
Diffusion Forcing: Next-token Prediction Meets
Full-Sequence Diffusion

Boyuan Chen
MIT CSAIL

boyuanc@mit.edu

Diego Martı́ Monsó∗
Technical University of Munich

diego.marti@tum.de

Yilun Du
MIT CSAIL

yilundu@mit.edu

Max Simchowitz
MIT CSAIL

msimchow@mit.edu

Russ Tedrake
MIT CSAIL

russt@mit.edu

Vincent Sitzmann
MIT CSAIL

sitzmann@mit.edu

Abstract

This paper presents Diffusion Forcing, a new training paradigm where a diffusion
model is trained to denoise a set of tokens with independent per-token noise
levels. We apply Diffusion Forcing to sequence generative modeling by training
a causal next-token prediction model to generate one or several future tokens
without fully diffusing past ones. Our approach is shown to combine the strengths
of next-token prediction models, such as variable-length generation, with the
strengths of full-sequence diffusion models, such as the ability to guide sampling
to desirable trajectories. Our method offers a range of additional capabilities, such
as (1) rolling-out sequences of continuous tokens, such as video, with lengths past
the training horizon, where baselines diverge and (2) new sampling and guiding
schemes that uniquely profit from Diffusion Forcing’s variable-horizon and causal
architecture, and which lead to marked performance gains in decision-making
and planning tasks. In addition to its empirical success, our method is proven to
optimize a variational lower bound on the likelihoods of all subsequences of tokens
drawn from the true joint distribution. Project website: https://boyuan.space/
diffusion-forcing/

1 Introduction

Probabilistic sequence modeling plays a crucial role in diverse machine learning applications including
natural language processing [6, 47], video prediction [31, 69] and decision making [3, 22]. Next-token
prediction models in particular have a number of desirable properties. They enable the generation of
sequences with varying length [32, 21, 37] (generating only a single token or an “infinite” number
of tokens via auto-regressive sampling), can be conditioned on varying amounts of history [21, 37],
support efficient tree search[70, 23, 25], and can be used for online feedback control [22, 3].

Current next-token prediction models are trained via teacher forcing [64], where the model predicts
the immediate next token based on a ground truth history of previous tokens. This results in two
limitations: (1) there is no mechanism by which one can guide the sampling of a sequence to
minimize a certain objective, and (2) current next-token models easily become unstable on continuous
data. For example, when attempting to auto-regressively generate a video (as opposed to text [6] or
vector-quantized latents [33]) past the training horizon, slight errors in frame-to-frame predictions
accumulate and the model diverges.

∗Work done as a visiting student at MIT.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

24081 https://doi.org/10.52202/079017-0759

https://boyuan.space/diffusion-forcing/
https://boyuan.space/diffusion-forcing/

Guidance Tree Search Compositionality Causal Uncertainty Flexible Horizon

Diffusion Forcing

Teacher Forcing

Full-Seq. Diffusion

C
om

p
of

f

Tr
ai

n.
 S

et

C
om

p
on

Figure 1: Diffusion Forcing capabilities. Today, different applications such as language modeling [6],
planning [36], or video generation [31, 69] rely on either auto-regressive next-token prediction or
full-sequence diffusion, according to their respective unique capabilities. The proposed Diffusion
Forcing is a novel sequence generative model that enjoys key strengths of both model types.

Full-sequence diffusion seemingly offers a solution. Commonly used in video generation and
long-horizon planning, one directly models the joint distribution of a fixed number of tokens by
diffusing their concatenation [31, 1], where the noise level is identical across all tokens. They
offer diffusion guidance [30, 16] to guide sampling to a desirable sequence, invaluable in decision-
making (planning) applications [36, 34]. They further excel at generating continuous signals such as
video [31]. However, full-sequence diffusion is universally parameterized via non-causal, unmasked
architectures. In addition to restricting sampling to full sequences, as opposed to variable length
generation, we show that this limits the possibilities for both guidance and subsequence generation
(Figure 1). Further, we demonstrate that a naive attempt at combining the best of both worlds
by training a next-token prediction model for full-sequence diffusion leads to poor generations,
intuitively because it does not model the fact that small uncertainty in an early token necessitates
high uncertainty in a later one.

In this paper, we introduce Diffusion Forcing (DF), a training and sampling paradigm where each
token is associated with a random, independent noise level, and where tokens can be denoised
according to arbitrary, independent, per-token schedules through a shared next-or-next-few-token
prediction model. Our approach is motivated by the observation that noising tokens is a form of
partial masking—zero noise means a token is unmasked, and complete noise fully masks out a token.
Thus, DF forces the model to learn to “unmask” any collection of variably noised tokens (Figure 2).
Simultaneously, by parameterizing predictions as a composition of next-token prediction models, our
system can flexibly generate varying length sequences as well as compositionally generalize to new
trajectories (Figure 1).

We implement DF for sequence generation as Causal Diffusion Forcing (CDF), in which future
tokens depend on past ones via a causal architecture. We train the model to denoise all tokens of
a sequence at once, with an independent noise level per token. During sampling, CDF gradually
denoises a sequence of Gaussian noise frames into clean samples where different frames may have
different noise levels at each denoising step. Like next-token prediction models, CDF can generate
variable-length sequences; unlike next-token prediction, it does so stabily from the immediate next
token to thousands of tokens in the future – even for continuous tokens. Moreover, like full-sequence
diffusion it accepts guidance towards high-reward generations. Synergistically leveraging causality,
flexible horizon, and variable noise schedules, CDF enables a new capability, Monte Carlo Guidance
(MCG), that dramatically improves the sampling of high-reward generations compared to non-causal
full-sequence diffusion models. Fig. 1 overviews these capabilities.

In summary, our contributions are: (1) We propose Diffusion Forcing, a new probabilistic sequence
model that has the flexibility of next-token prediction models while being able to perform long-
horizon guidance like full-sequence diffusion models. (2) Taking advantage of Diffusion Forcing’s
unique capabilities, we introduce a novel decision-making framework that allows us to use Diffusion
Forcing as simultaneously a policy ([10]) and as a planner ([36]). (3) We formally prove that,
under appropriate conditions, optimizing our proposed training objective maximizes a lower bound
on the likelihood of the joint distribution of all sub-sequences observed at training time. (4) We
empirically evaluate CDF across diverse domains such as video generation, model-based planning,
visual imitation learning, and time series prediction, and demonstrate CDF’s unique capabilities,

2

24082https://doi.org/10.52202/079017-0759

Training

Sampling

Time
Observation

Latent State
Generation
Add Noise

N
oi

se

Teacher ForcingNoise as Masking Full-Seq. Diffusion
x̂0
t

xK
t

x̂0
t

Diffusion Forcing

Figure 2: Method Overview. Diffusion Forcing trains causal sequence neural networks (such as
an RNN or a masked transformer) to denoise flexible-length sequences where each frame of the
sequence can have a different noise level. In contrast, next-token prediction models, common in
language modeling, are trained to predict a single next token from a ground-truth sequence (teacher
forcing [64]), and full-sequence diffusion, common in video generation, train non-causal architectures
to denoise all frames in a sequence at once with the same noise level. Diffusion Forcing thus
interleaves the time axis of the sequence and the noise axis of diffusion, unifying strengths of both
alternatives and enabling completely new capabilities (see Secs. 3.2,3.4).

such as stabilizing long-rollout autoregressive video generation, composing sub-sequences of those
observed at training time with user-determined memory horizon, Monte Carlo Guidance, and more.

2 Related Work and Preliminaries

We discuss related work and preliminaries for our core application, sequence generative modeling;
see Appendix D for further literature review.

Our method unifies two perspectives on sequence modeling: Bayesian filtering along the time
axis, denoted by subscript t, and diffusion along an “uncertainty” (or noise level) axis denoted by
superscript k. In the following, we denote observations as x ∈ X and latent states as z ∈ Z .

Bayesian Filtering. Given a Hidden Markov Model (HMM) defined by latent states zt and obser-
vations xt, a Bayes filter is a probabilistic method for estimating latent states recursively over time
from incoming observations. A prior model p(zt+1|zt) infers a belief over the next state given only
the current state, and an observation model infers a belief over the next observation given the current
latent state p(xt|zt). When a new observation is made, a posterior model p(zt+1|zt,xt+1) provides
an updated estimation of the next latent state zt+1. When trained end-to-end with neural networks
[22, 23], latent states are not an estimate of any physical quantity, but a sufficiently expressive latent
that summarizes past observations for predicting future observations (xt′)t′>t in the sequence.

Diffusion Models. Diffusion models [56, 28] have proven to be highly expressive and reliable
generative models. We review their essentials here. Let q(x) denote a data distribution of interest,
and let x0 ≡ x ∼ q. We consider a forward diffusion process that gradually adds Gaussian noise to a
data point over a series of time steps. This process is modeled as a Markov chain, where the data at
each step k is noised incrementally:

q(xk|xk−1) = N (xk;
√

1− βkx
k−1, βkI) (2.1)

where N is the normal distribution and βk is the variance of the noise added at each step controlled
by a schedule {βk ∈ (0, 1)}Kk=1. The process continues until the data is converted into pure noise at
xK . The reverse process is also a Markov chain and attempts to recreate the original data from the
noise with a parameterized model pθ:

pθ(x
k−1|xk) = N (xk−1;µ(xk, k), γkI), (2.2)

where the mean µ is a model with a neural network, and where it is shown [29] that one can set
the covariance to the identity scaled by a fixed constant γk depending on k. Adopting the standard

3

24083 https://doi.org/10.52202/079017-0759

exposition, we reparametrize the mean µ in terms of noise prediction ϵ = (
√
1− ᾱt)

−1xkt
t −
√
ᾱtµ.

This leads [28] to the following least squares objective:

L(θ) = Ek,x0,ϵ

[
∥ϵk − ϵθ(x

k, k)∥2
]
, (2.3)

where xk =
√
ᾱtx

0 +
√
1− ᾱtϵ

k and ϵk ∼ N (0, I) . One can then sample from this model via
Langevin dynamics xk−1 ← 1√

αk
(xk

t − 1−αk√
1−ᾱk

ϵθ(x
k
t , k) + σkw) [28].

Guidance of Diffusion Models. Guidance [30, 16] allows biasing diffusion generation towards
desirable predictions at sampling time. We focus on classifier guidance [16]: given a classifier
c(y|xk) of some desired y (e.g. class or success indicator), one modifies the Langevin sampling
[29] gradient ϵθ(xk, k) to be ϵθ(x

k, k)−
√
1− ᾱk∇xk log c(y|xk). This allows sampling from the

joint distribution of x and class label y without the need to train a conditional model. Other energies
such as a least-squares objective comparing the model output to a desirable ground truth have been
explored in applications such as decision making [16, 36].

Next-Token Prediction Models. Next-token prediction models are sequence models that predict the
next frame xt+1 given past frames x1:t. At training time, one feeds a neural network with x1:t and
minimizes ||x̂− x||2 for continuous data or a cross-entropy loss for discrete data [64]. At sampling
time, one samples the next frame x̂t+1 following p(xt+1|x1:t). If one treats x̂t+1 as xt+1, one can
use the same model to predict xt+2 and repeat until a full sequence is sampled. Unlike full-sequence
diffusion models, next-token models do not accept multi-step guidance, as prior frames must be fully
determined to sample future frames.

Diffusion Sequence Models. Diffusion has been widely used in sequence modeling. [43] use full-
sequence diffusion models to achieve controllable text generation via guidance, such as generating
text following specified parts of speech. [31] trains full-sequence diffusion models to synthesize short
videos and uses a sliding window to roll out longer conditioned on previously generated frames. [36]
uses full-sequence diffusion models as planners in offline reinforcement learning. This is achieved by
training on a dataset of interaction trajectories with the environment and using classifier guidance
at sampling time to sample trajectories with high rewards towards a chosen goal. [49] modifies
auto-regressive models to denoise the next token conditioned on previous tokens. It trains with
teacher forcing [64] and samples next-token auto-regressively for time series data. Most similar to
our work is AR-Diffusion [65], which trains full-sequence text diffusion with a causal architecture
with linearly dependent noise level along the time axis. We provide a detailed comparision between
this approach and ours in Appendix D.

3 Method

3.1 Noising as partial masking

Recall that masking is the practice of occluding a subset of data, such as patches of an image [26] or
timesteps in a sequence [15, 48], and training a model to recover unmasked portions. Without loss of
generality, we can view any collection of tokens, sequential or not, as an ordered set indexed by t.
Training next-token prediction with teacher forcing can then be interpreted as masking each token
xt at time t and making predictions from the past x1:t−1. Restricted to sequences, we refer to all
these practices as masking along the time axis. We can also view full-sequence forward diffusion, i.e.,
gradually adding noise to the data x0

1:T ≡ x1:T , as a form of partial masking, which we refer to as
masking along the noise axis. Indeed, after K steps of noising, xK

1:T is (approximately) pure white
noise without information about the original data.

We establish a unified view along both axes of masking (see Fig. 2). We denote x1:T for a sequence of
tokens, where the subscript indicates the time axis. As above, xkt

t denotes xt at noise level kt under
the forward diffusion process (2.1); x0

t = x is the unnoised token, and xK
t is white noise N (0, I).

Thus, (xkt
t)1≤t≤T denotes a sequence of noisy observations where each token has a different noise

level kt, which can be seen as the degree of partial masking applied to each token through noising.

3.2 Diffusion Forcing: different noise levels for different tokens

Diffusion Forcing (DF) is a framework for training and sampling arbitrary sequence lengths of noisy
tokens (xkt

t)1≤t≤T , where critically, the noise level kt of each token can vary by time step. In this

4

24084https://doi.org/10.52202/079017-0759

Algorithm 1 Diffusion Forcing Training
1: loop
2: Sample tajectory of observations (x1, ...,xT).
3: for t = 1, ..., T do
4: Sample independent noise level kt ∈

{0, 1, ...,K}
5: xkt

t = ForwardDiffuse(xt, kt)

6: Define ϵt =
x
kt
t −
√

ᾱkt
xt√

1−ᾱkt

7: Update zt ∼ pθ(zt|zt−1,x
kt
t , kt).

8: Set ϵ̂t = ϵθ(zt−1,x
kt
t , kt)

9: end for
10: L =MSELoss([ϵ̂1, ..., ϵ̂n] , [ϵ1, ..., ϵn])
11: Backprop with L and update θ
12: end loop

Algorithm 2 DF Sampling with Guidance
1: Input: Model θ, scheduling matrix K, initial latent

z0, guidance cost c(·).
2: Initialize x1, . . . ,xT ∼ N (0, σ2

KI).
3: for row m = M − 1, ..., 0 do
4: for t = 1, . . . , T do
5: znewt ∼ pθ(zt | zt−1,xt,Km+1,t).
6: k ← Km,t, w ∼ N (0, I).
7: xnew

t ← 1√
αk

(xt− 1−αk√
1−ᾱk

ϵθ(z
new
t ,xt, k))+

σkw
8: Update zt ← znewt .
9: end for

10: x1:H ←AddGuidance(xnew
1:H ,∇x log c(xnew

1:H))
11: end for
12: Return x1:T .

paper, we focus on time series data, and thus instantiate Diffusion Forcing with causal architectures
(where xkt

t depends only on past noisy tokens), which we call Causal Diffusion Forcing (CDF). For
simplicity, we focus on a minimal implementation with a vanilla Recurrent Neural Network (RNN)
[11]. Potential transformer implementation of Diffusion Forcing is also possible but we defer its
discussion to Appendix C.1.

The RNN with weights θ maintains latents zt capturing the influence of past tokens, and these evolve
via dynamics zt ∼ pθ(zt|zt−1,x

kt
t , kt) with a recurrent layer. When an incoming noisy observation

xkt
t is made, the hidden state is updated in a Markovian fashion zt ∼ pθ(zt|zt−1,x

kt
t , kt)

2. When
kt = 0, this is the posterior update in Bayes filtering; whereas when kt = K (and xK

t is pure noise
and thus uninformative), this is equivalent to modeling the “prior distribution” pθ(zt | zt−1) in Bayes
filtering. Given latent zt, an observation model pθ(x0

t |zt) predicts xt.

Training. The dynamics model pθ(zt|zt−1,x
kt
t , kt) and the observation model pθ(x0

t |zt) together
form a RNN unit. Such unit has the same input-output behavior as a standard conditional diffusion
model, using a conditioning variable zt−1 and a noisy token xkt

t as input to predict the noise-free
xt = x0

t and thus, indirectly, the noise ϵkt via affine reparametrization [29]. We can thus directly
train (Causal) Diffusion Forcing with the conventional diffusion training objective. We parameterize
the aforementioned unit in terms of noise prediction ϵθ(zt−1,x

kt
t , kt). We then find parameters θ by

minimizing the loss

E
kt,xt,ϵt

zt∼pθ(zt|zt−1,x
kt
t ,kt)

T∑
t=1

[
∥ϵt − ϵθ(zt−1,x

kt
t , kt)∥2

]
, (3.1)

where we sample k1:T uniformly from [K]T , x1:T from our training data, and ϵt ∼ N (0, σ2
kt
I) in

accordance with the forward diffusion process (see Algorithm 1 for pseudocode). Importantly, the
loss (3.1) captures essential elements of Bayesian filtering and conditional diffusion. In Appendix B.1,
we further re-derive common techniques in diffusion model training for Diffusion Forcing, which
proves extremely useful for video prediction experiments. In Appendix C.2, we discuss the need
of sampling k1:T uniformly. Finally, we prove the validity of this objective stated informally in the
following Theorem 3.1 in Appendix A.

Theorem 3.1 (Informal). The Diffusion Forcing training procedure (Algorithm 1) optimizes a
reweighting of an Evidence Lower Bound (ELBO) on the expected log-likelihoods ln pθ((xkt

t)1≤t≤T),
where the expectation is averaged over noise levels k1:T ∼ [K]T and xkt

t noised according to the
forward process. Moreover, under appropriate conditions, optimizing (3.1) also maximizes a lower
bound on the likelihood for all sequences of noise levels, simultaneously.

2We implement zt = pθ(zt|zt−1,x
kt
t , kt) to be deterministic, with zt representing a distribution over beliefs

rather than a sample from it. This allows training by backpropogating through the latent dynamics in Eq.(3.1).

5

24085 https://doi.org/10.52202/079017-0759

We remark that a special case of ‘all sequences of noise levels’ are those for which either kt = 0
or kt = K; thus, one can mask out any prior token and DF will learn to sample from the correct
conditional distribution, modeling the distribution of all possible sub-sequences of the training set.

Sampling. Diffusion Forcing sampling is depicted in Algorithm 2 and is defined by prescribing a
noise schedule on a 2D M × T grid K ∈ [K]M×T ; columns correspond to time step t and rows
indexed by m determine noise-level. Km,t represents the desired noise level of the time-step t
token for row m. To generate a whole sequence of length T , initialize the tokens x1:T to be white
noise, corresponding to noise level k = K. We iterate down the grid row-by-row, denoising left-
to-right across columns to the noise levels prescribed by K. By the last row m = 0, the tokens are
clean, i.e. their noise level is K0,t ≡ 0. Appendix B.5 discusses corner cases of this scheme; the
hyperparameters (αk, ᾱk, σk) are set to their standard values [29]. The matrix K specifies how fast
each token gets denoised at every step of sequence diffusion. Since Diffusion Forcing is trained
to denoise tokens of all sequences of noise levels, K can be designed to flexibly achieve different
behaviors without re-training the model.

3.3 New Capabilities in Sequence Generation

We now explain the new capabilities this flexible sampling paradigm has to offer.

Full Traj.
Guidance

Stable Auto-Reg.
Rollout

Diffuse w/
Causal Uncertainty

Condition on
Currupted Obs.

Stabilizing autoregressive generation. For high-dimensional, continuous sequences such as video,
auto-regressive architectures are known to diverge, especially when sampling past the training horizon.
In contrast, Diffusion Forcing can stably roll out long sequences even beyond the training sequence
length by updating the latents using the previous latent associated with slightly “noisy tokens” for
some small noise level 0 < k ≪ K. Our experiments (Sec. 4.1) illustrates the resulting marked
improvements in long-horizon generation capabilities; App. C.4 provides further intuition.

Keeping the future uncertain. Beginning from a sequence of white noise tokens [xK
1 ,xK

2 ,xK
3]⊤,

we may denoise the first token fully and the second token partially, yielding [x0
1,x

K/2
2 ,xK

3]⊤, then
[x0

1,x
0
2,x

K/2
3]⊤, and finally denoising all tokens fully to [x0

1,x
0
2,x

0
3]

⊤. Interpreting the noise level as
uncertainty, this “zig-zag” sampling scheme intuitively encodes the immediate future as more certain
than the far future. Sec. 3.4 describes how this leads to more effective sequence guidance.

Long-horizon Guidance. In Line 10 of Algorithm 2, one may add guidance to the partially diffused
trajectory x1:T as in Sec. 2. Due to the dependency of future tokens on the past, guidance gradients
from future tokens can propagate backwards in time. The unique advantage of Diffusion Forcing is
that, because we can diffuse future tokens without fully diffusing the past, the gradient guides the
sampling of past tokens, thereby achieving long-horizon guidance while respecting causality. We
elaborate on implementation details in Appendix C.3. As we show in Section 4.2, planning in this
manner significantly outperforms guided full-sequence diffusion models.

3.4 Diffusion Forcing for Flexible Sequential Decision Making

The capabilities offered by Diffusion Forcing motivate our novel framework for sequential decision
making (SDM), with key applications to robotics and autonomous agents. Consider a Markov
Decision Process defined by an environment with dynamics p(st+1|st,at), observation p(ot|st) and
reward p(rt|st,at). The goal is to train a policy π(at|o1:t) such that the expected cumulative reward
of a trajectory E[

∑T
t=1 rt] is maximized. We assign tokens xt = [at, rt,ot+1]. A trajectory is a

sequence x1:T , possibly of variable length; training is conducted as in Algorithm 1. At each step t
of execution, past (noise-free) tokens x1:t−1 are summarized by a latent zt−1. Conditioned on this
latent, we sample, via Algorithm 2, a plan x̂t:t+H , with x̂t = [ât, r̂t, ôt+1]

⊤ containing predicted
actions, rewards and observations. H is a look-ahead window, analogous to future predictions in
model predictive control [20]. After taking planned action ât, the environment produces a reward rt

6

24086https://doi.org/10.52202/079017-0759

496GenerationsInput 500 996 1000496GenerationsInput 500 996 1000

Se
q

1
Se

q
2

Se
q

1
Se

q
2

Se
q

1
Se

q
2

Se
q

1
Se

q
2

Se
q

1
Se

q
2

Se
q

1
Se

q
2

DMLab Minecraft

D
iff

us
io

n
Fo

rc
in

g
C

au
sa

l F
ul

l-S
eq

.
Te

ac
he

r
Fo

rc
in

g
���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

Figure 3: Video Generation. Among tested methods, Diffusion Forcing generations are uniquely
temporally consistent and do not diverge even when rolling out well past the training horizon. Please
see the project website for video results.

and next observation ot+1, yielding next token xt = [ât, rt,ot+1]
⊤. The latent is updated according

to the posterior pθ(zt|zt−1,xt, 0). Our framework enables functionality as both policy and planner:

Flexible planning horizon. Diffusion Forcing (a) can be deployed on tasks of variable horizon,
because each new action is selected sequentially, and (b) its lookahead window H can be shortened to
lower latency (using Diffusion Forcing as a policy), or lengthened to perform long-horizon planning
(via guidance described below), without re-training or modifications of the architecture. Note that (a)
is not possible for full-sequence diffusion models like Diffuser [36] with full-trajectory generation
horizons, whereas diffusion policies [10] need fixed, small lookahead sizes, precluding (b).

Flexible reward guidance. As detailed in Appendix C.3, Diffusion Forcing can plan via guidance
using any reward (in place of log c) specified over future steps: this includes dense per-time step
rewards on the entire trajectory

∑T
t=1 rt, dense rewards on a future lookahead

∑t+H
t′=t rt, and sparse

rewards indicating goal completion −∥oT − g∥2. Per-time step policies cannot take advantage of
this latter, longer horizon guidance.

Monte Carlo Guidance (MCG), future uncertainty. Causal Diffusion Forcing allows us to influ-
ence the generation of a token xk

t by guidance on the whole distribution of future xt+1:T . Instead
of drawing a single trajectory sample to calculate this guidance gradient, we can draw multiple
samples of the future and average their guidance gradients. We call this Monte Carlo Guidance. In
the spirit of so-called shooting methods like MPPI [63], xk

t is then guided by the expected reward
over the distribution of all future outcomes instead of one particular outcome. The effect of MCG is
enhanced when combined with sampling schedules that keep the noise level of future tokens high
when denoising immediate next tokens (e.g. the zig-zag schedule described in Sec. 3.3), accounting
for greater uncertainty farther into the future. Appendix C.5 further justifies the significance of MCG,
and why Diffusion Forcing uniquely takes advantage of it.

4 Experiments

We extensively evaluate Diffusion Forcing’s merits as a generative sequence model across diverse
applications in video and time series prediction, planning, and imitation learning. Please find the
dataset and reproducibility details in the Appendix, as well as video results on the project website.

4.1 Video Prediction: Consistent, Stable Sequence Generation and Infinite Rollout.

We train a convolutional RNN implementation of Causal Diffusion Forcing for video generative
modeling on videos of Minecraft gameplay [68] and DMLab navigation [68]. At sampling time, we

7

24087 https://doi.org/10.52202/079017-0759

https://boyuan.space/diffusion-forcing
https://boyuan.space/diffusion-forcing

Maze2d-medium-v1 Maze2d-large-v1
D

3F
 (O

ur
s)

D
iff

us
er

endstart
denoising steps denoising steps

Environment MPPI CQL IQL Diffuser* Diffuser w/ diffused action Ours wo/ MCG Ours
Maze2D U-Maze 33.2 5.7 47.4 113.9 ± 3.1 6.3 ± 2.1 110.1 ± 3.9 116.7 ± 2.0
Maze2D Medium 10.2 5.0 34.9 121.5 ± 2.7 13.5±2.3 136.1 ± 10.2 149.4 ± 7.5
Maze2D Large 5.1 12.5 58.6 123.0 ± 6.4 6.3 ±2.1 142.8 ± 5.6 159.0 ± 2.7

Single-task Average 16.2 7.7 47.0 119.5 8.7 129.67 141.7

Multi2D U-Maze 41.2 - 24.8 128.9 ± 1.8 32.8±1.7 107.7 ± 4.9 119.1 ± 4.0
Multi2D Medium 15.4 - 12.1 127.2 ± 3.4 22.0±2.7 145.6 ± 6.5 152.3 ± 9.9
Multi2D Large 8.0 - 13.9 132.1 ± 5.8 6.9 ±1.7 129.8 ± 1.5 167.1 ±2.7

Multi-task Average 21.5 - 16.9 129.4 20.6 127.7 146.2

Table 1: Diffusion Forcing for Planning. (top) During sampling, Diffusion Forcing allows each time
step to be denoised on different noise schedules, enabling us to account for causal uncertainty during
guided planning. Diffusion Forcing keeps the far future more uncertain than the near future while
Diffuser [36] puts them at the same noise level during sampling. (bottom) Quantitatively, Diffusion
Forcing achieves the highest average reward across runs. Diffuser fails dramatically when executing
the actually generated actions, requiring a hand-crafted PD controller (indicated by the asterisk) and
ignoring generated actions.

perform auto-regressive rollout with stabilization proposed in Sec. 3.3. We consider two baselines,
both leveraging the same exact RNN architecture: a next-frame diffusion baseline trained with
teacher forcing [64] as well as a causal full-sequence diffusion model. Figure 3 displays qualitative
results of roll-outs generated by Diffusion Forcing and baselines starting from unseen frames for both
datasets. While Diffusion Forcing succeeds at stably rolling out even far beyond its training horizon
(e.g. 1000 frames), teacher forcing and full-sequence diffusion baselines diverge quickly. Further,
within the training horizon, we observe that full-sequence diffusion suffers from frame-to-frame
discontinuity where video sequences jump dramatically, while Diffusion Forcing roll-outs show
ego-motion through a consistent 3D environment. This highlights the ability of Diffusion Forcing to
stabilize rollouts of high-dimensional sequences without compounding errors.

4.2 Diffusion Planning: MCG, Causal Uncertainty, Flexible Horizon Control.

Decision-making uniquely benefits from Diffusion Forcing’s capabilities. We evaluate our proposed
decision-making framework in a standard offline RL benchmark, D4RL [18]. Specifically, we
benchmark Diffusion Forcing on a set of 2D maze environments with sparse reward. An agent
is tasked with reaching a designated goal position starting from a random starting position. In
Appendix E.5 we provide a detailed description of the environment. The benchmark provides a
dataset of random walks through mazes (thus stochastic). We train one model per maze.

We benchmark the proposed decision-making framework 3.4 with state-of-the-art offline RL methods
and the recently introduced Diffuser [36], a diffusion planning framework. See Fig. 1 for qualitative
and quantitative results: DF outperforms Diffuser and all baselines across all 6 environments.

Benefit of Monte Carlo Guidance. The typical goal for an RL problem is to find actions that
maximize the expected future rewards, which we achieve through MCG. Full-sequence diffusion
models such as Diffuser do not support sampling to maximize expected reward, as we formally
derive in Appendix C.5. To understand MCG’s importance, we ablate it in Table 1. Removing MCG
guidance degrades our performance, though Diffusion Forcing remains competitive even then.

8

24088https://doi.org/10.52202/079017-0759

PredictionsInput

O
ut

s.
C

am
W

ris
tc

am

G
oa

l S
ta

te
In

te
rm

. S
ta

te Case A Case B 180120 240 300 360 420 480
Generated VideoStateful Cases

Figure 4: In our real robot task, a robot arm is asked to swap the slots of two fruits using a third slot.
Since the fruits are input in random slots at the beginning, one cannot determine the next steps from a
single observation without knowledge of the initial placement of the fruits. As illustrated in (a) and
(b), the upper observation is the same but the desired outcome illustrated below can vary—the task
thus requires remembering the initial configuration. In addition, as shown in (c), the same model that
generates actions also synthesizes realistic video from just a single frame.

Benefit of Modeling Causality. Unlike pure generative modeling, sequential decision-making takes
actions and receives feedback. Due to compounding uncertainty, the immediate next actions are
more important than those in the far future. Though Diffuser and subsequent models are trained to
generate sequences of action-reward-state tuples [at, rt,ot], directly executing the actions will lead
to a trajectory that deviates significantly from the generated states. In other words, the generated
states and actions are not causally consistent with each other. To address this shortcoming, Diffuser’s
implementation ignores the generated actions and instead relies on a hand-crafted PD controller to
infer actions from generated states. In Table 1, we see that Diffuser’s performance drops dramatically
when directly executing generated actions. In contrast, Diffusion Forcing’s raw action generations
are self-consistent, outperforming even actions selected by combining Diffuser’s state predictions
with a handcrafted PD controller.

Benefit of Flexible Horizon. Many RL tasks have a fixed horizon, requiring the planning horizon to
shrink as an agent makes progress in the task. Diffusion Forcing accomplishes this by design, while
full-sequence models like Diffuser perform poorly even with tweaks, as we explain in Appendix C.6.

4.3 Controllable Sequential Compositional Generation

We demonstrate that by only modifying the sampling scheme, we can flexibly compose sub-sequences
of sequences observed at training time. We consider a dataset of trajectories on a 2D, square plane,
where all trajectories start from one corner and end up in the opposite corner, forming a cross
shape. As shown in Fig. 1, when no compositional behavior is desired, one can let DF keep full
memory, replicating the cross-shaped distribution. When one desires compositionality, one can
let the model generate shorter plans without memory using MPC, leading to the stitching of the
cross’s sub-trajectories, forming a V-shaped trajectory. Due to limited space, we defer the result to
Appendix E.2.

4.4 Robotics: Long horizon imitation learning and robust visuomotor control

Finally, we illustrate that Diffusion Forcing (DF) opens up new opportunities in the visuomotor
control of real-world robots. Imitation learning [10] is a popular technique in robotic manipulation
where one learns an observation-to-action mapping from expert demonstrations. However, the lack
of memory often prevents imitation learning from accomplishing long-horizon tasks. DF not only
alleviates this shortcoming but also provides a way to make imitation learning robust.

Imitation Learning with Memory. We collect a dataset of videos and actions by teleoperating with
a Franka robot. In the chosen task, one needs to swap the position of an apple and an orange, using
a third slot. See Fig. 4 for an illustration. The initial positions of the fruits are randomized such
that there are two possible goal states. As illustrated in Fig. 4, when one fruit is in the third slot, the
desired outcome cannot be inferred from the current observation—a policy must remember the initial
configuration to determine which fruit to move. In contrast to common behavior cloning methods,
DF naturally incorporates memory in its latent state. We found that DF achieves 80% success rate
while diffusion policy [10], a state-of-the-art imitation learning algorithm without memory, fails.

9

24089 https://doi.org/10.52202/079017-0759

Robustness to missing or noisy observations. Because it incorporates principles from Bayes
filtering, Diffusion Forcing can perform imitation learning while being robust to noisy or missing
observations. We demonstrate this by adding visual distractions and even fully occluding the camera
during execution. DF allows us to easily indicate these observations as “noisy” by using k > 0, in
which case DF relies heavily on its prior model to predict actions. Consequently, the success rate is
only lowered by 4% to 76%. In contrast, a next-frame diffusion model baseline attains a success rate
of 48%: it must treat perturbed observations as ground truth and suffers out-of-distribution error.

Potential for pre-training with video. Finally, in parallel to generating actions, Fig. 4 illustrates
that Diffusion Forcing is capable of generating a video of the robot performing the task given only an
initial frame, unifying diffusion policy/imitation learning and video generative modeling and paving
the way to pre-training on unlabeled video.

4.5 Time Series Forecasting: Diffusion Forcing is a Good General-purpose Sequence Model

In Appendix E, we show that DF is competitive with prior diffusion [49] and transformer-based [50]
work on multivariate time series forecasting, following the experimental setup of [53].

5 Discussion

Limitations. Our current causal implementation is based on an RNN. Applications to higher-
resolution video or more complex distributions likely require large transformer models following
instructions in Appendix C.1. We do not investigate the scaling behavior of Diffusion Forcing to
internet-scale datasets and tasks.

Conclusion. In this paper, we introduced Diffusion Forcing, a new training paradigm where a model
is trained to denoise sets of tokens with independent, per-token noise levels. Applied to time series
data, we show how a next-token prediction model trained with Diffusion Forcing combines the
benefits of both next-token models and full-sequence diffusion models. We introduced new sampling
and guidance schemes that lead to dramatic performance gains when applied to tasks in sequential
decision making. Future work may investigate the application of Diffusion Forcing to domains other
than time series generative modeling, and scale up Diffusion Forcing to larger datasets.

10

24090https://doi.org/10.52202/079017-0759

References

[1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[2] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski,
D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang.
Gluonts: Probabilistic and neural time series modeling in python. Journal of Machine Learning
Research, 21(116):1–6, 2020.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019.

[4] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English,
V. Voleti, A. Letts, V. Jampani, and R. Rombach. Stable video diffusion: Scaling latent video
diffusion models to large datasets, 2023.

[5] A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake. Provable guarantees
for generative behavior cloning: Bridging low-level stability and high-level behavior. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

[7] S. H. Chan. Tutorial on diffusion models for imaging and vision. arXiv preprint
arXiv:2403.18103, 2024.

[8] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pretraining
from pixels. In International conference on machine learning, pages 1691–1703. PMLR, 2020.

[9] T. Chen. On the importance of noise scheduling for diffusion models, 2023.

[10] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion, 2024.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

[12] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent
variable model for sequential data. Advances in neural information processing systems, 28,
2015.

[13] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smooth-
ing. In international conference on machine learning, pages 1310–1320. PMLR, 2019.

[14] E. de Bézenac, S. S. Rangapuram, K. Benidis, M. Bohlke-Schneider, R. Kurle, L. Stella,
H. Hasson, P. Gallinari, and T. Januschowski. Normalizing kalman filters for multivariate time
series analysis. In Advances in Neural Information Processing Systems, volume 33, 2020.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[16] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. CoRR,
abs/2105.05233, 2021.

[17] C. Feichtenhofer, Y. Li, K. He, et al. Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958, 2022.

11

24091 https://doi.org/10.52202/079017-0759

[18] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven
reinforcement learning. CoRR, abs/2004.07219, 2020.

[19] S. Gao, P. Zhou, M.-M. Cheng, and S. Yan. Masked diffusion transformer is a strong image
synthesizer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 23164–23173, 2023.

[20] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335–348, 1989.

[21] F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with lstm.
In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ.
No. 470), volume 2, pages 850–855 vol.2, 1999.

[22] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. CoRR, abs/1912.01603, 2019.

[23] D. Hafner, T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. CoRR, abs/1811.04551, 2018.

[24] T. Hang, S. Gu, C. Li, J. Bao, D. Chen, H. Hu, X. Geng, and B. Guo. Efficient diffusion training
via min-snr weighting strategy, 2024.

[25] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control,
2022.

[26] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

[29] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. CoRR, abs/2006.11239,
2020.

[30] J. Ho and T. Salimans. Classifier-free diffusion guidance, 2022.

[31] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models,
2022.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
nov 1997.

[33] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado.
Gaia-1: A generative world model for autonomous driving. arXiv preprint arXiv:2309.17080,
2023.

[34] S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C. Zhu. Diffusion-based gen-
eration, optimization, and planning in 3d scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16750–16761, 2023.

[35] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder. Forecasting with Exponential
Smoothing: The State Space Approach. Springer Science & Business Media, 2008.

[36] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. Proceedings of the International Conference on Machine Learning (ICML), 2022.

[37] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. CoRR, abs/2006.16236, 2020.

12

24092https://doi.org/10.52202/079017-0759

[38] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks:
Combating covariate shift in model-free imitation learning for fine manipulation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6185–6191. IEEE, 2021.

[39] D. Kingma and R. Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

[40] R. G. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state
space models. In AAAI, 2017.

[41] G. Lai, W. Chang, Y. Yang, and H. Liu. Modeling long- and short-term temporal patterns with
deep neural networks. CoRR, abs/1703.07015, 2017.

[42] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on robot learning, pages 143–156. PMLR, 2017.

[43] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation, 2022.

[44] H. Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer Science & Business
Media, 2005.

[45] J. E. Matheson and R. L. Winkler. Scoring rules for continuous probability distributions.
Management Science, 22(10):1087–1096, 1976.

[46] A. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. CoRR,
abs/2102.09672, 2021.

[47] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, S. Biderman, H. Cao, X. Cheng,
M. Chung, L. Derczynski, X. Du, M. Grella, K. Gv, X. He, H. Hou, P. Kazienko, J. Kocon,
J. Kong, B. Koptyra, H. Lau, J. Lin, K. S. I. Mantri, F. Mom, A. Saito, G. Song, X. Tang,
J. Wind, S. Woźniak, Z. Zhang, Q. Zhou, J. Zhu, and R.-J. Zhu. RWKV: Reinventing RNNs for
the transformer era. In H. Bouamor, J. Pino, and K. Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 14048–14077, Singapore, Dec. 2023.
Association for Computational Linguistics.

[48] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[49] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf. Autoregressive Denoising Diffusion Models
for Multivariate Probabilistic Time Series Forecasting. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
2021.

[50] K. Rasul, A.-S. Sheikh, I. Schuster, U. M. Bergmann, and R. Vollgraf. Multivariate probabilistic
time series forecasting via conditioned normalizing flows. In International Conference on
Learning Representations, 2021.

[51] D. Ruhe, J. Heek, T. Salimans, and E. Hoogeboom. Rolling diffusion models. arXiv preprint
arXiv:2402.09470, 2024.

[52] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. CoRR,
abs/2202.00512, 2022.

[53] D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, J. Gasthaus, and R. Medico. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. In NeurIPS,
2019.

[54] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191,
2020.

13

24093 https://doi.org/10.52202/079017-0759

[55] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191,
2020.

[56] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of the International Conference on
Machine Learning (ICML), 2015.

[57] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. CoRR, abs/2010.02502,
2020.

[58] B. Tang and D. S. Matteson. Probabilistic transformer for time series analysis. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[59] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, A. Joulin, G. Synnaeve,
J. Verbeek, and H. Jégou. Resmlp: Feedforward networks for image classification with data-
efficient training. CoRR, abs/2105.03404, 2021.

[60] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

[61] R. van der Weide. Go-garch: A multivariate generalized orthogonal garch model. Journal of
Applied Econometrics, 17(5):549–564, 2002.

[62] C. Wei, K. Mangalam, P.-Y. Huang, Y. Li, H. Fan, H. Xu, H. Wang, C. Xie, A. Yuille, and
C. Feichtenhofer. Diffusion models as masked autoencoders. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 16284–16294, 2023.

[63] G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using
covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

[64] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running Fully Recurrent
Neural Networks. Neural Computation, 1(2):270–280, 06 1989.

[65] T. Wu, Z. Fan, X. Liu, Y. Gong, Y. Shen, J. Jiao, H.-T. Zheng, J. Li, Z. Wei, J. Guo, N. Duan,
and W. Chen. Ar-diffusion: Auto-regressive diffusion model for text generation, 2023.

[66] T. Wu, Z. Fan, X. Liu, H.-T. Zheng, Y. Gong, J. Jiao, J. Li, J. Guo, N. Duan, W. Chen, et al. Ar-
diffusion: Auto-regressive diffusion model for text generation. Advances in Neural Information
Processing Systems, 36:39957–39974, 2023.

[67] T. Yan, H. Zhang, T. Zhou, Y. Zhan, and Y. Xia. Scoregrad: Multivariate probabilistic time
series forecasting with continuous energy-based generative models, 2021.

[68] W. Yan, D. Hafner, S. James, and P. Abbeel. Temporally consistent transformers for video
generation, 2023.

[69] R. Yang, P. Srivastava, and S. Mandt. Diffusion probabilistic modeling for video generation.
Entropy, 25(10):1469, 2023.

[70] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

[71] H. Yu, N. Rao, and I. S. Dhillon. Temporal regularized matrix factorization. CoRR,
abs/1509.08333, 2015.

14

24094https://doi.org/10.52202/079017-0759

A Theoretical Justification

In this section, we provide theoretical justification for the train of Diffusion Forcing. The main
contributions can be summarized as follows:

• We show that our training methods optimize a reweighting of the Evidence Lower Bound
(ELBO) on the average log-likelihood of our data. We first establish this in full generality
(Theorem A.1), and then specialize to the form of Gaussian diffusion (Corollary A.2). We
show that the resulting terms decouple in such a fashion that, in the limit of a fully expressive
latent and model, makes the reweighting terms immaterial.

• We show that the expected likelihood over any distribution over sequences of noise levels
can be lower bounded by a sum over nonnegative terms which, when reweighted, correspond
to the terms optimized in the Diffusion Forcing training objective maximizes. Thus, for a
fully expressive network that can drive all terms to their minimal value, Diffusion Forcing
optimizes a valid surrogate of the likelihood of all sequences of noise levels simultaneously.

We begin by stating an ELBO for general Markov forward processes q(·), and generative models
pθ(·), and then specialize to Gaussian diffusion, thereby recovering our loss. We denote our Markov
forward process q(·) as

q(x1:K | x0) =

K∏
k=1

q(xk | xk−1), (A.1)

and a parameterized probability model

pθ(((x
k
t)1≤k≤K , zt)t≥1) (A.2)

We assume that pθ satisfies the Markov property that

pθ(zt,x
kt
t | z1:t−1, (x

ks
s)1≤s<t) = pθ(zt,x

kt | zt−1) (A.3)

that is, the latent codes zt−1 is a sufficient statistic for xkt given the history. We say that pθ has
deterministic latents if pθ(zt | z1:t−1, (x

ks
s)1≤s<t,x

kt
t) is a Dirac delta.

Remark 1. In order for pθ to have deterministic latents and correspond to a valid probability distri-
bution, we need to view the latents zt not as individual variables, but as a collection of variables
zt(k1:t) indexed by t ∈ [T] and the history of noise levels k1:t ∈ {0, 1, . . . ,K}t. In this case, simply
setting zt(k1:t) = (k1:t, (x

ks
s)1≤s≤t tautologically produces deterministic latents. The reason for

indexing zt(k1:t) with k1:t then arises because, otherwise, pθ(zt | ((xks
s)1≤s≤t, (x

k′
s

s)1≤s≤t) would
be ill-defined unless ks = k′s for all 1 ≤ s ≤ t, and thus, pθ would not correspond to a joint
probability measure. The exposition and theorem that follows allow zt(k1:t) to be indexed on past
noise levels k1:t but suppresses dependence on k1:t to avoid notational confusion.

A.1 Main Results

We can now state our main theorem, which provides an evidence lower bound (ELBO) on the expected
log-likelihood of partially-noised sequences (xkt

t)1≤t≤T , under uniformly sampled levels kt and xkt
t

obtained by noising according to q(·) as in (A.1). Notice that this formulation does not require an
explicit for of q(·) or pθ, but we will specialize to Gaussian diffusion in the following section.

Theorem A.1. Fix x0
1:T . Define the expectation over the forward process with random noise level

k1:T as

E
forward

[·] := E
k1,...,kT

unif∼ [K]

E
xks
s ∼q(xks

s |x0
s),1≤s≤T

[·], (A.4)

and the expectation over the latents under pθ(·) conditioned on k1:T , (x
kt
s)1≤t≤T as

E
p,z1:T

[·] := E
zs∼p(zs|zs−1,x

ks
s),s≤T

[
· | k1:T , (xkt

t)1≤t≤T

]
(A.5)

15

24095 https://doi.org/10.52202/079017-0759

Then, as long as pθ satisfies the Markov property,

E
forward

[ln pθ((x
kt
t)1≤t≤T)] ≥ C(x0

1:T)

+ E
forward

E
p,z1:T

 T∑
t=1

 1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K∑
j=2

j

K + 1
DKL

(
q(xj−1

t | xj
t ,x

0
t) ∥ pθ(x

j
t | x

j−1
t , zt−1)

) ,

where C(x0
1:T) is a constant depending only on x0

1:T (the unnoised data). Moreover, if the latents are
deterministic (i.e. pθ(zt | zt−1,x

kt
t) is a Dirac distribution), then the inequality holds with inequality

if and only if q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), i.e. the variational approximation is
exact.

The proof of the above theorem is given in Appendix A.2. Remarkably, it involves only two
inequalities! The first holds with equality under deterministic latents and the second holds if and only
if variational approximation is exact: q(xkt+1:T

t | xkt
t) ≡ pθ(x

kt+1:T
t | xkt

t , zt−1). This tightness of
the ELBO suggests that the expression in Theorem A.1 is a relatively strong surrogate objective for
optimizing the likelihoods.

A.1.1 Specializing to Gaussian diffusion

We now special Theorem A.1 to Gaussian diffusion. For now, we focus on the “x-prediction”
formulation of diffusion, which is the one used in our implementation. The “ϵ-prediction” formalism,
used throughout the main body of the text, can be derived similarly (see Section 2 of [7] for a clean
exposition). The following theorem follows directly by apply standard likelihood and KL-divergence
computations for the DDPM [28, 7] to Theorem A.1.

Corollary A.2. Let

q(xk+1 | xk
t) = N (xk;

√
1− βkx

k−1, βkI), (A.6)

and define αk = (1 − βk), ᾱk =
∏k

j=1 αj . Suppose that we parameterize pθ(x
j
t | x

j+1
t , zt−1) =

N (µθ(x
j+1
t , zt−1, j), σ

2
j), where further,

µθ(x
j
t , zt−1, j) =

(1− ᾱj−1)
√
αj

1− ᾱj
xj
t +

(1− αj)
√
ᾱj−1

1− ᾱj
x̂θ(x

j
t , zt−1, j), σ2

j :=
(1− αj)(1−

√
ᾱj−1)

1− ᾱj
.

Then, as long as pθ satisfies the Markov property, we obtained

E
forward

[ln pθ((x
kt
t)1≤t≤T)] + C(x0

1:T) ≥ E
forward

E
p,z1:T

 T∑
t=1

j

K + 1

K∑
j=1

cj∥x̂0
θ(x

j
t , zt−1, j)− x0

t∥2


= E
forward

E
p,z1:T

[
T∑

t=1

1{kt ≥ 1} · ktckt
∥x̂0

θ(x
kt
t , zt−1, kt)− x0

t∥2
]
,

where above, we define cj =
(1−αj)

2ᾱj−1

2σ2(1−ᾱj)2
.

Proof. The first inequality follows from the standard computations for the “x-prediction” formulation
of Diffusion (see Section 2.7 of [7] and references therein). The second follows by replacing the sum
over j with an expectation over kt

unif∼ {0, 1, . . . ,K}.

We make a couple of remarks:

• As noted above, Corollary A.2 can also be stated for ϵ-prediction, or the so-called “v-
prediction” formalism, as all are affinely related.

• Define an idealized latent z̃t−1 consisting of all past tokens (xkt
t) as well as of their

noise levels kt. This is a sufficient statistic for zt−1, and thus we can always view

16

24096https://doi.org/10.52202/079017-0759

x̂0
θ(x

kt
t , zt−1, kt) = x̂0

θ(x
kt
t , z̄t−1, kt), where zt−1 is just compressing z̄t−1. When ap-

plying the expectation of x1:T ∼ q to both sides of the bound in Corollary A.2, and taking
an infimum over possible function approximator x̂0

θ, we obtain

inf
pθ

E
q

E
forward

E
p,z1:T

∥x̂0
θ(x

kt
t , zt−1, kt)− x0

t∥2 = inf
pθ

E
q

E
forward

E
p,z1:T

∥x̂0
θ(x

kt
t , z̄t−1)− x0

t∥2

= Varq[x
0
t | (xks

s)1≤s≤t, k1, . . . , kt].

This leads to a striking finding: with expressive enough latents and pθ, we can view the
maximization of each term in Corollary A.2 separately across time steps. The absence of
this coupling means that the weighting terms are immaterial to the optimization, and thus
can be ignored.

• Given the above remarks, we can optimize the ELBO by taking gradients through the
objective specified by Corollary A.2, and are free to drop any weighting terms (or rescale
them) as desired. Backpropagation through Ep,z1:T

is straightforward due to deterministic
latents. This justifies the correctness of our training objective (3.1) and protocol Algorithm 1.

A.1.2 Capturing all subsequences

Theorem A.1 stipulates that, up to reweighting, the Diffusion Forcing objective optimizes a valid
ELBO on the expected log-likelihoods over uniformly sampled noise levels. The following theorem
can be obtained by a straightforward modification of the proof of Theorem A.1 generalizes this to
arbitrary (possibly temporally correlated) sequences of noise.
Theorem A.3. Let D be an arbitrary distribution over [K]T , and define Pt(j | k1:t−1) := PrD[kt =
j | k1:t−1]. Fix x0

1:T . Define the expectation over the forward process with random noise level k1:T
as

E
forward,D

[·] := E
k1,...,kT∼D

E
xks
s ∼q(xks

s |x0
s),1≤s≤T

[·], (A.7)

and the expectation over the latent under pθ(·) conditioned on k1:T , (x
kt
s)1≤t≤T as

E
p,z1:T

[·] := E
zs∼p(zs|zs−1,x

ks
s),s≤T

[
· | k1:T , (xkt

t)1≤t≤T

]
(A.8)

Then, as long as pθ satisfies the Markov property,

E
forward,D

[ln pθ((x
kt
t)1≤t≤T)] ≥ C(x0

1:T) + E
forward,D

E
p,z1:T

[
T∑

t=1

Ξt

]
,where

Ξt :=

Pt(1 | k1:t−1) ln pθ(x
0
t | x1

t , zt−1) +

K∑
j=2

jPt(j | k1:t−1)DKL

(
q(xj−1

t | xj
t ,x

0
t) ∥ pθ(x

j
t | x

j−1
t , zt−1)

) ,

where C(x0
1:T) is a constant depending only on x0

1:T (the noise-free data), and where the inequality
is an equality under the conditions that (a) pθ(zt | zt−1,x

kt
t) is a Dirac distribution (deterministic

latents), and (b) q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), i.e. the variational approximation is
sharp.

In particular, in the Gaussian case of Corollary A.2, we have

E
forward,D

[ln pθ((x
kt
t)1≤t≤T)] + C(x0

1:T) ≥ E
forward,D

E
p,z1:T

[
T∑

t=1

1{kt ≥ 1}ktckt
∥x̂0

θ(x
kt
t , zt−1, kt)− x0

t∥2
]
,

The most salient case for us is the restriction of D to fixed sequences of noise k1, . . . , kT (i.e. Dirac
distributions on [K]T). In this case, Pt(j | k1:t−1) = 0 for all but j = kt, and thus our training
objective need not be a lower bound on Eforward,D[ln pθ((x

kt
t)1≤t≤T)]. However, the terms in the

lower bound are, up to reweighting, an subset of those terms optimized in the training objective.
Thus, in light of the remarks following Corollary A.2, a fully expressive network can optimize all the
terms in the loss simultaneously. We conclude that, for a fully expressive neural network, optimizing
the training objective (3.1) is a valid surrogate for maximizing the likelihood of all possible noise
sequences.

17

24097 https://doi.org/10.52202/079017-0759

A.2 Proof of Theorem A.1

Define E<t[·] as shorthand for E
k1:s

unif∼ [K]
Exks

s ∼q(xks
s |x0

s),1≤s≤t−1 Ezs∼p(zs|zs−1,x
ks
s),s≤t[·]. We

begin with the following claim

Claim 1 (Expanding the latents). The following lower bound holds:

E
forward

[ln pθ((x
kt
t)1≤t≤T)] ≥

T∑
t=1

E
<t

E
kt

unif∼ {0,1,...,K}
E

x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]
, (A.9)

Moreover, this lower bound holds with equality if zs ∼ p(zs | zs−1,x
ks
s) is a Dirac distribution (i.e.,

deterministic latents).

Proof. Let’s fix a sequence k1:T . It holds that

pθ((x
kt
t)1≤t≤T) =

∫
z1:T

T∏
t=1

p(xkt
t , zt | (xks

s , zs)s<t)

=

∫
z1:T

T∏
t=1

p(xkt
t , zt | zt−1) (Markov Property)

=

∫
z1:T (k)

T∏
t=1

p(zt | zt−1,x
kt
t)pθ(x

kt
t | zt−1)

= E
zs∼p(zs|zs−1,x

ks
s),s≤T

T∏
t=1

pθ(x
kt
t | zt−1). (Importance Sampling)

Thus, by Jensen’s inequality,

ln pθ((x
kt
t)1≤t≤T) ≥ E

zs∼p(zs|zs−1,x
ks
s),s≤T

T∑
t=1

ln pθ(x
kt
t | zt−1) = E

p,z1:T

[
T∑

t=1

ln pθ(x
kt
t | zt−1)

]
,

where the inequality is and equality when pθ(zs | zs−1,x
ks
s) is a Dirac distribution. By applying

Eforward to both sides of the above display, and invoking the Markov property of the latents, we
conclude that

E
forward

[ln pθ((x
kt
t)1≤t≤T)] ≥ E

forward
E

p,z1:T

[
T∑

t=1

ln pθ(x
kt
t | zt−1)

]

=

T∑
t=1

E
<t

E
kt

unif∼ {0,1,...,K}
E

x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]
.

We now unpack the terms obtained from the preceding claim.

Claim 2 (ELBO w.r.t. q). It holds that

E
x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]
≥ C1(x0, kt) +

[
E

x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

]
.

where C1(x0, kt) is a constant depending only on x0 and kt, and where the inequality holds with
equality if and only if q(xkt+1:T

t | xkt
t) ≡ pθ(x

kt+1:T
t | xkt

t , zt−1).

18

24098https://doi.org/10.52202/079017-0759

Proof. We have that

E
x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]
= E

x
kt
t ∼q(x

kt
t |x0

t)

[
ln

∫
pθ(x

kt:K
t | zt−1)dx

kt+1:K
t

]

= E
x
kt
t ∼q(x

kt
t |x0

t)

[
ln

(
E

x
kt+1:K
t ∼q(x

kt+1:K
t |xkt

t)

[
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

])]

≥ E
x
kt
t ∼q(x

kt
t |x0

t)

[
E

x
kt+1:K
t ∼q(x

kt+1:K
t |xkt

t)

[
ln

pθ(x
kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]]
((Jensen’s inequality))

= E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

[
ln

pθ(x
kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]
(Markov property of q(·))

= C1(x0, kt) +

[
E

x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

]
,

where the constant C1(x0, kt) = E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

[
ln

q(x
kt+1:K
t |x0

t)

q(x
kt+1:K
t |xkt

t)

]
depends only on x0 and kt.

To check the conditions for equality, note that if q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), then

E
x
kt+1:K
t ∼q(x

kt+1:K
t |xkt

t)

[
ln

pθ(x
kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]
= ln pθ(x

kt
t | zt−1) + E

x
kt+1:K
t ∼q(x

kt+1:K
t |xkt

t)

[
ln pθ(x

kt+1:K
t | zt−1,x

kt
t)
]

Since ln(·) is strictly concave, E
x
kt+1:K
t ∼q(x

kt+1:K
t |xkt

t)

[
ln pθ(x

kt
t | zt−1)

]
= 0 if and only if

pθ(x
kt+1:K
t | zt−1,x

kt
t) = q(xkt+1:K

t | xkt
t).

Claim 3 (Computing the expected ELBO).

E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= C3(x0, kt) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1∑
j=1

1{j ≥ kt}DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
,

where C2(x0, kt) is some other constant depending on x0 and kt.

Proof. The proof invokes similar manipulations to the standard ELBO derivation for diffusion, but
with a few careful modifications to handle the fact that we only noise to level kt. As is standard, we
require the identity

q(xj
t | x

j−1
t ,x0

t) = q(xj−1
t | xj

t ,x
0
t) ·

q(xj
t | x0

t)

q(xj−1
t | x0

t)
. (A.10)

19

24099 https://doi.org/10.52202/079017-0759

Part 1: Expanding the likelihood ratios . Using the above identity, we obtain

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= ln p(xK
t | zt−1) + ln

pθ(x
kt
t | x

kt+1
t , zt−1)

q(xkt+1
t | x0

t)
+

K∑
j=kt+2

ln
pθ(x

j−1
t | xj

t , zt−1)

q(xj
t | x

j−1
t ,x0

t)

(i)
= ln p(xK

t | zt−1) + ln
pθ(x

kt
t | x

kt+1
t , zt−1)

q(xkt+1
t | x0

t)
+

K∑
j=kt+2

(
ln

pθ(x
j−1
t | xj

t , zt−1)

q(xj−1
t | xj

t ,x
kt
t)

+ ln
q(xj−1

t | x0
t)

q(xj
t | x0

t)

)

(ii)
= ln p(xK

t | zt−1) + ln
pθ(x

kt
t | x

kt+1
t , zt−1)

q(xkt+1
t | x0

t)
+ ln

q(xkt+1
t | xkt

t)

q(xK
t | x

kt
t)

+

K−1∑
j=kt+1

ln
pθ(x

j
t | x

j+1
t , zt−1)

q(xj
t | x

j+1
t ,x0

t)

=
ln p(xK

t | zt−1)

q(xK
t | x

kt
t)

+ ln pθ(x
kt
t | x

kt+1
t , zt−1) +

K−1∑
j=kt+1

ln
pθ(x

j
t | x

j+1
t , zt−1)

q(xj
t | x

j+1
t ,x0

t)

= ln
(
q(xkt

t | x
kt+1
t)1{kt≥1}

)
+ ln

p(xK
t | zt−1)

q(xK
t | x

kt
t)

+ ln
pθ(x

kt
t | x

kt+1
t , zt−1)

q(xkt
t | x

kt+1
t)1{kt≥1}

+

K−1∑
j=kt+1

ln
pθ(x

j
t | x

j+1
t , zt−1)

q(xj
t | x

j+1
t ,x0

t)
,

where (i) uses A.10, (ii) invokes a cancellation in the telescoping sum, and the final display follows
from the computation

q(xkt
t | x

kt+1
t)1{kt≥1} =

{
1 kt = 0

q(xkt
t | x

kt+1
t) kt ≥ 1

. (A.11)

Observe that, because we don’t parameterize p(xK
t | zt−1), ln

(
q(xkt

t | x
kt+1
t)1{kt≥1}

)
+

ln p(xK
t |zt−1)

q(xK
t |xkt

t)
can be regarded as some constant C ′(xkt

t ,xkt+1
t ,xK

t). Thus,

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)
= C ′(xkt

t ,xkt+1
t ,xK

t) + ln
pθ(x

kt
t | x

kt+1
t , zt−1)

q(xkt
t | x

kt+1
t)1{kt≥1}

+

K−1∑
j=kt+1

ln
pθ(x

j
t | x

j+1
t , zt−1)

q(xj
t | x

j+1
t ,x0

t)

(A.12)

Part 2: Taking expecations. We can now simplify to taking expectations. Observe that

E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

j
t | x

j+1
t , zt−1)

q(xj
t | x

j+1
t ,x0

t)
= DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
,

and similarly,

E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

kt
t | x

kt+1
t , zt−1)

q(xkt
t | x

kt+1
t)1{kt≥1}

=

{
ln pθ(x

0
t | x1

t , zt−1) kt = 0

DKL

(
q(xkt

t | x
kt+1
t ,x0

t) ∥ pθ(x
kt
t | x

j+1
t , zt−1)

)
kt ≥ 1.

Finally, E
x
kt:K
t ∼q(x

kt:K
t |x0

t)
C ′(xkt

t ,xkt+1
t ,xK

t) is a constant C2(kt,x0) depending only on kt,x0.
Thus, from (A.12)

E
x
kt:K
t ∼q(x

kt:K
t |x0

t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= C2(kt,x0) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1∑
j=max{1,kt}

DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)

= C2(kt,x0) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1∑
j=1

1{j ≥ kt}DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
.

20

24100https://doi.org/10.52202/079017-0759

Completing the proof of the ELBO. We are now ready to complete the proof. By combining the
previous two claims, we have

E
x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]
≥ C3(x0, kt) + 1{kt = 0} ln pθ(x0

t | x1
t , zt−1) +

K−1∑
j=1

1{j ≥ kt}DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
,

where C3(x0, kt) = C1(x0, kt) + C2(x0, kt) and where again, the above is an equality when
q(xkt+1:T

t | xkt
t) ≡ pθ(x

kt+1:T
t | xkt

t , zt−1). Taking an expectation over kt
unif∼ {0, 1, . . . ,K}, we

have

E
kt

unif∼ {0,1,...,K}
[1{kt = 0}] = 1

K + 1
, E

kt
unif∼ {0,1,...,K}

1{j ≥ kt} =
j + 1

K + 1
. (A.13)

and consequently,

E
kt

unif∼ {0,1,...,K}
E

x
kt
t ∼q(x

kt
t |x0

t),1≤t≤T

ln pθ((x
kt
t)1≤t≤T)

≥ C4(x
0
t) +

1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +
K−1∑
j=1

j + 1

K + 1
DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
Invoking Claim 1,

E
forward

[ln pθ((x
kt
t)1≤t≤T)]

≥
T∑

t=1

E
<t

E
kt

unif∼ {0,1,...,K}
E

x
kt
t ∼q(x

kt
t |x0

t)

[
ln pθ(x

kt
t | zt−1)

]

=

T∑
t=1

E
<t

C4(x
0
t) +

1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K−1∑
j=1

j + 1

K + 1
DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)
We conclude by observing that

∑T
t=1 E<t

[
C4(x

0
t)
]

is a constant C(x0
1:T), and that

E
<t

[
ln pθ(x

0
t | x1

t , zt−1)
]
= E

forward
E

p,z1:T

[
ln pθ(x

0
t | x1

t , zt−1)
]

E
<t

[
DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)]
= E

forward
E

p,z1:T

[
DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

)]
,

since both terms only depend on k1:t−1, (x
ks
s)1≤s≤t−1 and z1:t−1. We conclude then that

E
forward

[ln pθ((x
kt
t)1≤t≤T)] ≥ C(x0

1:T)

+ E
forward

E
p,z1:T

 T∑
t=1

 1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K−1∑
j=1

j + 1

K + 1
DKL

(
q(xj

t | x
j+1
t ,x0

t) ∥ pθ(x
j
t | x

j+1
t , zt−1)

) ,

as needed. Lastly, we recall that the above is an equality under the conditions that
(a) pθ(zt | zt−1,x

kt
t) is a Dirac distribution, and (b) q(xkt+1:T

t | xkt
t) ≡ pθ(x

kt+1:T
t | xkt

t , zt−1),
and we reindex j ← j+1 to ensure consistency with indexing in standard expositions of the diffusion
ELBO.

B Additional Method Details

B.1 Fused SNR reweighting

SNR reweighting [24] is a widely used technique to accelerate the convergence of image diffusion
models. In short, it reweighs the diffusion loss proportional to the signal-to-noise ratio (SNR) of

21

24101 https://doi.org/10.52202/079017-0759

noisy xk. In Diffusion Forcing, conditioning variable zt−1 can also contain a non-trivial amount of
information about xt, in addition to xkt

t . For example, in a deterministic markovian system, if xkt−1

t−1

has its noise level kt−1 = 0, the posterior state zt−1 contains all the information needed to predict x0
t

regardless of the noise level of xkt
t .

Therefore we re-derive SNR reweighting to reflect this change in Diffusion Forcing. We call this
technique Fused SNR reweighting. We follow the intuition of original SNR reweighting to loosely
define SNR in a sequence with independent levels of noises at different time steps. Denote St as the
normalized SNR reweighting factor for xkt

t following its normal derivation in diffusion models. For
example, if one uses min snr strategy [24], its reweighting factor will always fall between [0, C]
which we divide by C to get St ∈ [0, 1]. Define signal decay factor 0 < γ < 1, measuring what
proportion of signal in x

kt−1

t−1 contribute to denoising xkt
t . This is the simple exponential decay

model of sequential information. Now, define cumulated SNR recursively as the running mean of
St: S̄t = γS̄t−1 + (1 − γ)St to account for signals contributed by the entire noisy history to the
denoising at time step t. The other factor that contributes to the denoising is St of noisy observation
xkt
t . To combine them, we use a simplified model for independent events. Notice St and S̄t always

falls in range [0, 1], and therefore can be reinterpreted as probabilities of having all the signal one
needs to perfect denoise xkt

t . Since the noise level at t is independent of prior noise levels, we can
view St and S̄t−1 as probabilities of independent events and thus can composed to define a joint
probability S′

t = 1− (1− St)(1− S̄t−1), and we use this S′
t as our fused SNR reweighting factor

for diffusion training.

In our experiments, we choose to follow the min-SNR reweighting strategy [24] to derive the S. Our
Fused SNR reweighting proves extremely useful to accelerate the convergence of video prediction,
while we didn’t observe a boost on non-image domains so we didn’t use it there.

B.2 Architecture

Video Diffusion We choose both the raw image x and latent state z to be 2D tensors with channel,
width, and height. For simplicity, we use the same width and height for x and z. We then implement
the transition model p(xkt

t |zt−1) with a typical diffusion U-net [46]. We use the output of the U-net
as the input to a gated recurrent unit (GRU) and use zt−1 as the hidden state feed into a GRU. The
output of GRU is treated as zt. For observation model p(xt|zt), we use a 1-layer resnet [27] followed
by a conv layer. We combine these two models to create an RNN layer, where the latent of a particular
time step is zt−1, input is xkt

t and output is x̂. One can potentially obtain better results by training
Diffusion Forcing with a causal transformer architecture. However, since RNN is more efficient for
online decision-making, we also stick with it for video prediction and it already gives us satisfying
results.

We choose the number of channels in z to be 16 for DMlab and 32 for Minecraft. In total, our
Minecraft model consists of 36 million parameters and our DMlab model consists of 24 million
parameters. We can potentially obtain a better Minecraft video prediction model with more parameters,
but we defer that to future works to keep the training duration reasonable (< 1 day). In maze planning,
the number of total parameters is 4.33 million.

Non-Video Diffusion For non-spatial x that is not video nor images, we use residue MLPs [59]
instead of Unet as the backbone for the dynamics model. Residue MLP is basically the ResNet [27]
equivalent for MLP. Similar to video prediction, we feed the output of resMLP into a GRU along
with zt−1 to get zt. Another ResMLP serves as the observation model.

B.3 Diffusion parameterization

In diffusion models, there are three equivalent prediction objectives, x0, ϵ [28], and v parameteriza-
tion [52]. Different objectives lead to different reweighting of loss at different noise levels, together
with SNR reweighting. For example, ϵ parameterization and v parameterization are essential in
generating pixel data that favors high-frequency details.

In our experiments, we use v parameterization for video prediction and found it essential to both
convergence speed and quality.

22

24102https://doi.org/10.52202/079017-0759

We observe that x0 parameterization is strongly favorable in planning and imitation learning, likely
because they don’t favor an artificial emphasis on high-frequency details. We observe the benefits of
v-parameterization in time-series prediction.

B.4 Noise schedule

We use sigmoid noise schedule [9] for video prediction, linear noise schedule for maze planning, and
cosine schedule for everything else.

B.5 Implementation Details of Sampling with Guidance

Corner case of sampling noise In our sampling algorithm, due to the flexibility of the scheduling
matrix K, there are corner cases when xkt

t is required to stay at its same noise level during a sampling
step. The core question of this corner case is whether we should updatexkt

t at all. One option is just
copying over the old value. The other option is to run a backward diffusion followed by a forward
diffusion back to its old noise level to resample under the diffusion process. While we conclude
this can be an open question, we prefer the later approach, resampling, and use it in Monte Carlo
Guidance to generate multiple samples. We note that even if one takes the first approach, the guidance
gradient can still flow back in the time steps before t as the dynamics model p(zt|xkt

t , zt−1) can still
propagate the guidance gradient to zt−1.

Other than Monte Carlo Guidance, this corner case only happens when kt = 0 or kt = K throughout
our experiments. That is, we chose our K such that once any token gets diffused slightly, it will keep
diffusing. In the case of kt = K, keeping xkt

t at the same noise level implies it will stay as white
noise, and we don’t even need to sample another white noise. In case kt = 0, the time step is already
completely diffused either approach should give us the same result so we just opt for copying over
for simplicity.

Guidance for maze planning In maze planning, our main baseline Diffuer [36] discards the reward
from the dataset and directly plans with the goal position and velocity. We adopt the same convention
for Diffusion Forcing. One can perform guidance on goal position using log-likelihood ||pT − g||,
but a flexible horizon model should not require users to manually specify a T to reach its goal, instead
we want it to try to reach the goal for any possible horizon. Therefore we use the reward model∑

t ||pT − g|| so any time step can be the final step to reach the goal. This objective is challenging
due to the non-convex nature of 2D maze, but we found Diffusion Forcing can still reliably find plans
without bumping into walls. However, we also observe that the agent tend to leave the goal location
due to the nature of the provided dataset - the goal location is just one possible waypoint for the robot
to pass through, and there are no trajectories that simply stay at the goal. We also tried this reward for
guidance with Diffuser, but it didn’t work even with a good amount of tuning.

B.6 Performance Optimization

Accelerating the diffusion sampling of Diffusion Forcing is similar to that of normal diffusion models.
We adopt DDIM [57] sampling for the diffusion of each token. While we use K = 1000 steps of
diffusion, we sample with only 100 DDIM for video prediction and 50 for non-video domains.

While Diffusion Forcing can be implemented with transformers, we use an RNN as the backbone for
Diffusion Forcing experiments it’s widely used in decision-making for its flexibility and efficiency in
online decision-making systems. To further reduce training time and GPU memory usage, we use
frame-stacking to stack multiple observed images as a single x. This is due to the fact that adjacent
tokens can be very similar - e.g. recording the same motion at higher fps can lead to this. We deem
that it’s wasteful if we roll out the dynamics model multiple times to generate almost identical tokens.
For video datasets, we manually examine how many time steps it takes to require a minimal level
of prediction power instead of copying frames over. There is another reason why we use frame
stacking - many diffusion model techniques such as different noise schedules are designed to model
x with correlated elements or redundancy. Low-dimensional systems may need drastically different
hyperparameters when they lack the data redundancy these techniques are tested on. Frame stacking
is thus also helpful for our non-image experiments so we can start with canonical hyperparameters of
diffusion models. We use a frame stack of 4 for DMlab video prediction, 8 for Minecraft, and 10 for
maze planning.

23

24103 https://doi.org/10.52202/079017-0759

At sampling time, we also have a design choice to reduce compute usage, as reflected in line 8 of
Algorithm 2. In line 8, we directly assign znew

t to zt, instead of recalculating zt with posterior model
p(zt|zt−1,x

new
t , k − 1). Since the model is trained to condition on zt estimated from arbitrary noisy

history, we recognize that both are valid approaches. The reason why the choose line 8 is twofold.
First, it cuts the compute by half, avoiding computing posterior every step. Second, this happens to
be what we want for stabilization - znew

t already contains the information of the clean xnew
t under our

simplified observation model, and happens to be estimated with k = kt, a noise level higher than that
of xnew

t . This happens to implement the behavior we want for stabilization.

B.7 Sampling schedule for causal uncertainty

Inference is depicted in Algorithm 2 and Figure 2. In Equation B.1, we illustrate a specific instantiation
of the K matrix we used for causal planning. For simplicity, we denote the case where a latent z0 is
given and aim to generate x1:H+1.

Kpyramid =



K K K ... K
K − 1 K K ... K
K − 2 K − 1 K ... K

...
...

...
. . .

...
1 2 3 ... H
0 1 2 ... H − 1
...

...
...

. . .
...

0 0 0 ... 1
0 0 0 ... 0


(B.1)

Diffusion Forcing begins by sampling our sequences as white noise with noise level K. It then
denoises along each row m = 1, . . . ,M of K in decreasing order. It does so by proceeding
sequentially through frames t = 1, . . . , T , updating the latent (Line 5 of Algorithm 2), and then
partially applying the backward process to noise level k = Km,t dictated by the scheduling matrix K
(Line 6-7 of Algorithm 2). We call a K like this pyramid scheduling, as the tokens in the far future
are kept at higher noise level than near future.

B.8 Metrics for Maze Planning

We report the episode reward of Diffusion Forcing for different maze planning environments in
Table 1. However, we found that the episode reward isn’t necessarily a good metric: Intuitively, maze
planning should reward smart agents that can find the fastest route to the goal, not a slow-walking
agent that goes there at the end of the episode. The dataset never contains data on the behavior
of staying at the goal, so agents are supposed to walk away after reaching the goal with sequence
planning methods. Diffuser may had an unfair advantage of just generating slow plans, which happens
to let the agent stay in the neighborhood of the goal for more steps and get a very high reward as a
result. This metric seems to exploit flaws in the environment design - a good design would involve a
penalty of longer time taken to reach the goal. Therefore, in future works based on our paper, we
encourage alternative metrics like the time it takes to reach the goal for the first time, which Diffusion
Forcing excels at.

B.9 Implementation Details of Timeseries Regression

We follow the implementation of pytorch-ts, where the validation set is a random subset of the
training set with the same number of sequences as the test set. We use early stopping when validation
crps-sum hasn’t increased for 6 epochs. We leverage the same architecture (1 mlp and 4 grus) as well
as a batch size of 32.

B.10 Compute Resources

All of our experiments use fp16 mixed precision training. Time series, maze planning, composition-
ally, and visual imitation experiments can be trained with a single 2080Ti with 11GB of memory.
We tune the batch size such that we fully use the memory of GPUs. This translates to a batch size of

24

24104https://doi.org/10.52202/079017-0759

2048 for maze planning and compositional experiments, and 32 for visual imitation learning. While
we use early stopping on the validation set for time series experiments, we did not carefully search for
the minimal number of training steps required, though the model usually converges between 50k to
100k steps. The above environments thus usually take 4− 8 hours to train although there is without
doubt a significant potential for speed up.

Video prediction is GPU intensive. We use 8 A100 GPUs for both video prediction datasets. We
train for 50K steps with a batch size of 8× 16. It usually takes 12 hours to converge at 40K steps of
training (occasional validation time also included).

C Additional Intuitions and Explainations

C.1 Extension to transformer backbone

While this paper focuses on a causal implementation of Diffusion Forcing with RNNs, it’s easy to
adopt Diffusion Forcing with modern architectures like transformers. One can simply modify a
transformer-based sequence diffusion model to train with independent noise levels across tokens
and follow the techniques listed in Section B.1. A strict implementation of causal Diffusion Forcing
would involve a causal attention mask on the transformer. However, Diffusion Forcing’s fractional
masking can do something more interesting: Consider the scenario that we use a transformer without
a causal mask. We can still implement causality by controlling noise. By labeling the future as full
white noise, there is no information leaked into the past tokens. By labeling future tokens as free of
noise, we make the model completely non-causal. By labeling the future tokens as noisy, a slight
amount of information about the future is provided for the prediction of past tokens. This effectively
states that one only needs a non-causal architecture, but controlling fractional noise of the future, to
achieve partial or complete causality. These extensions are beyond the scope of this paper, but we
already verified their effectiveness and thus provide them as intuitions for future works.

C.2 The need for independent noise levels

When training Diffusion Forcing, we choose to sample per-token noise level following i.i.d uniform
distribution from [1, 2...K]. One may wonder about the necessity of this choice. Here we discuss the
unique abilities of independent noise and the compute overhead added by it.

The use of independent noise confers a number of special capabilities in our model, including
stabilization of autoregressive rollout 3.3, modeling causal uncertainty 3.3, and removing the need
for expensive reconstruction guidance when conditioning on context C.6. None of these capabilities
can be achieved by full-sequence diffusion. AR-diffusion [66] and Rolling Diffusion [51] can only
achieve the first and third one. There are more sampling-time applications such as flexible frame
interpolation. Finally, we also saw the practical benefits of using independent noise in hyperparameter
tuning. One can simply try different sampling schemes to figure out the most effective one for their
applications. All these capabilities only require training the model once with Diffusion Forcing. In
contrast, any tuning of the sampling scheme would require re-training the model for AR-diffusion
and Rolling Diffusion.

On the other hand, we didn’t observe much computing overhead when comparing Diffusion Forcing
to full-sequence diffusion, as soon as one closely follows our training techniques like B.1. The
empirical evidence is based on our experiments with an experimental transformer implementation
of Diffusion Forcing and is thus not fully consistent with the main paper. However, we present
the high-level descriptions below for readers interested in more insights: The complexity added by
independent noise levels is in the temporal dimension. Therefore, we first adopt a standard technique
for video diffusion models - image pre-training, to abstract away the complexity of the image pixels
themselves. Then the complexity left is temporal prediction only. We then take the pre-trained
image-only model and continue training it on video data. It turns out the sampling result of Diffusion
Forcing with fewer training steps in this second stage is already better than that of full-sequence
diffusion at convergence. We speculate that the better result is due to the same data-augmentation
effect described in prior works [39]. This shows that the overhead added by independent noise is
well-warranted when considering the overall training compute (including image pre-training).

25

24105 https://doi.org/10.52202/079017-0759

C.3 Guidance as planning

As stated in Section 2, one can use the gradient of the logarithmic of a classifier log c(y|xk
t) to guide

the sampling process of diffusion model towards samples with a desired attribute y. For example, y can
refer to the indicator of a success event. However, we can consider the logarithmic of a more general
energy function c(xk

t). This has the interpretation as Pr
(
y|xk

t

)
, where Pr

[
y = 1 | xk

t

]
= ec(x

k
t).

Some popular candidate energies include

c(xk
t) = E

[∑
t′>t

r′(x
kt′
t′) | xk

t

]
, (C.1)

corresponding to a cost-to-go; we can obtain unbiased estimates of this gradient by using cumulative
reward c̃(xk

t) =
∑

t′>t r′(x
kt′
t′). We can also use goal distance c = −∥xkT

T − g∥2 as a terminal
reward. We provide details about the guidance function deployed in the maze2d planning experiment
in Appendix B.5.

C.4 Noising and stabilizing long-horizon generations

Here, we explain in detail how we use noising to stabilize long-horizon generation. At each time t,
during the denoising, we maintain a latent zksmall

t−1 from the previous time step, with 0 < ksmall ≪
K corresponding to some small amount of noise. We then do next token diffusion to diffuse
the token xt across noise levels xK

t ,xK−1
t , . . . ,x0

t (corresponding to Algorithm 2 with horizon
T = 1, initial latent zkt−1, and noise schedule Km,1 = m); this process also produces latents
zKt , zK−1

t , . . . , z0t associated with each noise level. From these, we use the latent zksmall
t to repeat

the process. This noised latent can be interpreted as an implementation of conditioning on xksmall
t

in an autoregressive process. In a potential transformer implementation of Diffusion Forcing as we
discussed in Appendix C.1, one can instead run a forward diffusion on a fully diffused token to
achieve stabilization.

It is widely appreciated that adding noise to data ameliorates long-term compounding error in behavior
cloning applications [38, 42], and even induces robustness to non-sequential adversarial attacks [13].
In autoregressive video generation, the noised xksmall

t is in-distribution for training, because Diffusion
Forcing trains from noisy past observation in its training objective. Hence, this method can be
interpreted as a special case of the DART algorithm for behavior cloning [42], where the imitiator (in
our case, video generator) is given actions (in our case, next video frames) from noisy observations
(in our case, noised previous frames). Somewhat more precisely, because we use both tokens at
training time to train Diffusion Forcing, and using slightly noised tokens for autoregression at test
time, our approach inherits the theoretical guarantee of the HINT algorithm [5].

C.5 Why Monte Carlo Guidance relies on Diffusion Forcing

Monte Carlo Guidance provides substantial variance reduction in our estimate of cost-to-go guidance
(C.1). This technique crucially relies on the ability to roll out future tokens from current ones to
use these sample rollouts to get Monte Carlo estimates for gradients. This is not feasible with
full-sequence diffusion, because this requires denoising all tokens in tandem; thus, for a given fixed
noise level, there is no obvious source of randomness to use for the Monte Carlo estimate. It may be
possible to achieve variable horizon via the trick proposed in the following subsection to simulate
future rollouts, but to our knowledge, this approach is nonstandard.

C.6 Does the replacement technique lead to flexible horizons in full-sequence diffusion?

A naive way to obtain flexible horizon generation in full-sequence diffusion is via the “replacement
trick”: consider a full sequence model trained to diffuse x1:T , which we partition into x1:t−1,xt:T].
Having diffused tokens x1:t−1, we can attempt to denoise tokens of the form [x̃k

1:t−1,x
k
t:T], where

we fix x̃k
1:t−1 = x1:t−1 to be the previously generated token, and only have score gradients update the

remaining xk
t:T . One clear disadvantage of this method is inefficiency - one still needs to diffuse the

whole sequence even when there is one step left at t = T − 1. What’s more, [31] points out that this
approach of conditioning, named “conditioning by replacement”, is both mathematically unprincipled

26

24106https://doi.org/10.52202/079017-0759

Corrupted History:
Set 𝑘 ∈ 0, 𝐾 so
model cautiously
treats 𝑥+,as noisy
observation.

Far future:

Loop 𝑘	from K…0 while
staying bigger than the
𝑘 of near future. Model
diffuses 𝑥+, conditioned
on partially diffused
near future.

Near future:

Loop 𝑘	from K…0
so model diffuses
𝑥+, as prediction.

Classifier guidance on
𝑥- can propagate
through the trajectory
because near future
hasn’t been fully
diffused

History:
Set 𝑘 = 0 so
model trusts 𝑥+,as
GT observation to
condition on.

Sample multiple
futures to compute
guidance gradient
for 𝑥+,, allowing
planning with
expected reward

Figure 5: Diffusion Forcing is trained on independent level of noises at different timesteps. As a
result, we can control the noise level k to achieve different effects on conditioning and prediction.

and can lead to inconsistency in the generated sequence. The best fix proposed by [31] incorporates
an additional gradient term with respect to xt:T at every diffusion step; this is still an incomplete fix
and suffers the computation cost of an extra backward propagation for every sampling step.

C.7 Further connection to Bayesian filtering

The core idea of Diffusion Forcing can be interpreted as using diffusion to construct an interpolation
between prior distribution and posterior distribution of a Bayes filter. Consider the hybrid distribution
p(zt|zt−1,x

k
t). When k = 0, this hybrid distribution becomes the posterior p(zt|zt−1,xt). On the

other hand, when k = K, the hybrid distribution becomes p(zt|zt−1,n) for n ∼ N (0, I). Since
the independent Gaussian noise term n contains no information about z, this is exactly the prior
distribution p(zt|zt−1). By varying k between K and 0, the same neural network can parameterize
everything between prior and posterior.

C.8 Connection to other sequence training schemes

Noise as masking provides a unified view of different sequence training schemes. The following
exposition uses a length 3 sequence as an example: We always start with fully masked sequence
[xK

1 ,xK
2 ,xK

3] with the goal of denoising it a “clean sequence” of zero noise. [x0
1,x

0
2,x

0
3]. Assume

all diffusions are sampled with 3-step DDIM.

Autoregressive. In teacher forcing, one trains a model to predict the next token conditioned on
prior observations. One can train next-token diffusion models with teacher forcing such as [49]:
feed neural network with past observations as well as a current observation and ask it to predict
clean current observation. A typical training pair can have the input of [x0

1,x
0
2,x

K
3]⊤ and target of

[x0
1,x

0
2,x

0
3]

⊤.

27

24107 https://doi.org/10.52202/079017-0759

At sampling time, one fully diffuses the next token before adding the diffused observation to history
to perform an autoregressive rollout. The diffusion process would thus look like

[xK
1 ,xK

2 ,xK
3]⊤

[x
K//2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K
2 ,xK

3]⊤,

[x0
1,x

K//2
2 ,xK

3]⊤

[x0
1,x

0
2,x

K
3]⊤,

[x0
1,x

0
2,x

K//2
3]⊤,

[x0
1,x

0
2,x

0
3]

⊤.

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time for applications
like imitation learning, when one wants to diffuse the next action as fast as possible.

Full Sequence Diffusion. Full sequence diffusion models accept a noisy sequence and denoises
level-by-level

[xK
1 ,xK

2 ,xK
3]⊤

[x
K//2
1 ,x

K//2
2 ,x

K//2
3]⊤,

[x0
1,x

0
2,x

0
3]

⊤.

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time.

Diffusion Forcing with causal uncertainty As shown in Figure 2, to model causal uncertainty,
Diffusion Forcing keeps the far future more uncertain than the near future by having a larger noise
level k, at any time of diffusion. An example pattern looks like this:

[xK
1 ,xK

2 ,xK
3]⊤

[x
K//2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K//2
2 ,xK

3]⊤,

[x0
1,x

0
2,x

K//2
3]⊤

[x0
1,x

0
2,x

0
3]

⊤

Notable, [65] is the first one to propose such a linear uncertainty sampling scheme for causal diffusion
models, although Diffusion Forcing provides a generalization of such scheme in combination with
other abilities.

Diffusion Forcing with stablization Previously we introduced the autoregressive sampling scheme
that Diffusion Forcing can also do. However, such a scheme can accumulate single-step errors
because it treats predicted x as ground truth observation. Diffusion Forcing addresses this problem
by telling the model that generated images should be treated as noisy ground truth, as shown in 2.

It first fully diffuses the first token,

[xK
1 ,xK

2 ,xK
3]⊤

[x
K//2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K
2 ,xK

3]⊤

Then, it feed the diffused x0
1 into the model but tell it is of a slightly higher noise level, as x1

1 to
diffuse x2.

[x1
1,x

K//2
2 ,xK

3]⊤

[x1
1,x

0
2,x

K
3]⊤

Then, it feeds the diffused x0
2 into the model but tells it is of a higher noise level, as x1

2.

[x1
1,x

1
2,x

K//2
3]⊤,

[x1
1,x

1
2,x

0
3]

⊤.

28

24108https://doi.org/10.52202/079017-0759

Figure 6: Prediction intervals of Diffusion Forcing for the first prediction window of the test set in
the Electricity time series dataset. Only the first 16 features out of 370 are plotted.

D Extended Related Work

Reconstructing masked tokens. Masked Autoencoders for images [26] and videos [17] are a
popular method for representation learning in pixel space. They have been extended to perform
diffusion to generate masked patches conditioned on unmasked ones [62, 19].

Casting Image Generation as Sequence Generation. [60, 8] show that even generative modeling
of non-sequential data, such as images, can be fruitfully cast as sequence generative modeling.

Non-Diffusion Probabilistic Sequence Models. [12] parameterize token-to-token transitions via a
variational auto-encoder. This makes them probabilistic, but does not directly maximize the joint
probability of sequences, but rather, enables sampling from the distribution of single-step transitions.

Sequence Diffusion with Varying Noise Levels. Most similar to our work is AR-Diffusion [65]
which similarly aims to train next-token prediction models for sequence diffusion. Key differences
are that AR-Diffusion proposes a noise level that is linearly dependent on the position of each word
in the sequence, while our critical contribution is to have each noise level be independent, as this
uniquely enables our proposed sampling schemes, such as stabilizing auto-regressive generation and
conditioning on corrupted observations. Further, AR-Diffusion only explores language modeling
and does not explore guidance, while we investigate Diffusion Forcing as a broadly applicable
sequence generative model with particular applications to sequential decision-making. In particular,
we introduce Monte-Carlo Guidance as a novel guidance mechanism. Another closely related work
is Rolling Diffusion [51], which proposes to diffuse a sequence with near future more certain and far
future more uncertain, resembling the causally uncertain sampling scheme of Diffusion Forcing. Like
AR-Diffussion, Rolling Diffusion’s training noise levels are linearly dependent on the positions of
tokens and must use the exact same noise level scheme at sampling time. It, therefore, shares the
aforementioned limitations of AR-Diffusion as well.

E Additional Experiment Results

E.1 Multivariate Probabilistic Time Series Forecasting

To illustrate Diffusion Forcing’s new training objective does not degrade it as a generic sequence
model, we evaluate Diffusion Forcing on high-dimensional and long-horizon sequence prediction

29

24109 https://doi.org/10.52202/079017-0759

tasks in time series prediction. We adopt multiple time series datasets with real-world applications
from GluonTS [2] and evaluate Diffusion Forcing with strong baselines with standard metrics in this
domain. In this section, we mainly focus on the results and analysis. For a detailed description of
datasets and the metric, we refer the reader to Appendix F.4.

Problem Formulation Let X = {xt}Tt=1 be a sequence (multivariate time series) of D-dimensional
observations xt ∈ RD of some underlying dynamical process, sampled in discrete time steps
t ∈ {1, . . . , T}, where T ∈ N. In the problem setting of probabilistic time series forecasting, the
sequence X = {Xc,Xp} is split into two subsequences at time step t0 ∈ N with 1 < t0 ≤ T : the
context window Xc := {xt}t0−1

t=1 (also called history or evidence) of length t0−1, and the prediction
window Xp := {xt}Tt=t0

of length T − t0 +1 (also known as the prediction horizon). Then, the task
is to model the conditional joint probability distribution

q(xt0:T | x1:t0−1) :=

T∏
t=t0

q(xt | x1:t−1) (E.1)

over the samples in the prediction window. If we know the distribution in (E.1), we can sample
forecast prediction sequences given some initial context from the evidence sequence. However,
most time-dependent data generation processes in nature have complex dynamics and no tractable
formulation of q(xt0:T | x1:t0−1). Instead, we construct a statistical model that approximates the
generative process in (E.1) and estimates quantiles via Monte Carlo sampling of simulated trajectories.
In this way, confidence levels or uncertainty measures can be calculated, and point forecasts can be
produced as the mean or median trajectory [35].

Table 2: Results for time series forecasting. We report the test set CRPSsum (the lower, the better) of
comparable methods on six time series datasets. We measure the mean and standard deviation of our
method from five runs trained with different seeds.

Method Exchange Solar Electricity Traffic Taxi Wikipedia

VES [35] 0.005 ± 0.000 0.900 ± 0.003 0.880 ± 0.004 0.350 ± 0.002 - -
VAR [44] 0.005 ± 0.000 0.830 ± 0.006 0.039 ± 0.001 0.290 ± 0.001 - -
VAR-Lasso [44] 0.012 ± 0.000 0.510 ± 0.006 0.025 ± 0.000 0.150 ± 0.002 - 3.100 ± 0.004
GARCH [61] 0.023 ± 0.000 0.880 ± 0.002 0.190 ± 0.001 0.370 ± 0.001 - -
DeepAR [54] - 0.336 ± 0.014 0.023 ± 0.001 0.055 ± 0.003 - 0.127 ± 0.042
LSTM-Copula [53] 0.007 ± 0.000 0.319 ± 0.011 0.064 ± 0.008 0.103 ± 0.006 0.326 ± 0.007 0.241 ± 0.033
GP-Copula [53] 0.007 ± 0.000 0.337 ± 0.024 0.025 ± 0.002 0.078 ± 0.002 0.208 ± 0.183 0.086 ± 0.004
KVAE [40] 0.014 ± 0.002 0.340 ± 0.025 0.051 ± 0.019 0.100 ± 0.005 - 0.095 ± 0.012
NKF [14] - 0.320 ± 0.020 0.016 ± 0.001 0.100 ± 0.002 - 0.071 ± 0.002
Transformer-MAF [50] 0.005 ± 0.003 0.301 ± 0.014 0.021 ± 0.000 0.056 ± 0.001 0.179 ± 0.002 0.063 ± 0.003
TimeGrad [49] 0.006 ± 0.001 0.287 ± 0.020 0.021 ± 0.001 0.044 ± 0.006 0.114 ± 0.020 0.049 ± 0.002
ScoreGrad sub-VP SDE [67] 0.006 ± 0.001 0.256 ± 0.015 0.019 ± 0.001 0.041 ± 0.004 0.101 ± 0.004 0.043 ± 0.002
Ours 0.003 ± 0.001 0.289 ± 0.002 0.023 ± 0.001 0.040 ± 0.004 0.075 ± 0.002 0.085 ± 0.007

Results. We evaluate the effectiveness of Diffusion Forcing as a sequence model on the canonical
task of multivariate time series forecasting by following the experiment setup of [53, 50, 49, 58, 67]
Concretely, we benchmark Diffusion Forcing on the datasets Solar, Electricity, Traffic, Taxi, and
Wikipedia. These datasets have different dimensionality, domains, and sampling frequencies, and
capture seasonal patterns of different lengths. The features of each dataset are detailed in Table 3. We
access the datasets from GluonTS [2], and set the context and prediction windows to the same length
for each dataset. Additionally, we employ the same covariates as [49]. We evaluate the performance of
the model quantitatively by estimating the Summed Continuous Ranked Probability Score CRPSsum
via quantiles. As a metric, CRPSsum measures how well a forecast distribution matches the ground
truth distribution. We provide detailed descriptions of the metric in Appendix F.4. We benchmark
with other diffusion-based methods in time series forecastings, such as TimeGrad [49] and the
transformer-based Transformer-MAF [50]. In particular, the main baseline of interest, TimeGrad [49],
is a next-token diffusion sequence model trained with teacher forcing. We track the CRPSsum metric
on the validation set and use early stopping when the metric has not improved for 6 consecutive
epochs, while all epochs are fixed to 100 batches across datasets. We then measure the CRPSsum on
the test set at the end of the training, which we report in Table 2. We use the exact same architecture
and hyperparameters for all time series datasets and experiments. Diffusion Forcing outperforms all
prior methods except for [67] with which Diffusion Forcing is overall tied, except for the Wikipedia
dataset, on which Diffusion Forcing takes fourth place. Note that time series is not the core application

30

24110https://doi.org/10.52202/079017-0759

of Diffusion Forcing, and that we merely seek to demonstrate that the Diffusion Forcing objective is
applicable to diverse domains with no apparent trade-off in performance over baseline objectives.

E.2 Additional results in compositional generation

Since Diffusion Forcing models the joint distribution of any subset of a sequence, we can leverage
this unique property to achieve compositional behavior - i.e., Diffusion Forcing can sample from the
distribution of subsets of the trajectory and compose these sub-trajectories into new trajectories.

In particular, we show that we can also have flexible control over how compositional Diffusion
Forcing is. As shown in 7, consider a dataset of trajectories on a 2D, square plane, where all
trajectories start from one corner and end up in the opposite corner, forming a cross shape. When
no compositional behavior is desired, one can let the models replicate the cross-shaped distribution
by allowing full memory of the HMM model. When one desires compositional such as generating
a V-shaped trajectory, which stitches two sub-trajectories together, one can let the model generate
shorter plans with no-memory context using MPC. (Add figures).

(a) Dataset (b) W/ memory (c) W/o memory

Figure 7: Given a dataset of trajectories (a), Diffusion Forcing models the joint distribution of all
subsequences of arbitrary length. At sampling time, we can sample from the trajectory distribution
by sampling Diffusion Forcing with full horizon (b) or recover Markovian dynamics by disregarding
previous states (c).

E.3 Additional results in video prediction (wo/ cherry picking)

Infinite Rollout without sliding window Diffusion Forcing can rollout longer than maximum train-
ing horizonwithout sliding window. That is, we run Diffusion Forcing’s RNN continuously without
ever reinitializing z0. This is a surprising effect we observed from the rollout stabilization property of
Diffusion Forcing. In Figure 8, 10, we use Diffusion Forcing to generate video sequences of length
180 and visualize subsampled sequences. Notably, Diffusion Forcing used in these visualizations is
trained with a maximum length of 72 frames for Minecraft and 36 frames for DMLab, illustrating it
can rollout 2x-5x times longer than it’s trained on without sliding window. In addition, we also tried
rolling these models out for 2000 frames and without seeing the model blowing up on both datasets.
There are occasional cases where the Minecraft agent gets stuck and the entire screen is the “dirt”
block, but this is more of a dataset issue E.5 and the agent is able to recover after it turns around.

Consistency We also present additional results where we only generate within our maximum training
length. As shown in figure 13 12, Diffusion Forcing can generate consistent videos. Results are not
cherry-picked.

31

24111 https://doi.org/10.52202/079017-0759

Figure 8: Visualization shows Diffusion Forcing trained on 72 frames is able to rollout 180 frames on
Minecraft dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on
this dataset.

E.4 Additional results in planning

We provide some additional visualizations of causal planning in 15. We also present additional
visualization of Diffusion Forcing performing model predictive control in action. As shown in
figure 14, Diffusion Forcing can generate plans of shorter horizons since it’s flexible horizon.

32

24112https://doi.org/10.52202/079017-0759

Figure 9: Diffusion Forcing trained on 72 frames is able to rollout 180 frames on Minecraft dataset
without sliding window. The visualization shows a non-cherry-picked subsampling of these 180
frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on this dataset.
The first few frames marked in red are the ground truth images of the dataset used for conditioning.

E.5 Real robot experiment setup

In Figure 16 we visualize our robot experiment setup with corruption on observation. The dataset is
collected when the target bag isn’t present, while we test with such a bag in the scene zero-shot for
the imitation learning experiment with observation corruption. The typical failure mode is when the
robot no longer reacts to the visual clues of the randomized location of objects. We didn’t observe
the robot act wildly due to visual distractors.

F Additional details about datasets

F.1 Dataset for video diffusion

We adopt the video prediction dataset Minecraft and DMlab used by TECO[68].

Minecraft Navigation The Minecraft navigation dataset consists of first-person-view videos of
random walks in the Minecraft ‘swamp‘ biome. The agent walks via a technique called ‘sprint jump‘
which allows it to jump across blocks without getting stuck at 1 block obstacles. The agent walks
straight most of the time, with small chances of turning left or right. The height and width of the
video is 128 pixels and we trim long videos to subsequences of 72 frames. The dataset comes with
paired action data but we discard them to bring more stochasticity to the prediction task. Due to
limited compute, we only train on about 10% of the total subsequences.

One problem we noticed about the dataset is when the agent runs into obstacles with a height of 2
blocks or more. In this case, the agent will get stuck and the entire video sequence will consist of grey
granite patterns or brown dirty patterns. This leads to a huge amount of frames with these patterns,
making video models predict meaningless frames. Yet, we deem this as a problem of this dataset
itself.

DMLab Navigation Deepmind Lab navigation dataset consists of random walks in a 3D maze
environment. For DMLab, the resolution is 64 pixels and we use subsequences of 48 frames. We also
disregard the provided actions due to training.

We note that the VQ-VAE latent that stable video diffusion [4] diffuses is also only 128× 128× 3,
indicating Diffusion Forcing has the potential to scale up to higher resolution images with pre-trained

33

24113 https://doi.org/10.52202/079017-0759

Figure 10: Visualization shows Diffusion Forcing trained on 36 frames is able to rollout 180 frames
on DMLab dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out almost infinitely on this dataset. The
first few frames marked in red are the ground truth images of the dataset used for conditioning.

image encoder and decoders. Due to the sheer size of the datasets, we only use about 10% of the total
data sequences for training due to limited computing, as we observe that doing so already allows us
to make good generations from initial frames from the test set.

F.2 Dataset for planning

D4RL [18] is a standard offline RL benchmark featuring a wide range of reinforcement learning
environments. Each environment is associated with a provided dataset of offline interactions with the
environment featuring state, action, and reward trajectories.

Like Diffuer [36], we choose the 3 maze environments as they are challenging long-horizon, multi-
modal, sparse reward problems uniquely suited for visualization and evaluating planning algorithms.
The IDs for the 3 used environments are “maze2d-medium-v1”, “maze2d-large-v1”, “maze2d-umaze-

34

24114https://doi.org/10.52202/079017-0759

Figure 11: Visualization shows Diffusion Forcing trained on 36 frames is able to rollout 180 frames
on DMLab dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out almost infinitely on this dataset. The
first few frames marked in red are the ground truth images of the dataset used for conditioning.

v1”. In each environment, one controls the acceleration of a robot to walk it towards a goal. The
observation space is 4 dimensional, featuring 2D location and velocity. The action space is 2D
acceleration. The agent always receives a random start location and the goal is to reach a fixed goal
position for each maze. The agent receives a reward of 1 if it is within a circle of radius 0.5 centered
at the goal state, and 0 otherwise.

The offline RL dataset for the maze environments consists of random walks in the maze. Specifically,
the authors first designate all intersections and turn in the maze as waypoints and code an agent to
navigate between waypoints with some randomization. As a result, the random walks are generated
in a way that the path is collision-free with the walls. The random walks introduce stochasticity to
the dataset, as trajectories in the dataset are never towards a specific goal.

35

24115 https://doi.org/10.52202/079017-0759

Figure 12: Additional non-cherry-picked video prediction results on DMLab dataset, generated
within maximum training length. The first few frames marked in red are the ground truth images of
the dataset used for conditioning.

There are a few choices adopted from our main baseline Diffuser [36]: we disregard the reward in the
dataset and plan with goals only. We also evaluate a multi-goal variant of each environment (labeled
as “multi” in Table 1), where the goal is randomized just like the starting position.

F.3 Dataset for robot learning

We choose a long horizon robotic manipulation task as described in Section 4.4: Consider a tabletop
with three slots where we can place objects. One places an apple at slot A or slot B randomly, and
then places an orange at the other slot between A and B. A robot is challenged to swap the position
of two fruits using the third slot C. That is, it can only move a fruit to an empty slot at a time. For
example, when the apple is at slot A and the orange is at slot B, it may move the apple to slot C,
leaving slot A empty. Then move the orange to slot A and finally move the apple from slot C to slot B.
In figure 4, we illustrate the non-markovian property of the task: When the apple is at slot B and the
orange is at slot C, one cannot tell what the immediate action is without knowing the initial positions
of objects.

We put stickers on the table indicating a circular region occupied by any slot. Each circular region is
designed to be about double the diameter of a fruit. To make sure the task requires visual feedback,
we also randomize the location of a fruit inside the slot. We collected 150 expert demonstrations of
a Franka robot performing the task using VR teleoperation and impedance control. Among them,
each initial slot configuration makes up half of the dataset. We record videos from two camera
views, one from a hand camera and one in the front capturing all three slots. Each demonstration

36

24116https://doi.org/10.52202/079017-0759

Figure 13: Additional non-cherry-picked video prediction results on the Minecraft dataset, generated
within maximum training length. The first few frames marked in red are the ground truth images of
the dataset used for conditioning.

also comes with 6 dof actions of the robot hand. During the data collection, since one successful
demonstration will swap the position of two objects, its end configuration will naturally serve as the
starting configuration of the other randomized location, which we leverage to save time.

Each demonstration comprises 500 − 600 frames and actions. We train Diffusion Forcing on the
entire sequence. However, since adjacent frames are visually close, we pad and downsample the
videos to 40 frames where each frame is bundled with 15 actions.

F.4 Dataset for time series

Table 3: Characteristics of the GluonTS datasets used to benchmark
Diffusion Forcing in the domain of time series forecasting.

Dataset Dimension Domain Frequency Steps Prediction length

Exchange 8 R+ BUSINESS DAY 6,071 30
Solar 137 R+ HOUR 7,009 24
Electricity 370 R+ HOUR 5,833 24
Traffic 963 (0,1) HOUR 4,001 24
Taxi 1,214 N 30-MIN 1,488 24
Wikipedia 2,000 N DAY 792 30

We use a set of time series datasets accessible via GluonTS [2], which are adopted from prior
works like [71, 41, 55]. These datasets capture real-world data of high-dimensional dynamics like
monetary exchange rates or the electricity grid. In Table 3, we provide a summary of the features of
these datasets, such as the dimensionality, the domains, the sampling frequency, the length of the
multivariate sequence in the training set, and the prediction length. We access the datasets in Table 3
via GluonTS and wrap the data processing functions implemented in GluonTS in our own dataloaders.
Each dataset consists of one long multivariate sequence, which is the training split, and a set of short
sequences that make up the test split. We construct a validation set of the same cardinality as the
held-out test set as a randomly sampled subset of subsequences from the training set. All splits are
normalized by the mean and the standard deviation of the features in the training split.

Covariates Often, statistical models that approximate (E.1) benefit from manually curated features
as additional input to the observations. A sequence of covariates C = {ct}Tt=1 can be constructed
to help the model recognize seasonal patterns and other temporal dependencies. We follow the
implementation in [50] to construct the covariate sequence as a function of the frequency of each
dataset in Table 3. As such, our covariates are composed of lagged inputs, as well as learned
embeddings and handcrafted temporal features that encode information such as the hour of the day
or the day of the month, depending on the sampling rate of the particular time series that is being

37

24117 https://doi.org/10.52202/079017-0759

Figure 14: Example MPC planning for maze medium environment. Blue indicated trajectories
actually executed already. Red is the plan.

Figure 15: Example plans generated for maze medium (above) and maze large (below) environments.

modeled. Therefore, covariates are known for the entire interval [1, T], even at inference. We can
easily incorporate covariates into the probabilistic framework as

q(xt0:T | x1:t0−1, c1:T) :=

T∏
t=t0

q(xt | x1:t0−1, c1:T). (F.1)

The benefit obtained from covariates is highly dependent on the characteristics of both the dataset
and the model used, as well as the feature engineering practices followed.

38

24118https://doi.org/10.52202/079017-0759

Figure 16: We randomly throw a target bag on the table as a strong visual distractor. Diffusion
Forcing can be prompted to treat observation as corrupted rather than ground truth.

Metric The Continuous Ranked Probability Score (CRPS) [45] is a scoring function that measures
how well the forecast distribution matches the ground truth distribution:

CRPS(F, x) =

∫
R
(F (z)− I {x ≤ z})2 dz ,

where F (z) is the univariate cumulative distribution function (CDF) over the predicted value, x is
a ground truth observation, and I {x ≤ z} is the indicator function that is one if x ≤ z and zero
otherwise. By summing the D-dimensional time series along the feature dimension for simulated
samples (resulting in F̂sum(t)) and ground truth data (as

∑
i x

0
i,t), we can report the CRPSsum

CRPSsum = Et∼U(t0,T)

[
CRPS

(
F̂sum(t),

∑
i

x0
i,t

)]
as the average over the prediction window. The lower the CRPSsum value, the better the predicted
distribution match the data distribution.

First, we manually sum the time series along the feature dimension and estimate the CDF F̂sum(t) via
19 quantile levels at each time step t from 100 sampled trajectories. We then use the implementation
in GluonTs [2] to compute the CRPS, which we report as CRPSsum in Table 2. While we aggregate
the data manually, we verify that the numerical error relative to the GluonTS implementation remains
orders of magnitude below the precision threshold of the reported metric.

39

24119 https://doi.org/10.52202/079017-0759

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by experimental
results and are contextualized with respect to competing methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the final section of the paper (5).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

40

24120https://doi.org/10.52202/079017-0759

Answer: [Yes]

Justification: Derivations of relevant expressions are provided in the supplement.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide reproducibility details for each experiment in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

41

24121 https://doi.org/10.52202/079017-0759

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code has been released publicly.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are provided in the paper and supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report all quantitative results in terms of the mean and standard deviation
over several runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

42

24122https://doi.org/10.52202/079017-0759

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were performed on the same device, the details of which are
described in the supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, we conform to the Code of Ethics. At this time
we do not see our method providing a straightforward avenue for abuse by bad actors.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Due to the low-level nature of our method, we do not see it directly facilitating
any negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

43

24123 https://doi.org/10.52202/079017-0759

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data used is cited in accordance with the provided licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

44

24124https://doi.org/10.52202/079017-0759

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

45

24125 https://doi.org/10.52202/079017-0759

