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Abstract

In multi-sequence Magnetic Resonance Imaging (MRI), the accurate segmenta-
tion of the kidney and tumor based on traditional supervised methods typically
necessitates detailed annotation for each sequence, which is both time-consuming
and labor-intensive. Unsupervised Domain Adaptation (UDA) methods can effec-
tively mitigate inter-domain differences by aligning cross-modal features, thereby
reducing the annotation burden. However, most existing UDA methods are lim-
ited to one-to-one domain adaptation, which tends to be inefficient and resource-
intensive when faced with multi-target domain transfer tasks. To address this
challenge, we propose a novel and efficient One-to-Multiple Progressive Style
Transfer Unsupervised Domain-Adaptive (PSTUDA) framework for kidney and
tumor segmentation in multi-sequence MRI. Specifically, we develop a multi-level
style dictionary to explicitly store the style information of each target domain at
various stages, which alleviates the burden of a single generator in a multi-target
transfer task and enables effective decoupling of content and style. Concurrently,
we employ multiple cascading style fusion modules that utilize point-wise instance
normalization to progressively recombine content and style features, which en-
hances cross-modal alignment and structural consistency. Experiments conducted
on the private MSKT and public KiTS19 datasets demonstrate the superiority of the
proposed PSTUDA over comparative methods in multi-sequence kidney and tumor
segmentation. The average Dice Similarity Coefficients are increased by at least
1.8% and 3.9%, respectively. Impressively, our PSTUDA not only significantly
reduces the floating-point computation by approximately 72% but also reduces
the number of model parameters by about 50%, bringing higher efficiency and
feasibility to practical clinical applications. 2

1 Introduction

Kidney tumor segmentation is a crucial task in medical image analysis, playing an essential role in the
diagnosis, staging, and treatment of kidney cancer [1, 2, 3]. Previous studies have primarily focused on
computed tomography (CT) images [4, 5, 6, 7, 8, 9], but in recent years, magnetic resonance imaging
(MRI) has emerged as a safer alternative due to its non-radiative nature [10, 11, 12]. Compared to CT,
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MRI offers superior contrast for characterizing kidney tissue and tumors, enabling a clearer distinction
between normal and pathological tissues. Furthermore, the multi-parameter imaging capability of
MRI generates diverse sequences [13, 14, 15] that enhances the comprehensive description of
pathological features. These advantages have established MRI as the preferred modality for clinicians
in diagnosing kidney disease, particularly kidney tumors, and have facilitated the widespread use of
multi-sequence MRI in clinical practice for kidney and tumor segmentation.

In existing studies, traditional supervised segmentation methods typically rely on a large amount
of annotated data, and performing fine-grained annotations for a single sequence is already a time-
consuming and labor-intensive task, let alone for every sequence. Unsupervised domain adaptation
(UDA) methods [16, 17, 18, 19, 20] have been proposed as a promising solution to address these
challenges. Current UDA methods mainly focus on one-to-one domain adaptation, involving a single
source domain and a target domain. Although these methods perform well in certain scenarios, they
lack scalability, meaning that for multi-target domain tasks, training paired generators for each source-
target domain pair results in significant computational costs and resource consumption. Furthermore,
one-to-one domain adaptation methods can only learn fixed mappings between two domains, thereby
failing to capture the potential commonalities and connections among multiple sequences.

As an initial attempt to apply multi-domain adaptation technology to medical imaging, Xu et al. [21]
proposed OMUDA for abdominal organ segmentation using multi-sequence MRI. However, the
architecture of OMUDA is derived from StarGAN v2 [22], which was originally designed for
style transfer in natural images and has not been specifically tailored and optimized for the needs
of domain adaptation in medical imaging. Although it shows improvement in resolving domain
confusion across multiple domains, this limitation leads to suboptimal generated images with regards
to organ structural consistency and detail preservation. Consequently, the task of one-to-multiple
domain adaptation in medical imaging remains a significant challenge, necessitating more refined
and specialized approaches for further advancement.

In this paper, we propose a One-to-Multiple Progressive Style Transfer Unsupervised Domain-
Adaptive (PSTUDA) framework, which explicitly stores multi-level style features from different
domains in designated multi-level style dictionaries, thus alleviating the burden on the generator and
achieving the decoupling of content features from style features. Our PSTUDA employs multiple
cascaded style fusion modules to recombine multi-level style features from different domains with
content features layer by layer using Point-wise Instance Normalization (PIN), thereby ensuring that
the generated images across multiple target domains have high-quality style and structure.

The main contributions of our work are summarised as follows:

• We explore a novel and efficient One-to-Multiple Progressive Style Transfer Unsupervised
Domain-Adaptive (PSTUDA) framework, which is capable of simultaneously transferring
a single annotated source domain to multiple unannotated target domains, significantly
reducing the need for tedious domain adaptation work for each target domain.

• We introduce a multi-level style dictionary that stores style information for each domain at
different stages of style transfer, alleviating the burden on the generator to perform multiple
tasks and effectively decoupling content features from style features.

• We propose a progressive style transfer paradigm and a Point-wise Instance Normalization
(PIN) method. The former comprises multiple cascading style fusion modules, each recom-
bining content features with corresponding style features through PIN, thereby achieving
better cross-modal alignment and structural consistency.

• We construct a multi-sequence kidney tumor MRI dataset called MSKT to facilitate research
on kidney tumor analysis. Quantitative and qualitative results on the MSKT and the public
dataset KiTS19 show that our PSTUDA framework outperforms the state-of-the-art methods
and significantly improves segmentation performance and training efficiency.

2 Related Work

2.1 Kidney Tumor Segmentation

Computer-aided diagnostic methods for kidney tumor segmentation play a crucial role in clinical
practice [23, 24, 25, 26, 27]. The significant variability in the size, shape, and location of kidneys and
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tumors presents a considerable challenge to accurate segmentation. Yu et al. [28] developed Crossbar-
Net to capture global and local features of kidney tumors through crossbar patches and focused on
difficult-to-segment regions through a cascade training strategy. Myronenko et al. [29] designed
a dedicated boundary branch supervised by an edge-aware loss term to enhance the consideration
of organ and tumor edge information. These approaches are centered on improving the ability of
the model to recognize the complex morphology of kidney tumors. To further advance this effort,
Pandey et al. [30] integrated active contouring with 3D-U-Net to achieve precise delineation of kidney
tumor shapes, showcasing the potential of merging deep learning with traditional image processing
techniques. However, these approaches typically rely on fully supervised learning with extensive
pixel-level annotations. To address this limitation, researchers are exploring alternative solutions in
the fields of semi-supervised, self-supervised, and unsupervised learning. Ma et al. [31] introduced
an Affinity Network that learns from limited data using k-nearest neighbors attention pooling layers.
Similarly, Ciga et al. [32] and Faust et al. [33] developed methods that enhance feature learning and
guide tumor analysis through self-supervised and unsupervised techniques, respectively. By reducing
the reliance on annotated data, these methods not only lower costs but also improve the model’s
generalization capabilities.

2.2 Unsupervised Domain Adaptation

UDA is one of the important methods for addressing domain difference. It aims to transfer a model
from an annotated source domain to an unannotated target domain. Existing works have mostly
focused on one-to-one domain adaptation [34, 35, 36, 37, 38, 39], yielding impressive outcomes. For
example, CycleGAN [34] used cycle consistency constraints to transform unpaired images from one
domain to another. CyCADA [40] enforced cycle consistency by combining methods of image space
alignment and latent representation space alignment. MUNIT [41] decomposed image representations
into content and style codes, enabling multimodal image translation. For medical image domain
adaptation, SIFA [35] achieved domain alignment from both image and feature perspectives, enabling
the segmentation network to adapt to the unannotated target domain. Thereafter, DEPL [39] further
improved the segmentation accuracy by employing multi-source domain extension and selective
pseudo-labelling strategies.

However, these one-to-one domain adaptation methods lack scalability when handling multiple
domain transfer tasks, as they can only learn the relationships between two different domains at a
time. StarGAN [42] performed image-to-image translation across multiple domains using a single
model, and then the improved version, StarGAN v2 [22] further enhanced diversity in generated
images by introducing style codes specific to each domain. Additionally, Sharma and Hamarneh [43]
proposed a multi-modal generative adversarial network that leveraged redundant information from
available sequences to synthesize missing MRI pulse sequences in patient scans. Gholami et al. [44]
developed an information-theoretic approach that aimed to find shared latent spaces for domain
adaptation across multiple target domains. It should be noted that these methods predominantly focus
on the diversity of the generated images, while paying less attention to the structural consistency
before and after image translation.

2.3 Normalization of Image Translation

In UDA tasks, image normalization is a key step that can help models to learn and transfer features
effectively [45, 46, 47, 48, 49, 50]. Instance Normalization (IN) [51] normalizes the features of each
sample to improve the quality and realism of generated images. Adaptive Instance Normalization
(AdaIN) [52] dynamically adjusts the relationship between style and content features of input
images to enable a rapid transformation across arbitrary styles. Batch-Instance Normalization
(BIN) [53] explicitly normalizes unnecessary style variations in images while preserving useful styles.
AdaAttN [54] introduces adaptive attention normalization to optimize the effects of arbitrary neural
style transfer. GramLIN [55] continuously measures the proximity of the current stylized output to
the target style to achieve progressive stain transfer. In medical image domain adaptation tasks, it is
crucial to maintain structural consistency during image translation, in addition to changing image
styles. Therefore, we propose a novel normalization method called PIN, which progressively fuses
content and style features at each pixel by considering image details and local style differences. The
goal is to ensure well-structured images after transfer.

3
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Figure 1: (a) The overall architecture of the proposed One-to-Multiple Progressive Style Transfer
Unsupervised Domain-Adaptive framework, which includes a shared generator and a discriminator.
The generator is composed of an encoder, a decoder, and multiple style fusion modules. (b) shows
the progressive style transfer process, achieved through cascaded style fusion modules.

3 Method

3.1 Overview of the proposed One-to-Multiple Framework

Formally, for a one-to-multiple domain adaptation task, we have one source domain S and multiple
target domains Ti. The source domain S is annotated, denoted as S = {(xj , yj)}Ns

j=1 , while the
target domains are unannotated, denoted as Ti = {xTi

j }NTi
j=1 . Each domain is assigned a domain

label, for example, L = [0, 1, ..., N ] representing the source domain 0, target domain 1, etc., up
to target domain N. Figure 1(a) illustrates our PSTUDA framework, which mainly consists of a
shared generator (including an encoder, a decoder, and multiple style fusion modules) and a multi-
scale discriminator. Xsrc, Xtrgs, and Xrecon represent the input image from the source domain, the
generated pseudo-target domain images corresponding to the input image, and the image reconstructed
back to the source domain from the pseudo-target domain images, respectively. Our task involves
two stages. The goal of the first stage is to train a single generator G such that given a source domain
image Xsrc ∈ S and any target domain label li, it can generate a pseudo-target domain image Xtrg_i
corresponding to the image Xsrc, i.e., G(Xsrc, li) ⇒ Xtrg_i. The objective of the second stage is to
utilize the generated pseudo-target domain images Xtrgs and source domain annotation y to train a
segmentation network to achieve accurate segmentation of the kidney and tumor.

3.2 Multi-level Style Dictionary

Our design is inspired by the StarGAN v2 multi-domain image generation framework, which employs
a Mapping Network and a Style Encoder to obtain style encodings. The Mapping Network transforms
random Gaussian noise into diverse style encodings, while the Style Encoder extracts style encodings
from reference images. These techniques are essential for transforming natural image styles and
enhancing artistic variety. However, in medical image domain adaptation, they encounter challenges
in extracting comprehensive style features. Style encodings from a single image may not capture
the full range of styles within a domain, and deriving styles from Gaussian noise, while introducing

4

24499https://doi.org/10.52202/079017-0772



diversity, can result in instability. In medical image analysis, such instability could potentially
compromise feature recognition and segmentation accuracy.

To address these challenges, we propose to define a set of learnable multi-level style dictionaries for
each domain, where the style information at each level closely corresponds to the respective phase
of style fusion. This multi-level structure allows for starting with basic style features and exploring
more complex layers of style, thereby providing a progressively refined path for the style fusion
process. During the generative adversarial process, the continuous updating and learning of the
style dictionary can adapt to the ever-changing style demands. The early-stage stylized features will
provide feedback for subsequent style feature learning, thus guiding them to update in a dynamic and
targeted manner. By learning style information from the whole domain, the style dictionary becomes
more representative, which effectively overcomes the limitation of extracting style encoding from
a single image. Moreover, the iterative updates of style dictionaries enhance stability and reduce
uncertainty in extracting style encodings from random noise. Storing style encoding information in a
multi-level dictionary helps alleviate burden on the generator and achieves effective decoupling of
content features and style features. This allows it to focus on capturing domain-invariant features such
as structure and shape. In this way, the multi-levels style dictionary refines complex styles within
target domains at each level, ensuring that each can timely reflect latest progress in style transfer
process more precise and coordinated.

3.3 Progressive Style Transfer Paradigm

In PSTUDA, multiple cascaded style fusion modules and decoders constitute the core components of
progressive style transfer. Figure 1(b) illustrates the main processes of the first and last (decoding
phase) style transfer stages, with similar style transfer processes in the intermediate stages. In the first
style transfer stage, the style fusion module requires two inputs: the content feature X1 ∈ RH×W×C

obtained by downsampling from the encoder, and the first-level style encoding V1 ∈ RS×S×1 from
the target domain, matched with the current style fusion module. We utilize the domain label L
multiplied by the first style dictionary to select the target style encoding V1. First, the content feature
X1 passes through a convolutional layer to obtain the content feature X̂1, and the target style encoding
V1 undergoes two consecutive 1 × 1 convolutions for channel transformation to obtain the style
feature V̂1 ∈ RH×W×C .

After obtaining the content feature X̂1 and style feature V̂1, we propose a novel style fusion normal-
ization method, Point-wise Instance Normalization (PIN), to effectively combine the two for more
subtle and accurate pixel-level style transfer. The PIN can be defined as:

PIN(X̂l, V̂l) = γchw(V̂l) ·Norm(X̂l) + βchw(V̂l), (1)

γchw(V̂l), βchw(V̂l) = Chunk(h(2c)hw), (2)

h(2c)hw = ConvBlock(V̂l), (3)

where Norm(·) denotes the Instance Normalization of the content feature X̂l ∈ RH×W×C at layer
l. The parameters γchw and βchw are scaling and shifting parameters specific to the target domain.
These parameters are derived by applying ConvBlock and Chunk operations to the style feature
V̂l ∈ RH×W×C and are adjusted to match the spatial dimensions of the content feature X̂l, thus
enabling independent style transfer at each pixel. By rescaling the feature map using these parameters,
style information specific to the target domain is integrated into the feature map for style transfer. PIN
provides unique style statistics for each spatial point of the content feature, allowing for customized
style fusion based on different regions and features of the image content. This facilitates finer local
style variations and richer style details, making it particularly suitable for applications requiring
precise style adjustments, such as medical image segmentation.

In the final stage of style transfer, the decoder takes the stylized content feature Xn ∈ RH′×W ′×C′

from the previous layer and the last-level style encoding Vn ∈ RS×S×1 as input. To spatially match
the content feature Xn, the style encoding Vn first undergoes upsampling through a deconvolutional
layer for scale transformation, followed by two consecutive 1 × 1 convolutions for channel trans-
formation, resulting in the style feature V̂n ∈ RH′×W ′×C′

. The other style fusion operations are
similar to those in the first stage. There are two considerations for performing style transfer during the
decoding phase. Firstly, the decoding phase is the process of image reconstruction, where integrating
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Figure 2: Architecture of the Multi-Scale Discriminator, composed of multiple residual blocks.

style features can effectively incorporate high-level style information from the target domain into the
image. This helps to better express the target style while preserving content information, especially
in terms of details and textures. Secondly, as the decoder is responsible for upsampling, it has the
opportunity to refine and restore image details while enlarging the feature maps. Introducing style
transfer at this stage ensures that these details not only conform to the content structure but also
match the characteristics of the target style, thus achieving effective fusion of content and style at
different scales.

3.4 Generator and Discriminator Architecture

Generator As previously mentioned, the generated pseudo-target domain images will be used
in conjunction with the corresponding segmentation annotations from the source domain to train
the subsequent segmentation networks. Therefore, it is crucial to maintain structural consistency
during the image translation process for the success of downstream applications. The generator
in StarGAN v2, due to its multiple downsampling steps, unfortunately leads to a loss of spatial
information, which poses challenges in maintaining structural consistency during image translation.
In light of CycleGAN’s outstanding performance in one-to-one medical image translation, we adopt
the approach of OMUDA by integrating the generator architecture of CycleGAN into our encoder and
decoder. To facilitate a single generator to handle one-to-multiple transfer tasks, we replace the IN
layers in the decoder with PIN layers. The complete generator comprises an encoder, a decoder, and a
series of cascaded style fusion modules. Among them, the encoder, equipped with two downsampling
layers and multiple IN layers, is tasked with extracting domain-invariant features from the input
image of the source domain. The cascaded style fusion modules are responsible for integrating the
style features of the target domain with the domain-invariant features of the source domain. The
decoder is composed of two upsampling layers embedded with PIN and is responsible for style
transfer and image reconstruction during the decoding phase.

Discriminator Inspired by Wang et al.’s work [56], we enhance the original discriminator archi-
tecture of StarGAN v2 with a multi-scale mechanism. As depicted in Fig. 2, the discriminator is
composed of multiple independent discrimination branches, each containing four residual blocks [57],
with each residual block having N output branches serving N specific target domains. The input to
the discriminator includes not only the original image but also images processed through different
scales of downsampling. The multi-branch output of the discriminator first multiplies with the target
domain label L to select the discrimination output for the corresponding domain before proceeding
to authenticity determination. By evaluating the generated images at various scales, the multi-scale
discriminator can more comprehensively judge the realism of the images, thereby encouraging the
generator to produce images with higher quality. More detailed information on the generator and
discriminator architectures can be found in Appendix B.1.

3.5 Loss Function

For convenience, we give the following symbol definition. xs ∈ X denotes a source domain image,
with its corresponding source domain label ls ∈ L. lt ∈ L represents any target domain label. G
and D stand for the generator and discriminator, respectively. The loss functions in the generator
include adversarial loss Ladv , cycle consistency loss Lcyc, and identity loss Lidt [58]. The loss in the
discriminator includes adversarial loss Ladv . Among them, the adversarial loss is defined as

Ladv = Exs,lt [log(1−D(G(xs, lt), lt))] + Exs
[logD(xs, ls)] , (4)
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which encourages the generator to generate images that are indistinguishable from the target domain
images by the discriminator. The cycle consistency loss is computed as

Lcyc = Exs,ls,lt [∥G(G(xs, lt), ls)− xs∥] , (5)

which ensures that an image translated from the source domain to the target domain can be translated
back to the original image, thus preserving the structural consistency of the image throughout the
translation process. The identity loss can be defined as

Lidt = Exs,ls [∥(G(xs, ls)− xs∥] , (6)

which is used to preserve the content of the source domain images when the generator is applied to
them. The complete training loss can be summarized as follows:

min
G

max
D

Ladv + λcycLcyc + λidtLidt, (7)

where λcyc and λidt denote the weights for the corresponding loss terms and they are set to 10 and 1
in our experiments, respectively.

4 Experiments

4.1 Dataset

In this study, we utilize two datasets for the performance evaluation of the method. The first one is a
private dataset named MSKT, which comprises 104 cases, each including four sequences: T1c, FS
T2W, T2W, and DWI. The second is the publicly available KiTS19 [59] dataset. We conduct our
first set of comparative experiments using the MSKT dataset. Specifically, the annotated T1c data is
served as the source domain, while the unannotated FS T2W, T2W, and DWI data are considered
as the target domain. For our second set of comparative experiments, we combine KiTS19 with the
MSKT dataset. In this case, all training data from KiTS19 are used as the source domain, and all
four sequences of the MSKT are considered as the target domain. We ensure that there is no overlap
between the source domain, target domain, and test set to prevent any potential information leakage.
More details about the dataset and evaluation metrics are provided in Appendix A.

4.2 Comparative Study

To comprehensively evaluate the performance of the proposed method, we compare PSTUDA with
five other state-of-the-art UDA methods on the MSKT and KiTS19 datasets: CycleGAN [34],
MUNIT [41], SIFA [35], DEPL [39], and StarGAN v2 [22]. Except for SIFA and DEPL, the others
are limited to cross-domain image transfer. Therefore, we train a dedicated U-Net [60] from scratch
based on the pseudo-target domain images generated by these methods for multiple sequences. For a
fair comparison, all hyperparameters in the U-Net remain consistent. Due to the one-to-one image
transfer characteristics of SIFA, DEPL, CycleGAN, and MUNIT, we train a separate model for each
sequence using these methods to handle multi-sequence MR image transformations.

Due to the unpaired nature of multi-sequence MR images, it is challenging to quantitatively assess
the style effects and structural consistency of the generated images. Experience suggests that if
anatomical structures are distorted during the image transfer process, the pseudo-target domain
images generated will not correspond with the annotations of the source domain, thereby impairing
segmentation performance. Moreover, if there is a significant difference between the style of the
generated images and the real target domain images, this discrepancy in data distribution may also
detrimentally affect the segmentation results. Hence, the quality of the generated images is indirectly
indicated by the segmentation results.

Results on MSKT Table 1 presents the Dice Similarity Coefficient (DSC) and 95% Hausdorff
Distance (HD95) results for all methods across different MR sequences. The average DSC indicate
that our PSTUDA outperforms other methods in segmentation performance on all MRI sequences.
We also observe that PSTUDA significantly surpasses MUNIT, SIFA, DEPL, and StarGAN v2 from
both DSC and HD95. Although SIFA and DEPL are more efficient end-to-end domain adaptation
segmentation methods, they do not perform well in our task. The images generated by these methods
exhibit structural distortions and lack naturalness (4th and 5th columns in Fig. 3). Particularly, DEPL
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Figure 3: Qualitative results for T1c → FS T2W, T2W, and DWI on the MSKT dataset. Blue and
red bounding boxes indicate the annotated boundaries of the kidney and tumor, respectively (Same
below).

shows severe structural distortion of kidneys and tumors in the T2W sequence, which has greater
inter-domain differences. MUNIT and StarGAN v2, while excelling in the diversity of generated
images, fall short in maintaining cross-domain structural consistency, leading to distorted structures
in the generated images (3rd and 6th columns in Fig. 3). The performance of CycleGAN is close
to that of PSTUDA on FS T2W and DWI sequences, but it underperforms on the T2W sequence,
as the translated images lose many important structural details, resulting in poor image alignment.
In contrast, our PSTUDA prioritizes structural consistency in the cross-domain image translation
process by separating content from style and progressively recombining content and style features in
a point-wise manner. This approach produces images with higher fidelity, as demonstrated in the last
column of Fig. 3, thereby significantly enhancing segmentation performance.

Table 1: Quantitative segmentation results of different comparative methods on the MSKT dataset.

Metrics Methods
T1c→FS T2W T1c→T2W T1c→DWI

Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.

DSC (%)

Supervised training 90.14 88.73 89.44 87.53 80.68 84.11 90.20 84.76 87.48
W/o adaptation 60.66 49.69 55.18 0.71 28.29 14.50 54.44 35.30 44.87
† CycleGAN [34] 86.50 74.00 80.25 71.97 51.94 61.96 87.60 71.88 79.74
† MUNIT [41] 80.96 53.00 66.98 75.78 48.34 62.06 78.29 51.87 65.08
† SIFA [35] 78.31 50.58 64.45 65.54 37.10 51.32 72.94 43.28 58.11
∗ DEPL [39] 85.22 68.20 76.71 23.44 23.16 23.30 83.63 64.26 73.95
† StarGAN v2 [22] 73.58 41.77 57.68 42.87 28.68 35.78 75.26 41.29 58.28
PSTUDA(Ours) 86.30 76.36 81.33 77.26 53.77 65.52 86.99 74.23 80.61

HD95 (mm)

Supervised training 2.47 1.78 2.13 3.49 8.25 5.87 2.04 3.36 2.70
W/o adaptation 11.94 43.03 27.48 40.14 69.39 54.77 11.38 33.60 22.49
† CycleGAN [34] 4.92 31.54 18.23 5.37 6.34 5.86 4.57 24.62 14.60
† MUNIT [41] 6.08 31.95 19.01 7.36 25.58 16.47 6.43 39.09 22.76
† SIFA [35] 6.12 53.60 29.86 10.48 57.18 33.83 14.25 54.22 34.24
∗ DEPL [39] 6.75 36.87 21.81 17.65 70.65 44.15 11.14 25.43 18.28
† StarGAN v2 [22] 5.39 33.20 19.29 15.43 68.98 42.20 13.70 26.84 20.27
PSTUDA(Ours) 4.66 25.85 15.25 6.81 21.37 14.09 2.96 34.65 18.80

† implies that we report the results of our own runs according to the official code.
∗ implies that the method is based on our implementation.

Results on KiTS19 and MSKT This experiment utilizes CT images from KiTS19 as the source
domain and four MRI sequences from MSKT as the target domain. Given the different imaging
technologies employed by CT and MRI, the domain difference between them is significantly greater
than that between the various MRI sequences. As shown in Table 2, most comparative methods
show a reduction in kidney and tumor segmentation performance on FS T2W, T2W, and DWI when
compared to the first set of experiments. Although the average DSC of CycleGAN on the DWI is
higher than that of PSTUDA (by about 1.9%), its performance is lower than that of PSTUDA by
approximately 7.5% and 9.1% on FS T2W and T2W, respectively. Our PSTUDA almost achieves the
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best average DSC results on all sequences. Compared to the first set of experiments, the performance
of CycleGAN has decreased by about 6.8% and 4.4% on FS T2W and T2W, respectively, while the
performance of the proposed PSTUDA has decreased by 0.5% and increased by 1.2% on these two
sequences. These results underscore PSTUDA’s exceptional robustness in tasks with larger domain
differences. As shown in Fig. 4 in Appendix C, our PSTUDA outperforms other comparative methods
in maintaining structural consistency in translated images. Moreover, thanks to the one-to-multiple
features, our method also shows a significant advantage in training efficiency, which will be detailed
in the subsequent section. In summary, the highlight of PSTUDA lies in its dual improvement of
segmentation performance and training efficiency.

Table 2: Quantitative segmentation results of different comparative methods on the KiTS19 and
MSKT datasets.

Metrics Methods
CT→T1c CT→FS T2W CT→T2W CT→DWI

Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.

DSC (%)

Supervised training 90.74 85.69 88.22 90.14 88.73 89.44 87.53 80.68 84.11 90.20 84.76 87.48
W/o adaptation 71.20 13.27 42.24 43.75 6.27 25.01 9.13 22.31 15.72 49.25 4.13 26.69
† CycleGAN [34] 85.96 70.63 78.30 79.08 67.64 73.36 69.68 45.52 57.60 87.45 81.35 84.40
† MUNIT [41] 76.71 67.21 71.96 72.36 66.70 69.53 72.55 47.52 60.04 75.37 55.32 65.35
† SIFA [35] 76.34 48.12 62.23 71.69 56.56 64.13 49.39 23.25 36.32 72.31 31.41 51.86
∗ DEPL [39] 82.57 73.08 77.83 81.31 71.87 76.59 37.95 28.77 33.36 82.70 71.51 77.11
† StarGAN v2 [22] 53.43 24.82 39.13 62.96 21.53 42.25 47.51 13.13 30.32 69.36 10.89 40.13
PSTUDA(Ours) 84.85 73.44 79.15 83.99 77.70 80.85 76.56 56.85 66.71 85.91 79.17 82.54

HD95 (mm)

Supervised training 5.98 24.24 15.11 2.47 1.78 2.13 3.49 8.25 5.87 2.04 3.36 2.70
W/o adaptation 11.51 56.79 34.15 20.75 64.69 42.72 45.22 100 72.61 17.23 73.67 45.45
† CycleGAN [34] 6.57 32.86 19.72 5.22 4.12 4.67 6.33 29.38 17.85 5.48 2.78 4.13
† MUNIT [41] 7.66 53.06 30.36 4.96 16.94 10.95 6.40 32.34 19.37 4.43 19.12 11.78
† SIFA [35] 23.06 77.79 50.42 6.15 28.08 17.12 11.08 87.59 49.33 10.16 59.71 34.93
∗ DEPL [39] 16.91 50.66 33.78 5.44 36.37 20.90 14.91 70.16 42.54 6.04 23.34 14.69
† StarGAN v2 [22] 15.95 65.61 40.78 7.15 50.28 28.71 19.07 78.08 48.57 24.07 61.15 42.61
PSTUDA(Ours) 6.90 18.97 12.94 3.99 26.17 15.08 7.54 20.08 13.81 5.05 27.64 16.35

Training efficiency In this section, we evaluate the performance of PSTUDA in comparison with
CycleGAN, MUNIT, and StarGAN v2 in terms of model parameters and FLOPs. As shown in
Table 9 in Appendix D, the FLOPs for CycleGAN and MUNIT represent the cumulative results of
the image translation tasks for the three domains, i.e., T1c→FS T2W, T1c→T2W, and T1c→DWI.
For the transfer of T1c to the other three MR sequences using CycleGAN, MUNIT, and StarGAN
v2, the parameters that need to be optimized are 2, 3.3, and 1.9 times that of PSTUDA, respectively.
Regarding FLOPs, PSTUDA demonstrates a reduction of 72% and 79% compared to CycleGAN
and MUNIT, respectively, but shows a 17% increase compared to StarGAN v2. The increased
computational demand is mainly due to the PIN module in PSTUDA, which requires per-pixel fusion
of style and content features. It is worth noting that the training efficiency of PSTUDA becomes
more advantageous when more target domains are included in a one-to-multiple domain adaptation
task. Overall, PSTUDA substantially decreases both model parameters and FLOPs while maintaining
high segmentation accuracy, implying lower memory requirements and faster inference speed. In
summary, these results highlight the significant advantages of PSTUDA in enhancing the efficiency
and feasibility of clinical applications.

4.3 Ablation Study

Effectiveness of PST and MS_D To investigate the effectiveness of the proposed Progressive
Style Transfer (PST) paradigm, we conduct ablation studies on it with the Multi-Scale Discriminator
(MS_D) on the MSKT dataset. As shown in Table 3 , the introduction of PST significantly improves
the DSC and HD95 metrics compared to the Baseline. This reflects the ability of the PST to enhance
the realism of translated images while maintaining structural consistency. Furthermore, the multi-
scale discriminator assesses the pseudo-target domain images at different scales, thereby further
enhancing the capabilities of the generator.

Effectiveness of M_SD and PIN We also conduct ablation studies on the internal sub-modules
within PST, namely the Multi-level Style Dictionary (M_SD) and the Point-wise Instance Normal-
ization (PIN). As illustrated in Table 4 , replacing the Mapping Network and Style Encoder in the
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Baseline with the M_SD results in a significant performance improvement. This can be attributed
to the stability and representativeness of the learned style encodings. Moreover, the integration of
the M_SD with PIN fully considers the details and local style variations of images, thereby yielding
exceptional results.

Table 3: Ablation study of Progressive Style Transfer paradigm (PST) and Multi-Scale Discriminator
(MS_D) on the MSKT dataset. The Baseline model is StarGAN v2.

Modules
Metrics

T1c→FS T2W T1c→T2W T1c→DWI
PST MS_D Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.

DSC (%)
74.96 58.46 66.71 58.48 17.05 37.77 69.29 41.41 55.35

✓ 84.94 77.74 81.34 70.16 52.80 61.48 85.09 72.06 78.58
✓ ✓ 86.30 76.36 81.33 77.26 53.77 65.52 86.99 74.23 80.61

HD95 (mm)
5.33 59.68 32.50 11.44 93.41 52.42 14.55 68.95 41.75

✓ 5.70 33.03 19.36 8.45 52.71 30.58 4.22 10.04 7.13
✓ ✓ 4.66 25.85 15.25 6.81 21.37 14.09 2.96 34.65 18.80

Table 4: Ablation study of Multi-level Style Dictionary (M_SD) and Point-wise Instance Normaliza-
tion (PIN) in PST on the MSKT Dataset. The Baseline model is StarGAN v2.

Modules
Metrics

T1c→FS T2W T1c→T2W T1c→DWI
M_SD PIN Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.

DSC (%)
74.96 58.46 66.71 58.48 17.05 37.77 69.29 41.41 55.35

✓ 83.75 71.48 77.62 65.82 30.45 48.14 77.38 54.99 66.19
✓ ✓ 84.94 77.74 81.34 70.16 52.80 61.48 85.09 72.06 78.58

HD95 (mm)
5.33 59.68 32.50 11.44 93.41 52.42 14.55 68.95 41.75

✓ 4.89 40.75 22.82 8.94 53.27 31.11 4.50 59.67 32.08
✓ ✓ 5.70 33.03 19.36 8.45 52.71 30.58 4.22 10.04 7.13

Ablation of PIN and other normalization methods We compare PIN with AdaIN [52] and
BIN [53], and as shown in Table 5, PIN outperforms the others. We attribute this superior performance
to PIN’s ability to account for local style differences, which is particularly advantageous for fine-
grained segmentation tasks (e.g., kidney tumors, as abnormal pathological tissues, exhibit significant
style differences). This capability enables PSTUDA to generate synthetic images that align more
closely with the data distribution of the target domain.

Table 5: Ablation study of PIN with AdaIN and BIN on the MSKT dataset.

Normalization Metrics
T1c→FS T2W T1c→T2W T1c→DWI

Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.
AdaIN

DSC (%)
85.05 62.11 73.58 75.40 43.32 59.36 83.69 64.44 74.07

BIN 82.32 67.91 75.12 74.14 49.02 61.58 85.85 65.07 75.46
PIN 86.30 76.36 81.33 77.26 53.77 65.52 86.99 74.23 80.61

AdaIN
HD95 (mm)

5.46 24.30 14.88 6.15 33.44 19.79 5.22 44.20 24.71
BIN 9.71 53.73 31.72 7.05 36.79 21.92 5.36 61.74 33.55
PIN 4.66 25.85 15.26 6.81 21.37 14.09 2.96 34.65 18.81

5 Conclusion

In this work, we propose a novel and efficient One-to-Multiple PSTUDA framework that utilizes a
multi-level style dictionary to decouple and store style information. By employing multiple cascaded
style fusion modules, our framework progressively recombines content and style features, thereby
achieving superior cross-modal alignment and consistency of medical tissue structures. Experimental
validation on both a private dataset and a public dataset demonstrates the significant advantages of our
method in improving training efficiency for one-to-multiple domain adaptation tasks and enhancing
the accuracy of multi-sequence kidney tumor segmentation.
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Appendix

In the appendix of this paper, Section A provides a detailed introduction to the experimental datasets
and evaluation metrics. Subsequently, Section B offers the specific implementation details of the ex-
periments. Section C presents a visual comparison of the experimental results from different methods
on the KiTS19 and MSKT datasets. Section D shows a comparison of training efficiency among
different methods. Sections E and F present two sets of supplementary comparative experiments
and two sets of supplementary ablation experiments, respectively. Finally, Section G discusses the
potential limitations and the broad impacts of our method.

A Details of the Experimental Datasets and Evaluation Metrics

MSKT The MSKT dataset contains 104 cases of multi-sequence kidney and kidney tumor MRI
data. Each case includes four MRI sequences: T1c, FS T2W, T2W, and DWI. The data are stored
in NRRD format and scanned in axial view. The MR images have a resolution of 512 × 512 × N,
where N represents the number of slices, ranging from 11 to 96. The slice thickness varies from 2 to
6 millimeters. Annotations were created by experienced clinicians, with normal kidney tissue regions
labeled as 1, kidney tumor regions as 2, and other areas labeled as 0, considered as the background.
In the first set of comparative experiments (Section 4.2), we randomly divide all cases into source
domain training sets, target domain training sets, and target domain test sets in a 4.5:4.5:1 ratio. The
annotated T1c data, comprising 46 cases, serve as the source domain, while the unannotated FS T2W,
T2W, and DWI data, each comprising 46 cases, constitute the target domain. The remaining 12 cases
are used as the test set. This division ensures that there is no intersection between the source domain,
target domain, and test set to prevent information leakage. The number of samples and slices included
in each sequence is detailed in Table 6.

To protect patient privacy, all data were anonymized during collection and processing, removing any
information that could identify the patients. The use of this dataset has been reviewed and approved
by the Institutional Review Board (IRB) to ensure that the research complies with ethical standards
and safeguards participant rights. We strictly adhere to relevant laws and regulations regarding data
use and protection to ensure the legal and compliant use of the data.

KiTS19 The KiTS19 dataset, established for the 2019 kidney and kidney tumor segmentation
challenge, comprises multi-phase CT scans along with corresponding segmentation annotations for
300 patients. A total of 210 cases are designated for model training, and the remaining 90 are used
to evaluate model performance. The CT images have a resolution of 512 × 512 × N, where N
ranges from 29 to 1,059 slices. For our second set of comparative experiments (Section 4.2), we
combine the KiTS19 dataset with the MSKT dataset. Specifically, as the KiTS19 challenge initially
provides only the training set, we use all cases from this set as our source domain training set, which
includes 45,424 CT slices, with 16,336 slices containing targets. All four sequences of the MSKT are
considered as the target domain, and we merge the 92 cases identified as source and target domains in
Table 6 to form the target domain training set, while the test set remains unchanged. Please note that
in all of our experiments, the slices used for training all contain the kidney or tumor targets, while the
slices used for testing are all the slices in each case.

Evaluation metrics Following [21], the Dice Similarity Coefficient (DSC) and the 95% Hausdorff
Distance (HD95) are utilized for quantitative comparisons. It is important to note that if the predicted
results and the true annotations do not contain the same categories, directly calculating HD95 may
lead to errors. To address this issue, we set the HD95 value to 100 in cases of potential calculation
errors, indicating no overlap between the predicted results and the true annotations.

B Implementation Details

All experiments are conducted on an NVIDIA A800 GPU utilizing the PyTorch framework. CT
and MR data are uniformly processed to a resolution of 256×256. In the one-to-multiple domain
adaptation stage, the number of domains is set to 4 and 5 for the two sets of experiments, respectively
(including source and target domains). The length of the multi-level style dictionary is set to 4,096.
The number of style fusion modules in the generator is 4. The weights of adversarial loss, cycle
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Table 6: Data partitioning for each sequence in the MSKT dataset.

Sequence
Source Target Test

cases slices slices with target cases slices slices with target cases slices slices with target
T1c 46 3444 2196 - - - - - -
FS T2W - - - 46 1110 802 12 288 219
T2W - - - 46 1097 754 12 288 204
DWI - - - 46 1102 783 12 288 213

consistency loss, and identity loss are set to 1, 10, and 1, respectively. Network optimization
employs the Adam optimizer [61] with an initial learning rate of 1e-4, and the batch size is 8. Other
hyperparameters follow the configuration in StarGAN v2. In the segmentation stage, U-Net is chosen
as the network architecture, paired with the Adam optimizer starting with a learning rate of 1e-4. The
batch size is set to 16, with a total training duration of 50 epochs. In the above setup, it takes about
18 hours for our method to fully execute once.

B.1 Network Architecture

Generator As shown in Table 7, the generator within PSTUDA comprises an encoder, four style
fusion modules, and a decoder. The encoder includes three sets of convolutional blocks and four
Resnet blocks, while the decoder is composed of two upsampling layers with transposed convolution
operations and one convolutional block. Instance Normalization is applied during the encoding phase,
and Point-wise Instance Normalization is utilized within the style fusion modules and the decoder.

Table 7: Architecture of the generator.
Layer Stride Padding Norm Repeat Output shape
Input x - - - - 256×256×1
Encoder: Conv7×7 1 0 IN 1 256×256×64
Encoder: Conv3×3 2 1 IN 1 128×128×128
Encoder: Conv3×3 2 1 IN 1 64×64×256
Encoder: Resnet Block 1 0 IN 4 64×64×256
Style Fusion Module 1 0 PIN 4 64×64×256
Decoder: upsample 2 1 PIN 1 128×128×128
Decoder: upsample 2 1 PIN 1 256×256×64
Decoder: Conv7×7 1 0 - 1 256×256×1

Discriminator As shown in Fig. 2 in Section 3.4, we utilize four independent and identical
discrimination branches in the multi-scale discriminator. The detailed architecture of the first
discrimination branch, which takes the original size image as input, is presented in Table 8.

Table 8: Architecture of the discriminator.
Layer Stride Padding Repeat Output shape
Input x - - - 256×256×1
Conv3×3 1 1 1 256×256×64
ResBlk 1 1 1 128×128×128
ResBlk 1 1 1 64×64×256
ResBlk 1 1 1 32×32×512
ResBlk 1 1 1 16×16×512
Conv1×1 1 0 1 16×16×512
Conv1×1 1 0 1 16×16×4
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B.2 Implementation of Comparative Methods

CycleGAN This method is derived from the GitHub repository: https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix. In our experiments, ResNet_9block and PatchGAN with 3 convolutional
layers are selected as the generator and discriminator for CycleGAN, respectively. The weights for
adversarial loss (MSE), cycle consistency loss (L1), and domain-invariant perceptual loss (L1) are set
to 1, 10, and 5, respectively. Other hyperparameters are consistent with the open-source code. During
the segmentation phase, all hyperparameters for U-Net are the same as those in our PSTUDA.

MUNIT This method is from the GitHub repository: https://github.com/NVlabs/MUNIT. The
architecture of the MUNIT network remains the same as the open-source code. The weights for
adversarial loss (MSE), image reconstruction loss (L1), style reconstruction loss (L1), and content
reconstruction loss (L1) are set to 1, 10, 1, and 1, respectively. In the segmentation stage, all U-Net
hyperparameters are identical to those in our PSTUDA.

SIFA This method is available from the GitHub repository: https://github.com/JianghaoWu/SIFA-
pytorch. The official version of this method is implemented in TensorFlow, available at
https://github.com/cchen-cc/SIFA. In OMUDA, they have re-implemented SIFA in PyTorch, and
we have used the PyTorch version of SIFA to ensure all methods use the same framework for a fair
comparison. All settings, hyperparameters, and losses used in our experiments are the same as those
in the open-source code.

DEPL This method is based on our own implementation.

StarGAN v2 This method is from the GitHub repository: https://github.com/clovaai/stargan-v2.
In our experiments, the network architecture is consistent with the official code. The weights for
R1 regression loss, adversarial loss (CE), cycle consistency loss (L1), style reconstruction loss (L1),
and diversity-sensitive loss (L1) are all set to 1. High-pass filtering is not used in this comparative
experiment. During the segmentation phase, all U-Net hyperparameters are the same as those in
PSTUDA.

C Visualization of the KiTS19 and MSKT Experiments

In this section, we present the visualized results of the second set of comparative experiments
conducted on the KiT19 and MSKT datasets, and these visualizations are discussed in Section 4.2.

Figure 4: Qualitative results for CT → T1c, FS T2W, T2W, and DWI on the KiTS19 and MSKT
datasets.
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D Training Efficiency

This section displays the comparative outcomes in terms of model parameters and FLOPs among
different cross-domain image translation methods. As illustrated in Table 9, we compare PSTUDA
with CycleGAN, MUNIT, and StarGAN v2, because these methods do not involve a segmentation
stage. It is worth note that the style dictionary itself does not contribute to the computation of FLOPs.
All models are trained using FP32 precision. The detailed analysis of these comparative results is
provided in Section 4.2.

Table 9: Model parameters and FLOPs of different methods.
Methods Components Parameters FLOPs

CycleGAN

GA 11.37M × 3 112.08G × 3
GB 11.37M × 3 112.08G × 3
DA 2.76M × 3 6.24G × 3
DB 2.76M × 3 6.24G × 3

Total 28.26M × 3 236.64G × 3

MUNIT

GA 15.01M × 3 152.18G × 3
GB 15.01M × 3 152.18G × 3
DA 8.27M × 3 4.28G × 3
DB 8.27M × 3 4.28G × 3

Total 46.56M × 3 312.92G × 3

StarGAN v2

G 33.89M 97.30G
NM 4.08M 0.01G
ES 20.98M 32.98G
D 20.85M 32.98G

Total 79.80M 163.27G

PSTUDA

G 12.17M 154.84G
D 29.92M 41.46G
DS 0.1M -

Total 42.19M 196.30G

G: Generator, D: Discriminator, NM: Mapping Network, ES: Style Encoder, DS:
Style Dictionary.

E Supplementary Comparative Experiments

To further validate the generalization capability of PSTUDA, we conduct bidirectional cross-modal
validation experiments on a publicly available abdominal multi-organ dataset [62] and perform reverse
validation experiments from MR to CT on the MSKT and KiTS19 datasets. The results, as shown in
Tables 10 and 11, indicate that our method significantly outperforms StarGAN v2 (baseline) in both
experimental groups.

F Supplementary Ablation Experiments

The multi-level style dictionary and style fusion module are the core components of PSTUDA, and
these two modules include the following hyperparameters: the depth of the style dictionary, the
number of levels in the style dictionary, and the number of style fusion modules. It is important to
note that the number of levels in the style dictionary is equal to the number of style fusion modules.
To investigate the sensitivity of model performance to various hyperparameters, we conduct extensive
ablation studies on the depth of the multi-level style dictionary (M_SD) and the number of style
fusion modules (SFM). As presented in Tables 12 and 13, under the original settings (dictionary
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Table 10: Quantitative segmentation results for bidirectional cross-modal experiments on the abdomi-
nal multi-organ dataset.

Metrics Methods
CT→MR MR→CT

Liver R. kidney L. kidney Spleen Avg. Liver R. kidney L. kidney Spleen Avg.

DSC (%)

Supervised training 94.39 90.86 73.38 78.00 84.16 87.45 69.33 77.76 75.61 77.54
W/o adaptation 23.44 1.99 12.77 20.28 14.62 37.33 0.00 0.26 1.29 9.72

StarGAN v2 75.04 68.16 62.83 68.13 68.54 44.32 28.05 26.51 24.85 30.93
PSTUDA 88.15 74.20 70.51 71.99 76.21 53.54 53.42 60.28 38.48 51.43

HD95 (mm)

Supervised training 2.04 51.59 5.86 84.09 35.89 14.72 15.68 38.17 54.15 30.68
W/o adaptation 37.91 75.82 62.57 75.80 63.03 33.22 80.59 49.00 65.36 57.04

StarGAN v2 45.12 57.08 61.45 115.49 69.78 33.70 71.15 75.29 100.16 70.08
PSTUDA 21.49 48.35 70.11 46.24 46.55 43.02 46.12 12.13 54.15 38.85

Table 11: Quantitative segmentation results from MR to CT on the MSKT and KiTS19 datasets.

Metrics Methods
MR(T1c)→CT MR(FS T2W)→CT

Kidney Tumor Avg. Kidney Tumor Avg.

DSC (%)

Supervised training 91.98 66.61 79.30 91.98 66.61 79.30
W/o adaptation 41.87 16.26 29.07 8.07 11.36 9.72

StarGAN v2 34.44 24.02 29.23 46.17 22.96 34.57
PSTUDA 73.13 56.23 64.68 78.13 50.85 64.49

HD95 (mm)

Supervised training 33.66 45.89 39.78 33.66 45.89 39.78
W/o adaptation 64.91 100.61 82.76 57.90 102.54 80.22

StarGAN v2 69.72 96.61 83.17 57.99 92.36 75.17
PSTUDA 56.95 93.65 75.30 40.82 50.25 45.54

Table 12: Ablation study on the depth of the Multi-level Style Dictionary (M_SD) on the MSKT
dataset.

M_SD Depth Metrics
T1c→FS T2W T1c→T2W T1c→DWI

Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.
256

DSC (%)

84.85 66.34 75.60 70.55 43.85 57.20 83.15 63.52 73.34
1024 85.84 69.68 77.76 70.06 42.76 56.41 83.99 64.41 74.20
4096 86.30 76.36 81.33 77.26 53.77 65.52 86.99 74.23 80.61
16384 84.63 66.74 75.69 77.63 57.49 67.56 83.31 68.78 76.05

Table 13: Ablation study on the number of Style Fusion Modules (SFM) on the MSKT dataset.

SFM Number Metrics
T1c→FS T2W T1c→T2W T1c→DWI

Kidney Tumor Avg. Kidney Tumor Avg. Kidney Tumor Avg.
2

DSC (%)

85.65 71.77 78.71 73.94 44.51 59.23 83.89 61.31 72.60
4 86.30 76.36 81.33 77.26 53.77 65.52 86.99 74.23 80.61
6 84.49 67.94 76.22 74.97 50.57 62.77 81.20 60.44 70.82
8 84.09 63.86 73.98 60.06 30.43 45.25 83.75 60.60 72.18

depth of 4,096 and module number of 4), PSTUDA performs optimally in most experiments. Notably,
the segmentation performance on the T2W sequence improves when the dictionary depth is increased
to 16,384.

G Limitations and Broader Impacts

Limitations Our work presents a domain adaptation method for multi-target domain image transla-
tion. However, the field of one-to-multiple domain adaptation is not extensively explored, and our
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study may have some limitations that should be acknowledged. Firstly, the tasks we focus on are
confined to domain adaptation of multi-sequence MR images and the segmentation of kidneys and
tumors as presented in this work. In future research, we aim to broaden our scope to include domain
adaptation for other medical and natural images, as well as other downstream tasks such as object
detection. Secondly, compared to the ideal one-to-multiple model, our current model inherently
operates within a broader multi-domain to multi-domain adaptation framework. Therefore, in our
future studies, we aspire to design a more specialized one-to-multiple model, which is expected to
further improve model performance and reduce model complexity.

Broader impacts In fact, the impact of one-to-multiple domain adaptation technology is profound,
especially when facing numerous target domains and limited annotated data. Our PSTUDA framework
can efficiently extend an annotated source domain to adapt to multiple unannotated new domains,
significantly reducing the time and resource investment required for multi-domain transfer tasks.
This capability is crucial in complex medical data environments, as it not only greatly alleviates
the workload of medical professionals but also holds promise for improving the diagnosis and
treatment processes for patients. Overall, our research enhances the flexibility and efficiency of
domain adaptation technology, which advances the field of machine learning and brings innovative
solutions to critical industries such as healthcare.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims stated in the abstract and introduction accurately reflect the
contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We introduce our method in detail in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We open-source the code and a portion of the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information about the experimental setup in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because they are too computationally expensive for
one-to-one domain adaptive methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the compute resources needed for the
experiments in Appendices B and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential broader impacts of our work in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the relevant assets used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We used our private dataset in our work, which has good documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide an explanation about this issue in Appendix A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our private dataset has been reviewed and approved by the IRB, and we
provide an explanation about this issue in Appendix A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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