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Abstract

Data-driven artificial intelligence (AI) models have made significant advancements
in weather forecasting, particularly in medium-range and nowcasting. However,
most data-driven weather forecasting models are black-box systems that focus
on learning data mapping rather than fine-grained physical evolution in the time
dimension. Consequently, the limitations in the temporal scale of datasets pre-
vent these models from forecasting at finer time scales. This paper proposes a
physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts
to Finer-grained Temporal scales beyond training dataset. Specifically, we employ
a carefully designed PDE kernel to simulate physical evolution on a small time scale
(e.g., 300 seconds) and use a parallel neural networks with a learnable router for
bias correction. Furthermore, we introduce a lead time-aware training framework to
promote the generalization of the model at different lead times. The weight analysis
of physics-AI modules indicates that physics conducts major evolution while AI
performs corrections adaptively. Extensive experiments show that WeatherGFT
trained on an hourly dataset, effectively generalizes forecasts across multiple time
scales, including 30-minute, which is even smaller than the dataset’s temporal
resolution. Code is available at https://github.com/black-yt/WeatherGFT .

1 Introduction

Weather forecasting plays a vital role in modern society, impacting a wide range of human activities.
For example, minute-level precipitation nowcasting is particularly valuable for short-term planning,
such as outdoor activities, while medium-range forecasts that offer daily predictions play a crucial
role in long-term strategic decisions like maritime trade. This field has witnessed remarkable
advancements in recent years, largely attributed to the rapid progress of machine learning-based (ML)
weather forecasting models [38], spanning from nowcasting to medium-range forecasts.

∗This work was done during his internship at Shanghai Artificial Intelligence Laboratory.
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Prior studies tackle the problem of weather forecasting by leveraging data-driven models trained
on benchmark weather forecasting datasets, such as WeatherBench [47] and ERA5 [22]. Prevalent
medium-range forecasting models (e.g., FourCastNet [32], GraphCast [33], and FengWu [7]) are
commonly trained on the aforementioned hourly datasets to generate global forecasts with a time
interval of 6-hour, can not offer finer predictions like 30-minute forecasts for nowcasting.

A significant limitation of current ML-based weather forecasting models [32, 3, 33, 7, 18] lies in
their black-box training paradigm [53, 17], that is, primarily focusing on learning the mapping of data
pairs with a fixed lead time (e.g., 6 hours), without explicitly incorporating the laws of atmospheric
dynamics which govern finer-grained physical evolution processes. Consequently, this training
paradigm brings a significant challenge for weather forecasting: existing black-box AI models are
unable to generalize at finer temporal scales beyond the inherent time resolution of the training
datasets due to the absence of fine-grained physics modeling.

To address this challenge, we propose WeatherGFT, a physics-AI hybrid model capable of simulating
weather changes on fine-grained time scales through a set of partial differential equations (PDEs) [50].
WeatherGFT consists of an encoder, multiple stacked HybridBlocks and a decoder. As the core of our
model, HybridBlock contains two branches: One utilizes PDE kernels to conduct physical evolution
over small time scales, while the other employs neural networks to learn unresolved atmospheric
processes and perform bias correction on the physical evolution. These two branches are adaptively
fused through a learnable router initialized as 0.5:0.5. Unlike existing models [32, 33, 7] trained
with a fixed lead time, we introduce a lead time-aware framework through multi-lead time training
strategy and a lead time conditional decoder [43, 1], enabling the model to generalize to finer-grained
temporal scales. Experiments demonstrate that our method is capable of forecasting at different lead
times within one single model and one unified framework, overcoming the limitations of the dataset’s
temporal resolution and enabling 30-minute forecasts with an hourly dataset.

Figure 1: Learnable router weight. The role of
physics and AI at different lead times: major evolu-
tion and adaptive correction (details in Sec. 4.4).

Additionally, we find two interesting insights
by examining the learnable route weight of the
hybrid physical-AI modules at different lead
times, as depicted in Figure 1: a) The physi-
cal weight is consistently higher than the AI,
indicating the significant role played by the
PDE kernel. b) As the lead time increases, the
weight of AI gradually increases. We attribute
this increment to the errors accumulation of
PDE kernel during the evolution process, ne-
cessitating more AI corrections. In summary,
when there is training data available at the
lead time, such as at 1:00:00, the fitting abil-
ity of AI is enhanced. Conversely, at the lead
time without training data, such as at 0:30:00,
the importance of physical evolution becomes
more pronounced, which confirms our moti-
vation: WeatherGFT can benefit from both
physics and AI adaptively.

We summarize the contributions of this paper as follows:

• We propose a physics-AI hybrid model that incorporates physical PDEs into the networks,
enabling the simulation of fine-grained physical evolution through its forward process.

• With the flexible PDE kernel and new lead time-aware training framework, our model per-
forms multiple lead time forecasts, which bridges the nowcast and medium-range forecast.

• For the first time, our model extends the forecasting ability learned from an hourly dataset
to make accurate predictions at a finer time scale, i.e., 30 minutes.

• Our model exhibits strong generalization ability while maintaining prediction errors compa-
rable to those of pure AI and physical models.
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2 Related Work

Data-driven Weather Forecasting. In recent years, data-driven weather forecasting models based
on machine learning have developed rapidly [2], especially for medium-range weather forecast [54],
which provides weather variables for the next few days. Clare et al.[11] propose a weather forecasting
approach using stacked ResNets [21], but their model only considers geopotential and tempera-
ture, which is limited for real-world forecasting applications. FourCastNet [32] expands the model
to include additional variables such as wind at different heights, and employs Adaptive Fourier
Neural Operator (AFNO) [16] networks for prediction. Pangu-Weather [3] utilizes the 3D Swin
Transformer [61] and introduces hierarchical temporal aggregation to minimize iterations in the
autoregressive forecasting, followed by FengWu [7, 57], FuXi [9] and other Transformer-based [52]
prediction models. Apart from Transformers, GraphCast [33] and Keisler [29] adopt a graph repre-
sentation of the Earth and employ Graph Neural Network (GNN) [62] for weather prediction.

In addition to medium-range weather forecast, nowcast [4, 55] is another important field in weather
forecast, which usually provides 30-minute forecasting of severe convective weather like thunder-
storms. OFAF [44], Preciplstm [41], SimVP [12] use convolutions to capture spatial information and
model temporal information through networks such as Long Short-Term Memory [60] or Recurrent
Neural Network [59]. Earthformer [13] and CasCast [14] use Transformer-based models for nowcast-
ing. The former proposes cuboid attention to efficiently model space-time information, and the latter
uses the diffusion model [49] to address the problem of blur output. These nowcast models focus on
minute-level forecasts for specific regions, and is difficult to forecast for long-term such as 5-day.

Consequently, there exists a significant gap (global vs. regional, day-level vs. minute-level, long-term
vs. shot-term) between medium-range forecasts and nowcasts. Integrating AI models with physical
guidance to make finer-grained predictions can bridge this gap.

Physical Neural Networks. Most data-driven models commonly neglect the incorporation of
physics and treat networks as black-boxes. In order to enhance the consistency of predictions with
respect to physical laws, PINNs [5], PINO [37], and DeepPhysiNet [35] add PDE loss to overall
training loss. Nevertheless, these methods of changing loss functions often require balancing the
weights between different PDEs, and the training results are heavily affected by hyperparameters. PI-
HC-MoE [6], ClimODE [53] integrate physical processes into the networks, but they do not explicitly
simulate the physical evolution of distinct variables based on PDEs. Instead, they implement the
evolution using general kernels, such as Euler kernels [51]. NeuralGCM [31] employs neural networks
to parameterize a dynamic core. However, it is primarily designed for medium-range forecasting.
These works typically focus on forecasting at fixed lead times, rather than leveraging physical laws to
generalize to finer-grained time scales beyond the training datasets.

3 Method

3.1 Problem Formulation

Weather forecasting aims to predict future weather states Xt given current weather states X0:

Fθ(X0) = P (Xt|X0) (1)

where θ represents the parameters of the model and t denotes the lead time. The weather state
X ∈ RC×H×W consists of C atmospheric variables across different pressure levels. Each variable is
characterized by an H ×W matrix that corresponds to the projection of the Earth’s plane.

Assuming that the time resolution of the dataset is tdata, the lead time t for data-driven models can
only be equal to or greater than tdata, because these models are trained using data pairs (X0, Xt)
sampled from the dataset. Consequently, black-box AI models [32, 3, 33, 7, 20, 19, 15] are unable to
forecast at finer lead times such as 1

2 tdata, indicating a lack of temporal generalization ability.

3
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Figure 2: Overview of WeatherGFT. HybridBlock serves as the fundamental unit of the model,
consisting of three PDE kernels, a parallel Attention Block, and a subsequent learnable router. A lead
time conditional decoder is employed to generate forecasts for different lead times.

3.2 WeatherGFT Overview

As shown in Figure 2, our model consists of an encoder to patchify the weather states into tokens [52],
multiple (specifically, 24) stacked HybridBlocks to preform weather evolution via PDE modeling,
and a decoder to generate predictions under specific lead-time conditions.

Specifically, to enable our model to generalize at a finer-grained temporal resolution, we employ
PDEs to model the evolution at a finer time scale:

Xts = K(X0), where ts =
1

m
tdata, m ∈ Z+ (2)

We simulate the physical evolution from X0 to Xts through a uniquely designed PDE kernel (details
in Section 3.3), where ts is much smaller than the time resolution tdata of the dataset, allowing model
to capture fine-grained weather changes. By stacking PDE kernels K, the longer evolution can be
achieved like Xtdata

= Km . . .K2 K1 X0. In this paper, we set m to 12, that is, ts = 1
12 tdata.

To mitigate the issue of error accumulation as the number of evolutionary steps increases, we introduce
a parallel Attention Block [52] that performs bias correction for every 3 iterations of K. Additionally,
a learnable router initialized as 0.5 : 0.5, is employed to adaptively fuse features from PDE kernels
and the Attention Block. We encapsulate three PDE kernels K and one parallel Attention Block
within a HybridBlock, whose evolution time is tblock = 3× ts =

1
4 tdata.

Our model can not only forecast at lead times equal to or greater than tdata, but also generalize
to finer-grained time scale such as 1

2 tdata even in the absence of corresponding training data pairs.
This is achieved by modeling the physical evolution of tblock = 1

4 tdata, rather than simply learning
from data pairs (X0,Xtdata

) sampled from the dataset. Notably, these generalized finer-grained
predictions of our model outperform temporal interpolation on multiple metrics, as shown in Table 3,
emphasizing the advantages of fine-grained physical evolution over black-box models.

4
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3.3 PDE Kernel

We employ a set of five PDEs (7-11) including the motion equation, the continuous equation and
others to establish a closed system, which simulate the physical evolution of 5 essential atmospheric
variables: u (latitude-direction wind), v (longitude-direction wind), z (geopotential), q (humidity),
T (temperature). The partial derivative of each atmospheric variable with respect to time can be
separated mathematically (details in Appendix A), denotes as SPDE , which takes current weather
state as input and produces the derivative of each variable with respect to time. We define PDE kernel
K as the evolution of the variables over a short period of time ts, as demonstrated in Equation 3.

SPDE (X ) =



∂u
∂t = Su(u, v, z, q, T )16
∂v
∂t = Sv(u, v, z, q, T )16
∂z
∂t = Sz(u, v, z, q, T )21
∂q
∂t = Sq(u, v, z, q, T )23
∂T
∂t = ST (u, v, z, q, T )18

,
PDE Kernel K (X ) = SPDE(X )ts + X

where ts =
1
12 tdata

(3)

Calculating SPDE requires the use of differential and integral operations. For example, for temper-
ature T , its derivative with respect to time is shown in Equation 4. In order to efficiently calculate
SPDE and enable loss backward [25], we designed a fast implementation of differentiation and
integration through convolution and matrix multiplication respectively. Equation 5 presents the
implementation of the differential and integral of X in the x direction (latitude direction).

∂T

∂t
=

−L∂z
∂pw − ∂z

∂pw

cp
− u

∂T

∂x
− v

∂T

∂y
− w

∂T

∂p
, where w = −

∫ (
∂u

∂x
+

∂v

∂y

)
dp (4)


dX
dx = 1

12Conv (X ,Kx)∫
Xdx = XMx

,Kx =


0 0 0 0 0
0 0 0 0 0
1 −8 0 8 −1
0 0 0 0 0
0 0 0 0 0

 ,Mx =


1 1 · · · 1 1
0 1 · · · 1 1
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1

 ∈ RW×W (5)

Similarly, Ky and My can be constructed to perform differential and integral operations in the y
direction (longitude direction). For differential and integral operations in the p direction (pressure
level direction), we first reshape X ∈ RC×H×W to 3D space X3D ∈ RC

P ×P×H×W based on the
variables’ pressure layers, and then implement corresponding operations through Kp and Mp.

3.4 HybridBlock with Adaptive Router

Figure 3: Router in HybridBlock. B
represents batch size, L is the number of
tokens with D dimension.

HybridBlock is a module that combines physics and AI.
Firstly, it employs neural networks to address the issue
of error accumulation resulting from the stacking of PDE
kernel K. Secondly, it utilizes the PDE kernel K to guide
the neural networks to learn the physical evolution of a
specific time step. The structure of HybridBlock consists
of three PDE kernels K and one parallel Attention Block.
Consequently, the time step corresponding to a Hybrid-
Block is tblock = 3× ts =

1
4 tdata.

HybridBlock has two branches, as depicted in Figure 2,
one is physics and the other is AI. The neural networks
features XN are aligned with physical features XP through
a convolutional layer, followed by three PDE kernels. Sub-
sequently, the PDE kernel output is projected back to the
latent space of XN through another convolutional layer.
Finally, features fusion is performed through the learnable
router shown in Figure 3.

In the router, the features XN obtained from the neural
networks and the features XP derived from the PDE kernels are initially linearly fused along the

5
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feature dimension D, with the learnable factor r initialized as 0.5 : 0.5. Subsequently, the preliminary
fused features will go through an Multilayer Perceptron [40] layer containing a ReLU [36] activation
function to accomplish nonlinear feature fusion.

3.5 Lead Time Conditional Decoder

HybridBlock provides the smallest time scale of model evolution, which is tblock = 1
4 tdata. Through

L× HybridBlocks, we can predict the weather at a lead time of L
4 tdata. To enable the model to

generalize its prediction capabilities to finer-grained time scales, we design a lead time conditional
decoder to generate forecasts varying lead times from the output of the corresponding HybridBlock.

In order to promote the expression of the condition, we embed the lead time t into a high-dimensional
vector temb through learnable Fourier embedding [48], as shown in Equation 6.

temb = sin(π · t ·W )⊕ cos(π · t ·W )⊕ t, where t is lead time (6)

where W is a learnable vector of size 16, and ⊕ denotes concatenation. Furthermore, temb will be
concatenated with the output of HybridBlock and input to the decoder together. The decoder structure
utilizes a Swin Transformer [39] with hierarchical upsampling, as illustrated in Figure 2.

3.6 Multiple Lead Time Training

For dataset like ERA5 [22] or WeatherBench [47], their time resolution is tdata = 1h. We set the time
step of the PDE kernel to ts =

1
12 tdata = 300s. Consequently, the time step of each HybridBlock is

tblock = 3×ts = 900s, equivalent to 15 minutes. By cascading 24 HybridBlocks, model can generate
forecasts at a lead time of 24× 15min = 6h. To encourage the model to learn evolution for different
lead times and generalize forecasting to finer-grained time scales, during training, we not only use the
output of the last HybridBlock but also include the outputs of the 4th and 12th HybridBlocks. These
outputs are passed through the lead time conditional decoder with corresponding temb to predict the
weather states at 4× 15min = 1h and 12× 15min = 3h.

During inference, we can take the output of the second HybridBlock and pass it through the decoder
with corresponding temb to get 2× 15min = 30min forecasts, which are not present in the dataset.
In the Section 4.3, we provide a comprehensive demonstration showcasing the accuracy of these
generalized prediction results for time scales smaller than the dataset’s time resolution.

4 Experiment

Through the design of HybridBlock mixed with physics & AI and the multi-lead time training method,
our model is capable of simultaneously conducting short-term forecasting and long-term forecasting
without additional finetuning [42] on different forecasting tasks. In the experiments, we will showcase
the superior performance of our model and try to answer the following questions:

(1) How does the model perform on the medium-range forecasting task?

(2) How does the model perform on the generalized 30-minute nowcasting task?

(3) As a hybrid expert model of AI and physics, what roles do they each play?

(4) How do PDE kernel and multi-lead time training contribute to the overall performance?

4.1 Experimental Setup

Dataset Train Test Time resolution
WeatherBench ✓ ✓ 1-hour
NASA × ✓ 30-minute

Table 1: Datasets. NASA dataset only contains pre-
cipitation, which will be used as the ground truth for
precipitation nowcast.

Dataset. We use WeatherBench [47] as our
training dataset, whose time resolution is
tdata = 1h and spatial resolution is 128× 256.
The dataset spanning from 1980 to 2015 serves
as training set, while the data of 2017 is the val-
idation and test sets. Our model processes 4 sur-
face variables and 5 upper-air variables across
13 pressure levels, as shown in Table 2.

6
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Name Description Levels
u10 x-direction wind at 10m height Single
v10 y-direction wind at 10m height Single
t2m Temperature at 2m height Single
tp Hourly precipitation Single
z Geopotential 13
q Specific humidity 13
u x-direction wind 13
v y-direction wind 13
T Temperature 13

Table 2: Atmospheric Variables Considered. The 13
levels are 50, 100, 150, 200, 250, 300, 400, 500, 600,
700, 850, 925, 1000 hPa.

Given that WeatherBench lacks data at finer tem-
poral resolutions, we use the 30-minute satellite
observations downloaded from NASA as ground
truth to quantitatively assess the model’s gen-
eralizability. NOTE: Data from NASA is only
used for testing and not for model training.

Tasks. We conducted experiments on two typ-
ical weather forecasting tasks: medium-range
forecasting and precipitation nowcasting. The
forecast range for medium-range forecasting
spans from 6 hours to 5 days, while the nowcast-
ing is set to a range of 30 minutes to 2 hours.

Baseline Methods. We compare WeatherGFT with four forecast approaches: FourCastNet [32] uses
AFNO [16] networks to simulate the nonlinear relationship between weather variables, Keisler [29]
models global atmospheric data through GNN, ClimODE[53] adds ordinary differential equations
(ODE) [26] to the neural networks, and ECMWF-IFS [46] is a physical dynamic model.

The above three data-driven models cannot generalize forecasting to finer-grained time scales due
to the absence of 30-minute labels. Therefore, in nowcasting tasks, we interpolate the 30-minute
forecast results through SOTA frame interpolation models Flavr [28] and UPR [27]. In contrast, our
model can conduct 30-minute predictions inherently without interpolating.

Implementation Details. We implemented the model with PyTorch [25] and trained 50 epochs on
8 NVIDIA A100 GPUs [10] for 3 days, with a learning rate of cosine schedule starting from 5e-4.

4.2 Skillful Medium-Range Forecasts by WeatherGFT

Autoregression is commonly employed in medium-term forecasting, where the model output serves
as the input for the subsequent forecast step, allowing for longer lead time predictions. However,
prediction errors tend to accumulate during the autoregression, leading to an increase in the root
mean square error (RMSE). As a result, a smaller RMSE indicates a more accurate prediction.

Figure 4 illustrates the changes in prediction RMSE of different weather variables as lead time
increases. Our model demonstrates competitive performance across various lead times with AI or
physical dynamics models, especially the prediction of surface temperature (t2m) and surface wind
speed (u10) is significantly better than other models. The geopotential of the 500hpa pressure layer
(z500) is a crucial weather variable in weather forecasting, as it reflects atmospheric circulation [45],
subtropical high-pressure systems [34], and other significant phenomena. Due to the modeling of
geopotential in the PDE 21, z500 prediction of our model outperforms the physical dynamic model
ECMWF-IFS as visualized in Figure 5.
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Figure 4: Medium-Range Forecast. The x-axis represents the lead time in hours, while the y-axis
represents the RMSE for different variables. The smaller RMSE the better.

From the visualization in Figure 5, our model is more accurate in predicting the subtropical high, as
indicated by the highlighted red box. In addition, the prediction error of our model at the lead time of
6-hour is significantly smaller than that of the physical dynamic model ECMWF-IFS.
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Figure 5: Visualization of z500 Predictions.

4.3 Generalizing to Fine-grained Time Scale for Nowcasting

In contrast to conventional black-box AI models [32, 29, 58] used in medium-range weather forecast-
ing, WeatherGFT has the ability to break through the time scale limitations of the dataset, making the
generalization to fine-grained temporal scales possible. This capability is facilitated by the dynamic
progression of our PDE kernel modeling and multiple lead time training. Specifically, we use the
second HybridBlock of the total 24 HybridBlocks to generate 30-minute generalized forecasts through
the lead time conditional decoder, which is very important for precipitation nowcasting.

To quantify the accuracy of the model’s generalized nowcasting, we utilize the NASA satellite
precipitation observation dataset as the ground truth, which has a time resolution of 30-minute. We
evaluate forecasts at 30, 60, 90, and 120 minutes. It is important to note that data of NASA were not
used for training. For other comparison models that cannot directly produce half-hour forecasts, we
use the frame interpolation models (i.e., Flavr [28] and UPR [27]) to generate 30-minute predictions.

30-min 60-min 90-min 120-min
CSI↑ CSI↑ RMSE↓ CSI↑ CSI↑ RMSE↓ CSI↑ CSI↑ RMSE↓ CSI↑ CSI↑ RMSE↓
@0.5 @1.5 tp1h @0.5 @1.5 tp1h @0.5 @1.5 tp1h @0.5 @1.5 tp1h

FourCast+Flavr 0.26 0.09 0.67 0.61 0.49 0.24 0.25 0.09 0.65 0.37 0.26 0.46
FourCast+UPR 0.20 0.10 0.76 0.61 0.49 0.24 0.11 0.05 1.49 0.37 0.26 0.46
Keisler+Flavr 0.25 0.09 0.66 0.59 0.48 0.23 0.25 0.08 0.66 0.41 0.29 0.35
Keisler+UPR 0.26 0.13 0.69 0.59 0.48 0.23 0.26 0.13 0.68 0.41 0.29 0.35
ClimODE+Flavr 0.26 0.09 0.67 0.62 0.51 0.22 0.25 0.09 0.66 0.47 0.34 0.32
ClimODE+UPR 0.25 0.12 0.67 0.62 0.49 0.21 0.25 0.11 0.66 0.46 0.32 0.31
WeatherGFT(ours) 0.28 0.17 0.72 0.62 0.50 0.21 0.28 0.16 0.71 0.54 0.40 0.27

Table 3: Generalized Nowcast. 60-min and 120-min are trained lead times, while 30-min and 90-min
are generalized lead times. Gray represents the results obtained through the frame interpolation
model, purple indicates the results obtained through our unified model without interpolating. For
precipitation nowcasting, CSI (Critical Success Index) is the most important metric.

CSI@th (Critical Success Index) refers to the hit rate of the area that reaches the threshold precipita-
tion value th. CSI@0.5 can reflect the overall forecast accuracy in rainy areas, and CSI@1.5 reflects
the forecast accuracy in moderate rainy areas. Table 3 shows that our model surpasses others across
different lead times, especially in forecasting regions of moderate rainfall, i.e., CSI@1.5.

The visualization in Figure 6 reveals that when using frame interpolation to obtain 30-minute
predictions, there is blurring occurring at different scales, resulting in the loss of extreme values,
as indicated in the red box. Our model, which incorporates physical constraints, provides clearer
predictions retaining extreme values without the need for frame interpolation.

8
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Figure 6: Visualization of Precipitation Nowcast. Precipitation in the area ranging from 34N to
50S and 148E to 128W during the time period from 00:00 to 02:00 on July 1, 2017.

4.4 Weather Forecasts can Benefit from Physics and AI via WeatherGFT

As a hybrid model combining both physics and AI components, it is crucial to analyze their contribu-
tions to the prediction process. We present insights into their respective proportions by visualizing
the weight parameter r within the learnable router (refer to Figure 3). The visualization in Figure 7
reveals that the weights of the 24 HybridBlocks display a similar distribution:

a) The physical weight of the vast majority of HybridBlocks is significantly higher than the weight
of AI, which shows that in the process of simulating time evolution, the PDE kernel plays a more
important role, while the Attention Block only plays a supportive correction role. b) The physical
weight gradually decreases while the weight of AI increases throughout each hour (dataset time
resolution). This aligns with our underlying motivation, which acknowledges that errors may
accumulate over time in the physics-based evolution. Consequently, a greater emphasis on AI
corrections becomes necessary to compensate for these accumulated errors.

Figure 7: The Weights in the Router of 24 HybridBlocks.

9
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By averaging the 4 × 6 HybridBlocks into 4 time steps, the average weight every 15-minute is
obtained in Figure 1, which shows the above two conclusions more clearly. To summarize, physics
plays the main evolutionary role in the model, while AI plays an dynamic corrective role.

4.5 Ablation Studies

30-min RMSE@1-h RMSE@6-h RMSE@3-d
nowcast t2m↓ z500↓ t2m↓ z500↓ t2m↓ z500↓

Attent Block × 0.52 18.76 0.73 24.21 1.23 157.9
+ PDE Kernel ✓ 0.57 20.43 0.70 21.78 1.22 153.8

+ Muti Time ✓ 0.49 16.66 0.67 21.80 1.14 152.4

Table 4: Ablation Experiment.

We use Swin Attention Block [39] as the base-
line for the ablation studies. For this baseline
networks without PDE kernel constraints, as
a black-box model, it will only learn the map-
ping of data pairs corresponding to the lead time.
Consequently, its internal information between
blocks is unexplainable, which also results in
being unable to predict moments without data
labels, such as 30-minute nowcasting.

Attent Block
Attent Block + PDE Kernel
Attent Block + PDE Kernel + Muti Lead Time
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Figure 8: RMSE z500 as Training Epochs.

PDE kernel is crucial to the generalization of
finer-grained predictions. Instead of simply
learning the mapping between data, the model
learns the evolution of the corresponding time
step according to the physics laws, making in-
formation of each neural network layer explain-
able, thereby facilitating generalized 30-minute
nowcasting. In addition, we find that the intro-
duction of the PDE kernel also improved the
prediction accuracy of the model.

Multiple lead time training accelerates con-
vergence and improves the accuracy of model
prediction, as shown in Figure 8. We hypothesize that this phenomenon can be attributed to the loss
backward from different lead times, which alleviates the issue of vanishing gradients [23], allowing
the parameters of different layers to quickly warm up and improve the expression of the model.

5 Conclusion

Most existing data-driven weather forecast methods which operated as black-box models via purely
performing data mapping are unable to generalize at finer temporal scale beyond the inherent time
resolution of the training datasets due to the absence of the fine-grained physics modeling. This paper
proposes a physics-AI hybrid model to solve this problem. Through the exquisitely designed PDE
kernel, each block in the networks can simulate the evolution of physical variables at finer-gained time
step, while AI plays the role of adaptive correction, which makes our model capable of generalizing
predictions to a finer time scale beyond dataset. By employing our proposed multi-lead time training
strategy, our model trained on an hourly dataset exhibits remarkable ability of generalized 30-minute
forecasts, while maintaining prediction errors that are competitive with those of pure AI and physical
models in both medium-range forecast and precipitation nowcast.

The main limitation of our model is that only five important atmospheric equations are currently
considered, which is still far from fully modeling the atmospheric motion process. Another limitation
of this paper is that the experiments have been conducted solely at a spatial resolution of 128×256. As
part of our future work, we plan to extend our experiments to higher resolutions such as 721×1440 to
assess the model’s performance under different settings. Additionally, while the minimum evolution
time scale of our model is 15 minutes, we were unable to evaluate 15-minute generalized predictions
due to the absence of corresponding validation data at that specific time scale. Therefore, we are
currently only able to perform evaluations of 30-minute generalized predictions.

For future work, we plan to incorporate additional physical laws into our model and conduct higher-
resolution experiments to ascertain the upper limit of its capabilities.
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A PDE Solver

We constrain 5 atmospheric variables, that is, u (latitude-direction wind), v (longitude-direction
wind), z or ϕ (geopotential), q (humidity), T (temperature), through the following set of five partial
differential equations (PDEs) [30]:

dV
dt

+ fk × V = −g∇pz + Fh (7)

∂ϕ

∂p
= −1

ρ
(8)

∇p · V +
∂w

∂p
= 0 (9)

cp
dT

dt
− 1

ρ
w = Q (10)

p = ρRT (11)

The expansion of d
dt is as follows:

d

dt
=

(
∂

∂t

)
p

+ V · ∇p ( ) + w
∂

∂p
(12)

The PDE above is in the pressure coordinate system, which is aligned with the input to our model,
as the input to the model comes from 13 pressure layers. In the air pressure coordinate system, the
following equation is also satisfied:

∂p

∂t
= 0 (13)

w represents the vertical wind speed and is not directly included as one of the input variables in our
model. However, it can be derived from u and v using following equation:

∂w

∂p
= −∂u

∂x
− ∂v

∂y

w = −
∫ (

∂u

∂x
+

∂v

∂y

)
dp

(14)

After getting w, we can get ∂u
∂t and ∂v

∂t according to Equation 7.
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂p
− fv = −∂ϕ

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂p
+ fu = −∂ϕ

∂y

(15)


∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
− w

∂u

∂p
+ fv − ∂ϕ

∂x
∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− w

∂v

∂p
− fu− ∂ϕ

∂y

(16)

where f = 7.29e− 5 is a constant.

According to Equation 10, we can get ∂T
∂t :
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
cp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂p

)
− 1

ρ
w = Q

Q = −L
∂ϕ

∂p
w

(17)

∂T

∂t
=

−L∂ϕ
∂pw − ∂ϕ

∂pw

cp
− u

∂T

∂x
− v

∂T

∂y
− w

∂T

∂p
(18)

where L = 2.5e6 and cp = 1005 are constants.

According to Equations 8 and Equations 11, we can get ∂ϕ
∂t :

∂ϕ

∂p
= −1

ρ
= −RT

p
(19)

∂2ϕ

∂p∂t
= −

∂RT
p

∂t

= −R

(
1

p

∂T

∂t
− T

p2
∂p

∂t

)
= −R

p

∂T

∂t

(20)

∂ϕ

∂t
=

∫
∂2ϕ

∂p∂t
dp

= −
∫

R

p

∂T

∂t
dp

(21)

where R = 8.314 is a constant.

Finally, according to the water vapor equation 22, we can get ∂q
∂t :



dq

dt
=

δF

RT

dϕ

dt

δ =

{
0,

dϕ

dt
< 0 and q ≥ qs

1, else

F = qsT
LR− cpRvT

cpRvT 2 + L2qs

es = 6.112× exp

(
17.67T ′

T ′ + 243.5

)
T ′ = T − 273.15

qs =
0.622es

p− 0.378es

(22)

∂q

∂t
=

δF

RT

(
∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z

)
− u

∂q

∂x
− v

∂q

∂y
− w

∂q

∂z
(23)

where Rv = 461.5 and Rd = 287 are constants.
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B Implementation of Integrals and Differentials

Integral in p-direction (pressure levels direction) is implemented with PyTorch [25] as follows:

def integral_z(input_tensor):
# Pressure -direction integral
B, pressure_level_num , H, W = input_tensor.shape
input_tensor = input_tensor.reshape(B, pressure_level_num , H*W)
output = M_z.to(input_tensor.dtype).to(input_tensor.device) @

input_tensor
output = output.reshape(B, pressure_level_num , H, W)
return output

Mx obtains the integral through matrix multiplication. Given the input matrix x below, the result of
xMx is:

x =

[
1 4
2 5
3 6

]
, xMx =

[
1 4
2 5
3 6

][
1 1
0 1

]
=

[
1 1 + 4
2 2 + 5
3 3 + 6

]
. (24)

Differentials in x-direction (latitude direction) is implemented with PyTorch as follows:

def d_x(input_tensor):
# Latitude -direction differential
B, C, H, W = input_tensor.shape
conv_kernel = torch.zeros([1,1,1,5], device=input_tensor.device ,

dtype=input_tensor.dtype ,
requires_grad=False)

conv_kernel[0,0,0,0] = 1
conv_kernel[0,0,0,1] = -8
conv_kernel[0,0,0,3] = 8
conv_kernel[0,0,0,4] = -1

input_tensor = torch.cat(( input_tensor[:,:,:,-2:],
input_tensor ,
input_tensor[:,:,:,:2]), dim=3)

_, _, H_ , W_ = input_tensor.shape

input_tensor = input_tensor.reshape(B*C, 1, H_ , W_)
output_x = F.conv2d(input_tensor , conv_kernel)/12
output_x = output_x.reshape(B, C, H, W)
output_x = output_x/pixel_x.to(output_x.dtype).to(output_x.device)

return output_x

Kx is the convolution kernel. Assume a one-dimensional input data x = [−2,−1, 0, 1, 2]. It gradually
increases from left to right by 1, that is, its gradient is 1. Applying convolution kernel Kx to x,
the result is: Conv(x,Kx) =

(−2)×1+(−1)×(−8)+0×0+1×8+2×(−1)
12 = 1. By using this convolution

kernel, the data gradient can be determined.

Differentials in y-direction (longitude direction) is implemented with PyTorch as follows:

def d_y(input_tensor):
# Longitude -direction differential
B, C, H, W = input_tensor.shape
conv_kernel = torch.zeros([1,1,5,1], device=input_tensor.device ,

dtype=input_tensor.dtype ,
requires_grad=False)

conv_kernel[0,0,0] = -1
conv_kernel[0,0,1] = 8
conv_kernel[0,0,3] = -8
conv_kernel[0,0,4] = 1

17

23341 https://doi.org/10.52202/079017-0734



input_tensor = torch.cat(( input_tensor[:,:,:2],
input_tensor ,
input_tensor[:,:,-2:]), dim=2)

_, _, H_ , W_ = input_tensor.shape

input_tensor = input_tensor.reshape(B*C, 1, H_ , W_)
output_y = F.conv2d(input_tensor , conv_kernel)/12
output_y = output_y.reshape(B, C, H, W)
output_y = output_y/pixel_y

return output_y

Differentials in p-direction (pressure levels direction) is implemented with PyTorch as follows:

def d_z(input_tensor):
# Pressure -direction differential
conv_kernel = torch.zeros([1,1,5,1,1], device=input_tensor.device ,

dtype=input_tensor.dtype ,
requires_grad=False)

conv_kernel[0,0,0] = -1
conv_kernel[0,0,1] = 8
conv_kernel[0,0,3] = -8
conv_kernel[0,0,4] = 1

input_tensor = torch.cat(( input_tensor[:,:2],
input_tensor ,
input_tensor[:,-2:]), dim=1)

input_tensor = input_tensor.unsqueeze(1) # B, 1, C, H, W
output_z = F.conv3d(input_tensor , conv_kernel)/12
output_z = output_z.squeeze(1)
output_z = output_z/pixel_z.to(output_z.dtype).to(output_z.device)

return output_z

C Hyperparameter Details

Hyperparameter Value

Max epoch 50
Batch size 4x8 (GPUs)
Learning rate 5e-4
Learning rate schedule Cosine
Patch size 4x4
Embedding dimension 1024
MLP ratio 4
Activation function GLUE
Input (0-hour) [4, 69, 128, 256]
Output (1, 3, 6-hour) [4, 3, 69, 128, 256]

Table 5: Hyperparameters of the Model

Datasets Training set Validation set Test set Time resolution Variable

WeatherBench 1980-2014 2015 2017-2018 1h tp, t2m, u10, v10, z, q, u, v, t
NASA None None 2017-2018 30min tp

Table 6: Datasets Information
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D Additional Experiments

D.1 Prediction Bias Evaluation

Bias [2, 8, 56] indicates the disparity between the model’s predictions and the ground truth. Negative
bias indicates underestimation, a prevalent issue in forecasting models. Although the PDE kernel was
not specifically designed to address bias underestimation, experimental results indicate that its usage
helps ameliorate underestimation.

bias = pred− gt (25)

Figure 9: Bias. The closer to 0 the better.

D.2 Prediction Energy Evaluation

This assesses the energy [24] changes in the model’s predictions. The experiments reveal that
employing the PDE kernel aids in energy preservation.

energy =
1

2

(
u2 + v2

)
+

cp
2Tr

T 2 (26)

Figure 10: Left. Energy: the more consistent the better. Right. The norms of the outputs from the
two networks are similar and stable. This indicates: a) The two networks produce outputs on the
same scale. b) The router is decoupled and dynamically selects the more crucial features from the
two branches without affecting the scale of the two networks.

D.3 Router Weights and Features Norm Change

Figure 10 complements Figure 7 in the paper. It illustrates that physical and AI features are on a
comparable scale, with the router dynamically selecting the more effective aspects from each. The
router’s weight adjustments do not impact the output of the AI or physical branches, highlighting the
router’s decoupling characteristics.

E Code Of Ethics and Broader Impacts

Our research is ethical. The physical and AI hybrid model proposed in this paper can be used for
global weather forecasting, which can serve many fields such as transportation and agriculture, and
bring huge benefits to society.

19

23343 https://doi.org/10.52202/079017-0734



The dataset used in this paper is public and there are no issues of infringement or privacy leakage.
The experiments conducted in this paper are fair and reproducible. The resource consumption during
the experiments is minimal and will not have an impact on the environment and society.

The model we propose is free of bias and discrimination issues. We open-source the model code and
checkpoints on GitHub.

F Safeguard of Model

This paper presents a hybrid physics-AI model for global weather forecasting. It is important to
acknowledge that all models inherently carry a certain degree of forecasting error. Hence, the model
proposed in this paper should not be solely relied upon as the sole basis for predicting significant
events. Instead, it is recommended to integrate the findings from this model with other models and
expert insights to draw comprehensive and informed conclusions.

G Assets

Our study adheres to the licenses governing the usage of existing assets, as the data utilized in this
paper are publicly available and permitted for academic research purposes.

The model introduced in this paper represents a novel contribution and is considered a new asset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We demonstrate the contribution and scope of the paper in the Abstract and
Introduction 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We show the limitations of our paper in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We present the assumptions and proofs in Section 3.3 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show the configuration required to reproduce the experiment in 4.1. We
show part of the model code in Appendix B, and the complete model code is released on
GitHub.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper uses the public datasets, there is no requirement to release the data.
We show part of the model code in Appendix B, and the complete model code is released on
GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setup and details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show a detailed and correct error assessment in Section 4.2 and Section
4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We present the computational resources of our experiments in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We explain in Appendix E that our research is ethical.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We show Broader Impacts in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We explain the safeguards of the model in Appendix F.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explain the usage of the existing assets in Appendix G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We explain the new assets in Appendix G.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This study does not include crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research is not related to Institutional Review Board (IRB) Approvals or
Equivalent for Research with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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