1 with ϕj = ϕ0 ⊙M c

j .

To be specific, we update the critic networks by minimizing the temporal difference (TD) error loss

Lc(ϕj) = E(st,at,st+1)∼D

[(
yt −Q(st,at;ϕj)

)2]
, (11)

with
yt = rt + γ min

j=1,...,K
Q(st+1, π1(o

t+1
1 ; θ′1) + ϵ, . . . , πn(o

t+1
N ; θ′N ) + ϵ;ϕj). (12)

And the policies are updated by the mean estimation of the ensembles as

∇J (θi) = Est∼D

∇θiπi(o
t
i; θi)∇ai

1

K

K∑
j=1

[
Q(st, a1, . . . , aN |ai=πi(oti;θi)

;ϕj)
] . (13)

♣ Critic ensembles diversity regularization As in Section 3.2, we also apply diversity regular-
ization to critic masks to prevent critics functions from collapsing to identical ones. The diversity
regularization to maximize for the critic ensembles is expressed as

J div
c (sc) =

∑
i=1,...,K

∑
j=1,...,K

j ̸=i

∥ϕ0 ⊙ (M c
i −M c

j )∥1. (14)

Intuitively, as training progresses, this term encourages divergence among the critic masks, leading to
increased model estimation uncertainty. This process fosters a gradual shift from overestimation to
underestimation. As discussed in prior research (Hiraoka et al., 2022; Lan et al., 2020; Chen et al.,
2021; Wang et al., 2021b), overestimation can encourage exploration, beneficial in early training
stages, whereas underestimation alleviates error accumulation (Fujimoto et al., 2018), which is
preferred in the late training stage. We formally provide the overall training objective for critic
ensembles in Appendix A.1.1.

♠ Periodically reset To further promote diversity among critic ensembles and counteract the
reduction in network capacity caused by masking, we implement a resetting mechanism similar to
that described in Section 3.3. In particular, we sequentially reinitialize the masks M c

j following a
cyclic pattern, as illustrated in Figure 3b. In this way, each critic function’s mask is trained on distinct
data segments, leading to different biases.

In summary, by adopting Kaleidoscope parameter sharing with learnable masks, we establish a
cost-effective implementation for critic ensembles that enjoy a high UTD ratio. Through enforcing
distinctiveness among the masks, we subtly control the differences among critic functions, thereby
improving the value estimations in MARL.

4 Experimental Results

In this section, we integrate Kaleidoscope with the value-based MARL algorithm QMIX and the
actor-critic MARL algorithm MATD3, and evaluate them across eleven scenarios in three benchmark
tasks.

6
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Table 1: Methods compared in the experiments. Here, “adaptive” indicates whether the sharing
scheme evolves during training.

Methods Paradigm Sharing level Adaptive Descriptions

NoPS No sharing - No Agents have distinct parameters
FuPS Full sharing Networks No Agents share all the parameters
FuPS + ID Full sharing Networks No Agents share all the parameters

with agent IDs in input
SePS Partial sharing Networks No Agents are clustered to share pa-

rameters within each cluster
MultiH Partial sharing Layers No Agents share all the parameters ex-

cept for distinct action heads
SNP Partial sharing Neurons No Agents share specific neurons

based on fixed, random pruning
Kaleidoscope Partial sharing Weights Yes Agents share parameters based on

distinct, learnable masks

4.1 Experimental Setups

Environment descriptions We test our proposed Kaleidoscope on three benchmark tasks:
MPE (Lowe et al., 2017), MaMuJoCo (Peng et al., 2021) and SMACv2 (Ellis et al., 2024). For the
discrete tasks MPE and SMACv2, we integrate Kaleidoscope and baselines with QMIX (Rashid
et al., 2020) and assess the performance. For the continuous task MaMuJoCo, we employ
MATD3 (Ackermann et al., 2019). We use five random seeds for MPE and MaMuJoCo and three
random seeds for SMACv2, reporting averaged results and displaying the 95% confidence interval
with shaded areas. The chosen benchmark tasks reflect a mix of discrete and continuous action
spaces and both homogeneous and heterogeneous agent types, detailed further in Appendix A.2.

Baselines In the following, we compare our proposed Kaleidoscope with baselines (Christianos
et al., 2021; Kim and Sung, 2023), as listed in Table 1. For both Kaleidoscope and the baselines, in
scenarios with fixed agent types (MPE and MaMuJoCo), we assign one mask per agent. For SMACv2,
where agent types vary, we assign one mask per agent type. We use official implementations of
the baselines where available; otherwise, we closely follow the descriptions from their respective
papers, integrating them into QMIX or MATD3. Hyperparameters and further details are provided in
Appendix A.1.3.

4.2 Results

Performance We present the comparative performance of Kaleidoscope and baselines in Figure 4
and Figure 5. Overall, Kaleidoscope demonstrates superior performance, attributable to the flexibility
of the learnable masks and the effectiveness of diversity regularization. Additionally, we observe
that FuPS + ID generally outperforms NoPS, except for the Ant-v2-4x2 scenario (Figure 4c).
This advantage is largely due to FuPS’s higher sample efficiency; a single transition data sample
updates the model parameters N times in FuPS + ID, once for each agent, compared to just once in
NoPS. Consequently, FuPS + ID models learn faster from the same number of transitions. Similarly,
Kaleidoscope benefits from this mechanism as it shares weights among agents, allowing a single
transition to update the model parameters multiple times. Furthermore, by integrating policy
heterogeneity through learnable masks, Kaleidoscope enables diverse agent behaviors, as illustrated in
the visualization results in Figure 8. Ultimately, Kaleidoscope effectively balances parameter sharing
and diversity, outperforming both full parameter sharing and non-parameter sharing approaches.

Cost analysis Despite its superior performance, Kaleidoscope does not increase computational com-
plexity at test time compared to the baselines. We report the test time averaged FLOPs comparison of
Kaleidoscope and baselines in Table 2. We see that due to the masking technique, Kaleidoscope has
lower FLOPs compared to baselines, thereby enjoying a faster inference speed when being deployed.
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Figure 4: Performance comparison with baselines on MPE and MaMuJoCo benchmarks.
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Figure 5: Performance comparison with baselines on SMACv2 benchmarks.

Ablation studies We conduct ablation studies to assess the impact of key components in Kaleido-
scope, with results presented in Figure 6. Specifically, we compare Kaleidoscope with three ablations:
1) Kaleidoscope w/o reg, which lacks the regularization term in Equation (8) that encourages the
masks to be distinct. 2) Kaleidoscope w/o reset, which does not reset parameters. 3) Kaleidoscope
w/o ce, which does not use Kaleidoscope parameter sharing in critic ensembles and instead maintains
two independent sets of parameters for critics. From the results, we observe that diversity regular-
ization contributes the most to the performance of Kaleidoscope. Without it, masking degrades the
performance due to the reduced number of parameters in each policy network. Resetting primarily
aids learning in the late stages of training when needed, which aligns with the observation made by
Nikishin et al. (2022). Notably, even with resetting, the performance does not experience abrupt drops
thanks to the guidance provided by the masks on where to reset. When ablating the critic ensembles
with Kaleidoscope parameter sharing, we observe inferior performance from the beginning of the
training. This is because the critic ensembles with Kaleidoscope parameter sharing enable a higher
UTD ratio of the critics, as discussed in Section 3.4.

Furthermore, we conduct experiments to study the impact of mask designs. The results are shown
in Figure Figure 7. Specifically, we compare original Kaleidoscope with two alternative mask
design choices: 1) Kaleidoscope w/ neuron masks, where adaptive masking techniques are applied
to neurons rather than weights. 2) Kaleidoscope w/ fixed masks, where the masks are initialized
at the beginning of training and kept fixed throughout the learning process. The results show that
performance drops with either alternative design choice, demonstrating that Kaleidoscope’s superior
performance originates from the flexibility of the learnable masks on weights.

More results on hyperparameter analysis are included in Appendix B.2.
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Table 2: Averaged FLOPs (with calculation methods detailed in Appendix A.3) across different
methods. Results are first normalized with respect to the FuPS + ID model for each scenario and
then averaged across scenarios within each environment (detailed results in Appendix B.1). The
lowest costs are highlighted in bold.

Methods NoPS FuPS FuPS +ID SePS MultiH SNP Kaleidoscope

MPE 1.0x 0.992x 1.0x 1.0x 1.0x 0.988x 0.901x
MaMuJoCo 1.0x 0.985x 1.0x 1.0x 1.0x 0.900x 0.680x
SMACv2 1.0x 0.992x 1.0x 1.0x 1.0x 0.988x 0.890x
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Figure 6: Ablation studies.
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Figure 7: Comparison on mask designs.

Visualization We visualize the trained policies of Kaleidoscope on World, as shown in Figure 8a.
The agents exhibit cooperative divide-and-conquer strategies (four red agents divide into two teams
and surround the preys), contrasting with the homogeneous policies depicted in Figure 1. We further
examine the distinctions in the agents’ masks and present the results in Figure 8b. First, we observe
that by the end of the training, each agent has developed a unique mask, revealing that distinct masks
facilitate diverse policies by selectively activating different segments of the neural network weights.
Second, throughout the training process, we note that the differences among the agents’ masks evolve
dynamically. This observation confirms that Kaleidoscope effectively enables dynamic parameter
sharing among the agents based on the learning progress, empowered by the adaptability of the
learnable masks. More visualization results are provided in Appendix B.3.

5 Related Work

Parameter sharing First introduced by Tan (1993), parameter sharing has been widely adopted in
MARL algorithms (Foerster et al., 2018; Rashid et al., 2020; Yu et al., 2022), due to its simplicity
and high sample efficiency (Grammel et al., 2020). However, schemes without parameter sharing
typically offer greater flexibility for policy representation. To balance sample efficiency with policy
representational capacity, some research efforts aim to find effective partial parameter sharing schemes.
Notably, SePS (Christianos et al., 2021) first clusters agents based on their transitions at the start of
training and restricts parameter sharing within these clusters. Subsequently, SNP (Kim and Sung,
2023) enables partial parameter sharing by utilizing the lottery ticket hypothesis (Su et al., 2020)
to initialize heterogeneous network structures. Concurrent to our work, AdaPS (Li et al., 2024)
combines SNP and SePS by proposing a cluster-based partial parameter sharing scheme. While these
methods have shown promise in certain domains, their performance potential is often limited by
the static nature of the parameter sharing schemes set early in training. Our proposed Kaleidoscope
distinguishes itself by dynamically learning specific parameter sharing configurations alongside the
development of MARL policies, thereby offering enhanced training flexibility.

Agent heterogeneity in MARL To incorporate agent heterogeneity in MARL and enable diverse
behaviors among agents, previous methods have explored concepts such as diversity and roles.
Specifically, diversity-based approaches aim to enhance pairwise distinguishability among agents
based on identities (Jiang and Lu, 2021), trajectories (Li et al., 2021), or credits assignment (Liu
et al., 2023; Hu et al., 2023) through contrastive learning techniques. Concurrently, role-based
strategies, sometimes referred to as skills (Yang et al., 2020) or subtasks (Yuan et al., 2022), employ
conditional policies to differentiate agents by assigning them to various conditions. These conditions
may be based on agent identities (Yang et al., 2022), local observations (Yang et al., 2020), local
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Figure 8: Visualization on World.

histories (Wang et al., 2020, 2021a; Yuan et al., 2022) or joint histories (Liu et al., 2021; Iqbal
et al., 2022; Zeng et al., 2023). This line of researches mainly focus on module design and operate
separately from parameter-level adjustments, making them orthogonal to our approach. Nevertheless,
integrating these methods with our work could potentially enhance performance further.

Sparse networks in deep reinforcement learning (RL) Although relatively few, there are some
noteworthy recent attempts to find sparse networks for deep RL. In particular, PoPS (Livne and
Cohen, 2020) prunes the dense networks post-training, achieving significantly reduced execution
time complexity. Additionally, (Yu et al., 2020) validate the lottery ticket hypothesis within the
RL domain, producing high-performance models even under extreme pruning rates. Subsequent
efforts, including DST (Sokar et al., 2022), TE-RL* (Graesser et al., 2022) and RLx2 (Tan et al.,
2023) employ topology evolution (TE) techniques to further decrease the training costs. While these
developments utilize sparse training techniques, which are similar to the methods we employ, their
primary focus is on reducing training and execution costs in single-agent settings. In contrast, our
work leverages sparse network strategies as a means to enhance parameter sharing techniques, aiming
to improve MARL performance.

6 Conclusions and Future Work

In this work, we introduced Kaleidoscope, a novel adaptive partial parameter sharing mechanism for
MARL. It leverages distinct learnable masks to facilitate network heterogeneity, applicable to both
agent policies and critic ensembles. Specifically, Kaleidoscope is built on three technical components:
STR-empowered learnable masks, network diversity regularization, and a periodic resetting mecha-
nism. When applied to agent policy networks, Kaleidoscope balances sample efficiency and network
representational capacities. In the context of critic ensembles, it improves value estimations. By
combining our proposed Kaleidoscope with QMIX and MATD3, we have empirically demonstrated
its effectiveness across various MARL benchmarks. This study shows great promises in developing
adaptive partial parameter sharing mechanisms to enhance the performance of MARL. For future
work, it is interesting to further extend Kaleidoscope to other domains such as offline MARL or
meta-RL.
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A Experimental details

A.1 Implementation details

A.1.1 Kaleidoscope with MATD3

Critic ensembles When incorporating Kaleidoscope into the MATD3 algorithm, the overall training
loss for the critic ensembles becomes:

Lall
c (ϕ0, s

c) =
∑

j=1,...,K

Lall
c (ϕj) =

∑
j=1,...,K

Lc(ϕ0, s
c
j)− αd · J div

c (sc), (15)

with Lc(ϕ0, s
c
j) being the original MATD3 loss given in Equation (11), J div

c (sc) being the diversity
regularization given in Equation (14), and αd being a coefficient balancing the original MARL
objective and the proposed diversity regularization. Note that although J div

c (sc) contains parameters
ϕ0, we stop the gradients for ϕ0 in J div

c (sc).

In the implementation, we apply layer-wise weights to the diversity regularization term J div
c (sc),

which is defined as
J div
c (sc) =

∑
l=1,...,L

wl ·
∑

i=1,...,K

∑
j=1,...,K

j ̸=i

∥ϕ0 ⊙ (M c
i,l −M c

j,l)∥1, (16)

where l denotes the layer index of the neuron networks, L represents the total number of layers,
M c

i,l is the mask for agent i at layer l, and the layer-wise weights are set as wl = 2l. The intuition
behind this choice is that features closer to the output tend to be more compact (Kusupati et al., 2020);
consequently, assigning larger regularization weights to these layers may have a more significant
impact on the output action decisions. Our initial experiments empirically demonstrate that setting
wl = 2l improves performance compared to the case where wl = 1. Based on these findings, we
maintain this design choice throughout all our experiments.

In practice, we adaptively adjust αd while maintaining a constant ratio between the MATD3 loss and
the diversity loss, which is treated as a hyperparameter:

αd =
|
∑

j=1,...,K Lc(ϕ0, s
c
j)|

|J div
c (sc)|

· α, (17)

where α is a hyperparameter, and the gradients for
|
∑

j=1,...,K Lc(ϕ0,s
c
j)|

|J div
c (sc)| are stopped.

Actors For the actors, the training objective is to maximize the following term

J all(θ0, s) =
∑

i=1,...,n

J all(θi) =
∑

i=1,...,n

J (θ0, si) + βd · J div(s), (18)

where J (θ0, si) is the original actor objective defined in Equation (3), J div(s) is the diversity regu-
larization given in Equation (8) with layer-wise weights as in Equation (16), βd is the regularization
coefficient. The value of βd is determined by

βd =
|
∑

i=1,...,n J (θ0, si)|
|J div(s)|

· β, (19)

where β is a constant hyperparameter, similar to the approach used in Equation (17) for the critic
ensembles.

A.1.2 Kaleidoscope with QMIX

When incorporating Kaleidoscope into the QMIX algorithm (Rashid et al., 2020), we apply Kalei-
doscope parameter sharing only to the local Q networks. Consequently, the training loss is defined
as:

Lall(θ0, s) = L(θ0, s)− βd · J div(s), (20)
where

L(θ0, s) = E(st,ot,at,rt,st+1,ot+1)∼D

[(
ytot −Qtot(s

t,ot,at; θ0, s)
)2]

, (21)

with ytot = r + γmaxa Qtot(s
t+1,ot+1,a; θ−) and θ− representing the parameters of a target

network as in DQN.
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A.1.3 Network architecture and hyperparameters

Codebase Our implementation of Kaleidoscope and baseline algorithms are based on the following
codebase:

• HARL (Zhong et al., 2024) (MATD3 implementation): https://github.com/PKU-MARL/
HARL

• EPyMARL (Papoudakis et al., 2021) (QMIX implementation for MPE):
https://github.com/uoe-agents/epymarl

• PyMARL2 (Hu et al., 2021) (QMIX implementation for SMACv2):
https://github.com/benellis3/pymarl2

• SePS (Christianos et al., 2021): https://github.com/uoe-agents/seps

The code for Kaleidoscope is publicly available at https://github.com/LXXXXR/Kaleidoscope.

Network architecture In line with prior works (Zhong et al., 2024; Papoudakis et al., 2021; Hu
et al., 2021), we employ deep neural networks consisting of multilayer perceptrons (MLPs) with
rectified linear unit (ReLU) activation functions and gated recurrent units (GRUs) to parameterize the
actor and critic networks. Moreover, when the masking technique is applied to critic ensembles, we
incorporate layer normalization between the MLP layers and ReLU activations (Hiraoka et al., 2022).
In Kaleidoscope, the masking technique is applied to the MLP layers, and the resetting mechanisms
described in Sections 3.3 and 3.4 are applied to the last three layers of the respective neural networks,
following Nikishin et al. (2022).

Hyperparameters To ensure a fair comparison, we implement our method and all the baselines
using the same codebase with the same set of hyperparameters, with the exception of method-
specific ones. The common hyperparameters are listed in Tables 3 to 5. The Kaleidoscope-specific
hyperparameters are provided in Table 6.

Table 3: Common hyperparameters used for MATD3 in the MaMuJoCo domain.
Hyperparameter Value

Number of layers 3
Hidden sizes 256

Discount factor γ 0.99
Rollout threads 10

Critic lr 1× 10−3

Actor lr 5× 10−4

Exploration noise 0.1
Batch size 1000

Replay buffer size 1× 106

Number of environment steps 10× 106

n_step1 (5, 10, 20)

1 Here we adopt the per-scenario finetuned
value for this hyperparameter as provided
by HARL.

A.2 Environmental details

Codebase The environments used in this work are listed below with descriptions in Table 7.

• MaMuJoCo (Peng et al., 2021): https://github.com/schroederdewitt/multiagent_
mujoco

• MPE (Lowe et al., 2017; Papoudakis et al., 2021): https://github.com/semitable/
multiagent-particle-envs

• SMACv2 (Ellis et al., 2024): https://github.com/oxwhirl/smacv2
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Table 4: Common hyperparameters used for QMIX in the MPE domain.
Hyperparameter Value

Number of layers 5
Hidden sizes 64

Discount factor γ 0.99
Lr 5× 10−4

Initial ϵ 1.0
Final ϵ 0.05

Batch size 32
Replay buffer size 5000

Number of environment steps 3× 106

Double Q True

Table 5: Common hyperparameters used for QMIX in the SMACv2 domain.
Hyperparameter Value

Number of layers 5
Hidden sizes 64

Discount factor γ 0.99
Lr 1× 10−3

Initial ϵ 1.0
Final ϵ 0.05

Batch size 128
Replay buffer size 5000

Number of environment steps 10× 106

Double Q False

MPE We extend the scenario settings provided in the original codebase to increase the complexity
and challenge of the tasks. In World, we set the number of predators (agents) to 4, the number of
prey to 2, the number of obstacles to 1, and the number of forests to 2. The objective of the game is
for the predators to approach the prey while avoiding collisions with obstacles. The prey is attracted
to the food and can hide from the predators in the forests. In Push, we set the number of agents to 5,
the number of adversaries to 2, and the number of landmarks to 2. The goal of the game is for the
agents to push the adversaries away from the landmarks. In both scenarios, we pretrain the adversary
(prey) policies using the MADDPG algorithm Lowe et al. (2017) and use these pretrained policies to
test the performance of different algorithms

A.3 FLOPs calculation

To calculate the number of floating-point operations (FLOPs) for a single forward pass of a sparse
model, we sum the total number of multiplications and additions layer by layer, following the
approach in Evci et al. (2020). For a fully-connected layer, the FLOPs are computed as follows:

FLOPs = 2× (1− Sparsity)× In× Out. (22)

For a GRU cell, the FLOPs are computed as:

FLOPs = 2× (3× Hidden2 + 3× In× Hidden + 13× Hidden). (23)

A.4 Experimental Infrastructure

The experiments on the SMACv2 benchmark were conducted using NVIDIA GeForce RTX 3090
GPUs, while the experiments on other benchmarks were performed using NVIDIA GeForce RTX
3080 GPUs. Each experimental run required less than 2 days to complete.
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Table 6: Hyperparameters used for Kaleidoscope.
Hyperparameter Environment Value

Actor diversity coefficient β
MaMuJoCo 0.1

MPE 0.5
SMACv2 5.0

Actors reset probability ρ
MaMuJoCo 0.5

MPE 0.1
SMACv2 0.2

Actor reset interval
MaMuJoCo 1× 106

MPE 200× 103

SMACv2 1× 106

Number of critic ensembles K MaMuJoCo 5
Critic ensembles diversity coefficient α MaMuJoCo 0.1

Critic reset interval MaMuJoCo 800× 103

Table 7: Environments details.
Environment Action space Agent types Scenarios Number of agents

MaMuJoCo Continuous Heterogeneous, fixed

Ant-v2-4x2 4
Hopper-v2-3x1 3

Walker2D-v2-2x3 2
Walker2D-v2-6x1 6

HalfCheetah-v2-2x3 2
Swimmer-v2-10x2 10

MPE Discrete Homogeneous, fixed World 4
Push 5

SMACv2 Discrete Heterogeneous, dynamic
Terran_5_vs_5 5
Protoss_5_vs_5 5

Zerg_5_vs_5 5

B More results and discussion

B.1 Detailed Costs

We provide per-scenario FLOPs across different methods in Table 8 as a supplement for Table 2.

Table 8: Averaged FLOPs for different methods. Results are normalized w.r.t. the FuPS + ID model.
The lowest costs are highlighted in bold.

Scenarios NoPS FuPS FuPS +ID SePS MultiH SNP Kaleidoscope

World 1.0x 0.993x 1.0x 1.0x 1.0x 0.988x 0.897x
Push 1.0x 0.991x 1.0x 1.0x 1.0x 0.988x 0.904x
Ant-v2-4x2 1.0x 0.990x 1.0x 1.0x 1.0x 0.900x 0.640x
Hopper-v2-3x1 1.0x 0.989x 1.0x 1.0x 1.0x 0.900x 0.721x
Walker2D-v2-2x3 1.0x 0.992x 1.0x 1.0x 1.0x 0.900x 0.731x
Walker2D-v2-6x1 1.0x 0.979x 1.0x 1.0x 1.0x 0.900x 0.763x
HalfCheetah-v2-2x3 1.0x 0.993x 1.0x 1.0x 1.0x 0.900x 0.614x
Swimmer-v2-10x2 1.0x 0.968x 1.0x 1.0x 1.0x 0.900x 0.611x
Terran_5_vs_5 1.0x 0.992x 1.0x 1.0x 1.0x 0.988x 0.890x
Protoss_5_vs_5 1.0x 0.992x 1.0x 1.0x 1.0x 0.988x 0.895x
Zerg_5_vs_5 1.0x 0.992x 1.0x 1.0x 1.0x 0.988x 0.885x
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(a) Critic ensembles diversity coefficient α.
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(b) Actors diversify coefficient β.

Figure 9: Hyperparameter analysis.

B.2 Hyperparameter Analysis

We conduct further analysis on the hyperparameters α and β, and present the results in Figure 9. The
hyperparameter α controls the variance of the critic ensembles. As shown in Figure 9a, we observe
that an excessively small α results in degraded performance because it reduces the critic ensembles to
a single critic network, causing the value estimation to suffer from severe overestimation. Conversely,
an excessively large α also deteriorates performance, possibly due to increased estimation bias. For
β, as illustrated in Figure 9b, an overly small β leads to degraded performance because it reduces the
Kaleidoscope parameter sharing to full parameter sharing, confining the policies to be identical. An
overly large β also negatively impacts performance, as it may cause the training objective to deviate
too much from minimizing the original MARL loss.

In general, we recommend setting both hyperparameters between 0.1 and 1. However, the optimal
hyperparameter values may vary across different scenarios. For fair comparisons, we maintain the
same set of hyperparameters across all scenarios in our experiments. Nevertheless, further tuning of
these hyperparameters has the potential to enhance performance.

B.3 Further Visualization Results

To better understand how learnable masks in Kaleidoscope affect the performance through policies,
we visualize the pairwise mask differences among agents and the agent trajectories at different
training stages in Figure 10. As training progresses, the test return increases and diversity loss
decreases, indicating better performance and greater diversity among agent policies. Correspondingly,
mask differences among agents increase, and the agent trajectory distribution becomes more diverse.

B.4 Limitations

Here we discuss some limitations of Kaleidoscope.

First, as suggested by results in Appendix B.2, the optimal hyperparameters vary from scenario
to scenario. Therefore, using the same hyperparameters across all scenarios may not yield the
best performance for Kaleidoscope. Developing an automatic scheme that utilizes environmental
information to determine these hyperparameters would be beneficial.

Second, as the environments used in this work contain no more than 10 agents, we assign a distinct
mask for each agent. However, when the problem scales to hundreds of agents, this vanilla implemen-
tation may fail. In such cases, a possible approach is to cluster N agents into K (K < N ) groups
and train K masks with Kaleidoscope. This would reduce computational costs and achieve a better
trade-off between sample efficiency and diversity. Within the same group, agents share all parameters,
while agents from different groups share only partial parameters. Techniques for clustering agents
based on experience, as proposed by Christianos et al. (2021), could be useful.
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Figure 10: Further visualization on World.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions by
proposing a novel parameter sharing technique in MARL (Section 3) and claiming its
superior performance compared to existing methods, which is supported by the experimental
results (Section 4).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Appendix B.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method and implementation details are provided in Section 3 and Ap-
pendix A.1, and the experiment settings and environment details are described in Section 4
and Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/LXXXXR/Kaleidoscope.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment settings are provided in Section 4 with details elaborated in
Appendices A.1 and A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main results are reported with 95% confidence error bars in Figures 4 to 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Reinforcement
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The experiments in this work are conducted in simulated game environments,
thereby presenting minimal risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The papers corresponding to the environments used are cited in Section 4, and
the codebases utilized are listed in Appendices A.1.3 and A.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

22106https://doi.org/10.52202/079017-0695




