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Abstract

A major obstacle to the advancements of machine learning models in marine sci-
ence, particularly in sonar imagery analysis, is the scarcity of Al-ready datasets.
While there have been efforts to make Al-ready sonar image dataset publicly avail-
able, they suffer from limitations in terms of environment setting and scale. To
bridge this gap, we introduce SeafloorAlI, the first extensive Al-ready datasets
for seafloor mapping across 5 geological layers that is curated in collaboration with
marine scientists. We further extend the dataset to SeafloorGenAI by incorporat-
ing the language component in order to facilitate the development of both vision-
and language-capable machine learning models for sonar imagery. The dataset
consists of 62 geo-distributed data surveys spanning 17,300 square kilometers, with
696K sonar images, 827K annotated segmentation masks, 696K detailed language
descriptions and approximately 7M question-answer pairs. By making our data
processing source code publicly available, we aim to engage the marine science
community to enrich the data pool and inspire the machine learning community
to develop more robust models. This collaborative approach will enhance the
capabilities and applications of our datasets within both fields. Our code repository
are available [ under the CC-BY-4.0 license.

1 Introduction

Seafloor mapping stands at the forefront of marine science, utilizing cutting-edge technologies like
multibeam echosounders and side-scan sonar to unveil the hidden complexities of the ocean floor [67,
68]]. Beyond scientific research, seafloor mapping is instrumental in identifying potential resources,
assessing environmental impacts, and supporting sustainable ocean management practices in the
context of the blue economy [42]. However, the current analysis techniques in seafloor mapping are
predominantly labor-intensive and reliant on manual interpretation by marine scientists, necessitating
hundreds of hours spent meticulously examining data surveys to analyze seabed imagery [66]. This
hands-on approach is not only time-consuming but also susceptible to user subjectivity and the
limitations of individual expertise, thus introducing potential inconsistencies in analysis [56].

The integration of machine learning (ML) holds the promise of enhancing efficiency and reliability
in seafloor mapping by automating the segmentation and classification tasks [3} 54} 138]]. However,
the lack of public Al-ready datasets poses a significant challenge in leveraging the full potential
of Al technologies for this purpose. While there have been efforts to make Al-ready sonar image
datasets publicly available, they suffer from limitations in terms of environment setting and scale.
For example, the dataset in [63]] was captured in a water tank, which does not accurately represent
the ocean’s complex conditions. Additionally, other work have only produced small-scale datasets
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Figure 1: Overview of the spatially distributed seafloor mapping datasets. The table highlights key
dataset statistics. We incorporate 62 public data surveys published by USGS and NOAA from 9 major
regions to construct SeafloorAI and SeafloorGenAI datasets. Our dataset contains 9 geological
layers, 4 of which are raw signals, i.e., Backscatter, Bathymetry, Slope and Rugosity, and 5 annotated
by human experts, i.e. Sediment, Physiographic Zone, Habitat, Fault and Fold. SeafloorAI serves
as a dataset for standard computer vision tasks, i.e. semantic segmentation, whereas SeafloorGenAI
constitutes a dataset for generative vision-language tasks, i.e., general visual question answering and
instruction-following mapping. <SEG> denotes the segmentation mask output by the model.

with limited area coverage [39} [61]], not accounting for the generalizability of the ML models in a
spatially distributed setting. On the other end, abundant public hydrographic surveys conducted by the
U.S. Geological Survey (USGS) and the National Oceanographic and Atmospheric Administration
(NOAAE| 148 [49] 47,50, 2| [5]] have yet to be extensively utilized by the ML community.

To bridge this gap, we introduce SeafloorAI, the first extensive Al-ready sonar imagery dataset
for seafloor mapping. We compiled 62 public hydrographic surveys to construct a large-scale, geo-
distributed and multi-purpose dataset, with the effort to map various geological layers. Furthermore,
inconsistencies in the nomenclature of geological attributes across data surveys pose a challenge
on the unification and development of an extensive dataset. In collaboration with marine scientists,
we have developed a framework that standardizes such nomenclature by adopting the Barnhardt
classification [6] and the Coastal and Marine Ecological Classification Standard (CMECS) [1].
It guarantees uniformity throughout the dataset, enabling the evaluation of robust ML models
in a spatially distributed setting. The data pool currently consists of 696K sonar images, 827K
segmentation masks for 5 geological layers: Sediment, Physiographic Zone, Habitat, Fault, and Fold.

Finally, we incorporate the language component into our dataset for the development of generative
vision-language models (VLMs) in marine science research. VLMs facilitate seamless interactions
through textual queries and provide clear, understandable explanations throughout the analysis
process [33, 34]. In addition, the ability to automate a report of the survey’s findings, such as sediment
composition, habitats, efc., would reduce the time and effort required for manual preparation. To this
end, we present a data curation pipeline that leverages both domain knowledge from marine scientists
and language generation capability of GPT-4 [46]). Specifically, we employ in-context learning [8]] to
generate analysis-driven question-answer pairs for each image, resulting in 7M samples and 696K
language descriptions. We name the vision-language dataset SeafloorGenAl.

2Provides public domain data license.
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Locati Region Image Input Mapping Layers Area
ocation Index Resolution | Layers | Sediment Physio Zone Habitat Fault Fold (km?)
Region 1 2m/pixel 25,817 25,672 25,823 672

California Region 2 | 2m/pixel 123,774 123,480 123,774 123,774 | 3,148
Region 3 | 2m/pixel 21,270 20,861 21,253 564

Region4 | 2m/pixel 42,771 25,579 42,771 42,771 1,419

Region 5 | 10m/pixel 15,827 4,647 3,387 5,496

Massachussetts | Region 6 Im/pixel 122,441 122,236 118,175 228
Region 7 Im/pixel 1,593 1,507 1,510 454

Delmarva | Region 8 | 2m/pixel | 329,881 | | 4525
South Carolina | Region9 | 4m/pixel | 13,141 | | 808
Total | 696,515 | 174,923 170,148 149,059 166,545 166,545 | 17,314

Table 1: Summary of the seafloor mapping data available for each region. The input layers for sonar
images include Backscatter, Bathymetry, Slope and Rugosity. Due to different mapping objectives of
the original data surveys, the availability of segmentation masks is not uniform across mapping layers.
Regions with unlabeled data can be utilized to pre-train the model via self-supervised learning [19]].

Our contributions are summarized as follows:

1. We compile 62 public hydrographic data surveys from USGS and NOAA into a large,
geo-distributed, multi-purpose and multi-modal dataset for seafloor mapping research.

2. We provide a standardization of naming convention across these surveys, under the rigorous
supervision of marine scientists, to unify an extensive Al-ready dataset.

3. We present a data curation pipeline that produces detailed descriptions and question-answer
pairs for the development of large generative vision-language models in marine science.

4. Our geo-distributed dataset contains 696K sonar images, 827K segmentation masks, 696K
language descriptions and 7M question-answer pairs, covering a total area of 17,300 square
kilometers.

5. We open-source our data processing code so that marine scientists could efficiently contribute
their data surveys to expand the data pool.

2 Related Work

Underwater Imagery Datasets. Over the years, researchers at USGS and NOAA have carried out
frequent hydrographic surveys [17} 48,149, 47,150, 12} |5] to collect and provide accurate and reliable
information about the physical features of the water bodies and the seafloor. They are instrumental
in creating accurate nautical charts to identify underwater hazards, aiding in the planning of marine
infrastructure, and providing essential data for scientific research and environmental conservation.
Furthermore, the data supports various economic activities, such as fishing, aquaculture, and energy
production, by enabling sustainable and efficient operations.

In recent years, substantial efforts have been made to create public Al-ready underwater datasets,
including forward-looking sonar (FLS), side-scan sonar (SSS), and RGB imagery. These datasets
are utilized to develop machine learning models tailored for domain applications, focusing on
classification or detection of geological features [3, [L1 [7, 39, 54, 138]] and man-made objects [[77,
70, 26| [75 132,144, [13|[73], 72,143 [84] [71]]. Singh and Valdenegro-Toro [63]] were pioneers with their
FLS image dataset aimed at object detection, but their use of a controlled water tank setting may
not fully reflect the complex oceanic conditions, limiting the generalizability of their results. Xie
et al. [74] addressed this by extending object detection to data collected in natural water bodies,
enhancing its real-world applicability. Sethuraman et al. [61] developed an SSS dataset for shipwreck
detection, though its small sample size could limit model robustness. Others have also explored RGB
underwater imagery for trash detection [69] and semantic segmentation [27]].

Our research focuses on transforming the USGS and NOAA hydrographic surveys into a comprehen-
sive, multi-scale, multi-purpose and multi-modal SSS imagery dataset. This initiative aims to propel
advancements in both marine science and machine learning research, creating a bridge between
extensive marine data resources and innovative computational techniques.
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Why side-scan sonar? Compared to FLS and RGB imagery, SSS offers distinct advantages for
underwater imagery analysis. Side-scan sonar provides a wider coverage area, and creates high-
resolution images that clearly delineate the seabed texture, which is essential for geological surveys,
shipwreck location, and habitat mapping. Unlike FLS, which is primarily used for obstacle avoidance,
SSS offers a broad, fan-shaped beam that scans the ocean floor to either side of the towfish or
autonomous underwater vehicle, capturing detailed images of the seafloor texture. Moreover, SSS is
less affected by water turbidity compared to RGB cameras, which struggle with visibility in murky
waters and suffer from significant color loss at depth due to light absorption. This allows SSS to
produce consistent and reliable imagery under a variety of underwater conditions, where optical
methods would fail. Still, SSS is only a 2D representation of the seabed. We also incorporate 3D
information such as water depth to describe the underwater topography. This allows for a broad scope
of underwater imagery analysis, providing robust data suitable for in-depth assessments.

Comparison with Existing Datasets. Our dataset is a comprehensive and expansive dataset that
serves two primary purposes: (1) to act as a benchmark for various tasks and (2) to train foundation
vision or vision-language models with a focus on seafloor morphodynamic analysis. In contrast to
existing datasets [63, (74, 61} |69]], which may specialize in single machine learning tasks or offer
limited data samples, our dataset provides a diverse array of seafloor mapping tasks sourced from
geographically diverse regions. Additionally, we make our data processing source code publicly
available, encouraging further expansion of the dataset towards the magnitude of large-scale natural
imagery datasets [62} 9} 28 160, |59 35]].

Datasets in other Scientific Domains. Following the success of large foundation models in natural
imagery [55) [144 83} 182] 135} 12} 141 79,157 131} [76L [81], there has been a significant push to develop
expansive datasets tailored for training large foundation models for specific domain applications. In
remote sensing, initiatives such as RSVQA [37]], RSVQA-BEN [36]], and RSGPT [23] have been
developed to enhance general VQA capabilities, while MUSE [30] targets more complex reasoning
tasks. Similarly, in medical imaging, datasets such as PathVQA [22], PMC-VQA [80], XrayGPT [63]],
LLaVA-Med [33]], and OmniMedVQA [24]] aim to improve the visual and textual understanding of
various body parts through the analysis of MRI, X-rays, efc. These datasets comprise hundreds of
millions of samples, posing significant acquisition challenges, particularly in marine science where
data annotation is notably expensive. To address this, our initiative seeks to develop a large-scale
dataset, aiming to significantly expand the resources available for marine science.

3 The SeafloorAI Dataset

3.1 Dataset Overview

SeafloorAl is a large, geo-distributed, multi-purpose dataset designed to map various geological
layers of the seafloor. It is catered for training computer vision models, i.e. CNNs and Vision
Transformers that produce semantic segmentation masks. Furthermore, it facilitates the studies of
fundamental ML problems such as robust optimization [53} 51} 52, 45]]. The dataset also serves as a
basis for constructing the generative vision-language variant, SeafloorGenAlI, discussed in Sec. 4]

Our dataset is compiled from 62 geological data surveys published on USGS and NOAA repositories,
spanning an area of 17,300 square kilometers. This dataset features a broad geographical distribution,
covering the nearshore zones of several states, including California [[18]], Massachusetts [49,147, 150, 2],
Delmarva [48]], and South Carolina [3]]. These areas are further divided into 9 regions. The data
for this dataset were collected over a period spanning from 2004 to 2024, using a variety of single
side-scan sonars and multibeam echosounders with different frequencies. These instruments were
employed to record the texture (Backscatter) and depth (Bathymetry) of the seafloor.

The surveys have been meticulously annotated by domain experts, focusing on five key geological
layers: Sediment, Physiographic Zone, Habitat, Fault, and Fold as detailed in Tab.|l} This expansive
and detailed dataset provides a comprehensive view of geological and environmental features across
a wide range of coastal environments. In summary, we convert the raw raster data into a large-
scale machine learning-ready dataset containing 696,515 input samples, and 827,220 annotated
segmentation masks across various layers.
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3.2 Data Processing

The input layers, consisting of Backscatter and Bathymetry signals, are provided as raster data in
GeoTIFF format. The five mapping layers serve as the ground-truth annotations, defining five tasks
for the model training and evaluation. These layers come in shapefile format that stores the
location (i.e., longitude and latitude), shape (i.e., polygons) and attributes of geological features (i.e.,
sediment type). These polygons define the regions of interest on raster images, effectively delineating
the boundaries of different categories that we want to segment.

Next, we present the steps for data processing at a high level, and then go further into details with each
geological layer. First of all, we reproject all layers from all surveys to the WGS84 (EPSG:4326f]
coordinate reference system. Then, we rasterize the shapefile to GeoTIFF format, effectively
converting all the annotations into 2D arrays occupying the same geo-location. Finally, we use a
sliding window to split the 2D raster layers into 224 x224 patches with a step size of 56 to avoid
information loss at the edges. These patches serve as the inputs and outputs for the machine learning
algorithms. This process is also referred to as “patchifying”.

Input Layers: Backscatter & Bathymetry. Backscatter in marine science refers to the amplitude of
the echoes of sound waves emitted/received by a transducer that bounce off objects or the seafloor
and return to the receiver. By analyzing the time it takes for the sound waves to return and their
acoustic intensity, scientists and researchers can create underwater maps of the submerged terrain and
identify the composition and characteristics of the seafloor, as well as the presence of underwater
objects or marine life. In our dataset, we normalize the backscatter signals to the [0, 255] range, with
255 representing the nodata value. Regarding Bathymetry, we set the nodata value to be a negative
number of significant magnitude, i.e., -9999. Additionally, we convert Bathymetry measurements
from meters to kilometers, compressing these values into a [0,1] range for normalization purposes.

We further calculate two morphologic derivatives from Bathymetry, namely Slope and Rugosity,
to more comprehensively represent the topographical features of the seafloor in the input space.
Slope refers to the steepness of the seabed, calculated as the rate of change in elevation over a given
distance. It is crucial for understanding sediment transport, habitat diversity, and the stability of
underwater structures. We use GDAL [16]] implementation of the Zevenbergen & Thorne formula [78]]
to estimate the slope. In brevity, the formula computes the differences in elevation between a central
pixel and its eight surrounding pixels for a more smoothed and stable slope estimation. Rugosity, on
the other hand, measures the roughness or irregularity of the ocean floor. It quantifies the amount
of surface area relative to a flat plane, offering vital clues about the complexity of habitats, which
affects biodiversity and ecological interactions.

For each region, we resample Bathymetry, Slope and Rugosity

to the Backscatter’s resolution. As a result, our dataset contains E Gr

a range of resolutions across regions, from 1m to 10m per pixel,

enabling both coarse and fine-grained understanding of seafloor Rs | Rm | Gs | Gm
morphodynamic analysis. After patchifying the rastered map,

we only keep patches where the number of nodata pixels is sr | sg | Mr| mg
below 10% the number of total pixels. In the final step, we apply

interpolation to fill in the missing pixels, and median filtering to s | sm | ws
reduce speckle noise. The input contains 6 channels, including

these 4 layers and 2 geo-location channels (pixel-wise longitude

and latitude), resulting in a dimension of 224 X224 x6. Figu're 2: The Barnhardt classi-
. . . . . fication scheme [6] is based on
Mapping Layers: Sediment, Physiographic Zone & Habitat. o, end-member units: (R)ock,

Our dataset is derived from 62 different surveys spanning both  (Gyravel, (5)and, and (M)ud. The
the East and West Coasts of the United States. Given the diverse  oher twelve composite categories
origins of the data, there are inherent inconsistencies in the  represent the combinations of the
annotations, such as varying standards or differing vocabularies  four ynits, where the dominant tex-
used to label the same categories. To address this, we have yre (> 50%) is in upper case, and
developed a unification process for ground-truth labels, leading  the subordinate (< 50%) in lower.
to the creation of multi-class segmentation masks for Sediment,

Physiographic Zone, and Habitat. This standardization process

is meticulously overseen by domain experts to ensure the accuracy and quality of the annotations.

3More information at https://docs.up42.com/data/reference/utm,
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(1) Sediment. Sediments on the seafloor, composed of varied particles from multiple sources,
are crucial for creating habitats, indicating geological processes, and aiding in environmental and
ecological research. They play a key role in resource exploration by helping to identify potential sites
for natural resource extraction and in climate change studies by preserving historical climate data.
Detailed seafloor mapping using sediment analysis is vital for accurate marine navigation, scientific
research, and effective marine resource management. We define a unified annotation standard for
the Sediment layer, following the Barnhardt classification table [6], which is a classification scheme
based on four end-member units: (R)ock, (G)ravel, (S)and, and (M)ud. The other twelve composite
units represent the combinations of the four units, where the dominant texture (> 50% of the area) is
in upper case, and the subordinate (< 50% of the area) is in lower case, illustrated in Fig.[2| Finally,
we construct semantic segmentation masks for each input patch where each pixel contains an integer
value from O to 16, with 0 denoting the pixels without annotations.

(2) Physiographic Zone. By definition, a physiographic zone refers to a distinct geographical region
characterized by a uniformity in topography and underlying geological structure that sets it apart
from adjacent areas. These zones are typically defined based on natural landscape features, such as
the configuration of the terrain, rock formations, and soil types. Classifying these zones requires the
holistic understanding of multiple geological features, hence the necessity to include the bathymetric
derivatives, such as Slope and Rugosity, as input. Similar to Sediment, we also define a standard for
the Physiographic Zone layer. We follow the CMECS unit code for Physiographic Province which
belongs in the Geoform Component [1]]. There are 21 different categories for Physiographic Zone, as
shown in Fig.[3]

Physiographic Zone Categories

8 Abyssal/Submarine Fan |—a Continental Slope —a& Ocean Bank/Plateau
—& Barrier Reef —8 Embayment/Bay —8 Riverine Estuary
—& Bight |—a Fjord |——a Shelf Basin

[—=& Borderland —a& Inland/Enclosed Sea [—& Shelf Break

— Continental Rise [—= Lagoonal Estuary —& Sound

—& Continental Shelf |—@ Major River Delta |—8 Submarine Canyon
[—& Continental Shore Complex |—a& Marine Basin Floor —=& Trench

Figure 3: Twenty-one physiographic zone categories from CMECS.

(3) Habitat. One of the aims of seafloor mapping efforts is

to delineate benthic habitats as a high-level outcome. Hall et
al. [20] defined Habitat as “the resources and conditions present
in an area that produce occupancy ...by a given organism.”
According to CMECS, a benthic habitat refers to the ecological
regions at the lowest level of a body of water, including the
sediment surface and sub-surface layers [[L]. Benthic habitats

Habitat Categories

—8 Anthropogenic Features
— Bedrock Outcrops

& Boulders and Pinnacles
[—& Canyon Features

[—& Current Influenced Features

—= Depressions
—= Mixed Habitats
— Scarp and Ridge Features

are critical areas because they provide living space for a wide
range of organisms, both flora and fauna, which are integral to
the marine ecosystem. Specifically focusing on abiotic benthic
habitats, these are characterized by non-living physical and
chemical aspects of the environment that influence the type and
abundance of organisms living there. To unify the annotations
across surveys, we first gather all 144 descriptions of the poly-
gons from the public data surveys. We then categorize these
descriptions into broader groups, ultimately consolidating them into 9 distinct categories for Habitat,
depicted in Fig.[4]

——8 Sediment Features

Figure 4: Nine major categories
for abiotic habitat defined in
SeafloorAl.

Mapping Layers: Fault & Fold. Faults and folds are significant geological features on the seafloor
that are formed by tectonic movements within the Earth’s crust. Faults occur when rock layers break
and slide past each other due to tectonic forces, creating distinct disruptions in the seabed. Folds are
bends in rock layers that occur when these layers are compressed and folded, resulting in curved
or wavy stratifications. Detecting these features is crucial for understanding seismic activity and
geological history of the marine environment. In our study, we formulate the binary segmentation
task to identify the presence of these geological features within specific image patches, assigning the
pixels containing the features a value of 1, and O otherwise.
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4 The SeafloorGenAI Dataset

SeafloorGenAl incorporates vision and language understanding via visual question answering
(VQA), facilitating the advancement of large vision-language models in the marine science field
and the conventional studies on multi-modal learning (33}, 31} 33} 41}, 40]. This integration enables
smooth interactions between domain experts and Al, providing clear explanations and streamlining
the process of data analysis and discovery. Our dataset, consisting of 7M QA pairs and 696K language
descriptions, is designed to support general VQA capability and instruction-following mapping.

General descriptions and VQA. Following previous work from other domains [33} 30], we utilize
large language models (LLMs), specifically GPT-4, to generate the language descriptions and question-
answer pairs for each sonar imagery sample. We employ in-context learning (ICL) [8]], providing
few-shot input-output pairs for the LLM. In this case, the input contains the key analytical indicators
and the output is the description written by the marine scientists for the same image. To construct the
ICL input, we, in collaboration with marine scientists, identify the essential information required
for analysis. Subsequently, we use standard statistical and computer vision tools to extract three
categories of information: (1) geophysical parameters, (2) spatial distribution and (3) geological
composition. The objective is to help the model “see” the sonar image through as much detailed
language descriptions as possible. For the ICL output, we ask marine scientists to manually describe
in domain language 50 randomly selected samples from the SeafloorAI dataset. ICL ensures GPT-4
can accurately mimic the domain-specific language, enhancing the quality and relevance of the
generated answers. Next, we design a prompt to GPT-4, comprised of the input-output pairs and the
extracted analytical indicators, to generate general descriptions and question-answer pairs for the
remaining images. Finally, the domain experts carefully evaluate the generated language annotations
to ensure quality and consistency. The last two steps form a feedback loop, creating an iterative
prompt refinement process. Fig. Jillustrates the described pipeline.

In Fig.|6) we show a sample selected from the SeafloorGenAI dataset. We can see that GPT-4 is
able to generate QA pairs that relate different geological layers at the same location. This helps
unravel complex ecological dynamics, which is beneficial to many domain applications. We now
discuss how each type of information (i.e. geophysical parameters, spatial distribution and geological
composition) is extracted from the image.

(1) Geophysical parameters. These parameters are important, serving as the base for further analysis
of the area. In our data processing pipeline, we employ classical analysis techniques to extract key
geophysical parameters from processed data, such as water depth, mean and standard deviation of
backscatter intensity, and ranges of slope, efc. These parameters are then systematically converted
into textual format. This transformation facilitates a structured representation of complex numerical
data, making it more accessible and interpretable for further analysis and reporting.

An example of Geophysical Parameters in the Input layers

Geolocation: (42.55°, -70.67°) to (42.53°, -70.64°)
Depth range: -36.4 to -54.2 meters

Backscatter mean and standard deviation: 119.7 and 72.2
Slope range: 1.7 to 9.2 degrees

Rugosity range: 0.01 to 0.02

(2) Geological composition. Understanding geological composition allows marine scientists to gain
a holistic view of seafloor characteristics by examining how geological features are proportionally
distributed within a specific area. Technically, this involves calculating the ratio of total pixels for
each geological category relative to the overall pixels in the segmentation mask. As a result, we
achieve the following:

An example of Geological Composition in the Sediment layer

Muddy Sand (Sm) accounts for 45% of the image.
Muddy Rock (Rm) accounts for 25% of the image.
Gravel Rock (Rg) accounts for 11% of the image.
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Key Analytical Indicators and Spatial Distribution

Spatial
Distribution

Geophysical Geological
Parameters Composition

/
©

Backscatter Bathymetry 1.a. AUtomatically f Depth range: -36 to -54 meters w

extract key indicators ‘Steepest slope at bottom- nghtw Gravel Rock: 11% i helf Basin: [142, 0, 140, 2, ...]
;Meanmtensnyofﬂe 71 ;1 Muddy Rock: 25% 1 helf Basin: [0,0,0,11,..]
This region shows a heterogenous mix of soft and hardbottom patches. Most of
Slope Rugosity the region is dominated by a patch of_that runs from the lower left
N portion up through the middle and then turns toward the right where it narrows
! between a patch of Gravelly Rock with higher relief in the upper right corner L]
1.b. Marine scientists which is part of a Shelf Basin Complex and to the lower right where the -
describe the image’s - patch is constrained by a _ comprised of
. _ which is also elevated. The central _ is in a deeper

- - eological layers
Sediment Physio Zone g g Yy depression with water depths between -50 to -55 m...

2N

Q: What is the dominant sediment type in this sonarimage?

A: The predominant sediment type is _ (Sm), which
covers approximately 45% of the region, extending across
N,
I

2. Prompt
Engineering

most of the image.

Q: What is the range of depths observed in this sonar image?

A: The depths in this sonar image range from -36.92 meters to

evaluate generated -54.90 meters, which may correlate with variations in
content sediment types and their distribution.

3. Marine scientists

| 4. Refine Prompt
Figure 5: Pipeline for generating question-answer pairs for sonar imagery samples using GPT-4:
Marine scientists first identify necessary information, followed by the extraction of geophysical
parameters, geological composition, and spatial distribution. They then provide descriptions for a
handful of samples from the SeafloorAI dataset. These description are used to design a prompt for
GPT-4 to generate high-quality, domain-specific question-answer pairs, via in-context learning [8]].

(3) Spatial distribution. Spatial distribution complements geological composition, thus giving a
more comprehensive description of the image. We convert the segmentation mask of each category
to polygons, which can then be fed as language into GPT-4. We first find the contours of the masks
using conventional computer vision techniques, then transform them into polygon representation with
the format [x1, %1, ..., n, Yn], Wwhere z; and y; are the coordinates of the ™ point in n points.

An example of Spatial Distribution in the Physiographic Zone layer

Continential Shore Complex polygon at [0, 116, O, 186, ..., 1, 117]
Shelf Basin polygon at [142, O, 140, 2, ..., 1566, 0]

Instruction-following Mapping. Besides VQA, we aim to equip the Al assistant with the capability
to map various seafloor features across different layers in response to specific instructions. This
facilitates a seamless and intuitive interaction between the Al and marine scientists, allowing for easy
querying and efficient analysis. We design our dataset to be compatible with state-of-the-art VLM
models, such as PixelLM [57] and LISA [31] for both single and multi-instance segmentation tasks.

Examples of single and multi-instance instruction-following mapping in SeafloorGenAl

(1) Q: Please segment [CATEGORY] in [LAYER].
A: Sure, <SEG>.

(2) Q: What are present in the image for [LAYER]? Please segment them.
A: [CATEGORY_1] <SEG_1>, [CATEGORY_2] <SEG_2>, ..., [CATEGORY_N] <SEG_N>.

(3) Q: Identify the areas of [CATEGORY_1] from [LAYER_1] and [CATEGORY_2]
from [LAYER_2].
A: Sure, [CATEGORY_1] from [LAYER_1] <SEG_1> and [CATEGORY_2]
from [LAYER_2] <SEG_2>.
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Description

This sonar image captures a marine area characterized by varied sediment types and physiographic
zones. The area spans from coordinates 42.4753, -70.6576 to 42.4518, -70.6340, revealing a depth
range from -60.43 meters to -83.66 meters. Domi covering 87.48% of the area,
the image presents a predominantly low-energy. EEVEIIMEIY and Sand patches are scattered,
indicating regions of slightly higher relief, which hint at more dynamic, possibly higher-energy
Backscatter Bathymetry conditions. The image is segmented into two primary physio zones: a Shelf Basin comprising 83.79%
and a Continental/Island Shore Complex 16.21%, suggesting a diverse underwater landscape with
significant transitions from deeper basin areas to more complex nearshore environments.

Question-Answer Pairs

Q. What percentage of the sonar image is covered by , and how is it represented spatially?
- A. dominates the sonar image, covering 87.48% of the area. It is spatially represented by a

Slope Rugosity large, extensive polygon that stretches across most of the image.

Q. How is rugosity distributed across the different sediment types in the sonar image?
A. Rugosity has a low mean value of 0.01, suggesting overall flatness across the image.

Q. How does the physiographic zone of Shelf Basin relate to the observed sediment types?
“- A. The Shelf Basin, covering 83.79% of the area, predominantly contains SERQENANIL|, suggesting a
deeper, more uniform basin environment conducive to the deposition of fine sediments.

Sediment Physio Zone

Figure 6: An example in the SeafloorGenAI dataset, originated from Region 5. It features a GPT-4
generated description and question-answer pairs designed to efficiently assist marine scientists in
data analysis. The generated description covers all three key analytical indicators. Noticeably, the
last QA pairs focuses on cross-layer understanding (i.e., Sediment and Physiographic Zone), which is
helpful for unraveling complex ecological dynamics on the seabed.

S Experiments

We report some baseline experiment runs on SeafloorAI for multi-class segmentation. Due to space
limit, we move the experiments for binary segmentation to the Supplementary Material.

Evaluation Metrics. We use pixel-wise accuracy (Acc), Dice coefficient (Dice) and Jaccard coeffi-
cient (mlIoU) to evaluate the baseline models.

Data Split. We present the data splits for Sediment, Physiographic Zone and Habitat, as well as the
motivation for such splits. Due to the availability of the categories in each region, we make sure that
the training regions possess the set of categories that cover the testing region(s). We present our data
splits for the layers in Tab.[2] For the source data, we randomly split them into 90% for training and
10% for validation. The validation set is used to select the best model for testing on the target data.

Task | Layer | Source | Target

Sediment Region 1, Region 5, Region 6, Region 7 | Region 3
Physio Zone | Region 1, Region 3, Region 5, Region 6 | Region 7
Habitat Region 2 Region 4

Multi-class
Segmentation

Table 2: Geo-distributed data splits for the SeafloorAI dataset for multi-class segmentation.

Training Details. We employ the UNet architecture with different backbones as baselines. The UNet
architecture [58]] consists of a contracting path (encoder) and an expanding path (decoder), forming
a U-shape. We use UNet-Base [58]], UNet-ResNet18 [21]] and TransUNet-ViT-B/32 [[10,[15] as our
baseline models for the multi-class segmentation tasks. We adopt cross-entropy as the loss function.
The model was trained using the Adam optimizer [29]. The learning rate was initially set to 0.001
with a cosine annealing schedule. We use a batch size of 64 for 100 epochs, setting the patience to
5 epochs for early stopping. We perform 3 runs with different random seeds and report the model
performance in Tab.[3] All runs are conducted on a single NVIDIA RTX A6000 GPU.

Results. Tab. [3|reports the results on the geo-distributed setting, which is similar to out-of-distribution
generalization [53}151]]. We report the in-distribution (ID; on source data) and out-of-distribution
(OOD; on target data) pixel-wise accuracy, Dice coefficient and Jaccard coefficient. Overall, we can
see that all baseline models suffer from a signification performance degradation under distribution
shift. This might be due to covariate shift (sensor types and configurations) and subpopulation shift
(class imbalance). Therefore, ensuring that a model generalizes well to new, unseen distributions is a
fundamental challenge. Standard training methods often assume that the training and testing data
come from the same distribution, which is rarely the case in real-world applications.
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| Sediment

| AccID AccOOD A Acc | DiceID Dice OOD A Dice | mloU ID mloU OOD A mloU
UNet-Base 7745 +081 21.49+091 -5596 | 79.73 £0.83 21.594+0.97 -58.14 | 66.46 £ 1.15 12.29 + 0.61 -54.17
UNet-ResNet18 | 78.45 £ 0.67 3471 £6.79 -43.74 | 80.78 £0.71 35.01 £6.86 -45.77 | 67.90 £ 1.00 22.08 +5.73 -45.82
TransUNet 67.90 +2.18 2832+ 1.04 -39.58 | 69.94 £2.27 29.16 +1.05 -40.16 | 53.98 +2.65 17.41 £0.71 -36.57

| Physio Zone

| AccID AccOOD A Acc | DiceID Dice OOD A Dice | mloU ID mloU OOD A mloU
UNet-Base 93.05+0.16 56.56 +0.87 -36.49 | 95.81 £0.18 57.09+0.69 -38.72 | 91.98 +£0.32 4322 +0.84 -48.76
UNet-ResNet18 | 92.87 £ 0.10 56.74 £2.53 -36.13 | 95.63 £0.09 59.86 £2.54 -35.77 | 91.66 £0.17 4297 +3.00 -48.69
TransUNet 90.63 +0.20 56.24 + 1.66 -34.39 | 9328 +£0.27 57.51+1.84 -3577 | 87.49+047 43.86+2.04 -43.63

| Habitat

| AccID AccOOD A Acc | DicelD Dice OOD A Dice | mloU ID mloU OOD A mloU
UNet-Base 92.02+0.18 70.54 £ 1.72 -21.48 | 94.82+0.20 71.04 +1.54 -23.78 | 90.19 £0.37 56.75 £2.01 -33.44
UNet-ResNet18 | 92.70 +£0.12 76.40 £ 1.33 -16.30 | 9550+ 0.11 76.59 +1.28 -1891 | 91.43 £0.20 65.17 £1.80 -26.26
TransUNet 88.67 +£0.56 70.56 +0.72 -18.11 | 91.34 £0.59 72.76 +£0.83 -18.58 | 84.15+0.99 5938 +1.24 -24.77

Table 3: Performance of the baselines in the geo-distributed setting for multi-class segmentation.

6 Human Evaluation for Language Annotations

Although GPT-4 has shown strong capabilities in data annotations [64]], hallucinations in LLMs are
inevitable [25]]. To ensure the quality of the language annotations generated by GPT-4, we describe
an iterative prompt refinement process that involves human expert evaluation.

To maximize budget efficiency, we designed our

procedure with several iterations of feedback and P —
refinement. The idea is to engineer and refine our 3 Fachal Completeness
prompt to GPT-4 on a small subset of data before %

applying it to the whole dataset. For each itera-

tion, (1) we annotated 1,000 random samples with 80
GPT-4; (2) the marine scientists reviewed the qual-
ity of the generated annotations and gave feedback
based on the three criteria: (i) factual consistency
to the original annotations, (ii) factual complete-
ness with respect to the analytical indicators and 50
(iii) coherence to domain language; (3) we refined - - 5 -

our prompts to GPT-4, a.k.a prompt engineering, terations

to achieve higher quality language annotations, (4) )

we repeated the steps for the next iteration. Fi- Figure 7: Accuracy for factual consistency and
nally, when the quality is met, we will populate cornpleteness increases over the iterations thanks
the entire dataset with language annotations. Due 'O r1gorous the prompt refinement procedure.
to space limitation, we include more details in the GPT-4 performs worse on factual completeness
Supplementary Material. potentially due to hallucinations.

Accuracy

60

7 Limitations and Future Work

Despite the extensiveness of our dataset, there are notable limitations to discuss. Firstly, the availability
of layers is not uniform across all regions; for instance, Region 5 is missing Habitat, Fault, and
Fold layers. This is due to the different mapping objectives when the data surveys were first
collected. Additionally, the existing nine Habitat categories are somewhat coarse and exclude biotic
classifications. We are actively collaborating with marine scientists to refine and expand the Habitat
layer, making it more detailed and comprehensive. The current version of the SeafloorGenAI dataset
provides annotations suitable for straightforward analytical queries and lacks the data for deeper
reasoning abilities. Moving forward, we plan to enhance the dataset to support the development
of reasoning-capable models similar to referring and reasoning segmentation as in [57, [31} [76]],
offering more profound insights into marine science questions and paving the way for data discovery.
Developing this enhanced version of the dataset will require a structured and systematic approach to
understanding domain-specific knowledge to accurately annotate the data. In terms of modeling, our
plan for future work involves training a generative vision-language model on the SeafloorGenAI
dataset, serving as a foundation ML model in marine science research.
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