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Abstract

When learning in strategic environments, a key question is whether agents can
overcome uncertainty about their preferences to achieve outcomes they could have
achieved absent any uncertainty. Can they do this solely through interactions
with each other? We focus this question on the ability of agents to attain the
value of their Stackelberg optimal strategy and study the impact of information
asymmetry. We study repeated interactions in fully strategic environments where
players’ actions are decided based on learning algorithms that take into account their
observed histories and knowledge of the game. We study the pure Nash equilibria
(PNE) of a meta-game where players choose these algorithms as their actions. We
demonstrate that if one player has perfect knowledge about the game, then any
initial informational gap persists. That is, while there is always a PNE in which
the informed agent achieves her Stackelberg value, there is a game where no PNE
of the meta-game allows the partially informed player to achieve her Stackelberg
value. On the other hand, if both players start with some uncertainty about the
game, the quality of information alone does not determine which agent can achieve
her Stackelberg value. In this case, the concept of information asymmetry becomes
nuanced and depends on the game’s structure. Overall, our findings suggest that
repeated strategic interactions alone cannot facilitate learning effectively enough to
earn an uninformed player her Stackelberg value.

1 Introduction

Learning to act in strategic environments is fundamental to the study of decision making under
uncertainty in a wide range of applications, such as security, economic policy, and market design
(e.g., [31, 8, 19]). In these environments, acting and learning are intimately connected: agents’ actions
and the reactions they elicit generate payoffs, and help clarify the latent preferences of other agents.
A central question is whether, through repeated interactions alone, agents (aka players) can overcome
uncertainty about each other’s preferences in order to achieve outcomes they could have achieved in
the absence of uncertainty. An extensive line of work on learning in Stackelberg Games [5, 8, 31, 35]
has focused on answering this question for achieving the Stackelberg value, which is the optimal
payoff a player guarantees herself when assuming other players will best respond to her actions.
While a player who hopes to attain her Stackelberg value in a one-shot game must know the game (i.e.,
know the utilities of all players), this line of work asks whether a player who is a-priori uninformed
can overcome her lack of knowledge and attain her Stackelberg value through repeated interactions
with other players.

By and large, existing works have studied this question by constructing learning algorithms for
uninformed players that attain their Stackelberg value, through repeated interactions with other
players who myopically best respond. While these results are encouraging for learning about the
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preferences of well-behaved best responding agents1, they do not provide clear evidence of the ability
of uninformed players to learn from strategic interactions alone. Indeed, the two players’ different
attitudes towards their outcomes — namely, one player planning a long-term strategy to maximize
her long-term payoff while the other player responding without considering the impact of her actions
on her long-term payoff — confounds the overall impact uncertainty may have on how well players
learn from strategic interactions; leaving one to wonder whether it was the lack of rational long-term
planning on the part of one agent or some genius of the learning algorithm employed by the other
agent that enabled her to learn from strategic interactions.

In this paper, we revisit the problem of learning in strategic environments with a renewed focus on the
impact of information asymmetry between two equally rational players who aim to maximize their
total payoff. We ask again: can an uninformed player learn to attain the value of her Stackelberg
outcome, through repeated interactions alone? In contrast to the aforementioned results, our findings
largely imply that strategic interactions alone cannot facilitate learning effectively enough to earn an
uninformed player the value of her optimal strategy.

Our Model and Contributions. To study the impact of informativeness on the ability of players to
gain the payoff of their Stackelberg outcome, we study repeated interactions between two rational
agents playing repeatedly a one-shot game G ∼ D. While the players know D, they may not know
the realized game G except perhaps through signals of differing precision about G. For example,
one player may know G and another may have access to a signal that reveals G with probability
0.5 and is uninformative (i.e., independently drawn from D) otherwise. Each player deploys an
algorithm, which specifies her actions at every round, given all that the player has observed so far
(e.g., history of actions and/or utilities experienced) and the information she possesses about G.
We consider a meta-game where players’ actions are algorithms that specify agent’s strategies in T
rounds of interactions and study pairs of algorithms that form pure Nash Equilibria in the meta-game.
We use the overall utility attained by pairs of algorithms that form pure Nash Equilibria to draw a
clear separation between the informed and uninformed players’ ability to attain the value of their
Stackelberg optimal strategies.

In the following, we use StackVali(G) to refer to player i’s value of her optimal Stackelberg strategy
in game G. We summarize our results as follows.

• In Section 3, we study the full information asymmetry when player 1 (P1) knows the realized
game G and player 2 (P2) only has partial information based on an imperfect signal. We show a
full separation in the achievable utilities. In particular, we show in Theorem 3.1 that for every
distribution D and realized game G, there is a pure Nash Equilibrium (PNE) in the meta game
induced between the algorithms’ of the two players for which P1 achieves her Stackelberg value,
i.e., StackVal1(G). On the other hand, Theorem 3.2 gives a distribution D such that no PNE of
the meta game allows P2 to achieve EG∼D[StackVal2(G)]. In other words, for some realized
game G and all PNE of the meta-game, P2 cannot achieve the value of her optimal Stackelberg
strategy for G.
Taken together, Theorem 3.1 and Theorem 3.2 establish that learning through interactions alone
is not sufficient to allow an uninformed player (in this case, P2) to attain the value of her optimal
Stackelberg strategy. Does this mean that P2 in unable to learn the game matrix through interac-
tions that form a PNE in the meta-game? This is not necessarily the case (see Observation A.4) as
indeed P2 may be able to learn the underlying game G eventually. What our results imply is that
in every PNE, either P2 never learns the game G sufficiently well, or she has enough information
to identify G but the stability condition for her algorithm to be in a PNE does not allow her to
extract the value of her optimal Stackelberg strategy. This points to the limitations on what agents
can achieve if their only source of learning is through repeated interactions.

• In Section 4, we study a setting where neither player fully knows the realized game G. Interest-
ingly, a separation need not hold in this case. In particular, there are distributions D where the
player with a less informative signal about G is able to extract her benchmark EG∼D[StackVal(G)]
while the player with the more informative signal cannot achieve her corresponding benchmark.
This occurs when the less-informed player is able to learn the identity of G more efficiently,

1Beyond myopic best-responding, several other types of algorithms for the responding agent have been
considered, such as gradient descent [21, 39], no-regret [25, 10], no-swap regret [10], and responding to
calibrated forecasts [28]; none of these focuses on how the other player’s learning dynamics may be affected as
the result of the second player’s actions.

2

23853https://doi.org/10.52202/079017-0752



possibly due to the structure of D. This is perhaps not surprising, given that a less-informed
player can become more informed or even perfectly aware of the realized game faster, while
the player who started the meta-game with a more informative signal continues to remain only
partially informed.

On the possibility and impossibility of learning from strategic interactions. We view our work
as providing a different lens on studying learnability in the presence of strategic interactions that also
elucidates the context and subtleties of a vast line of prior work in this space. By and large, prior
work in this space [31, 8, 5, 35, 11, 25, 22, 15, 38, 28, 10] has attempted to establish the following
message: “An uninformed player can always learn to achieve (even surpass) its Stackelberg value
through repeated strategic interactions alone”. At a high level, our work demonstrates the opposite,
that “In some cases, an uninformed player cannot learn, through repeated interactions alone, to
achieve its Stackelberg value”. Of course, these messages, while both technically correct, are contrary
to each other. So, what accounts for this difference?

One of our takeaways is that prior work’s findings (that an uninformed can always overcome her
informational disadvantage through repeated strategic interactions) heavily hinges on the lack of
rationality of at least one of the agents in those strategic interactions. That is, the dynamics studied in
prior work involve pairs of agent algorithms that are not best-responses to each other. On the other
hand, our work shows that the inherent uncertainty about the game — or more precisely, the informa-
tion asymmetry between two equally rational agents — can persists throughout repeated interactions
and makes it impossible for an uninformed agent to overcome her informational disadvantage.

The processes of learning and acting based on the learned knowledge are naturally intertwined when
dealing with uncertainty in strategic environments. Our work implies that it is precisely because of
their intertwined nature that an uninformed agent cannot overcome her informational disadvantage
from strategic interactions alone. That is, information disadvantage between a pair of rational agents
persists for one of two reasons: Either actions taken by the agents’ algorithms do not reveal enough
information to identify the game at play, or if they do, the less-informed agents use of the elicited
information would have lead the informed agent to deviate to an algorithm that barred her from
learning in the first place.

1.1 Related Works
Algorithms and benchmarks for repeated principal-agent interactions. There is a vast literature
investigating online algorithms and benchmarks in repeated games with agents under various behav-
ioral models such as: 1) myopically best-responding [31, 5, 8, 38]; 2) optimizing time-discounted
utilities [27, 29, 2, 1]; 3) employing no-regret [9, 17, 22, 25, 10, 26, 18], no-swap-regret [17, 32, 10],
no counterfactual-internal-regret algorithms [11, 15], or online calibrated forecasting algorithms [28].

Given a particular model of the agent, what is the optimal algorithm to employ? This has been
studied in both the complete and incomplete information setting. In the complete information setting,
the static algorithm of playing the optimal Stackelberg strategy is shown to be optimal against
no-swap-regret agents [17, 28]. But it is not necessarily optimal against general no-regret algorithms,
including common algorithms such as EXP3 [9, 17, 26, 36]. Additionally, it is not optimal against
no-swap-regret agents in Bayesian games where agents have hidden information but is optimal if
agents satisfy a stronger notion called no-polytope-swap-regret [32].

Long-term rationality of agents in the meta-game. Instead of modeling agents as no-regret learners,
another line of research treats the repeated game as a meta-game in which players’ actions are their
choice of algorithms. Towards understanding the PNE of this meta-game, Brown et al. [10] show that
no pair of no-swap-regret algorithms can form a PNE unless the stage game has a PNE. Previous work
discussed above on optimally responding to no-regret agents also has implications on the meta-game’s
PNE such as (1) no-swap-regret algorithms are supported in a meta-game PNE for all games G [17],
and (2) there are games where no meta-game PNE contains certain common regret-minimizing
algorithms such as EXP3 [10]. We discuss these implications in Appendix C.

Kolumbus and Nisan [30] study a meta-game where players are restricted to choose no-regret
algorithms but have the option to manipulate their private information. They show that non-truthful
PNE exists in multiple classes of games. Besides PNE, some previous works also study Stackelberg
strategies of meta-games [14, 40]. Recently, Arunachaleswaran et al. [3] study the Pareto optimality
relative to all possible games instead of exact optimality in a particular game.
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Information asymmetry in repeated games. The final line of related work is the substantial
literature on information asymmetry and repeated interactions including classical work by Aumann
et al. [4]. They also study repeated games between a player knowing the game and one who does not.
For zero-sum games, they show that all PNE of the meta-game yields the same utility to the informed
player and this utility can be higher than the informed player’s one-shot utility. The higher utility is
due to the informed player’s ability to shape the learned beliefs of the uninformed player and this
power of information is also shown in a recent line of work on follower deception in Stackelberg
games [24, 33, 23, 6, 13, 12].

2 Model and Preliminaries
We study games between two players, referred to as P1 and P2. Wlog, we assume that P1 is generally
more informed than P2 (to be defined formally below). Although we focus on repeated games, we
first provide the setting for one-shot games and then build upon it for repeated games.

Bayesian Games. A game G is a tuple (A1,A2, U1, U2), where Ai is Pi’s discrete action space,
and Ui : A1 × A2 → R is Pi’s utility function (i ∈ {1, 2}). A Bayesian game is described by a
family of games G and a distribution D ∈ ∆(G) over games in this family, where G consists of
games sharing the same action space. When P1 plays action x ∈ A1 and P2 plays action y ∈ A2,
then they receive utilities U1(x, y) and U2(x, y) respectively. We sometimes overload notation and
write U1(x, y;G), U2(x, y;G) to denote that the utilities of the two players come from a particular
game instance G. Instead of pure strategies (i.e., playing discrete actions), the players can also
choose to play mixed strategies x ∈ ∆(A1) and y ∈ ∆(A2) for players 1 and 2 respectively.
To simplify notation, we sometimes write Ui(x,y) in place of Ex∼x,y∼y[Ui(x, y)] for Pi’s utility.
Unless specified otherwise, we assume that the players are moving simultaneously and they both
know the prior distribution D. We also assume that every game G in the support of D has no weakly
dominated action for either player. An action x0 ∈ A1 is weakly dominated for P1 in G if there
exists x ∈ ∆(A1 \ {x0}) s.t., U1(x, y;G) ≥ U1(x0, y;G) for every y ∈ A2. The weakly dominance
property of actions y0 ∈ A2 is defined symmetrically for P2.

Optimistic Stackelberg Value. The optimistic Stackelberg value of a game G for P1, denoted with
StackVal1(G), is the optimal value of the following optimization problem:

StackVal1(G) ≜ max
x⋆∈∆(A1)

max
y∈BR2(x⋆;G)

U1(x
⋆, y),

where BR2(x
⋆;G) ≜ argmaxy∈A2

U2(x
⋆, y) indicates P2’s set of best responses to x⋆. When

there are multiple actions in BR2(x
⋆;G), ties are broken optimistically in favor of P1. We use

(x⋆(G), y(x⋆;G)) to denote the pair of strategies that achieves the value StackVal1(G). For P2,
the optimistic Stackelberg value StackVal2(G) and (x(y⋆;G),y⋆(G)) are defined symmetrically.
Finally, we define StackVali(D) ≜ EG∼D[StackVali(G)] to be the expected optimistic Stackelberg
value for Pi under the prior distribution D (i ∈ {1, 2}).

Game Information. We assume that both players know the prior D. After the game G ∼ D is
realized, each player Pi also receives additional information about the realization of G, which is
characterized by a signal si ∈ G. We assume that nature generates both signals s1, s2 independently
and with potentially different precision levels p1, p2 ∈ [0, 1], and each player can only observe their
own signal. Fixing a precision pi, si perfectly reveals the true game G with probability pi, and with
probability 1 − pi, it provides an independent draw from the prior distribution D. Formally, the
conditional distribution of si given G is defined as follows:

∀G, si ∈ G, φpi
(si | G) = pi · 1 {si = G}+ (1− pi) · D(si).

While each player can only observe their own signal si, we assume that the distributions generating
both signals are common knowledge, i.e., both players know p1 and p2. Note that when pi = 1, the
signal si perfectly correlates with the realization G, in which case we say that Pi is fully-informed or
have perfect knowledge about which game is being played. On the other extreme, if pi = 0, then the
signal si reveals no additional information compared to the prior distribution D. In this case, we call
Pi uninformed. Throughout this paper, we focus on settings with information asymmetry where we
always assume P1 is more informed than P2, i.e., p1 > p2.
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Repeated Games. In this paper, we focus on repeated (Bayesian) games. Initially, nature draws a
game G ∈ G from prior D. The game is then fixed and repeated for T rounds. At each round t ∈ [T ],
P1 and P2 play strategies xt,yt and obtain utilities U1(x

t,yt;G), U2(x
t,yt;G) respectively. We

call G the stage game of the repeated interaction.

Without loss of generality, we use algorithms to describe both players’ adaptive strategies in the
repeated game. For i ∈ {1, 2}, we use πi to denote the algorithm used by Pi, which is a sequence
of mappings (πt

i)t∈[T ] that at each round maps from player i’s information about the game and
historical observations to the distribution of mixed strategies from which the next strategy is drawn.
Specifically, for each round t, the mapping is defined as πt

i : (si;H
1:t−1
i ) 7→ ∆(xt), where si is the

signal received by Pi about the realization of G, and Hr
i is the feedback that Pi observed at round r

(r ∈ [t− 1]). When both players observe each other’s realized strategies as well as their own (but not
the other’s) realized utilities, we have Hr

i = (xr,yr, Ui(x
r,yr;G)). We call this the full-information

feedback setting. We also consider the bandit feedback setting, where the players do not observe the
strategies of their opponent, i.e., Hr

1 = (xr, U1(x
r,yr;G)) and Hr

2 = (yr, U2(x
r,yr;G)).

Trajectories and expected utilities. Consider a fixed pair of algorithms (π1, π2). Under every
realization of (G, s1, s2), algorithms (π1, π2) induce a distribution over trajectories of mixed strategy
pairs of length T , which we denote with (xt,yt)t∈[T ] ∼ T T (π1, π2;G, s1, s2) ∈ ∆(∆(A1)

T ×
∆(A2)

T ). In particular, the signals si (i ∈ {1, 2}) are inputs of πi that specify Pi’s behavior upon
receiving certain feedbacks, whereas G influences Pi’s observed utilities, which is part of the feedback
and indirectly influences Pi’s strategies of the next round.2 We also use T T (π1, π2;G) to denote the
mixture of T T (π1, π2;G, s1, s2) as si ∼ φpi(· | G) for i ∈ {1, 2}.
When the realized game is G and players use algorithms (π1, π2) with time horizon T , the expected
average utility of Pi under G, denoted as Ūi(π1, π2;G), can be expressed as

ŪT
i (π1, π2;G) ≜ E

τ∼T T (π1,π2;G)

 1

T

∑
t∈[T ]

Ui(x
t,yt;G)

 .

We further define ŪT
i (π1, π2;D) ≜ EG∼D ŪT

i (π1, π2;G) as the expected average utility under D.

Equilibrium in the Meta-Game. We model the rationality of long-term players by treating the
repeated Bayesian game D as a meta-game, where each player Pi’s action is an algorithm πi, and the
utilities of each pair of action (π1, π2) are given by Ūi(π1, π2;D). Our analysis focuses on the pure
Nash equilibria (PNE) of this meta game applied to the asymptotic regime T →∞.

Definition 2.1 (PNE of the Meta-Game). We say that a pair of algorithms (π1, π2) form a pure Nash
equilibrium (PNE) in the meta-game if for all i ∈ {1, 2} and all other algorithms π′

i,
lim sup
T→∞

(
ŪT
i (π′

i, π−i;D)− ŪT
i (πi, π−i;D)

)
≤ 0,

where π−i denotes the algorithm of Pi’s opponent.

Finally, we define no-regret and no-swap regret algorithms below.

Definition 2.2 (No-(Swap) Regret Algorithms). An algorithm π1 of P1 is called no-regret if for all
adversarial sequences y1:T ∈ ∆(A2)

T , the strategies x1:T output by π1 satisfies

E[regretT1 ] ≜ E
[
max
x⋆∈A1

∑
t∈[T ]

U1(x
⋆,yt)− U1(x

t,yt)
]
∈ o(T ).

Furthermore, π1 is called no swap-regret if

E[swap-regretT1 ] ≜ E
[

max
f :A1→A1

∑
t∈[T ]

U1(f(x
t),yt)− U1(x

t,yt)
]
∈ o(T ),

where f(x) ∈ ∆(A1) denotes the mixed strategy induced by f(x) as x ∼ x. We define no-(swap)
regret algorithms for P2 symmetrically.

We remark that there exist no-regret and no-swap regret algorithms under both the full-information
feedback and bandit feedback setting.

2Our results also hold in an alternative setting where both players can only play pure strategies at each round,
i.e., xt ∼ xt and yt ∼ yt. For the feedback Hr

i , the realized utilities and the observations about opponent’s
strategy should both be defined in terms of (xt, yt) instead of (xt,yt). As a result, τ(π1, π2;G, s1, s2) becomes
a distribution over pure-strategy trajectories (xt, yt)t∈[T ] instead of mixed strategies (xt,yt)t∈[T ].
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3 Interactions between fully-informed P1 and partially-informed P2

In this section, we analyze the setting with a fully-informed P1 — i.e., P1 knows the game G being
played — and a partially informed P2. In other words, algorithms π1 and π2 can each take an
observable signal as input, where the signals received by P1 and P2 are independently drawn from
signal distributions φp1

(·|G) and φp2
(·|G) with precision p1 = 1 and p2 < 1, respectively. Recall

that each Pi sees her realized signal si and knows the precision levels p1, p2 of both players’ signals.

Our main takeaway is that there is a separation in the benchmarks for achievable cumulative utilities
between P1 and P2 in this setting, when P1 and P2 employ algorithms that form a PNE of the meta-
game. This is not surprising in the one-shot setting. But in the repeated setting, even with infinite
rounds for P2 to learn the game from feedback gained throughout the interaction, we show that there
is still a separation in achievable benchmarks.

This separation could be due to two factors: 1) P2’s inability to learn the game based on repeated
interactions, and 2) P2’s failure to achieve the benchmark utility despite successful learning. We
discuss this in more detail in Section 3.2 and Appendix A. We show that if P2 was able to learn the
game based on external signals, then P2 would be able to achieve the benchmark. This highlights a
fundamental difference between learning based on interactions with the other player and learning
independently without relying on the other player. In the latter scenario, a utility benchmark is always
achievable, whereas in the former, it is sometimes unattainable.

The benchmark that we will show separates P1 from P2 is the average Stackelberg value with the
player of interest as leader. Recall that StackVali(D) = EG∼D[StackVali(G)] for each Pi. We will
demonstrate the separation by showing that P1 is always able to achieve this benchmark through
a PNE of the meta-game, for all D, but there exists some distribution D in which no PNE of the
meta-game yields P2 her counterpart benchmark.

We will first state the theorems and provide proof sketches later. Our first theorem (Theorem 3.1)
asserts that P1 can achieve the benchmark StackVal1(D) by explicitly constructing a PNE pair of
algorithms (π1, π2) that grants P1 this utility in the asymptotic regime. In the proof of this theorem,
we provide the rate of convergence to this utility (Remark B.1).

Theorem 3.1 (Benchmark achievable by P1 for allD). For every game family G and every distribution
D ∈ ∆(G) supported on it, there exists an algorithm pair (π1, π2) such that (π1, π2) is a PNE of the
meta-game, and ∀G ∈ G, ŪT

1 (π1, π2;G) ≥ StackVal1(G)− oT (1).

That is, for every realized game G, the expected average utility of P1 over T rounds tends to
StackVal1(G) as T →∞. The expectation is over the trajectories — sequence of player strategies,
and resulting utilities induced by the algorithms π1, π2 and G.

The next theorem completes the separation argument by constructing a specific game distribution
where no PNE of the meta-game allows P2 to asymptotically achieve the benchmark StackVal2(D).

Theorem 3.2 (Benchmark unachievable by P2 for someD). For all thresholds p⋆ ∈ [0, 1), there exists
a game family G and a distribution D ∈ ∆(G), s.t., ∀p2 ≤ p⋆, all PNE (π1, π2) of the meta-game
where P2’s signal is of precision p2 must suffer EG∼D ŪT

2 (π1, π2;G) ≤ StackVal2(D)− ΩT (1).

This implies that there is a game G ∈ G such that when G is realized, P2’s expected average utility
over T rounds remains strictly bounded below StackVal2(G) even as T →∞.

Theorems 3.1 and 3.2 show that there is a separation in achievable benchmark whenever the less-
informed player is at any informational disadvantage, however small, compared to the fully-informed
player. P2’s signal could be arbitrarily close to being fully informative (i.e., p2 is arbitrarily close
to 1), but there is still a barrier between what P2 can achieve compared to P1, when P1 has full
knowledge.

3.1 Proof sketches of main theorems
Now we present proof sketches for the two theorems, defering the full proofs to the appendices.

Proof sketch of Theorem 3.1. Our proof puts together results from previous work [17, 28]. We
present the proofs of these results for completion. In this proof sketch, we will prove the theorem
when every game G in the support of D is such that P2 has a unique best-response y(x⋆;G) to P1’s
optimal Stackelberg strategy x⋆(G). The full proof is in Appendix B.1.

6
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Let π1 be the algorithm that plays P1’s optimal Stackelberg strategy of the realized game G (i.e.,
x⋆(G)) at every round. Since P1 has access to a signal that fully reveals the realized game G, P1
can compute x⋆(G) and employ this strategy. Let π2 be a no-swap-regret algorithm in the bandit-
feedback setting (the algorithm is only based on the utilities received in each round). Such algorithms
exist [7, 16, 34] and are deployable by P2 without any knowledge of the game played or P1’s strategies.
Note that π2 does not use P2’s signal s2. Therefore our analysis holds for all levels of precision of s2.

First, let us analyze the expected utility of P2 due to (π1, π2). The generated trajectories when the
game G is realized are of the form (x⋆(G),yt)∞t=1. Since π2 is a no-swap-regret algorithm, the regret
of this trajectory up to round T is sub-linear in T (o(T )).

Since we assumed that BR2(x
⋆;G) is unique, any round where P2 is not employing this unique

best-response (y(x⋆;G)) causes P2 to incur regret. The no-swap-regret property for P2 essentially
means that P2’s strategies in the trajectory (yt)∞t=1 become close to y(x⋆;G). And as a result, P1’s
utility per round gets close to U1(x

⋆(G), y(x⋆;G);G) which is StackVal1(G).

More formally, P1’s cumulative utility over T rounds satisfies
∑

t∈[T ] U1(x
⋆(G),yt) ≥

StackVal1(G) · T − c1
∑

t∈[T ] ∥yt − y(x⋆;G)∥1, where y(x⋆;G) is the one-hot vector encoding of
y(x⋆;G) and c1 = maxy∈A2\{y(x⋆;G)}U1(x

⋆(G), y;G). We bound term
∑

t∈[T ] ∥yt − y(x⋆;G)∥1
using the no-swap-regret property. P2’s swap regret is at least

∑
t∈[T ] c2∥yt − y(x⋆;G)∥1,

where c2 = U2(x
⋆(G), y(x⋆;G)) − maxy∈A2\{y(x⋆;G)} U2(x

⋆(G), y) is the minimum differ-
ence of P2’s utility between playing the best response action y(x⋆;G) and any other action in
A2. Sub-linear swap regret therefore implies that E

[∑T
t=1 ∥yt − y(x⋆;G)∥1

]
∈ o(T ) and thus

E
[∑T

t=1 U1(x
⋆(G),yt)

]
≥ StackVal1(G) ·T − o(T ), i.e., P1’s expected average utility in T rounds

is at least StackVal1(G)− oT (1).

We have shown that the pair (π1, π2) achieves P1’s benchmark utility. We now show that it is a
PNE of the meta-game. Fixing π1, the maximum utility P2 can get is the utility achieved by playing
y(x⋆;G), ∀t. P2 does not necessarily know G to play y(x⋆;G) for all t ∈ [T ], but we have shown
that due to π2 being a no-swap-regret algorithm, P2 ends up playing strategies close to y(x⋆;G)
asymptotically. The difference between P2’s cumulative utility between playing π2 against π1, versus
playing per-round best response against π1 is at most O(

∑
t∈[T ] E ∥yt − y(x⋆;G)∥1) which is o(T )

by the no-swap-regret property. So P2 has vanishing incentive to deviate from π2 in the meta-game.

Next fixing π2 to be a no-swap-regret algorithm, previous work [17, 28] caps P1’s achievable utility
through any algorithm π′

1 (Deng et al. [17, Theorem 6]). These results show that for every π′
1, P1’s

expected average utility induced by (π′
1, π2) in T rounds is at most StackVal1(G) + oT (1). Since we

have shown that (π1, π2) yields at least StackVal1(G)− oT (1) for P1, there is vanishing incentive
for P1 to deviate.

In Appendix B.1, we extend this proof to the scenario with potential ties in P2’s best response,
but under the assumption that P2 has no weakly dominated action. Using regret rates of standard
swap-regret algorithms, we also provide the rate of convergence to the Stackelberg benchmark.

Proof sketch of Theorem 3.2. To prove this theorem, we construct a family of two games G1 and G2

(shown in Figure 1) and let the prior distribution D to be uniform over G1 and G2. Note that the
maximum value of game parameters depends inversely on γ ≜ 1−p⋆

1+p⋆ , where p⋆ is the maximum
precision of the signal received by P2. In this construction, the utility functions in both games are
identical for P2 but different for P1. This implies that P2 cannot gain any additional knowledge about
which game is realized from looking at her own utility function.

We first illustrate the high-level idea by considering a hypothetical situation where the trajectory
always converges to the Stackelberg equilibrium led by P2 for all G. In other words, the trajectory
converges to (x(y⋆;G1),y

⋆(G1)) when G1 is realized and (x(y⋆;G2),y
⋆(G2)) when G2 is realized.

It is not hard to check that the Stackelberg equilibria turns out to be supported on different pure-
strategy pairs: (A,C) in G1 and (B,D) in G2 (shaded cells in Figure 1). Because the Stackelberg
strategies differ for G1 and G2, to converge to the correct equilibrium, P2 must have gained full
information about which game G is being played through repeated interactions with P1. However,
from P1’s perspective, the strategy pair (A,C)—the Stackelberg equilibrium led by P2 in G1—is
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C D
A 16/γ, 1 16/γ, −32/γ
B 2, 0 0, 2

Game Matrix G1

C D
A 1, 1 0, −32/γ
B 0.9, 0 0.1, 2

Game Matrix G2

Figure 1: game matrices G1 and G2. P1 is the row player and P2 is the column player. The values in each cell
are (P1’s utility, P2’s utility). Shaded cells represent the action profiles supported in the Stackelberg equilibria
led by the column player. The parameter γ is defined as 1−p⋆

1+p⋆
∈ (0, 1], where p⋆ is the precision threshold of p2.

more favorable than the other equilibrium (B,D) in both G1 and G2. Therefore, instead of disclosing
information about which G is realized, it would be more beneficial for P1 to conceal this information
and always behave as if G were G1. Therefore, any pair of algorithms that give rise to this hypothetical
situation cannot be an equilibrium in the space of algorithms.

Our actual proof applies similar ideas to establish a stronger claim: not only is it impossible for
P2 to have the trajectory always converge to their Stackelberg equilibrium, but they cannot recover
an average utility of StackVal2(D) through any repeated interactions with P1 that are specified by
PNE algorithm pairs. To argue this, we will use the notion of correlated strategy profiles (CSP) [3]
as a succinct way of analyzing the expected utility of each player. For a distribution T T over
trajectories of length T , the CSP induced by T T , denoted as CSPT T , is a correlated distribution in
∆(A1 ×A2) which is taken as the empirical average of the mixed-strategy profiles in each time step,
i.e., CSPT T ≜ E(xt,yt)t∈[T ]∼T T [(1/T )

∑
t∈[T ] xt ⊗ yt]. Since CSPs serve as a sufficient statistics

of both players’ expected utility (which is a direct consequence of the linearity of utilities), working
with them significantly reduces the dimension of the problem.

Special case: full information asymmetry. We start with the full information asymmetry setting,
i.e., p1 = 1 and p2 = 0. For the sake of contradiction, assume that a pair of equilibrium algorithms
(π1, π2) can let P2 achieve the benchmark StackVal2(D) = 3/2. With the CSPs introduced above, we
can rewrite P2’s average expected utility as 1

2 E(x,y)∼CSP1
U2(x, y;G1)+

1
2 E(x,y)∼CSP2

U2(x, y;G2),
where we have used CSP1 and CSP2 to denote the CSPs induced by the distribution over trajectories
generated by T T (π1, π2;G1) and T T (π1, π2;G2), respectively.

Similar to the hypothetical situation sketched above, we want to argue that there is incentive for P1 to
deviate to an algorithm π′

1 that always behaves according to π1(G1) even when the actual game is
G2. In other words, we aim to show that P1’s expected utility in G2 strictly increases after replacing
the induced CSP from CSP2 to CSP1, i.e., Eτ∼CSP1

U1(τ ;G2) > Eτ∼CSP2
U1(τ ;G2). Note that for

P1’s utility in G2, cells involving action C all have utility close to 1, whereas those involving action
D all have utility close to 0. Therefore, it suffices to show that cells involving action D take up a
significant probability mass in CSP2 but very little in CSP1. We break these into the following three
claims and use the equilibrium condition to establish them in Appendix B.3.

• Claim 1. CSP1(B,D) is very small, otherwise P1 would deviate to always playing action A.
• Claim 2. CSP1(A,D) is very small, otherwise P2 would deviate to always playing action C.
• Claim 3. CSP2(B,D) is very large, otherwise P2 cannot achieve benchmark StackVal2(D).

Towards partial information asymmetry. In the remainder of this sketch, we discuss the extension
of the above approach to the partial asymmetry setting where p1 = 1 and 0 ≤ p2 ≤ p⋆ < 1. The
fact that P2’s signal is partially informative introduces extra challenge to our analysis, since P2’s
belief about the true game depends not only on P1’s behavior during the interaction, but also on the
information carried by the external signal s2. As a result, if P1 deviates to acting according to G1

when the actual game is G2, it does not trigger the expected CSP when the realized game is G1, but
instead causes a “distorted” posterior since the distribution of s2 ∼ φp2(·|G2) does not change.

To illustrate this, consider the four different CSPs introduced by all combinations of the realized
signals received by both players. For (i, j) ∈ {1, 2}2, let CSPij to denote the CSP induced by
T T (π1, π2; s1, s2, G = s1) when s1 = Gi and s2 = Gj (we have set G = s1 because s1 perfectly
reveals G). When the realized game is G2, P1’s expected utility before deviation is given by

Ū1(π1, π2;G2) =
1− p2

2
E

τ∼CSP21

U2(τ ;G2) +
1 + p2

2
E

τ∼CSP22

U2(τ ;G2),
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because the probability of P2 seeing signals s2 = G1 and s2 = G2 are 1−p2

2 and 1+p2

2 , respectively.
So, as for the expected utility after deviation, the coefficients 1−p2

2 and 1+p2

2 remain the same, but the
first distribution CSP21 becomes CSP22 and the second distribution changes from CSP22 to CSP12:

Ū1(π
′
1, π2;G2) =

1− p2
2

E
τ∼CSP11

U2(τ ;G2) +
1 + p2

2
E

τ∼CSP12

U2(τ ;G2),

However, if the true game were G1, then CSP11 and CSP12 would be realized with swapped
probability 1+p2

2 and 1−p2

2 , not the ones appeared in Ū(π′
1, π2;G2)! Hence, even if we can guarantee

that action pairs (A,D) and (B,D) occur very infrequently when the true game is G = G1, they
may only occur under CSP12, whose frequency gets amplified by 1+p2

1−p2
times when factoring into the

utility after deviation Ū(π′
1, π2;G2). Therefore, establishing the benefit of deviation requires a much

smaller probability of (A,D) and (B,D) under the CSPs induced by G = G1. This is why we need
the game parameters to inversely depend on γ = 1−p⋆

1+p⋆ , where p⋆ is an upper bound on p2.

3.2 Difference in learning through repeated interactions and learning independently
In this section, we provide an informal discussion on the reason behind P2’s failure to recover their
Stackelberg value benchmark through repeated interactions, with a more formal treatment deferred
to Appendix A. We argue that the failure is not due to the PNE of meta-game always preventing P2
from “learning” the game, but rather because P2 cannot apply her learned knowledge to recover her
Stackelberg value in any equilibrium.

At each round, P2 can form a posterior belief about the realized game G based on her observed
feedback from the historical interactions and the initial signal s2 received. We say that P2 successfully
learns G if her posterior belief converges to the point distribution on G (formally in Definition A.2).
Interestingly, using the same pair of PNE algorithms designed to show that P1 can achieve their
Stackelberg value, we can show that P2 is indeed able to successfully learn G through strategic
interactions. This is because P2’s strategy converges to the best response y(x⋆;G), which perfectly
reveals G for some game families G. Thus, successful learning of G through repeated interactions
can happen in a PNE of a meta-game where StackVal2(D) cannot be achieved (Observation A.4).

The problem preventing P2 from achieving StackVal2(D) is not an insufficient rate or accuracy of
learning, but rather the fact that learning and acting on this learned knowledge are intertwined. In
fact, if P2’s learning was independent of the repeated interaction, i.e., when P2 has access to external
signals that become more accurate over time, she can achieve StackVal2(D) (Proposition A.5).

4 Interactions between two partially-informed players
In this section, we consider the setting where neither player is fully informed. That is, the precision
of both player’s signals (p1, p2) are less than one. Even though there may be information asymmetry
in the form of different precision levels of player signals, we show that there is no longer a clear
separation between players through the average Stackelberg value benchmark.

At a high level, what distinguishes this setting from the previous setting (hence resulting in the lack
of separation), is that the identity of the more-informed player can shift throughout the course of the
repeated interaction. Due to the structure of D, more information about the realized game may be
released to one player compared to the other. In contrast, when the more informed player starts with
perfectly knowing the realized game, there is no possibility of her becoming less informed since there
is no information beyond what she already knows.

Example 4.1. Consider D to be the uniform distribution over the two game matrices defined in the
figure below.

C D
A 1, 1 −1, 5
B 0, 2 2, 5

Game Matrix G1

C D
A 1, 3 −1, 0
B 0, 7 2, 8

Game Matrix G2

Figure 2: Example game matrices G = {G1, G2} revealing more information to P2 compared to P1. Here, P1

is the row player and P2 is the column player.
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Note that if P2 chooses the pure strategy C, then for any strategy of P1, P2’s utility lies in the range
[1, 2] if G1 is realized and in the range [3, 7] if G2 is realized. Since both ranges are non-intersecting,
P2 can deduce G exactly after a single round by choosing the pure strategy B in the first round.

However, since the utilities of P1 for all action profiles are the same in both G1, G2, P1 gains no
additional information about the realized game. So even if P1 started off with a more informative
signal, after a single round, P2 becomes more informed and in fact perfectly informed.

To show that the average Stackelberg value benchmark does not separate the more- from the less-
informed player, we will show that neither player can achieve the average Stackelberg value in all
instances. Put another way, for every possible pair of player signals’ precision, there is an instance
such that this player cannot achieve the benchmark value at equilibrium.

Proposition 4.2. For every player signal precision values p1, p2 ∈ [0, 1), for each i ∈ {1, 2}, there
existsD such that for every PNE (π1, π2) of the meta-game, ŪT

i (π1, π2;D) ≤ StackVali(D)−ΩT (1).

Proof. The proof of this proposition reduces to the proof of Theorem 3.2. This is due to the
following game-revealing property (similar to Example 4.1) of the construction D used in the proof
of Theorem 3.2 described by Figure 1. Since the range of the set of attainable utilities in G1, G2

when P1 chooses action A, has no intersection for P1, regardless of P2’s strategy, P1 can deduce the
game exactly after a single round while P2 gains no additional information after a single round.

After the first round, we are in the regime of a fully informed P1 and a partially informed P2 since
p2 < 1. Theorem 3.2 already shows that in this regime, no equilibrium provides P2 her average
Stackelberg value benchmark. Using a distribution D′ that is the same as D but with player utilities
flipped proves the proposition for P2.

5 Discussion
In this paper, we study the effects of information asymmetry (codified in terms of signals about the
game played) on the achievable benchmarks of two non-myopic players interacting repeatedly over
T rounds. First, we showed that when P1 is fully informed (i.e., knows G) while P2 is not, then there
is a separation between the more and the less informed player by way of each player’s achievable
benchmarks. Next, we showed that when neither player is fully informed (i.e., both p1, p2 < 1) then,
there is no longer a clear separation between players in terms of benchmarks.

There are several avenues for future research stemming from our work.

Characterizations of algorithms that can be supported in an equilibrium. We should gain a better
understanding of what algorithms from natural classes can be in equilibrium. A useful step would be
to characterize the necessary and/or sufficient conditions for an algorithm to be supported in the PNE
of the meta-game. Our work and previous work provide sufficient conditions such as no-swap-regret
algorithms and best-responding per round: an algorithm satisfying either condition can be supported
in a PNE of every meta-game if at least one player is fully informed. Previous work also implies
that no-regret is not sufficient for an algorithm to be part of a meta-game PNE (see Appendix C for
more details). Finally, in the case where neither player is fully informed, it would be very useful to
characterize the structure of the meta-game that causes a shift wrt the information advantage.

Other models of how signals are generated. Alleviating some of our modeling assumptions, one
could ask how the results would change if nature was not assumed to be truthful with respect to
the signal reporting but it may strategically modify the signals to achieve its own goals, such as
maximizing social welfare. Taking this aspect into account, we can consider an information design
setting where the nature designs a signaling scheme that shapes both agents’ beliefs about the state
and therefore their algorithms of choice. In addition, we have assumed that nature provides signals
cost-free. This is a required and natural first step, but an interesting direction would be to understand
what happens when the signals are costly and their accuracy is positively correlated with their cost.

Computational aspects of meta-game equilibrium. Moreover, it would be very interesting to see
how the results about the effects of information asymmetry generalize in the case where the players
are computationally bounded; note that our current setup provides information-theoretic results, but it
could be computationally hard for players to communicate their algorithms to each other, or even
verify that two algorithms are at equilibrium.
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A Difference in learning through repeated interactions and learning
independently

In this part, we will use Theorem 3.2 to show that there is a difference between learning through
repeated interactions and learning independently based on external signals. We will argue that
learning independently is more powerful as it allows achieving the average Stackelberg benchmark,
whereas learning based on repeated interactions does not always allow this.

Our approach to doing this is to introduce two models of learning: one based on histories generated
by the repeated interaction and the other based on external signals. Fixing the same success criterion
for both models (to be defined soon), we will show that

1. Successful learning by P2 based on repeated interactions is possible at a PNE of the meta-
game, but still does not yield P2 her average Stackelberg value (Observation A.4).

2. Successful learning by P2 based on external signals makes P2’s average Stackelberg value
achievable at a PNE of the meta-game, for all D (Proposition A.5).

We first define both learning models and the success criterion of learning. Later in this section, we
state results demonstrating the separation between the two learning models.

Successfully learning a realized game G entails forming beliefs over the realized game such that the
beliefs asymptotically concentrate on the true realized game G.

Definition A.1 (Successful learning criterion). Given a realized game G from a game family G,
a belief sequence (β̂t)∞t=1, where β̂t ∈ ∆(G) is a belief (distribution) over G for each t ∈ N,
successfully learns G if PrG̃T∼β̂T [G̃T ̸= G] ∈ oT (1). That is, the beliefs asymptotically fully
concentrate on the realized game G.

Different models of learning involve different constraints on or power afforded to how beliefs of the
realized game are generated. The first model of interest is learning based on repeated interactions.
Here, the belief at a round t is constrained to be formed based on the initial signal and the history at
round t generated during the repeated interaction.

Definition A.2 (Successful learning based on repeated interactions). Given a family of games G and
a player Pi (i ∈ {1, 2}), a history-based belief function for Pi is a mapping from the player’s signal
value and a history of repeated interactions to a belief distribution supported on G. Formally, we
denote the belief function with h : (si;H

1:t−1
i ) 7→ ∆(G).

Given a distribution D ∈ ∆(G), we say a history-based belief function h, as defined above, success-
fully learns based on interactions through the algorithm pair (π1, π2) if for every realized game G ∈ G
and every realized signal s1, s2, the induced beliefs

(
β̂t
i

)∞

t=1
where each belief β̂t

i = h(si, H
1:t−1
i )

is induced by histories Hr
i generated from the distribution T T (π1, π2;G, s1, s2), successfully learns

the realized game G (according to Definition A.1) with probability 1.

The second form of learning occurs without dependence on the other player’s actions and instead
based on externally provided signals.

Definition A.3 (Successful independent learning). Given a distribution of games D, we say that
Pi can independently learn successfully if for every realized game G ∼ D, there is a sequence of
signals (qt)∞t=1 with qt ∈ G, that are generated by a sequence of signaling distributions (Qt)∞t=1
with Qt ∈ ∆(G), where the sequence (Qt)∞t=1 successfully learns the realized game G (according to
Definition A.1).

The signal qt is provided to Pi at round t. So Pi’s algorithm πi maps the initial signal si, history at
each round t (H1:t−1

i ), and qt to a strategy taken at round t.

Revisiting Theorem 3.2, which states that the average Stackelberg value is not achievable by P2 for
some D, we can question whether some property of D and the equilibria of the meta-game prevents
P2 from successfully learning or if P2 can successfully learn but cannot use this learning to achieve
her Stackelberg value. We assert that it is the latter.

Observation A.4. There is a game distribution D, such that there exists a PNE (π1, π2) of the
meta-game that allows P2 to successfully learn based on repeated interactions (in the sense of
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Definition A.2), but no equilibrium allows P2 to achieve her average Stackelberg value benchmark
StackVal2(D).

D E F
A 16/γ, 1− ϵ 16/γ, −32/γ 16/γ, 1 + ϵ
B 2, 0 0, 2 2, 0
C (16− ϵ)/γ, 1 + ϵ 16/γ, −32/γ (16− ϵ)/γ, 1− ϵ

Game Matrix G′
1

D E F
A 1, 1− ϵ 0, −32/γ 1, 1 + ϵ
B 0.9, 0 0.1, 2 0.9, 0
C 1 + ϵ, 1 + ϵ 0, −32/γ 1 + ϵ, 1− ϵ

Game Matrix G′
2

Figure 3: game matrices G′
1 and G′

2. P1 is the row player and P2 is the column player. The values in each cell
are (P1’s utility, P2’s utility). The parameter γ is defined as 1−p⋆

1+p⋆
∈ (0, 1], where p⋆ is the precision threshold

of p2.

Proof. Consider the construction of D used in Theorem 3.2 (Figure 1). D is a distribution with
equal probabilities over two game matrices G1, G2. Theorem 3.2 proves that the average Stackelberg
benchmark is unattainable by P2 in any equilibrium.

For this proof, we will consider another construction D′ that is equal probability over game matrices
G′

1, G
′
2 defined in Figure 3. G′

1 is essentially G1 with an additional row and column, where the
additional row is essentially a duplicate of the first row and the additional column is essentially a
duplicate of the first column. Rather than being an exact duplicate, the new row/column is a small
perturbation (given by parameter ϵ) of the original row/column it duplicates. G′

2 is obtained from G2

similarly.

Since the new construction is essentially duplicating rows/columns of the old construction, by the
same argument as is Theorem 3.2, the average Stackelberg benchmark is also unattainable by P2 in
any equilibrium of the meta-game of the Bayesian game D′.

Despite this, we can show there is an equilibrium enabling P2 to successfully learn through repeated
interactions. We construct the perturbations to ensure that the P1-led equilibrium response has a
different response for P2 in G′

1 compared to G′
2. Our argument is that the meta-game PNE pair results

in both players playing the P1-led Stackelberg equilibrium of the realized game. Therefore, based on
P2’s responses generated by the trajectories of the meta-game PNE, P2 can determine the realized
game.

Consider the algorithm pair where P1 plays her Stackelberg strategy of the realized game and
P2 plays a no-swap-regret algorithm. The proof of Theorem 3.1 showed that this pair forms an
equilibrium and that P2’s strategy eventually becomes the best-response of the realized game due to
P2’s no-swap-regret property. Note that the two games G′

1, G
′
2 in the support of D′ have different

P2 responses in P1’s Stackelberg equilibrium. So based on the strategies P2 plays, she will be able
to deduce the realized game. Consider the belief function h that at round t computes the average
strategy employed thus far: ȳt = 1/(t − 1)

∑t−1
r=1 yr and forms a belief concentrated on G′

1 if
∥ȳt − y(x⋆;G′

1)∥ < ∥ȳt − y(x⋆;G′
2)∥ and forms a belief concentrated on G′

2 otherwise, where
y(x⋆;G′

i) is the one-hot encoding vector of the best response y(x⋆;G) in game G. The induced
sequence of beliefs concentrates on the true realized game and hence satisfies the accuracy criterion
for learning the realized game. Therefore, there is an equilibrium of algorithms that allows P2 to
successfully learn.

The above observation highlighted a limitation of successful learning based on repeated interactions.
There could be two reasons driving this limitation. One possibility is that the accuracy criterion for
successful learning is not strong enough to always enable achieving the average Stackelberg value
benchmark. The other possibility is that the learning process relies on the actions of the other player
in the repeated interaction.
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We will now argue that the limitation arises from the second reason and not the first. If the accuracy
criterion for successful learning is met through independent learning based on external signals instead
of histories of the game dynamics, we will show that the average Stackelberg value benchmark
becomes achievable.

The following proposition shows that if P2 can successfully learn independently for every D, then
P2 can achieve her average Stackelberg value StackVal2(D) for every D at a PNE of the meta-game.
This extends Theorem 3.1, which stated that this is possible if P2 was fully informed. Essentially,
successful independent learning guarantees the same power to a player as being fully informed from
the beginning.

Proposition A.5. For every D for which P2 can successfully learn independently (Definition A.3),
there is an algorithm pair (π1, π2) such that (π1, π2) is a PNE of the meta-game and ∀G ∈
G, Ū2(π1, π2;G) ≥ StackVal2(G)− oT (1).

Proof sketch. The equilibrium algorithm pair we will show guarantees this utility to P2 is the one
where P2 employs the Stackelberg response of the game denoted by the external signal qt at round t
and P1 employs a no-swap-regret algorithm.

We defined successful independent learning as when the less informed player learns the realized
game to arbitrarily high precision, based on external signals. If the external signals were not quite as
powerful, the average Stackelberg benchmark can no longer be always achieved. In particular, if P2
could only learn the realized game to a precision bounded away from 1, Theorem 3.2 shows that the
average Stackelberg benchmark is not always achievable when P1 is fully informed about the game.

B Missing Proofs
B.1 Proof of Theorem 3.1
Theorem 3.1 is implied by Proposition A.5. Please see the proof of Proposition A.5 in Appendix B.2.

B.2 Proof of Proposition A.5
We will construct an algorithm pair (π1, π2) such that when P1 is able to successfully learn through
an independent sequence of signals (qt)∞t=1, (π1, π2) is an equilibrium pair and guarantees P1 an
expected average utility of at least StackVal1(G)−oT (1) in T rounds, for every realized game G. The
same proof also holds if P2 is the player able to learn through external signals. Let (x⋆(G), y(x∗;G))
denote P1’s Stackelberg strategy and P2’s best response in the game G. Let y(x∗;G) be the one-hot
encoding vector of y(x∗;G).

We choose π2 to be a no-swap-regret algorithm with swap-regret rate O(T a) for a < 1. We will first
construct π1 in the setting with a known, finite time horizon T so that P1 achieves average regret
StackVal1(G)− oT (1) in T rounds when interacting with P2 employing a no-swap-regret algorithm.
This is builds on the proof of Theorem 4 by Deng et al. [17]. We will present the argument here for
completeness. We will later show how to apply the doubling trick to extend this to the setting with
infinite time horizon.

Under the assumption that the realized game has no weakly dominated actions, we will show
how P1 can choose a strategy x′ so that y(x⋆;G) is P2’s unique best response and x′ is close to
x⋆(G). Since y(x⋆;G) is not weakly dominated, there is no y′ ∈ ∆(A2 \ {y(x⋆;G)}) such that
U2(x,y

′) ≥ U2(x, y(x
⋆;G)) for all x ∈ A1. By Farkas’ lemma [20], there must exist a x̄ ∈ ∆(A1)

such that U2(x̄, y(x
⋆;G)) ≥ U2(x̄, y(x

⋆;G)) + c for a constant c > 0. This implies that if P1 plays
the strategy x′

δ = (1 − δ)x⋆ + δx̄, then for all values of δ > 0, P2’s unique best response to x′
δ is

y(x⋆;G). To indicate dependence of this strategy on the game G, we will also denote it by x′
δ(G).

Choosing a small δ enables P1 to play a strategy close to the Stackelberg strategy while ensuring that
P2’s unique best response is y(x⋆;G).

In the each round t ∈ [T ], P1 employs x′
δT (q

t), where qt is the signal at round t. We will later describe
how to choose δT . Let (xt,yt)∞t=1 be the sequence of strategies generated through the interaction
of the above algorithm of P1 and P2’s no-swap-regret algorithm. Given a δT , let us compute P1’s
expected cumulative utility. Let Zt be a random variable indicating if the external signal at round
t is the realized game i.e., Zt = 1{qt = G}. In rounds with Zt = 1, the immediate regret of
P2 at round t is c∥yt − y(x⋆;G)∥. A lower bound on P2’s regret based on regret accumulated
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only in rounds with Zt = 1 is
∑T

t=1 δ
T c · Zt∥yt − y(x⋆;G)∥, where c = U2(x

′, y(x⋆;G)) −
maxy∈A2\{y(x⋆;G)} U2(x

′, y).

swap-regret ≥
T∑

t=1

δT c · Zt∥yt − y(x⋆;G)∥

E[swap-regret] ≥
T∑

t=1

δT c · E[Zt] · E[∥yt − y(x⋆;G)∥]

(Independence between qt and P2’s action)

≥ δT c · (1− oT (1)) · E

[
T∑

t=1

∥yt − y(x⋆;G)∥

]
(Successful learning criteria)

E[swap-regret] ∈ O(T a) (π2’s swap regret bound)

=⇒

[
T∑

t=1

∥yt − y(x⋆;G)∥

]
∈ O(T a/δT ). (1)

P1’s cumulative utility satisfies:

E

[
T∑

t=1

U1(x
t,yt;G)

]
≥

T∑
t=1

E[Zt]
(
U1(x

′
δT , y(x

⋆;G);G)− c1 E[∥yt − y(x⋆;G)∥1]
)
+ c2

T∑
t=1

E[1− Zt]

≥
T∑

t=1

E[Zt]
(
StackVal1(G)− δT c3 − c1 E[∥yt − y(x⋆;G)∥1]

)
+ c2

T∑
t=1

E[1− Zt],

where

c1 = U1(x
′
δT ,y(x

⋆;G);G)− min
y∈A2\{y(x⋆;G)}

U1(x
′
δT , y;G),

c2 = min
x∈A1,y∈A2

U1(x, y),

c3 = StackVal1(G)− U1(x̄, y(x
⋆;G);G).

Finally, we use Equation (1) and E[Zt] = 1− ot(1) to conclude that

E

[
T∑

t=1

U1(x
t, yt)

]
≥ StackVal1(G) · T − c3δ

TT − c1O(T a)/δT − o(T ). (2)

In eq. (2), the second term c3δ
TT comes from playing action x̄ instead of x to induce a unique

best response; the third term c1O(T a)/δT comes from the swap regret of P2, and the last o(T ) term
comes from errors in the external signals Zt. By choosing δT = T−b for some 0 < b < 1− a, π1

yields StackVal1(G) ·T − o(T ) utility to P1. In the special case where the last o(T ) term is zero (e.g.,
when P1 has perfect knowledge about the game G as in Theorem 3.1), we can achieve the optimal
tradeoff by setting b to be 1−a

2 , which yields a convergence rate of O(T
1+a
2 ) to StackVal1(G).

The doubling trick to construct π1 that does not rely on the time horizon being known: Initialize
a maximum horizon Tm. Until the round index t hits Tm, employ x′

δTm . Once t = Tm, update
Tm ← 2Tm and employ x′

δTm until the round index exceeds the new max horizon.

Remark B.1 (Rate of convergence to Stackelberg benchmark.). Algorithms that provide swap-
regret rates of O(T 1/2) are known [7, 37]. By setting a = 1

2 and b = 1−a
2 , our proof shows that

these algorithms lie in a PNE of the meta-game that results in a O(T 3/4) convergence rate to P1’s
Stackelberg benchmark.

B.3 Proof of Theorem 3.2
We prove this theorem for every fixed signal precision p2 = p ≤ p⋆. Before diving into the proof,
we will first introduce some notations. For (i, j) ∈ {1, 2} × {1, 2}, we use CSPij to denote the CSP
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C D
A 16/γ, 1 16/γ, −32/γ
B 2, 0 0, 2

Game Matrix G1

C D
A 1, 1 0, −32/γ
B 0.9, 0 0.1, 2

Game Matrix G2

Figure 4: game matrices G1 and G2. P1 is the row player and P2 is the column player. The values in each cell
are (P1’s utility, P2’s utility). Shaded cells represent the action profiles supported in the Stackelberg equilibria
led by the column player. The parameter γ is defined as 1−p⋆

1+p⋆
∈ (0, 1], where p⋆ is the precision threshold of p2.

induced by T T (π1, π2; s1 = Gi, s2 = Gj , G = Gi). Note that we have taken s1 and G to both
be Gi because s1 ≡ G when p1 = 1. Recall that T T (π1, π2;Gi, Gj , Gi) is the distribution over
trajectories of length T (denoted as τ = (xt,yt)t∈[T ]) generated by the pair of algorithms (π1, π2)
when π1 takes input signal s1 = Gi and π2 takes input signal s2 = Gj . Formally, we have

CSPij ≜ CSPT T (π1,π2;Gi,Gj ,Gi) = E
τ∼T T (π1,π2;Gi,Gj ,Gi)

[
1

T

T∑
t=1

xt ⊗ yt

]
.

In addition, for i ∈ {1, 2}, we use CSPi to denote the CSP generated by the trajectory distribution
T T (π1, π2;Gi). Since s1 perfectly correlates with G, and s2 is drawn from the signal distribution
φp2

(s|G) = 1+p2

2 · 1 {s = G}+ 1−p2

2 · 1 {s ̸= G}, we can equivalently write CSP1 and CSP2 as

CSP1 =
1 + p

2
CSP11 +

1− p

2
CSP12;

CSP2 =
1− p

2
CSP21 +

1 + p

2
CSP22.

As argued in the proof sketch, we will establish the following three claims about CSP1 and CSP2.

Claim B.2. If (π1, π2) forms an equilibrium in the algorithm space, then CSP1(B,D) ≤ γ
8 + oT (1).

Claim B.3. If (π1, π2) forms an equilibrium in the algorithm space, then CSP1(A,D) ≤ γ
8 + oT (1).

Claim B.4. If Claim B.3 holds and (π1, π2) grants P2 the expected Stackelberg value, i.e.,

lim inf
T→∞

Ū2(π1, π2;D) ≥
3

2
,

then CSP2(B,D) ≥ 1/2 + o(1).

We will first build the proof of Theorem 3.2 on these claims, and then formally establish these claims
in appendix B.4.

Assume that (π1, π2) is a PNE in the meta-game that lets P2 achieve the benchmark StackVal(D) = 3
2 .

We show that if (π1, π2) satisfies Claims B.2 through B.4, then P1 gains utility by deviating to an
algorithm π′

1 that always plays according to G1.

Formally, consider π′
1 defined as follows. For any history time step t > 0 and any history Hr

1 (r > 0),

π′
1(G,H1:t−1

1 ) ≜ π1(G1, H
1:t−1
1 ), ∀G ∈ {G1, G2}.

After the deviation, P1’s average utility can be expressed as

ŪT
1 (π′

1, π2) =
1

2
Ū1(π1, π2;G1) +

1− p

4
E

τ∼T T (π′
1,π2;G2,G1,G2)

[
1

T

T∑
t=1

U1(xt,yt;G2)

]

+
1 + p

4
E

τ∼T T (π′
1,π2;G2,G2,G2)

[
1

T

T∑
t=1

U1(xt,yt;G2)

]
.
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Since π′
1 is defined to behave according to π1 on observing G1, the above equation can be rewritten

as

Ū1(π
′
1, π2) =

1

2
Ū1(π1, π2;G1) +

1− p

4
E

(x,y)∼CSP11

[U1(x, y;G2)]

+
1 + p

4
E

(x,y)∼CSP12

[U1(x, y;G2)] .

Now we define a new CSP to be the mixture of CSP11 and CSP12 but CSP12 is taking up more
probability mass than CSP11:

CSP′
1 ≜

1− p

2
CSP11 +

1 + p

2
CSP12.

Note that compared with the CSP1 defined before (repeated below)

CSP1 =
1 + p

2
CSP11 +

1− p

2
CSP12,

we can conclude that for any action pair (x, y) ∈ {A,B} × {C,D},

CSP′
1(x, y) ≤

1 + p

1− p
CSP1(x, y) ≤

1 + p⋆

1− p⋆
CSP1(x, y) =

1

γ
CSP1(x, y),

where the second step used p ≤ p⋆ and the last step uses the definition of γ = 1−p⋆

1+p⋆ . Combined with
the upper bounds on CSP1(B,D) and CSP1(A,D) from Claim B.2 and Claim B.3, we have

CSP′
1(B,D) + CSP′

1(A,D) ≤ 1

γ
(CSP1(B,D) + CSP1(A,D)) ≤ 1

4
+ oT (1). (3)

Finally, we lower bound the increase in P1’s utility after deviating from π1 to π′
1 as follows. Since

ŪT
1 (π′

1, π2)− ŪT
1 (π′

1, π2) =
1

2

(
E

(x,y)∼CSP′
1

[U1(x, y;G2)]− E
(x,y)∼CSP1

[U1(x, y;G2)]

)

it suffices to lower bound the difference in utility when G2 is realized.

On the one hand, note that U1(x, y;G2) ≥ 0.9 as long as (x, y) ̸= (A,D) or (B,D), we have

E
(x,y)∼CSP′

1

[U1(x, y;G2)] ≥ (1− CSP′
1(A,D)− CSP′

1(B,D)) · 0.9

≥
(
3

4
− oT (1)

)
· 0.9 > 0.6− oT (1). (from eq. (3))

On the other hand, since U1(x, y;G2) ≤ 0.1 when (x, y) = (B,D) and U1(x, y;G2) ≤ 1 otherwise,
we have

E
(x,y)∼CSP1

[U1(x, y;G2)] ≤ CSP1(B,D) · 0.1 + (1− CSP1(B,D)) · 1

≤ 1

2
· 1.1 + oT (1) (CSP1(B,D) ≥ 1

2 + oT (1) from Claim B.4)

< 0.6 + oT (1).

As a result, after taking their difference, we have that in the asymptotic regime

lim sup
T→∞

(
ŪT
1 (π′

1, π2;D)− ŪT
1 (π′

1, π2;D)
)
> 0,

which contradicts with the assumption that (π1, π2) forms a PNE (cf. Definition 2.1) in the meta-
game! Therefore, it cannot be possible for any PNE (π1, π2) of the meta game to achieve the
benchmark StackVal2(D) for P2. The proof is thus complete.
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B.4 Proof of Technical Claims
Proof of Claim B.2. We prove this claim by contradiction. Assume that the above claim does not
hold, i.e.,

lim sup
T→∞

CSP1((B,D)) >
γ

8
,

we will show that P1 gains utility by deviating to another algorithm π′
1 that always plays action A

regardless of the signals and the feedbacks observed. We have

lim inf
T→∞

ŪT
1 (π1, π2;D)

= lim inf
T→∞

(
1

2
ŪT
1 (π1, π2;G1) +

1

2
ŪT
1 (π1, π2;G2)

)
= lim inf

T→∞

(
1

2
E

(x,y)∼CSP1

U1(x, y;G1) +
1

2
E

(x,y)∼CSP2

U1(x, y;G2)

)
≤ lim inf

T→∞

(
1

2

(
CSP1(B,D) · 0 + (1− CSP1(B,D)) · 16

γ

)
+

1

2
· 1
)

(U1(x, y;G1) ≤ 16
γ for all (x, y) ̸= (B,D); U2(x, y;G2) ≤ 1 for all (x, y))

<
1

2

(
1− γ

8

) 16

γ
+

1

2
(assumption that lim supT→∞ CSP1((B,D)) > γ

8 )

=
8

γ
− 1

2
.

On the other hand, since P1 always plays action A under π′
1, which has utility 16

γ in G1 regardless of
the strategy of P2, we have

lim sup
T→∞

ŪT
1 (π′

1, π2;D) ≥ lim sup
T→∞

1

2
ŪT
1 (π′

1, π2;D) ≥
1

2
· 16
γ

=
8

γ
.

Combining the above two inequalities give us

lim sup
T→∞

(
ŪT
1 (π′

1, π2;D)− ŪT
1 (π1, π2;D)

)
> 0,

which violates the requirement of PNE in Definition 2.1. Therefore, we have established the claim
that CSP1(B,D) ≤ γ

8 + oT (1).

Proof of Claim B.3. Again, assume for the sake of contradiction that CSP1(A,D) ≤ γ
8 +oT (1) does

not hold, which implies

lim sup
T→∞

CSP1(A,D) >
γ

8
.

We upper bound P2’s utility under equilibrium as

lim inf
T→∞

ŪT
2 (π1, π2;D)

= lim inf
T→∞

(
1

2
E

(x,y)∼CSP1

Ū2(x, y;G1) +
1

2
E

(x,y)∼CSP2

Ū2(x, y;G2)

)
≤ lim inf

T→∞

(
1

2
· CSP1(A,D) ·

(
−32

γ

)
+

(
1− 1

2
· CSP1(A,D)

)
· 2
)

(P2’s utility is −32/γ for (A,D) and ≤ 2 for all other cells)

<
γ

16
·
(
−32

γ

)
+
(
1− γ

16

)
· 1 (assumption that lim supT→∞ CSP1(A,D) > γ/8.)

< 0.

On the other hand, if P2 deviates to an algorithm π′
2 that always plays action C regardless of the

signal s2 and the observed feedbacks, then the average utility Ū2(π1, π
′
2;D) is always nonnegative.

As a result, we have
lim sup
T→∞

(
ŪT
2 (π1, π

′
2;D)− ŪT

2 (π1, π2, ;D)
)
> 0,

which again violates the condition of (π1, π2) being in a PNE in the meta-game. Therefore, we must
have CSP1(A,D) ≤ γ

8 +OT (1).
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Proof of Claim B.4. Note that U2 is the same under G1 and G2, for which the top-2 highest utility
values are achieved by (B,D) and (A,C) respectively. Therefore, we can upper bound P2’s expected
average utility as

ŪT
2 (π1, π2;D) =

1

2
E

(x,y)∼CSP1

U2(x, y;G1) +
1

2
E

(x,y)∼CSP2

U2(x, y;G2)

≤ 1

2

(
(1− CSP1(B,D)) · 1 + CSP1(B,D) · 2

)
+

1

2

(
(1− CSP2(B,D)) · 1 + CSP2(B,D) · 2

)
= 1 +

1

2
CSP1(B,D) +

1

2
CSP2(B,D)

≤ 1 +
γ

16
+

1

2
CSP2(B,D) + o(1),

where the last step uses Claim B.3. On the other hand, from the assumption, Ū2(π1, π2;D) is lower
bounded by 3/2 as T →∞. Therefore, we obtain

lim
T→∞

CSP2(B,D) ≥ 1− γ

8
≥ 1

2
,

which proves CSP2(B,D) ≥ 1
2 + o(1).

C Implications from prior works
In this section, we provide arguments for the following claims about PNE of the meta-game that
are implied either directly or indirectly by previous works. We say that an algorithm πi of Pi is
supported in a meta-game PNE if there exists an algorithm π−i such that the pair (πi, π−i) forms
a PNE of the meta-game. The claims in this section provide answers to whether common classes
of algorithms such as (swap)regret-minimizing, myopically best-responding, playing Stackelberg
response are always/sometimes/never supported in a meta-game PNE.

Claim C.1. All no-swap-regret algorithms are supported in a meta-game PNE for all games G. Put
another way, being no-swap-regret is a sufficient condition for an algorithm to be supported in some
meta-game PNE.

Proof. This is a direct corollary of [17, Theorem 6] which can also be justified by our proof of
Theorem 3.1. Consider the pair of algorithms (π1, π2) in which π1 plays strategies close to the
Stackelberg optimal strategy (via a doubling trick, see Appendix B.2 for the full construction), and π2

is a no-swap-regret algorithm. We have proved in Appendix B.2 that (π1, π2) is a PNE in the meta-
game because no-swap-regret algorithms are able to cap their opponent’s utility at the Stackelberg
value.

The second claim is stated as Theorem 2 by Brown et al. [10]. Since most game matrices do not
have PNE, this claim effectively states that a pair of no-swap-regret algorithms cannot be PNE in the
meta-game for most games.

Claim C.2 (Theorem 2, [10]). Unless the stage game G has a PNE, any pair of two no-swap regret
algorithms cannot form a PNE of the meta-game.

Claim C.3. No-regret is not a sufficient condition for an algorithm to be supported in a meta-game
PNE. For common no-regret algorithms such as EXP3, there is a game where no meta-game PNE
contains this algorithm.

Proof sketch. This claim can be established by combining two claims in [9]. In their setting, a single
seller repeatedly sells a single item to a single buyer for T rounds. We will use two of their results:

1. (Theorem 3.1 of [9]) If the buyer uses EXP3 or other mean-based algorithms, then there
exists an algorithm for the seller which extracts (almost) full welfare.

2. (Theorem 3.3 of [9]) There exists an algorithm for the buyer (no-regret without overbidding),
which caps the seller’s revenue at the Mayerson value.
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Wlog, assume P1’s algorithm π1 is a mean-based no-regret algorithm such as EXP3. We will show
that for any algorithm π2 of P2, the pair (π1, π2) cannot be a PNE of the meta-game.

Let π′
2 be the algorithm given by the above result 1 that lets P2 extract full welfare against π1. Let π′

1
be the algorithm that achieves the property in the above result 2.

On the one hand, if ŪT
1 (π1, π2) ≤Welfare(D)− Ω(T ), then P1 will increase utility by deviating to

algorithm π′
1, thus (π1, π2) cannot be a PNE in the meta-game.

On the other hand, if π1 is already extracting full welfare against π2 (meaning that P1 is getting
asymptotically zero utility), then P1 has the incentive to deviate to algorithm π′

2, under which she can
cap P2’s utility at the Myerson value and therefore guarantee herself nonzero utility. For this reason,
(π1, π2) cannot be a PNE in the meta-game.

Combining the above two cases, we conclude that π1 cannot be supported in any PNE of the
meta-game.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction clearly state the claims and contributions of
this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a proof for each theoretical result in either the main body or the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While our work provides commentary and critiques of how to interpret previous
results on learning in strategic interactions to overcome lack of information, we do not
prescribe any new methods.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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