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Abstract

Recently, prompt learning has emerged as the state-of-the-art (SOTA) for fair text-
to-image (T2I) generation. Specifically, this approach leverages readily available
reference images to learn inclusive prompts for each target Sensitive Attribute (tSA),
allowing for fair image generation. In this work, we first reveal that this prompt
learning-based approach results in degraded sample quality. Our analysis shows that
the approach’s training objective—which aims to align the embedding differences of
learned prompts and reference images—could be sub-optimal, resulting in distortion
of the learned prompts and degraded generated images.

To further substantiate this claim, as our major contribution, we deep dive into
the denoising subnetwork of the T2I model to track down the effect of these learned
prompts by analyzing the cross-attention maps. In our analysis, we propose novel
prompt switching analysis: I2H and H2I. Furthermore, we propose new quantitative
characterization of cross-attention maps. Our analysis reveals abnormalities in
the early denoising steps, perpetuating improper global structure that results in
degradation in the generated samples. Building on insights from our analysis, we
propose two ideas: (i) Prompt Queuing and (ii) Attention Amplification to address
the quality issue. Extensive experimental results on a wide range of tSAs show
that our proposed method outperforms SOTA approach’s image generation quality,
while achieving competitive fairness. More resources at Project Page.

1 Introduction

There has been significant progress in the quality of text-to-image (T2I) generation [1-3] resulting in
increasing adoption in different applications [4—10]. With this comes concerns regarding the fairness
of these T2I models and their societal impacts [ 1-15].

Fair T2I Generation. T2I models may inherit biases present in their training data. Several approaches
have been proposed to mitigate these biases [16—19] (See related work in Supp). Particularly,
Inclusive T2I Generation (ITI-GEN) [16]-the existing SOTA—suggests that fair T2I approaches
based on hard prompts (HP) (e.g., ‘A headshot of a person with fair skin tone’’) are limited
by linguistic ambiguity. For example, Skin Tone is often challenging to define and interpret based
on HP, resulting in sub-optimal performance. To overcome this linguistic ambiguity, ITI-GEN
adopts the notion that “a picture is worth a thousand words” and leverages readily available reference
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(c) Proposed Solution

Figure 1: Our work re-visits SOTA fair T2I generation, ITI-GEN. We question ITI-GEN’s central
idea of prompt learning via alignment between the directions of prompt embeddings and reference
image embeddings. (a) We observe degradation in images generated through ITI-GEN’s learned
prompts. We note that the direction of reference image embeddings could include unrelated concepts
beyond tSA differences (e.g., variations in accessories) resulting in learning of distorted prompts using
ITI-GEN. Furthermore, we observe misalignment between the direction of credible hard prompts and
that of reference images/learned prompts. (b) As our main contribution and to further understand how
these distorted prompts affect the image generation process, we deep dive into the denoising network
and analyze the cross-attention maps, revealing their abnormalities e.g., higher activity for maps
associated with non-tSA tokens (‘‘of’’, ¢“a’’). We examine the degraded global structures resulting
from these distorted prompts in the early denoising steps. Moreover, we propose I12H and H2I (Eq.2)
analysis to understand impact of these degraded global structures and abnormalities in later denoising
steps. In addition, we propose metrics (Eq.3) on cross-attention maps to quantify these abnormalities.
(c) Building on insights from our analysis, we propose a solution to address distorted prompts while
maintaining competitive fairness. Our solution FairQueue includes two ideas: prompt queuing and
attention amplification. Er and E are CLIP text and image encoder resp. [20]. 7', F', P are the
base prompt, hard prompt with minimal linguistic ambiguity, and ITI-GEN prompt, resp.

images to learn an inclusive prompt for each tSA category. This approach translates visual attribute
differences present in the reference images into prompt differences, enabling the learned prompts to
be used to generate images of all tSA categories, regardless of their linguistic ambiguity. Fairness
is achieved by uniformly sampling the learned prompts to condition the T2I generation. Central to
this approach is the enforcement of directional alignment between learned prompt embeddings and
reference image embeddings corresponding to a pair of tSA categories.

In this work, we question the central idea of prompt learning via alignment between the
direction of prompt embeddings and the direction of reference image embeddings in the context
of fair T2I generative models. Our work starts with examining the generated images and observes
that a moderate amount of degraded images are generated based on ITI-GEN. We argue that using
the direction of reference image embeddings as guidance could be sub-optimal, as the difference
between reference images could include additional unrelated concepts other than the tSA difference
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(Fig 1). For example, reference images of ‘A headshot of a person smiling’’ and ‘A headshot
of a person not smiling’’ could contain differences in poses, accessories, hairstyling, in addition
to the difference in smiling. Therefore, the direction of reference image embeddings could be noisy
and include additional unrelated concepts other than the tSA difference. We perform an analysis
on the direction of embeddings to further understand the issue. We hypothesize that using the
direction of reference image embeddings as guidance could lead to distortion in the learned
prompts, resulting in artifacts and quality degradation in the images generated by T2I models.

To further substantiate this claim, as our major contribution, we deep dive into the denoising
subnetwork of the T2I model to analyze ITI-GEN prompts in the generation pipeline. Our analysis
include examination of the cross-attention maps of the learned prompts at individual time steps
of the denoising process. We propose novel prompt switching analysis: ITI-GEN to HP (I12H),
and HP to ITI-GEN (H2I). We further propose new quantitative metrics for cross-attention map
characterization. Our analysis reveals cross-attention maps of the learned prompts have abnormalities
in the initial time steps of the denoising process. This results in synthesizing improper global
structures. Interestingly, we find that the learned prompts have a minimum abnormality in the later
steps—the learned prompts perform adequately in generating the desired tSA category provided that
proper global image structures could be synthesized in the initial denoising steps. To justify our
analysis of cross-attention, we remark that cross-attention contextualizes prompt embeddings with
the latent representation of images and has been shown to play a key role in T2I models [21, 22].

Building on the insights of our analysis, we propose a solution to address degraded generated images
without compromising fairness and diversity. Particularly, we propose Prompt Queuing to apply base
prompts (without tSA tokens) in the initial time steps and ITI-GEN learned prompts in the later time
steps of the denoising process. We further propose Attention Amplification to balance the quality
and fairness of the T2I generation. Overall, our solution can effectively address the degraded quality
issue in ITI-GEN while maintaining competitive fairness. Our contributions are:

* We examine the generated images from the prompt learning-based fair T2I generation approach
and reveal a moderate amount of generated images with degradation (Sec 3.1).

* We argue that the direction of reference image embeddings could be noisy and include unrelated
concepts in addition to tSA difference, and prompt learning based on alignment with the direction
of reference image embeddings could be sub-optimal (Sec 3.1).

* We deep dive into the denoising subnetwork of the T2I model and analyze cross-attention maps
with our proposed prompt switching analysis I2H and H2I, and our proposed quantitative metrics
for cross-attention maps. Our analysis reveals and characterizes abnormalities in cross-attentions
of ITI-GEN prompts in the denoising process (Sec 3.2).

* We propose FairQueue, a solution based on prompt queuing and attention amplification to improve
generation quality while maintaining competitive fairness (Sec 4).

2 Preliminaries

T2I Generation. SOTA T2I generation is based on diffusion model (DM) [1-3]. In the forward
diffusion process, Gaussian noise is incrementally added to the training data to train the DM. Then,
during reverse diffusion, the DM generates samples by randomly sampling latent noise Zy ~ N (0, I')
as an input. For more control, text-conditioning [, 23—25] was introduced, where we denote the
reverse diffusion (denoising) of a single step ¢ by Zy41 < DM (Z;, R, t,s). Here, Z, is the latent of
the noisy image, R the input prompt, ¢ € [0, /] the denoising step, and s a random seed. Central to
text conditioning is the cross-attention mechanism which contextualizes prompt embeddings with the

image latent [21, 20]. Specifically the cross-attention map M € R"*"*"—where r is the number
of tokens in the prompt, and m x n shows map size for each token—is computed by:
T
M = SoftMax(%) 1)

where, Q = {,(¢(Z;)) is the linear projection of the latent spatial features ¢(Z;), and K =
¢,(Er(R)) is the linear projection of the textual embedding Er(R) (usually CLIP text encoder [20]).
For ease of notation, we refer to the token-specific attention maps as M [.] e.g., M[‘of>’] € R™*"
refers to the cross-attention map for the token ‘‘of’’ in R. As our work focuses on the reverse
diffusion process, we utilize Z as the noisy latent input and Z; as the final latent output. This Z; is
then finally passed into the DM decoder to output generated image, D(Z;).
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Fairness in Generative Models. In generative models, fairness is defined as equal representation
[27, 28], where for a tSA with K categories, a fair generator will generate an equal number of
samples for each category. As an example, for a T2I model G with text prompt ‘A headshot of
a person’’ as input, we consider G as fair model w.z.t. tSA = Young—with two categories {Young,
014} [29, 27, 28]~ if it generates an equal number of samples for each categories of this tSA [30, 31].

Hard Prompts for Fair T2I Generation. A baseline for achieving fairness in T2I models is to
append the tSA-related prompt to the base prompt [17, 19]. Considering the same tSA=Young, and
the base prompt ‘A headshot of a person’’, adding a tSA-related prompt for each category results
in the HPs: ‘A headshot of a person young/old’’. For a fair generation, we query T2I with each
of these HPs uniformly. Note that HP although very effective with certain tSA, in most cases, is
ineffective due to the tSAs having linguistic ambiguity [32]-having misleading or deceptive language.

Prompt Learning for Fair Text-to-Image Generation. To resolve the issue of ambiguous tSAs,
inspired by the recent success of prompt learning [33, 34], ITI-GEN [16] aims to achieve fairness
in a pre-trained T2I model by learning inclusive tokens for each category of the tSA. Assuming
the tokenized base prompt as T € RP*?, where p is the number of tokens and d is the dimension
of the embedding space, for each category k € {1,...K} of tSA, it learns ¢ additional tokens.
Sk =[Sk, Sk, ..., Séf_l] € R9%? In [16], ¢ is set to 3. Then, ITI-GEN prompt is constructed by

appending these learned tokens to the original tokens: Py = [T'; S¥] € R(PT9)*4 These tokens are
learned using a set of labeled reference images (w.r:t. tSA) Dy = {i, yi } 15y € {1, .., K} to
provide stronger signals for describing tSA. More specifically, for a pair of categories (4, j) of tSA,
a directional loss [35] is used to match the direction of learned prompts and images for this pair in
CLIP embedding [20] space i.e., ming: gj Laqir = 1 — M—@iﬁ%, where AI(; ;y (AP ;)
denotes the direction between images (text prompts) of two categories 7 and j in CLIP’s embedding
space, and directional loss £ 4;, is minimized to learn tSA tokens S*, S7 for these categories. Finally,
using P, as input prompt, fairness is achieved by uniformly sampling the K categories of the tSA.
We will omit the category index k when it is clear from context, and denote learned prompt and
tokens by P and Sy, ..., S resp.

3 A Closer Look at Prompt Learning for Fair Text-to-Image Generation

In this section, we take a closer look at ITI-GEN [16]. First, in Sec. 3.1, we analyze ITI-GEN
performance where we find quality degradation in moderate number of generated samples. We
attribute this to the sub-optimal learning objective in ITI-GEN, which captures unrelated concepts
that distort the learned tokens in P. Then, in Sec. 3.2, we analyze ITI-GEN prompts during sample
generation by inspecting the cross-attention mechanism. Our analysis reveals that ITI-GEN prompts
give rise to abnormality particularly damaging to the early steps of the denoising process.

Remark. To conduct the following analysis on ITI-GEN prompts’ behavior we require a strong base-
line as a pseudo-gold standard to compare against. To address this, we found that when considering
certain tSA with minimal linguistic ambiguity (MLA) [32]—a few tSA that can be described without
misleading or deceptive language—HPs can serve as this strong baseline. Therefore, in this section,
we focus on tSAs with minimum linguistic ambiguity. Later, in experiment section, we will include
all tSAs, with or without ambiguity.

3.1 Limitations of Prompt Learning for Fair T2I Generation

Although ITI-GEN [16] improves fairness in T2I generation, a closer examination of its outputs
reveals a potential trade-off: compromised image quality. In this section, first, we perform a systematic
experiment to showcase these quality issues and then explore the potential root causes behind them.

Experimental Setup. To evaluate our generated samples, we utilize the metrics: i) Fairness Dis-
crepancy (FD) [27, 31, 11, 36] to measure fairness, ii) Text-Alignment (TA) [37, 22] and FID [38] to
measure quality, and iii) DreamSim (DS) [39] to measure semantic preservation. Next, we determine
a set of tSA with MLA to compare ITI-GEN with HP (as a pseudo-gold standard). Specifically,
we follow [16] and use pre-trained Stable Diffusion (SD) [1] as T2I model. Then as mentioned in
Sec. 2, for HP, we append the tSA-related prompts to the base prompt. We empirically found that
tSAs {Smiling, High Cheekbones}, are unambiguous by classifying 500 generated sample per
HP utilizing CLIP classifier [20], where on average they both achieve a 98% accuracy (Experiment
details in Supp). Then, for ITI-GEN [16], we strictly follow [16] and use publicly available fair
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Figure 2: T2I generation performance of HP, ITI-GEN [16], and our proposed FairQueue for
target Sensitive Attributes (tSAs) with minimal linguistic ambiguities. Samples generated by HP
demonstrate outstanding performance with good fairness (FD), high quality (FID and FD), and good
semantic preservation (DS). Meanwhile, ITI-GEN moderately degrades sample quality, impacting
fairness and semantic preservation. FairQueue demonstrates comparable performance to HP, even
surpassing HP in both quality and semantic preservation in many cases. Note that HP only performs
well for unambiguous tSAs, and can not be used for general fair T2I generation purposes, as it can
not be defined well for ambiguous tSAs (See Supp for detailed discussion).

image dataset—sampled from CelebA [29]-as reference images to learn inclusive tokens, S. Finally,
we generate and evaluate ITI-GEN samples based on the same latent noise input as HP. See Supp for
experiment and metric details.

Fig. 2 shows some generated samples together with quantitative results. A moderate number of gen-
erated images with ITI-GEN have quality degradation often with unrelated content (e.g., generating
dog, multiple degraded faces, vague cartoons, etc.). Quantitative results show that for both tSAs, HP
performs better in fairness (lower FD), quality (higher TA, lower FID), and semantic preservation
(lower DS). We postulate degraded samples stem from ITI-GEN’s sub-optimal training objective.

Issue of Directional Loss for Fair T2I Generation. We hypothesize that directional loss is sub-
optimal in learning tSA-related tokens S. Particularly, the differences in reference images AI can
include unrelated concepts in addition to variation in tSA categories. For example, considering
tSA=Smiling in Fig. la (col 2), the reference images used for learning these two categories contain
differences in pose, accessories, etc., in addition to the difference in Smiling. We further explore
this potential of encoding unrelated concepts in A by taking a closer look into the CLIP embedding
space, where ITI-GEN’s learning process happens. Recall, that as we utilize tSA with MLA and the
HPs only differ in the tSA categories, we can utilize them as references in our analysis. For example,
considering tSA=Smiling, the related tokenized prompts of HP in CLIP space can be computed
as follows: F; = E7 (“‘A headshot of a person smiling”), and F; = Er (‘A headshot of a
person not smiling’’), with Er denoting CLIP’s text encoder. Then AF = F; — F; shows the
direction of the tokenized prompts in the CLIP embedding space.

Our results in Fig. 1a (col3) shows the directional loss between AI and AF i.e., L4;-(I, F), for
different tSAs using the reference images for each tSA. Note that £ ;- = 0 means perfect alignment.
Our comparison reveal considerable misalignment between A and AF' implying that unrelated
concepts are potentially encoded in AI. Meanwhile, AI and A P near perfect alignment implies that
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Figure 3: Comparison of cross-attention maps during the denoising process with HP (left)
and ITI-GEN (right). Here, we use tSA=Smiling and plot the denoising process for one sample
generation. Each denoising process consists of [ = 50 steps initiated with the same noisy input. Each
cell depicts the attention map for the respective token (column) at the respective step (row) overlaid on
the input. We highlight 3 key observations: (I) ITI-GEN tokens S; have abnormal activities compared
to the corresponding tSA-related tokens in HP by attending to unrelated regions (backgrounds) or
scattered attention. (2) non-tSA tokens like ‘‘of’’ and ‘‘a’’ are abnormally more active in the presence
of ITI-GEN tokens. 3 As compared to the HP counterpart, issues created by ITI-GEN tokens (D)
& Q) degrade the global structure in the early denoising steps (e.g., Step 15), for example, human
face in HP vs some unrelated structure in ITI-GEN. The same behavior is observed for some other
samples and tSAs (see Supp for more samples, and other tSAs with more denoising steps).
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these unrelated concepts are potentially transferred to P via ITI-GEN’s learning objective, resulting
in distorted learned token S.

3.2 Analyzing the Effect of ITI-GEN Prompts in T2I Generation

In the previous section, we observed degraded sample quality in ITI-GEN which we attribute to the
sub-optimal training objective that results in learning distorted tokens. In this section, we take a step
further to answer the question: “Given a pre-trained T2I model and some distorted learned prompts
as input, how do these distorted prompts affect the image generation process of the T2I model?”

To answer this, we deep dive into the latent denoising network [1] and analyze the cross-attention
mechanism [40]-the bridge for text and image modules in T2I models [1, 23-25]. In this analysis,
we visualize the cross-attention maps to investigate potential anomalies caused by distorted tokens in
the denoising process. Specifically, we compare cross-attention maps of ITI-GEN prompt against HP
with minimal linguistic ambiguity (as reference). To allow fair token-to-token comparison, in this
experiment, we lengthen HP by including additional tokens containing synonyms of the tSA. Note
that this did not augment HP’s behavior, and similar results are seen in the original HP. See Supp for
more details.

Visualizing Cross-attention Maps. We follow DAAM [41] for visualizing cross-attention maps by
tracing attention scores in the cross-attention module to demonstrate how an input token within a
prompt influences parts of the generated image. Specifically, to visualize the cross-attention map
of a token, DAAM interpolates and accumulates the attention scores over all scales (layer of the
U-Net [42] as the denoising network [1]), and all denoising steps. However, we tailor DAAM to
the requirements of our fine-grained analysis by introducing further controls. First, we isolate the
attention maps for each denoising step to allow for both step-wise and multi-step analysis. Second,
we introduce a prompt-switching mechanism, allowing for the interchangeable tracing of different
prompts at any particular denoising step.
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Figure 4: Analyzing the accumulated cross-attention maps for the denoising process in our
proposed prompt switching analysis I2H and H2I. Here, we use two tSAs: Smiling, High
Cheekbones. For each tSA, we show the accumulated cross-attention maps for H2I and I12H, with
some quantitative results. In the H2I (I2H) experiment, the first row shows the accumulated cross-
attention maps during the early denoising steps with HP (ITI-GEN) as the input prompt, and the
second row shows the maps during later steps, after switching to ITI-GEN (HP). Observation 1:
Learned tokens in ITI-GEN affect early denoising steps, degrading global structure synthesis; such
degraded global structure disrupts the final output. This is observed in I2H. Observation 2: Learned
tokens in ITI-GEN works decently in the later stage of the denoising process if the global structure is
synthesized properly. This is observed in H2I. As we show in Supp, similar observations can be made
for other samples and other tSAs. Bottom: Histograms of our proposed metrics on cross-attention
maps demonstrate the abnormalities in many samples.

Abnormalities in the Presence of Distorted Tokens. To investigate potential anomalies arising
from distorted tokens learned by ITI-GEN, we comprehensively analyze cross-attention maps of all
denoising time steps on 500 generated samples per category of each tSA, for both ITI-GEN and HP.
Fig. 3 shows one of these cross-attention maps comparing ITI-GEN and HP for tSA=Smiling (more
examples in Supp). Our empirical investigation reveals four points: i) global structure is synthesized
in the early steps of the denoising process aligning with previous works [2 ] that the denoising process
progressively synthesizes the image. ii) Learned ITI-GEN tokens have abnormal attention compared
to the tSA-related tokens in HP (‘‘Smiling’’ in col. 7 of HP), e.g., M [S;] contain unrelated or scatter
activation (Issue 1). iii) In the presence of the ITI-GEN tokens, other non-tSA tokens (like M [“a’’]
and M [‘of’’]) are abnormally more active (Issue 2). We remark that tokens interact with each other
in the denoising steps. iv) Considering Issues 1 & 2, we observe that degraded global structure is
synthesized in the early steps of denoising, and eventually a degraded sample is generated at the end
of the denoising. Note that similar issues occur with many other samples and tSAs (details in Supp).

To further understand issues, we isolate effect of distorted tokens by proposing two analyses focusing
on different denoising steps. These two analyses dissect the influence of distorted tokens in key
denoising steps (Recall denoising of a single step ¢ is denoted by Z;11 <+ DM (Z;, R,t,s), Sec. 2):

DM(Zy, P,t,s) te[0,n—1] DM(Z,,F.t,s) te[0,n—1
DM(Z,, F,t,s) ten,l] DM(Z,,P,t,s) te[n,]

To do this, as seen in Fig.1b (col 2), we first propose Analysis 1: switching prompt from ITI-GEN
to HP (I2H) during the denoising process. This allows for a better understanding of how the global
structure’s degradation in early denoising steps may affect the final generated output. Specifically,
as in Eq. 2, I12H first utilizes ITI-GEN prompt P in early denoising steps which potentially leads
to degraded global structure. This is then followed by utilizing hard prompt F' for the remaining
denoising steps. Next, to investigate if ITI-GEN tokens will create the same issues in the later steps
of the denoising process, we propose Analysis 2: HP to ITI-GEN (H2I). Converse to the previous
experiment, we utilize F' in early steps of denoising, and then switch to using P as input prompt.
For each experiment, we plot and analyze the cumulative cross-attention maps for early steps (0 to
n — 1) and later steps (n to [) separately. Fig. 4 shows an example of the cross-attention maps for

] 2
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these two experiments with tSA={Smiling, High Cheekbones}. See Supp for more samples and
details. Considering results in Fig. 4 the following observations can be made:

Observation 1: Learned tokens in ITI-GEN affect the early steps of the denoising process leading
to degradation in synthesizing global structure. More specifically comparing the first row of the
cross-attention map between I2H and H2I in Fig. 4, we can have the following observations: i) ITI-
GEN tokens have more scattered attention or attending to unrelated regions compared to tSA-related
tokens in HP; ii) non-tSA tokens like ¢‘a’’, and ‘‘of’’ are more active in the presence of the ITI-GEN
tokens. These two abnormalities result in degraded global structure in the early steps. In addition,
considering the second row of the I2H in Fig. 4, the degraded global structure in the early steps leads
to disrupted final output even though the (non-distorted) HP prompt is used in later steps.

Observation 2: Learned tokens in ITI-GEN works decently in the later steps of the denoising process
if the global structure is synthesized properly. More specifically, considering H2I in Fig. 4, when
HP prompts synthesize proper global structure in early steps, the ITI-GEN tokens attend to proper
regions and contribute to adding the finer details related to tSA, as shown in the second row of H2I.

Quantitative Metrics for Cross-attention Maps. In addition to the visual demonstration, we propose
two metrics to support further our observed abnormalities of ITI-GEN tokens in the early steps of
denoising for a large number of generated samples. Specifically, for each generated sample: i) To
quantify abnormally active attention associated with non-tSA tokens, we compute the expectation of
attention amplitude: E, ) { M [J]}, where J is a non-tSA token such as ‘‘of’. ii) We analyze the
scatter in attention by measuring the second central moment [43] for each tSA token K:

WE) =Y {l(x =2+ (y — 9’ IM K]y} (©)

Y
Here, M[K| = (M[K]/}_, , M[K]), and (z, y) is the centroid. The two metrics are computed
on the accumulated cross-attention maps from stage 1 of I2H (for ITI-GEN) and H2I (for HP). The
histograms of these two metrics for 500 generated samples in Fig. 1b (col 3) and Fig. 4 demonstrate
Issues 1 & 2 in many generated samples.

Remark. Our thorough analysis in this section shows that distorted tokens learned by ITI-GEN
only have destructive performance in the early steps of denoising, and they generally have decent
performance in later steps when the global structure is formed properly (H2I). We remark that even
though H2I has decent performance in fair and high-quality T2I generation, it is only applicable to
tSA with minimal linguistic ambiguity. In the next section, we will discuss our proposed method to
address fair and high-quality T2I generation encompassing both ambiguous and unambiguous tSA.

4 Proposed Method

In this section, we present our proposed method, FairQueue a new generation framework consisting
of two additions: Prompt Queuing and Attention Amplification to improve the sample quality when
implementing fair T2I generation. In addition to quality improvements, FairQueue also allows for
better semantic preservation of the original sample generated from the base prompt T'.

Prompt Queuing. Recall that when utilizing ITI-GEN prompt P—which is tuned to generate samples
containing the tSA—degraded global structure occurs in early denoising steps for a moderate number
of samples. Conversely, utilizing HP with minimal linguistic ambiguity enables high-quality and
fair T2I generation. However, as such HPs are not available for all tSAs [16], we naturally consider
the next best available option—the base prompt 7' (a natural language prompt without the distorted
trainable tokens)—and propose prompt queuing. Specifically, as seen in Fig. 1(c) , prompt queuing
first utilizes T in the early n denoising steps, thereby allowing for the global structures to form
properly. Next, we transit to ITI-GEN prompt P for the remaining (I — n) steps. This allows the
more fine-grained tSA semantics to be developed on top of the already well-defined global structures.

Attention Amplification. By implementing prompt queuing, the output samples may experience a
reduction in tSA expression due to the reduced exposure to the ITI-GEN prompt P. To address this,
we propose Attention Amplification, an intuitive solution that emphasizes the expression of the tSA
by scaling the ITT-GEN token’s cross-attention maps, i.e., ¢ * M[S;] where ¢ > 1.

S Experiments

In this section, we evaluate our proposed (FairQueue) against the existing SOTA ITI-GEN [16] over
various tSA. Then, we conduct an ablation study by first evaluating the contribution brought by each
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Table 1: Evaluating Proposed FairQueue against ITI-GEN .We utilize FD: Fairness Discrepancy
({), TA: Text-Alignment (1), FID (), and DS: DreamSim (]) to determine the fairness, quality, and
semantic preservation, respectively. For FD a combination of CLIP [20], off-the-shelf classifier
[44, 45] and human evaluator were utilized as tSA classifier. For TA we utilize CLIP [20] as the
feature extractor. Overall, our proposed method demonstrates the best ability to balance between
sample quality and fairness, while preserving the semantics of the original base-prompt T'.

Single tSA (CelebA)
tSA FD (1) TA (1) FID (1) DS (1)
Gender ITI-GEN | 6.41e 3 +4.2¢73 0.655+12"2 789+13  0.337+1.4e?
Ours | 6.41e™3+38¢ 2 0676+52e % 783+15 0.308+1.2e 2
Youn ITI-GEN | 13.1e™3 £81e™® 0.653+9.4e™®  829+14  0.552+ 32>
& Ours | 15.5e73+3.8¢7% 0.678 £8.1e3 753+21 0.370+2.7e 2
Smilin ITI-GEN | 124e73+£9.2¢e7®  0.605+1.2e72 88.6+0.9  0.557+2.2e2
& Ours | 69.0e34+4.2¢"3 0.674+1.7¢e"2 80.0+1.3 0.284+1.0e 2
High Cheekbones ITI-GEN | 318e 3 £12.0e® 0.595+1.2e7%  86.40+2.1  0.538 4+ 1.6e 2
& Ours | 492 34+3.6e 3 0.685+7.2 3 797+24 0.330+2.2 2
Pale Skin ITI-GEN | 1.41e 3 +1.2¢73 0.646+1.8e"2 101.3+4.6  0.525 4 2.8¢e~2
Ours | 1.41e734+1.2¢e73 0.666+1.9e"2 97.0+£3.2 0.408 +3.0e 2
Eveglasses ITI-GEN | 14.1e3 £2.6¢7® 0.654+3.3¢™®  835+14 0486+ 1.de™?
yeg Ours | 25.4e 3+1.9e7% 0.670+6.1e73 794+23 0.391+1.6e2
Mustache ITI-GEN | 26.2e 34+ 1.8e72  0.670 £4.2¢3 85.0 £3.3 0.452 +£1.9e 3
Ours | 22.6e 34+1.2¢73 0.680+5.3¢ 2 802+3.0 0.345+3.1e"3
Chubb ITI-GEN | 112¢7% £8.8¢7%  0.6474+2.2 %  792+15  0.551 +3.6e>
v Ours | 119e™®+7.2¢% 0.675+2.3¢ 3 783+1.4 0.387+3.0e3
Gray Hair ITI-GEN | 286e 3 +£6.8¢73  0.640 £4.3e3 87.3+2.1 0.533 £2.9e3
¥ Ours | 266e 34+ 7.1e7® 0.669+3.7¢"3 822423 0417+3.1e 3
Multi tSA (CelebA)
ITI-GEN | 39.1e 341273  0.668 £7.1e™3 72.6 £3.1 0.458 +7.8¢ 3
Gender x Young Ours | 12.4c3+23¢~3  0.686+57c5 71.7+25 0.373+4.4c3
ITI-GEN | 257e 3 +£8.7e™3  0.654 £3.3e 3 65.2 £ 1.6 0475+ 1.1e=3
Gender x Young x Eyeglasses Ours ‘ 208e3+7.3¢ % 0.671+41e® 615+27 0.360=63 3
o ITI-GEN | 190e 3+ 1.7e72  0.643 +£7.7e 3 65.54+2.7  0.475+9.1e73
Gender x Young x Eyeglasses x Smiling Ours ‘ 168c 3 +1.0e 2 0661 +24c3 608+11 0.379+97c3
Multi tSA (Fairface & Fair Benchmark)
ITI-GEN | 142e73+4.2e73  0.659+7.2e7% 5824+34 0445+1.2e7°
Gender x Age Ours | 108c2+4.3¢3 0.672+1.1c-3 5881 +33 0.359+3.5c3
. ITI-GEN | 166e™3 £3.7e73  0.670£2.2e7%  59.56+3.6 0.463 +7.7e >
Gender x Skin Tone Ours | 116c2 +4.4c-3 0.686+2.3¢c~3 54.66+2.7 0.390+1.8¢3

component for FairQueue i.e., Prompt queuing, and Attention Scaling. Then we revisit the task
initially proposed by ITI-GEN : Training Once-for-All Token. Overall, we show that FairQueue
achieves new SOTA performance.

Experimental Setup. Following [ 6], we utilize the publicly available reference dataset from CelebA
[29], FairFace [45] and FAIR benchmark [44]. For CelebA, we perform both single tSA and multi-
tSA experiments. Note that in this dataset each tSA has two categories. In FairFace and FAIR
datasets, tSAs have more categories, e.g., Age and Skin tones contain 9 and 6 classes, respectively.
Therefore, fair generation is more challenging in these datasets. For these experiments we use
T=F,("A headshot of a person") as base prompt, and for a fair comparison, we utilize exactly
the same learned P from ITI-GEN’s original code [46] for both ITI-GEN and proposed FairQueue.
In addition, we randomly sample a set of 500 latent codes and use the same latent codes for both
approaches. As earlier discussed in Sec. 3, we utilize fairness discrepancy (FD) to evaluate fairness,
Text-Alignment (TA) and FID for quality, and DreamSim (DS) to measure semantic preservation.
See Supp for more details. We repeat this process 5 times and report the mean and standard deviation.

Our results in Tab. 1 demonstrate that FairQueue is able to match ITI-GEN fairness performance
closely, and in some cases even improve upon it. For example, for tSA=Smiling, FairQueue indicates
a significantly lower bias (FD=6.9¢~2) than ITI-GEN (FD=124e~2). In addition, considering sample
quality, FairQueue achieves an overall better performance than ITI-GEN for all datasets. For example,
in CelebA, FairQueue’s TA> 0.666 while ITI-GEN’s TA< 0.655, with the worst performance
with High Cheekbones (TA=0.595). These results are similarly reflected in FID. We remark
that this quality degradation largely contributes to ITI-GEN fairness degradation. Finally, when
considering semantic preservation (DS |) of the original sample generated with 7", FairQueue
achieves unparalleled performance by ITI-GEN.
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Ablation study: evaluating prompt queuing and attention scaling. To evaluate the contribution
brought by FairQueue , we consider the same setup as Sec. 5 in the main manuscript focusing on the
tSA Smiling. Here, we compare the performance when utilizing different attention amplification
scaling factors, ¢, and different prompt queuing transition points i.e., switching from T" to P.
Specifically, we consider gradual increments in ¢ € [0, 12] and shifting of the transition points, step
€ {0,0.17,0.21,0.31} when [ = 50.

Our results in Fig.5 illustrate that generally when c increases, fairness improves. However, a saturation
point (¢ = 10) exists where quality and semantic preservation beyond this point degrades. Then when
considering different transition points, we find that at step 0.2/ FairQueue achieves the best quality
and semantic preservation performance while still achieving good fairness measurements. However,
increasing beyond this point results in significant fairness degradation.

015 015 0.69 0.69 0.4 0.6
= om3 ~0678 0.665 = O3 __’./ 0.45
= oma =
o 0.075 0075 £ 0.665 0.64 0.2 03

fary
* 0038 0038 = 0653 0.615 & o1 0.15
O ——— o —M 0.64 0.59 0 ——— 0 ———
024681012 0 0.1 021 031 024681012 0 0.1/ 0.2/ 031 0246 81012 0 0.1 02/ 031
Attention Amplication Prompt Queuing Attention Amplication Prompt Queuing Attention Amplication Prompt Queuing
scaling factor, ¢ Transition Point scaling factor, ¢ Transition Point scaling factor, ¢ Transition Point

Figure 5: Ablation Study: Comparing FairQueue performance when varying i) attention amplifica-
tion factor, c or ii) Prompt Queuing transition point from 7" — P for tSA Smiling.

Ablation study: revisiting training once-for-all token. Utilizing FairQueue we follow [16] and
re-visit adapting pre-trained ITI-GEN tokens, S; to a new Base Prompt T” = E, ("A headshot of a
doctor") by pre-pending. Then we generate samples utilizing both FairQueue and ITI-GEN with
the same noise input. As seen in Fig. 6 FairQueue demonstrates better performance than ITI-GEN
, achieving both better quality and semantic preservation of the sample generated by T" while still
having good tSA representation—more illustration in Supp.

ITI-Gen:

Male o Smiling | | Not Smiling ‘ cneen ‘ ‘ oy ‘ ‘ With

‘ Without ‘

“A headshot of a

doctor”
Ours:

Figure 6: Illustration of samples generated by ITI-GEN and FairQueue with a new Base Prompt
T’ = E{"A headshot of a doctor"} via pre-pending. FairQueue improves sample quality
and ability to preserve the original sample’s semantics while mainly adapting only the tSA.

6 Conclusion

In this paper, we reveal quality degradation in ITI-GEN —the existing SOTA fair T2I prompt learning
approach. Our analysis reveals that this quality degradation is due to the distorted learned tokens
in ITI-GEN prompt impacting cross-attention in the early steps of the denoising (reverse diffusion)
process. To address this, we propose FairQueue a simple but effective solution consisting of:
Prompt Queuing and Attention Amplification. Overall, our extensive experimentation demonstrates
FairQueue achieves new SOTA performance in balancing quality, fairness, and semantic preservation.
Limitation, related work and additional experiments can be found in the Supp.
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Supplementary

This supplementary provides additional experiments as well as details that are required to reproduce
our results. These were not included in the main paper due to space limitations. The supplementary
is arranged as follows:

* Section A: More Experimental Results

— A.1 Identifying FairQueue as the optimal combination
— A.2 Cross-Attention Analysis
— A.3 More on Ablation Studies
# A.3.1 Analyzing the Effects of Attention Amplification
% A.3.2 More Illustrations for Training Once-fo-All Tokens
% A.3.3 Human-recognized Assessment Comparing ITI-Gen and FairQueue Quality
— A.4 More Illustration
— A.5 Evaluating Minimal Linguistic Ambiguity for tSA

¢ Section B: Experimental Details

— B.1 Details of Calculating Directional Loss for Prompt Tuning
B.2 Details of the Ambiguities in Text Prompts

— B.3 Details of Model Hyper Parameters

— B.4 Computation Resources

— B.5 Details of Evaluation Metrics

— B.6 Visualizing the Learned Embedding vs Base Prompt

 Section C: Limitations and Broader Impacts
* Section D: Related Works
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A More Experimental Results

A.1 Identifying FairQueue as the optimal combination

Table 2: Analysis of all possible different combinations for Prompt Queuing (PQ) and tSA Attention
Amplification (AA). We summarize our findings from main paper for the tSA “Smiling”. Note that
a(S) notates AA for tSA tokens, ITI-GEN prompt P=[T’;S], and results in bold and italics are the
best and second best. Notice that C6:FairQueue (PQ+AA) provides the best combination: it achieves
both outstanding sample quality (C6: TA=0.674 & FID=80.02 similar to C1: TA=0.681 & FID=76.9
with the best quality but poor fairness) and fairness (C6: FD=0.069 similar to C4: FD=0.05 with the
best fairness but poor quality).

Prompt Attention Stage 1 Stage 2
Qtl;gl)ng Am]zl/l\f};:?tlon (Prompt)  (Prompt) FD(]) TA(T) FID({) DS{) remarks
Ct}(;r‘g’afglgr‘;‘r’n‘;t"‘ No No T T 0211 0681 769
€2 fg‘r’ll;%G“;AA No No [T;S] [T;S]  0.124 0.605 88.63 0.557
Unimplementable
C3: AA only combination due
for Base Prompt No Yes T T N.A N.A N.A N.A to the absence of
tSA tokens for AA
Cfi:r‘?ﬁ_g:;y No Yes [T:S1  [T:(S)] 005 0610 8941 0.550
C5: PQ Only Yes No T [T;S5] 0.145 0.674 80.15 0.240
C6: PQ + AA Both PQ and AA
(Our proposed: Yes Yes T [T;a(S)]  0.069 0.674 80.02 0.28 are present i.e.,
FairQueue) FairQueue

In this section, we discuss in more detail how we identified FairQueue — with its two mechanisms:
Attention Amplification and Prompt Queuing — as the best-performing solution. Specifically, we
summarize our findings, discussed throughout the paper, when exhaustively considering all possible
combinations. Our results are as follows:

e C1: Base Prompt 7" Only (no AA no PQ): It lacks tSA-specific knowledge and results in poor
fairness. Additionally, without tSA tokens .S, AA is not applicable for C3.

¢ C2: ITI-Gen prompt P Only, in Tab. 1 (no AA no PQ). Our analysis in Sec 3.2 shows it has
poor quality due to distortion in global structure during sample generation. Without PQ, the issue
of distorted global structure persists for some tSAs

¢ C4: Attention Amplification (AA) Only, in Fig. 5 when PQ transition point=0. It results in
poor quality since only ITI-Gen is used. We remark that utilizing only AA for ITI-Gen may
deceptively improve fairness, but the generated samples have poor quality e.g., Smiling cartoons.
The reason is (similar to C2): without PQ, the issue of distorted global structure persists for some
tSAs.

* C5: Prompt Queuing (PQ) Only, in Fig. 5 when ¢ = 0. By replacing the distorted ITI-Gen
prompt with the Base prompt in Stage 1, PQ leads to improved quality, but without AA, the
fairness remains poor given reduced exposure to tSA tokens in the denoising process.

¢ C6: FairQueue (PQ+AA), in Tab 1 Our proposed solution with optimal quality and fairness.
Specifically, it combines the effects of Prompt Queuing— enabling the global structure to be
properly formed resulting in good quality samples, and Attention Amplification—enhancing the
tSA-specific expression for better fairness.

Overall, our results in Tab. 2 reveal that FairQueue (C6) is the superior combination balancing
between fairness and quality. Specifically, Prompt Queuing is necessary whereby utilizing either only
ITI-GEN (C2) or only Base Prompt (C1) results in quality and fairness degradation, respectively.
Furthermore, our results show that both PQ and AA are necessary to obtain high-quality samples
with good fairness performance, as without PQ (C4) sample quality is poor, and without AA (C5)
fairness performance is degraded.
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A.2 Cross-attention analysis

Sec. 3.2 analyzes the effect of inclusive tokens S* by comparing the accumulated cross-attention
maps of individual tokens between HP and ITI-GEN . It is observed that distorted tokens learned by
ITI-GEN negatively affect the development of global structure in the early steps of denoising. The
destructive effect arises with abnormally high activity of non-tSA tokens (e.g., ‘‘0f’’), and the tSA-
tokens attend to unrelated regions with scattered attention. A quantitative analysis is performed over
500 sample generations for different tSAs to affirm the observations. The below details how token-
specific accumulated cross-attention maps are obtained from the SD pipeline, discusses interaction
among tokens, and presents additional representative results for tSAs Smiling, High Cheekbones,
Gray Hair, and Chubby.

Details of visualizing token-specific accumulated cross-attention map. Cross-attention is often
used to contextualize prompt embeddings with latent representations per sample generation step.
Following DAAM [41], coordinate-aware attention scores M [S;] are extracted from the latent
diffusion network (i.e., U-Net) for the token .S; at the layers where cross-attentions take place. These
token-specific attention scores, each with the same spatial dimensions as the latent representation, are
upscaled bicubically to the image size (512 x 512 in this case) to reveal where attention is paid per
token and accumulated within the assigned step(s). The resulting 2D matrix is visualized in Fig. 3
and Fig. 4 and referred to as an “accumulated cross-attention map”.

Interaction among tokens. We remark that the cross-attention map of a given token is dependent
on the others in the prompt. There are two channels where the effect of tokens may interact: 1) via
latent representation, as it is a function of input tokens and serves as the query in the cross-attention
(see Sec.2); 2) softmax operation, as a component in the attention pipeline, softmax is taken across
all tokens when processing attention scores. These two effects become increasingly apparent as we
move through different cross-attention layers of the U-Net and perform more denoising steps.

HP vs. ITI-GEN : qualitative analysis. To investigate potential abnormality of ITI-GEN embed-
dings, images of different tSA are generated conditioning on HP (F') and ITI-GEN (P) respectively.
The cross-attention map is employed as a tool to explore the cause of degraded generations. In pursuit
of a fair token-to-token comparison, for some tSAs the original HPs (“HP1”, see Tab. 6) are extended
to align with P in the number of tSA tokens (“HP2”). Nonetheless, as one can find in the samples in
Fig.7 to 14, the extension does not change the behavior of HPs significantly.

Fig.7 to 17 give an overview of cross-attention maps during the denoising process. One may find
that the tSA tokens in the HP(s) tend to concentrate on the region(s) semantically associated with the
tSA, e.g, mouth for tSA Smiling, cheek for tSA High Cheekbones, and hair for tSA Gray Hair.
On the other hand, ITI-GEN tSA tokens’ activity tends to be less focused and attends broadly. With
more steps than Fig. 3, it is clearer that the global structure of the images is synthesized in the early
steps, which motivates the prompt switching experiments.

Prompt switching experiments and quantitative analysis. To further investigate HP and ITI-GEN
prompts’ behaviors in the early steps, the prompt switching experiments (i.e., I2H and H2I) are
proposed in Sec. 3.2. Fig.18 to 21 present representative outcomes of the experiments. One can find
that the destructive effect caused by ITI-GEN prompts only occurs at the early steps, i.e., Stage 1 in
the figures.

In addition, the activation patterns are more clear in the accumulated cross-attention maps. The
non-tSA tokens in ITI-GEN prompts are in general more active, and the tSA tokens tend to attend
more broadly, which may explain the drastic semantic deviations from HPs in Fig.7 to 17. The latter
observation is particularly evident for tSA Smiling, a highly localized facial expression, which
is supported by the histogram of central moments in Fig.1. The other tSAs, though may not be
directly associated with a specific facial feature, share the same trend, as manifested statistically by
the histograms in Fig.22 and Fig.23.

Utilizing Base Prompt (7) in FairQueue . In Prompt Queuing the use of 7', in place of the HP, is
similarly grounded on the I2H/H2I analysis, as both 7" and HP are natural language prompts — free of
learned tokens. This can be seen in the embedding analysis in Supp B.6 where the HP and 7" are seen
to be close to one another. As a result, the sample generated by 7' is expected to be of similar quality
as the HP.
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Figure 7: Cross-attention maps during the denoising process with HP1 (left), HP2 (middle, equal
#tSA tokens to ITI-GEN ), and ITI-GEN (right) prompts. tSA=Smiling.

In Fig. 24, we provide further visualizations of T”s effectiveness in generating the global structure in
early denoising steps. Specifically, we compare the cross-attention maps of FairQueue with ITI-Gen
during sample generation, together with quantitative analysis. Results in col 2 vs 3 illustrate 7"s
effectiveness in synthesizing the global structure in stage 1, and non-abnormal attention (in Fig. 25),
resulting in effective global synthesis than ITI-Gen and better sample quality.
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