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Abstract

In recent years, there has been significant research focusing on addressing security
concerns in single-modal person re-identification (ReID) systems that are based
on RGB images. However, the safety of cross-modality scenarios, which are more
commonly encountered in practical applications involving images captured by
infrared cameras, has not received adequate attention. The main challenge in
cross-modality ReID lies in effectively dealing with visual differences between
different modalities. For instance, infrared images are typically grayscale, unlike
visible images that contain color information. Existing attack methods have primar-
ily focused on the characteristics of the visible image modality, overlooking the
features of other modalities and the variations in data distribution among different
modalities. This oversight can potentially undermine the effectiveness of these
methods in image retrieval across diverse modalities. This study represents the first
exploration into the security of cross-modality ReID models and proposes a univer-
sal perturbation attack specifically designed for cross-modality ReID. This attack
optimizes perturbations by leveraging gradients from diverse modality data, thereby
disrupting the discriminator and reinforcing the differences between modalities.
We conducted experiments on three widely used cross-modality datasets, namely
RegDB, SYSU, and LLCM. The results not only demonstrate the effectiveness of
our method but also provide insights for future improvements in the robustness of
cross-modality ReID systems.

1 Introduction

With the rapid advancement of surveillance technology, person re-identification (ReID) [1–4] has
emerged as a pivotal component in the realm of security, garnering escalating attention. ReID
constitutes a fundamental task in computer vision [5–9], aiming to precisely identify the same
individual across diverse locations and time points by analyzing pedestrian images captured through
surveillance cameras [10]. The challenges inherent in this task encompass factors such as changes
in viewpoint, lighting conditions [11, 12], occlusion [13, 14], and pose variations, culminating in
significant appearance variations of the same individual across distinct camera views [15].

In traditional ReID, where samples are image-based, the conventional methodology centers on
matching visible to visible (RGB to RGB) data. However, when dealing with diverse scenarios and
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Figure 1: Comparison between traditional and proposed methods: Fig.(a) illustrates traditional attack
methods (e.g., FGSM [16], PGD [17]), which are primarily designed for single-modal tasks and lack
mechanisms to associate multiple modalities, making them ineffective in simultaneously misleading
retrieval results across different modalities. Fig.(b) illustrates the proposed method, which employs
an intrinsic mechanism to effectively associate different modalities, thereby misleading retrieval
results across multiple modalities simultaneously.

conditions, especially involving multiple image modalities such as RGB and infrared images, the
system needs to intricately handle the differences in images from different modalities [18–20]. This
is essential to ensure that the system exhibits better robustness across different modalities. Hence,
cross-modality ReID is considered more challenging due to the need for addressing these modality
differences [21, 22].

Cross-modal ReID [23, 24, 21, 25] plays a crucial role in significantly expanding the applicability
of traditional ReID methods, focusing on addressing complex matching issues between different
image modalities. In practical surveillance systems, the simultaneous use of multiple sensors, such as
RGB cameras and infrared cameras, is a common scenario. This task requires innovative solutions
to effectively bridge the differences between various modalities, ensuring robust and accurate re-
identification of pedestrians in heterogeneous sensor outputs.

Currently, most research on the security of ReID focuses on single-modality systems based on
RGB images [26–31], while the security of cross-modality ReID systems has received insufficient
attention. The challenge in cross-modality attacks arises from significant visual differences among
different modality inputs, requiring attackers to effectively capture shared features from each modality
for perturbation implementation. However, as shown in Fig. 1, existing attack methods in cross-
modal scenarios require optimizing perturbations separately for each modality, lacking an intrinsic
mechanism to capture shared knowledge between different modalities, which limits the success rate
of the attacks. To address this issue, we propose a synergistic optimization method combined with
triplet loss, utilizing information from different modalities to optimize the universal perturbation.
This method pushes the features of different samples into a common sub-region that affects the
model’s accuracy, as shown in Fig. 2.

Specifically, we propose the Cross-Modality Perturbation Synergy (CMPS) method, a universal pertur-
bation approach designed specifically for cross-modality ReID systems. This method simultaneously
leverages gradient information from multiple modalities to jointly optimize universal perturbations
across visible and infrared images. CMPS incorporates cross-modality triplet loss to ensure fea-
ture consistency across different modalities, enhancing the generality of the perturbation. During
the synergistic optimization process, CMPS iteratively updates gradients from various modalities
within a unified optimization framework, effectively capturing and utilizing shared features across
modalities. To further reduce visual differences between modalities, we introduce cross-modality
attack augmentation, converting images into grayscale to standardize their visual representation and
facilitate the learning of modality-agnostic perturbations. As a result, these universal perturbations
push the features of different samples toward a common region in the feature space, significantly di-
minishing the model’s ability to accurately distinguish identities in cross-modality scenarios, thereby
successfully deceiving the model.
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Figure 2: Illustration of the CMPS attack framework. We generate homogeneous grayscale images
through random grayscale transformations to reduce the differences between modalities, aiding in
the learning of a universal perturbation. The process is as follows: first, the gradient from one
modality is used to optimize the universal perturbation, which is then applied to another modality’s
images to generate adversarial samples for attacks. The new modality’s gradient is then used to
further optimize the perturbation and attack the next modality. By aggregating feature gradients
from different modalities, we iteratively learn a universal perturbation, pushing samples toward a
common region in the manifold. The manifold is represented as a sphere, with identical shapes but
different colors representing the same person’s features across modalities. This method captures
shared knowledge between modalities, enabling more effective learning of cross-modal universal
perturbations.

In our experiments on widely utilized cross-modality ReID datasets, including RegDB [32],
SYSU [33] and LLCM [24], we not only showcase the effectiveness of our proposed method
but also provide insights for fortifying the robustness of cross-modality ReID systems in the future.
This research contributes by bridging gaps in current studies and introducing novel perspectives to
study the security challenges in cross-modality ReID systems.

The main contributions of our work can be summarized as:

• To the best of our knowledge, our work is the first to investigate vulnerabilities in cross-modality
ReID models. By explicitly incorporating cross-modality constraints into the synergistic optimization
process, we enhance the universality of the learned cross-modality perturbations. Additionally, we
provide mathematical analysis to demonstrate the superiority of our proposed method over traditional
approaches.

•We propose a cross-modality attack augmentation method, utilizing random grayscale transforma-
tions to narrow the gap between different modalities, aiding our cross-modality perturbation synergy
attack in better capturing shared features across modalities.

• Extensive experiments conducted on three widely used cross-modality ReID benchmarks demon-
strate the effectiveness of our proposed cross-modality attack. Our method exhibits good transfer-
ability even when attacking different models. The code will be available at https://github.com/
finger-monkey/cmps__attack.

2 Related Works

Adversarial Attack. Adversarial attacks are a technique involving the clever design of small input
perturbations with the aim of deceiving machine learning models, leading them to produce misleading
outputs. This form of attack is not confined to the image domain but extends to models in various
fields, including speech [34] and text [35–37]. Typically, the goal of adversarial attacks is to tweak
input data in a way that causes the model to make erroneous predictions when handling these
subtly modified samples [16, 38–40]. In the early stages of research, adversarial attacks had to
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be customized for each specific sample. However, with the evolution of related studies, universal
perturbation [41] attacks were introduced, aiming to find perturbations effective across multiple
samples rather than tailored to individual instances. Research on universal perturbation attacks seeks
to expose vulnerabilities in models, prompting designers to enhance their robustness to withstand a
broader range of adversarial challenges.

Adversarial Attacks in ReID. Some ReID attack methods have been proposed, with current research
predominantly focusing on RGB-RGB matching. These methods mainly include: Metric-FGSM [29]
extends some techniques, inspired by classification attacks, into a category known as metric attacks.
These encompass Fast Gradient Sign Method (FGSM) [16], Iterative FGSM (IFGSM), and Momen-
tum IFGSM (MIFGSM) [42]. The Furthest-Negative Attack (FNA) [30] integrates hard sample
mining [43] and triple loss to employ pushing and pulling guides. These guides guide image features
towards the least similar cluster while moving away from other similar features. Deep Mis-Ranking
(DMR) [31] utilizes a multi-stage network architecture to pyramidally extract features at different
levels, aiming to derive general and transferable features for adversarial perturbations. Gong et
al. [28] proposed a local transformation attack (LTA) method specifically aimed at attacking color
features without requiring additional reference images, and discussed effective defense strategies
against current ReID attacks. The Opposite-direction Feature Attack (ODFA) [26] exploits feature-
level adversarial gradients to generate examples that guide features in the opposite direction with an
artificial guide. Yang et al. [27] introduced a combined attack named Col.+Del., which integrates
UAP-Retrieval [44] with color space perturbations [45]. While this method also explores universal
perturbations in ReID, its generality is limited due to the inability to leverage color information in
cross-modality problems and the lack of a mechanism for associating different modality information.
In contrast to the aforementioned approaches, our focus lies on addressing cross-modality challenges.

Algorithm 1 Procedure of CMPS attack
1: Input: Visible images IRGB and infrared (or thermal) images Iir from dataset S, cross-modality

ReID model f trained on S, adversarial bound ϵ, momentum value θ, iteration step size α,
iteration epoch iter_epoch.

2: Output: Cross-modality universal perturbation η.
3: Initialize η with random noise η ← Rand(0, 1), ∆0 = 0.
4: for i in iter_epoch do
5: repeat
6: Sample a mini-batch of visible images IRGB and infrared (or thermal) images Iir with n

samples
7: ÎRGB ← IRGB + η
8: Use infrared images to compute the triplet loss LRGB for visible images (Eq. 4)
9: Compute gradient ∆RGB of LRGB w.r.t. η:

10: ∆RGB ← θ ·∆i−1 + ∂LRGB

∂η

11: Update perturbation η:
12: η ← clip(η + α · sign(∆RGB),−ϵ, ϵ)
13: Îir ← Iir + η
14: Use visible images to compute the triplet loss Lir for infrared images (Eq. 7)
15: Compute gradient ∆ir of Lir w.r.t. η:
16: ∆i ← θ ·∆RGB + ∂Lir

∂η

17: Update perturbation η:
18: η ← clip(η + α · sign(∆i),−ϵ, ϵ)
19: until all mini-batches are processed
20: end for
21: return η

3 Methodology

In this section, we introduce a universal perturbation designed for cross-modality attacks, referred to
as the Cross-Modality Perturbation Synergy (CMPS) attack. Considering the significant differences
between different modalities, we propose a attack augmentation method to bridge the gap between
modalities, aiding in enhancing the perturbation’s universality across different modalities. Our
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objective in addressing this problem is to find a universal adversarial perturbation, denoted as η,
capable of misleading the retrieval ranking results of cross-modality ReID models. The adversarial
operation involves adding η to a query image I . The perturbed query image, denoted as Iadv = I + η,
is then used to retrieve from the gallery and deceive the cross-modality ReID model f . The algorithm
is summarized in Alg. 1.

3.1 Overall Framework

In Fig. 2, we illustrate the overall framework of the proposed CMPS attack. During the training phase,
we optimize η using our cross-modality attack augmentation method, which leverages images from
different modalities to bridge their inherent differences and enhance cross-modality universality. In
the attack phase, the optimized η deceives reID models, leading to inaccurate ranking lists. Section
3.2 outlines the framework and overall optimization objective, providing a macro-level overview.
Section 3.4 delves into the specific process of perturbation optimization across different modalities.

3.2 Optimizing Loss Functions for Attacking

Our study aims to deceive cross-modality ReID models using a universal perturbation. We have
specifically designed a triplet loss tailored for our proposed attack method, which can correlate
different modalities and influence the distance relationships between images from different modalities.

We follow the approach of [44] to optimize the perturbation using cluster centroids. This method
directly impacts the similarity between pedestrian identities in the ReID model’s feature space (rather
than the similarity between individual samples), making it more effective. Subsequently, leveraging
the acquired cluster centroids, we apply our triplet loss to distort the pairwise relations between
pedestrian identities. This process can be represented as follows:

L = max
[(
∥Cn

g − fadv
RGB∥2 − ∥C

p
ir − fadv

RGB∥2 + ρ
)
, 0
]

+max
[(
∥Cn

ir − fadv
g ∥2 − ∥Cp

RGB − fadv
g ∥2 + ρ

)
, 0
]

+max
[(
∥Cn

RGB − fadv
ir ∥2 − ∥Cp

g − fadv
ir ∥2 + ρ

)
, 0
]
.

(1)

As shown in Fig. 3, the loss function mentioned above fully leverages the triplet-wise relationships
across different modality. Through this loss, we are able to pull the negative samples of each modality
closer to the adversarial samples and push the positive samples of each modality away from the
adversarial samples. Here, Cp

RGB and Cn
RGB represent the cluster centroids of the positive samples

to push and negative samples to pull, respectively, in the original visible (RGB) image feature space
of the training data. Similar definitions apply to other modalities. fadv

RGB , fadv
g , and fadv

ir denote
the perturbed features of the disturbed image in the visible, grayscale, and infrared (or thermal)
modalities, respectively.

3.3 Cross-Modality Attack Augmentation Method

Intuitively, as illustrated in Fig. 4, maximizing the overlap of common factors across different modali-
ties facilitates the capture of shared features by the learned perturbation. Grayscale images, being
inherently homogeneous, serve as effective mediators between diverse modalities. Consequently, we
introduce random grayscale transformations into adversarial attack methods, referred to as Cross-
Modality Attack Augmentation. This approach guides cross-modality perturbations by leveraging
homogeneous grayscale images sourced from diverse modalities. The primary objective is to explore
the underlying structural relationships across heterogeneous modalities.

The process of grayscale transformation can be represented as follows:

t(R,G,B) = 0.299R+ 0.587G+ 0.114B, (2)

The function t(·) represents the grayscale transformation using ITU-R BT.601-7 standard weights,
combining the RGB channels of each pixel into a single grayscale channel. From this, we construct a
3-channel grayscale image xg by replicating the grayscale channel:

xg = [t(R,G,B), t(R,G,B), t(R,G,B)]. (3)
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Figure 3: Schematic illustration of triplet
relationship-guided universal perturbation
learning for cross-modality ReID.

Figure 4: Cross-modality attack augmentation:
bridging gap between visible and non-visible
(infrared) modalities with grayscale.

3.4 Cross-Modality Perturbation Synergy Attack

To synergistically utilize gradient information from diverse modalities for perturbation optimization,
narrow the gap between different modalities to better capture shared knowledge, we adopt the
following training process to generate a universal perturbation:

(1) Learning the visible modality. For a given batch of visible images with n samples, we extract and
perturb their features using the cross-modality ReID model. We update the temporary perturbation η
iteratively using Momentum-Inertia Stochastic Gradient Descent (MI-SGD), expressed as:

LRGB(f
adv
RGB , η) = max

[(
∥Cn

g − fadv
RGB∥2

− ∥Cp
ir − fadv

RGB∥2 + ρ
)
, 0
]
,

(4)

∆RGB = θ∆′
ir +

∇ηLRGB

∥∇ηLRGB∥1
, (5)

η = clip(η + α · sign(∆RGB),−ε, ε). (6)

Here, θ represents the momentum value (set as θ = 1), and ∆′
ir is derived from the previous iteration.

The iteration step size is denoted by α (set as α = ϵ
12 ), where ϵ is the adversarial bound (ϵ = 8,

unless otherwise specified). We set the margin ρ = 0.5 in our triplet loss.

(2) Learning the grayscale modality. This part is executed through data augmentation. It is not
considered as a separate module and is therefore not explicitly listed in Alg. 1. Specifically, during
the perturbation learning process, we randomly transform visible or infrared (or thermal) images into
homogeneous grayscale images, participating in the iterative optimization of adversarial perturbations.
It is employed to bridge the gap between different modalities, thereby improving the universality of
the perturbation across diverse modalities. In order to investigate the impact of different grayscale
conversion probabilities on attack performance, we conducted a series of ablation experiments. For
details, please refer to Fig. 5 in supplementary material.

(3) Learning the infrared (or thermal) modality. This step is similar to (1). We utilize the infrared
(or thermal) images to learn the perturbation η with the our loss functions:

Lir(f
adv
ir , η) = max

[(
∥Cn

RGB − fadv
ir ∥2

− ∥Cp
g − fadv

ir ∥2 + ρ
)
, 0
]
,

(7)

∆ir = θ∆RGB +
∇ηLir

∥∇ηLir∥1
, (8)
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η = clip(η + α · sign(∆ir),−ε, ε). (9)

Here, ∆RGB derived from step (1). The main difference compared to the previous step lies in the
perturbation applied to the input and the gradients related to momentum.

Theoretical Analysis. In traditional optimization, optimizing for one modality can render the
perturbation suboptimal for the other, leading to a bias toward a single modality. In contrast, the
proposed aggregated optimization method jointly optimizes both modalities, ultimately identifying
a universal perturbation that enhances cross-modality attack performance. In the supplementary
material 7, we provide a mathematical analysis demonstrating the effectiveness of this method
compared to traditional attack methods that lack intrinsic correlations between different modalities.

4 Experiments

In this section, we compare our approach with several methods, including traditional classification
attack methods FGSM [16] and PGD [17], traditional metric attack methods like Metric-FGSM [29],
as well as state-of-the-art ReID attack methods such as LTA [28] *, ODFA[26] and Col.+Del.[27].

Datasets. We evaluate our proposed method on two commonly used cross-modality ReID datasets:
SYSU-MM01 [33], RegDB [32] and LLCM [24]. SYSU-MM01 is a large-scale dataset with 395
training identities, captured by 6 cameras (4 RGB, 2 near-infrared) on the SYSU campus. It comprises
22,258 visible and 11,909 near-infrared images. The testing set consists of 95 identities with two
evaluation settings. The query sets include 3803 images from two IR cameras. We conduct ten trials
following established methods [46] and report the average retrieval performance. Please refer to [33]
for the evaluation protocol. RegDB [32] is a smaller-scale dataset with 412 identities, each having
ten visible and ten thermal images. we randomly select 206 identities (2,060 images) for training and
use the remaining 206 identities (2,060 images) for testing. LLCM is a dataset designed specifically
for cross-modality ReID in low-light environments. Compared to other datasets, its diverse scenarios
and low-light conditions present greater challenges for attackers. This complexity and uncertainty
make adversarial attacks more difficult to execute. We assess our model in two retrieval scenarios:
visible-thermal and thermal-visible performance.

Evaluation Metrics. Following existing works [47], we employ Rank-k precision and Cumulative
Matching Characteristics (CMC) and mean Average Precision (mAP) as evaluation metrics. Rank-1
represents the average accuracy of the top-ranked result corresponding to each cross-modality query
image. mAP represents the mean average accuracy, where the query results are sorted based on
similarity, and the closer the correct result is to the top of the list, the higher the precision. Please
note that, for adversarial attacks, a lower accuracy indicates a more successful attack.

4.1 Performance on Cross-Modality ReID

We used AGW [21] and DDAG [25] as baseline models for testing on the RegDB and SYSU
cross-modality ReID datasets. AGW (Attention Generalized mean pooling with Weighted triplet
loss) enhances the learning capability of crucial features by integrating non-local attention blocks,
learnable GeM pooling, and weighted regularization triplet loss. DDAG (Dynamic Dual-Attentive
Aggregation) improves feature learning by combining intra-modality weighted-part attention and
cross-modality graph structured attention, considering both part-level and cross-modal contextual
cues. Additionally, we use DEEN [24] (Diverse Embedding Expansion Network) as baseline models
for testing on the LLCM [24] cross-modality ReID datasets. The core idea of DEEN is to enhance
the feature representation capability by introducing a diversity embedding mechanism. The network
expands the embedding space, allowing features from visible and infrared images to align better in a
high-dimensional space, thereby improving the accuracy of cross-modality matching.

The experiments encompass two scenarios: 1) Perturbing visible images (query) to disrupt the
retrieval of infrared or thermal non-visible images (gallery). This is denoted as "Visible to Infrared"
in Tab.1 and "Visible to Thermal" in Tab.2. 2) Perturbing infrared or thermal non-visible images
(query) to interfere with the retrieval of visible images (gallery). This is indicated as "Infrared to
Visible" in Tab.1 and "Thermal to Visible" in Tab.2.

*The LTA code is available at: https://github.com/finger-monkey/LTA_and_joint-defence

7

23358 https://doi.org/10.52202/079017-0735



Table 1: Results for attacking cross-modality ReID systems on the SYSU [33] dataset. It reports on
visible images querying infrared images and vice versa. Rank at r accuracy (%) and mAP (%) are
reported. For the "Visible to Infrared" scenario, we used the all-search mode. For the "Infrared to
Visible" scenario, we used the indoor-search mode.

Settings Visible to Infrared Infrared to Visible

Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

AGW baseline [21] TPAMI 2022 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
FGSM attack [16] ICLR 2015 42.64 81.21 89.32 43.67 48.05 86.73 92.11 53.22
PGD attack [17] ICLR 2018 39.14 76.80 85.42 40.91 43.68 82.54 89.14 48.56
M-FGSM attack [29] TPAMI 2020 25.79 49.04 57.96 19.24 20.56 38.91 46.35 15.89
LTA attack [28] CVPR 2022 8.42 21.25 27.98 9.16 20.92 32.18 36.80 15.24
ODFA attack [26] IJCV 2023 25.43 47.49 56.38 19.00 14.62 29.92 36.42 11.35
Col.+Del. attack [27] TPAMI 2023 3.23 14.48 20.15 3.27 4.12 16.85 21.27 3.89
Our attack NeurIPS 2024 1.11 8.67 16.14 1.41 1.31 7.47 10.36 1.23

DDAG baseline [25] ECCV 2020 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
FGSM attack [16] ICLR 2015 48.27 86.02 91.34 49.55 53.87 90.15 94.58 57.84
PGD attack [17] ICLR 2018 50.62 88.30 93.12 51.89 56.10 91.54 96.13 59.22
M-FGSM attack [29] TPAMI 2020 28.36 52.47 60.76 23.11 24.85 40.74 49.23 18.40
LTA attack [28] CVPR 2022 10.54 23.08 30.47 12.28 18.93 34.12 41.52 15.04
ODFA attack [26] IJCV 2023 27.75 50.26 59.14 22.30 17.62 32.64 40.03 14.83
Col.+Del. attack [27] TPAMI 2023 4.28 16.12 21.36 3.97 6.28 19.53 25.61 5.21
Our attack NeurIPS 2024 1.62 7.59 14.46 1.84 1.45 7.71 10.72 1.25

Table 2: Results for attacking cross-modality ReID systems on the RegDB [32] dataset. It reports on
visible images querying thermal images and vice versa. Rank at r accuracy (%) and mAP (%) are
reported.

Settings Visible to Thermal Thermal to Visible

Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

AGW baseline [21] TPAMI 2022 70.05 86.21 91.55 66.37 70.49 87.21 91.84 65.90
FGSM attack [16] ICLR 2015 66.79 83.14 88.46 61.05 65.42 81.98 87.20 60.12
PGD attack [17] ICLR 2018 62.14 80.28 85.10 57.34 63.71 78.82 84.05 58.42
M-FGSM attack [29] TPAMI 2020 29.34 52.90 61.44 23.35 23.64 40.36 48.61 18.57
LTA attack [28] CVPR 2022 12.65 25.24 34.02 12.80 10.51 22.93 31.79 9.74
ODFA attack [26] IJCV 2023 28.57 51.42 60.58 21.84 17.26 33.27 42.92 15.27
Col.+Del. attack [27] TPAMI 2023 5.12 16.83 22.10 4.94 4.92 14.47 23.04 4.86
Our attack NeurIPS 2024 2.29 9.06 18.35 3.92 1.93 11.44 19.30 3.46

DDAG baseline [25] ECCV 2020 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
FGSM attack [16] ICLR 2015 61.83 80.12 86.47 55.78 60.94 78.35 84.09 56.91
PGD attack [17] ICLR 2018 64.58 81.39 87.20 58.45 62.17 79.02 85.27 57.69
M-FGSM attack [29] TPAMI 2020 30.86 54.16 61.98 24.01 25.83 42.12 49.76 19.33
LTA attack [28] CVPR 2022 11.65 23.20 32.73 11.41 9.76 21.53 29.96 9.23
ODFA attack [26] IJCV 2023 29.64 52.74 60.74 23.88 24.06 39.75 46.25 18.64
Col.+Del. attack [27] TPAMI 2023 4.68 13.55 18.57 4.39 4.23 12.75 20.82 4.05
Our attack NeurIPS 2024 1.33 10.28 19.06 3.79 1.35 9.52 17.52 3.19

From Tab.1, it can be seen that the proposed method reduces the rank-1 accuracy to below 2%
in both the ’Visible to Infrared’ and ’Infrared to Visible’ cases. Similarly, from Tab.2, the rank-1
accuracy drops below 3% in both the ’Visible to Thermal’ and ’Thermal to Visible’ scenarios. In
contrast, traditional metric-based attacks, such as Metric-FGSM (M-FGSM)[29], LTA [28] and
ODFA[26], lead to attacked models with significantly higher rank-1 accuracy, whereas traditional
classification attacks (such as FGSM [16] and PGD [17]) perform even worse, with rank-1 accuracy
remaining over 60%. This is because ReID relies on metric learning for feature matching rather
than category classification, requiring attacks specifically tailored for metric learning. These results
indicate that, compared to traditional methods that optimize perturbations separately for each modality
without considering the inherent correlations between different modalities, our proposed approach
demonstrates significant attacking effectiveness across different modalities.

Comparison with State-of-the-Art. Col.+Del., as a universal perturbation method, was fairly
compared by first optimizing with one modality’s dataset and then fine-tuning with the other modality.
Since universal perturbations capture shared patterns across the entire data distribution, Col.+Del. is
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Table 3: Results for attacking cross-modality ReID systems on the LLCM [24] dataset. It reports on
visible images querying thermal images and vice versa. Rank at r accuracy (%) and mAP (%) are
reported.

Settings Visible to Infrared Infrared to Visible

Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

DEEN baseline [21] CVPR 2023 62.53 90.31 94.73 65.84 54.96 84.92 90.91 62.95
M-FGSM attack [29] TPAMI 2020 28.48 64.92 75.12 32.88 25.64 61.45 78.31 30.46
LTA attack [28] CVPR 2022 15.16 56.42 67.53 21.47 19.54 58.25 70.72 24.86
ODFA attack [26] IJCV 2023 26.34 65.24 76.92 30.85 23.73 62.46 73.57 29.63
Col.+Del. attack [27] TPAMI 2023 8.61 22.73 36.07 15.72 9.13 20.76 38.02 16.31
Our attack NeurIPS 2024 5.83 18.14 27.56 12.47 6.42 19.53 28.54 12.23

capable of achieving some level of attack effectiveness in cross-modality scenarios. However, by
comparing Tab.1, Tab.2, and Tab.3, we observe that although Col.+Del. performs better than other
methods, its effectiveness is still noticeably limited due to the lack of intrinsic correlation mechanisms
between modalities. Moreover, as shown in Fig.6, our method outperforms Col.+Del. in transfer
attacks across different baselines in cross-modality ReID. The conclusions from these experiments
are as follows: 1) In cross-modality attacks, Col.+Del. demonstrates the feasibility of universal
perturbations. However, its performance is limited by its failure to account for modality differences
and inherent correlations. 2) Our method better bridges the gap between different modalities, more
effectively capturing shared features across them.

4.2 Transferability of CMPS

From Fig.6 in supplemental material, the results of the proposed method’s transfer attacks on two
baseline models, AGW and DDAG, can be observed. For example, on the SYSU dataset, the original
attack result of the proposed method on DDAG is mAP=1.84% (refer to Tab. 1). When the perturbation
is transferred from AGW to DDAG, the attack result becomes mAP=3.41%. This indicates that the
proposed attack method exhibits good generalization across different models, and thus, the attack
performance does not degrade significantly. This consistent result is observed on both the RegDB
and SYSU datasets. Similarly, in Fig.7 of the supplemental material, we evaluate the cross-dataset
transferability of perturbations in comparison with Col.+Del. The results demonstrate a significant
advantage of our method. Additionally, we conducted adversarial transferability experiments on
IDE [48], PCB [49], and ResNet18 [50]. The rank-1 transfer attack success rates are presented in
Tab.4. It can be observed that our method consistently achieves higher transfer attack success rates
across all model combinations compared to Col.+Del., indicating that our method demonstrates
stronger robustness in generating more universal adversarial perturbations.

Table 4: Comparison of transfer attack success rates between our method and Col.+Del. across
models, with higher values indicating better transferability.

Source \Target Model IDE (Ours/Col.+Del.) PCB (Ours/Col.+Del.) ResNet18 (Ours/Col.+Del.)

IDE [48] 98.7% / 94.3% 84.5% / 81.2% 87.4% / 86.1%
PCB [49] 85.1% / 80.4% 97.6% / 92.8% 88.3% / 85.7%
ResNet18 [50] 81.0% / 78.5% 77.5% / 74.9% 98.2% / 95.6%

4.3 Ablation Study

Our method is implemented based on UAP-Retrieval [44]. To validate the effectiveness of the
proposed method, we conducted experiments by adding augmentation (Cross-Modality Attack
Augmentation) and CMPS to the baseline. Results with AGW baseline model are reported in Tab. 5.
The No.1 line represents the UAP-Retrieval algorithm. In the table, ’Aug’ indicates the use of the
Cross-Modality Attack Augmentation proposed in this paper.

The effectiveness of CMPS. Comparing No.1 with No.3 and No.4, we observe the following: 1)
The direct use of UAP-Retrievals yields limited performance. 2) Training with the CMPS strategy
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Table 5: Ablation studies on the AGW baseline. ’Aug’ denotes the cross-modality attack augmentation
method proposed in this paper.

No. RegDB SYSU Aug CMPS

mAP rank-1 mAP rank-1

1 6.87 5.53 4.76 5.09 × ×
2 5.11 4.02 3.85 4.37 ✓ ×
3 3.98 2.17 3.42 3.82 × ✓
4 3.46 1.93 1.23 1.31 ✓ ✓

proposed in this paper consistently improves the performance of attack results and the universality of
learned perturbations.

The effectiveness of augmentation method. Our approach includes cross-modality attack aug-
mentation. Comparing results of No.1, No.2, and No.4 shows its benefits. For example, on the
RegDB dataset, augmentation (No.2) reduces mAP from 6.87% to 5.11%, 1.76% lower than without
augmentation (No.1). Similarly, with CMPS, mAP drops from 3.98% to 3.46% (No.4), a 0.52%
decrease compared to No.3. These findings suggest that using appropriate augmentation enhances
cross-modality ReID adversarial attacks’ universality. If not specified, our experiments default to
using CMPS augmentation. Fig. 5 in the supplementary materials displays the experimental results
of our augmentation performed at different probabilities. It can be observed that when the probability
value is around 20%, it achieves optimal effectiveness in assisting the attack. If not specified, a
probability value of 20% for augmentation is used by default in experiments.

Impact of adversarial boundary size. We conducted an ablation study on different adversarial
boundary sizes (ϵ), as shown in the supplementary material 6. In practical applications, ϵ is typically
kept moderate to balance perturbation visibility and attack effectiveness. To maintain consistency
with previous work [27], we set ϵ = 8 for comparison unless otherwise specified.

5 Conclusion

In this study, we have proposed a cross-modality attack method known as Cross-Modality Perturbation
Synergy (CMPS) attack, aimed at evaluating the security of cross-modality ReID systems. The core
idea behind the CMPS attack is to capture shared knowledge between visible and non-visible images
to optimize perturbations. Additionally, we proposed a Cross-Modality Attack Augmentation method,
utilizing grayscale images to bridge the gap between different modalities, further enhancing the
attack performance. Through experiments conducted on the RegDB, SYSU and LLCM datasets,
we demonstrated the effectiveness of the proposed method while also revealing the limitations of
traditional attack approaches. The primary objective of this study has been to assess the security
of cross-modality ReID systems. In future research, on the one hand, we will continue to improve
the transferability of cross-modality attacks across different datasets and models; on the other hand,
we plan to develop robust ReID methods specifically tailored for cross-modality attacks, aimed at
defending against adversarial samples. This study not only contributes to advancing the understanding
of the security of cross-modality ReID systems but also provides strong motivation for ensuring the
reliability and security of these systems in real-world applications.
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6 Supplemental Experiments

Our experiments were conducted using three RTX 2080 Ti GPUs, each with 11GB of memory.

Figure 5: The impact of different grayscale transformation probabilities on attack performance.
Lower evaluation metrics indicate higher attack success rates. The experimental results are derived
from experiments on the RegDB dataset using AGW as the baseline model for testing.

Figure 6: Transferability experiments of the proposed method across different models on the RegDB
dataset (visible to thermal). Transferability experiments of the proposed method across different
models on the SYSU dataset (visible to Infrared).
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Figure 7: Comparison of Transferability Between Different Methods on Two Cross-Modal Datasets
SYSU and RegDB.

Table 6: Using the AGW baseline on the RegDB dataset, we conduct an ablation study to evaluate
the impact of the adversarial boundary ϵ on the effectiveness of the proposed CMPS attack (rank-1
accuracy).

Adversarial Boundary (ϵ) Visible to Thermal Thermal to Visible
- 70.0% 70.5%
2 32.7% 40.5%
4 9.6% 13.8%
8 2.3% 2.0%
16 0.3% 0.5%
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7 Proof of Method Superioritys

We design a cross-modality triplet loss to simultaneously optimize two modalities, which effectively captures
common features between different modalities and enhances the cross-modality adaptability of universal
perturbations.

7.1 Definition of Cross-Modality Triplet Loss

The cross-modality triplet loss aims to optimize the model by adjusting the distance relationships among triplet
samples (anchor, positive, negative) so that samples of the same identity are closer, while samples of different
identities are farther apart. Specifically, given samples (xA, xP, xN), where:

• xA is the anchor sample,

• xP is the positive sample with the same identity as the anchor (from a different modality),

• xN is the negative sample with a different identity from the anchor.

The triplet loss function is defined as:

Ltriplet = max (0, D(f(xA), f(xP))−D(f(xA), f(xN)) + α) (10)

where D(·, ·) denotes the distance metric (e.g., Euclidean distance), and α is a margin hyperparameter.

Mathematically, given the cross-modality triplet loss:

Ltriplet = max
((

∥Cn
g − fadv

RGB∥2 − ∥Cp
ir − fadv

RGB∥2 + ρ
)
, 0
)

(11)

We can view it as part of the sum of the loss functions for two modalities:

LA(η) = ∥Cn
g − fadv

RGB∥2 (12)

LB(η) = ∥Cp
ir − fadv

RGB∥2 (13)

Thus, the overall optimization objective can be expressed as:

η∗
agg = argmin

η
(LA(η) + LB(η) + ρ) (14)

This form effectively aggregates the losses of different modalities, thereby optimizing the loss functions of
different modalities simultaneously, achieving joint optimization of cross-modality data. This approach trains
universal perturbations with better generalization capabilities than methods that consider only single-modality
information.

7.2 Proof of Aggregated Optimization Superiority

Assume we have data from two modalities: modality A and modality B. Let LA(η) and LB(η) be the loss
functions on modality A and modality B, respectively. The objective of single-modality training is:

min
η

LA(η) + LB(η) (15)

The stepwise optimization method first optimizes LA(η) and then optimizes LB(η):

η∗ = argmin
η

LA(η) → η∗∗ = argmin
η

LB(η
∗) (16)

The aggregated optimization of the two loss functions is:

η∗
agg = argmin

η
(LA(η) + LB(η)) (17)

Using the gradient aggregation method, it can be expressed as:

∇ηLagg = ∇η (LA(η) + LB(η)) (18)

Next, we consider the different optimization paths of the two methods.
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7.2.1 Stepwise Optimization Method

The stepwise optimization method first optimizes the loss function of modality A and then the loss function of
modality B. Assume the update rule at iteration k is:

η(k+1) = η(k) − α∇ηLA(η
(k)) (19)

After optimizing the loss function of modality A, the loss function of modality B is optimized:

η(k+1) = η(k) − α∇ηLB(η
(k)) (20)

Since the two optimization processes are separate, this may result in η being optimal for modality A but not
necessarily for modality B.

7.2.2 Aggregated Optimization Method

The aggregated optimization method considers the losses of both modalities in each iteration. Assume the update
rule at iteration k is:

η(k+1) = η(k) − α
(
∇ηLA(η

(k)) +∇ηLB(η
(k))

)
(21)

In this way, each update considers the losses of both modalities, ensuring that η approaches the optimal solution
for both modalities.

To further prove that the aggregated optimization method can find a better perturbation η, we can analyze the
existence and uniqueness of the optimal solution.

Assume LA(η) and LB(η) are continuously differentiable and convex loss functions. According to convex
optimization theory, the optimal solutions of the loss functions exist and are unique.

The optimal solution of the stepwise optimization method is:

η∗
step = argmin

η
(LA(η) + LB(η

∗)) (22)

where η∗ is the optimal solution of LA(η).

The optimal solution of the aggregated optimization method is:

η∗
agg = argmin

η
(LA(η) + LB(η)) (23)

Since η∗
step is not necessarily globally optimal for modality B, and η∗

agg is the global optimal solution considering
both modalities, we can derive:

LA(η
∗
agg) + LB(η

∗
agg) ≤ LA(η

∗
step) + LB(η

∗
step) (24)

7.3 Generalization Error Analysis

Generalization error measures the model’s performance on unseen data. We can further prove the superiority of
aggregated training through generalization error analysis.

Let Ltrain and Ltest be the losses on the training and test sets, respectively. The generalization error is defined as:

Egen = Ltest(η)− Ltrain(η) (25)

The upper bound of the generalization error can be expressed using measures such as Rademacher complexity or
VC dimension. For machine learning models, the lower the model complexity, the smaller the generalization
error. Simultaneously optimizing the losses for multiple tasks (modalities) can reduce overfitting to a single
task (modality), as the model needs to perform well on multiple tasks (modalities) simultaneously. This
effectively introduces an implicit regularization effect, reducing the model complexity. Therefore, compared to
the stepwise optimization method, the aggregated optimization method can effectively reduce the complexity of
the perturbation model. The lower the model complexity, the smaller the generalization error.

The Rademacher complexity measures the complexity of a class of models on a given sample set. For a function
h in the hypothesis space H, the empirical Rademacher complexity on n samples is defined as:

R̂n(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
(26)

where σi are Rademacher random variables, taking values ±1 with equal probability.
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The impact of modality aggregation on complexity:

Assume HA and HB are the hypothesis spaces of modality A and modality B, respectively. The stepwise
optimization method first optimizes HA and then HB. Its empirical Rademacher complexity can be expressed as:

R̂n(Hstep) = R̂n(HA) + R̂n(HB) (27)

The aggregated optimization method optimizes HA ∪HB simultaneously. Its empirical Rademacher complexity
is:

R̂n(Hagg) = R̂n(HA ∪HB) (28)

According to the properties of Rademacher complexity, the complexity of HA ∪HB is usually less than or equal
to the sum of the complexities of HA and HB:

R̂n(Hagg) ≤ R̂n(HA) + R̂n(HB) (29)

Generalization error upper bound derivation:

Using Rademacher complexity, we can derive the upper bound of the generalization error. For the loss function
L and hypothesis space H, the upper bound of the generalization error is:

Egen ≤ 2R̂n(L ◦ H) +O
(

1√
n

)
(30)

where L ◦ H denotes the composition of the loss function with the hypothesis space.

The upper bound of the generalization error for the stepwise optimization method is:

Egen, step ≤ 2
(
R̂n(L ◦ HA) + R̂n(L ◦ HB)

)
+O

(
1√
n

)
(31)

The upper bound of the generalization error for the aggregated optimization method is:

Egen, agg ≤ 2R̂n(L ◦ (HA ∪HB)) +O
(

1√
n

)
(32)

Since
R̂n(L ◦ (HA ∪HB)) ≤ R̂n(L ◦ HA) + R̂n(L ◦ HB) (33)

Therefore:
Egen, agg ≤ Egen, step (34)

This indicates that the aggregated optimization method has a lower upper bound on the generalization error
compared to the stepwise optimization method.
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8 Discussion

8.1 Ethical Considerations

In this study, we introduce a novel cross-modal adversarial attack method known as Cross-Modality Perturbation
Synergy (CMPS). This research offers a new perspective on understanding and enhancing the security of
cross-modal ReID systems by leveraging shared features across different modalities to optimize perturbations.
However, this approach also raises a series of ethical and safety concerns regarding the potential negative impacts
of adversarial attack techniques. The CMPS method, like other adversarial technologies, can be maliciously
exploited, posing a serious threat to public safety.

However, we recognize the positive value of adversarial attack research. It reveals vulnerabilities in existing
systems, prompting academia and industry to make in-depth improvements to the robustness of machine learning
models. The positive impact of this study lies in its potential to combine adversarial training with the attack
methods presented to enhance system security and bring positive social impacts. Therefore, we emphasize
the importance of conducting adversarial attack research within an ethical framework and encourage further
development of defensive technologies to build a safer and more reliable technological environment.

8.2 Limitations and Future Work

Here, we need to acknowledge the limitations of the proposed method and identify potential directions for future
research. Firstly, current attack techniques primarily focus on gradient-based perturbation optimization for given
datasets. However, in real-world scenarios, the modalities encountered are often unknown and not limited to
RGB, infrared, and thermal imaging. Moreover, effectively transferring perturbations to different and unknown
modalities presents a significant research challenge.

When dealing with various models and modalities, gradient-based methods face several challenges. Firstly,
these methods are prone to "catastrophic forgetting," where learning new information can lead to the loss of
previously learned knowledge, affecting the effectiveness of perturbations. Secondly, the inconsistency of gradi-
ent information across multiple models and modalities can negatively impact the stability and generalizability
of the method. Therefore, future research should explore more robust algorithms that can effectively operate
in complex environments involving multiple modalities and models, thereby enhancing the applicability and
transferability of attacks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reffect the paper’s
contributions and scope. We have clearly stated our novel methodology and its implications in the
abstract and introduction, and these are further elaborated upon and validated in the main body of the
paper

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the final section of the supplementary materials.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: We have conducted a theoretical analysis of the effectiveness of the proposed method.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To ensure full disclosure of all necessary information to reproduce the main experimental
results of the paper, we have provided the experimental setup within the paper and included pseu-
docode in the supplementary materials. Additionally, as a key contribution, we have conducted a
comprehensive theoretical analysis of the proposed method. We will provide the source code for the
reviewers’ examination.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification:Given the rapid pace of technological advancement, our field requires careful dissemina-
tion of our methods to ensure the integrity and competitiveness of our ongoing research. Additionally,
due to ethical and security considerations, we currently prefer not to publicly release our code. How-
ever, we will provide the code for reviewers’ examination and release the source code when the time is
right.

Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have mentioned this in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification:In our main performance comparison experiments, the results are reported as the mean ±
standard deviation.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
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Answer: [Yes]

Justification: We provide the GPU type used in our paper, and the computation time is given in the
ablation experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Our research may have potential negative social impacts. One possible solution is
to enhance model security by improving defenses against the proposed attacks through adversarial
training.Our research may have potential negative social impacts. One possible solution is to enhance
model security by improving defenses against the proposed attacks through adversarial training.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?
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Answer: [Yes]

Justification: Our intention in proposing adversarial attack techniques is to study model security. The
safeguard involves enhancing model security by improving defenses against the proposed attacks
through adversarial training.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We used open datasets and correctly referenced the papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: Given the rapid pace of technological development, our field requires careful dissemina-
tion of our methods to ensure the integrity and competitiveness of our ongoing research. Therefore,
we do not currently plan to publicly release our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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