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Abstract

Large Language Models (LLMs) struggle with reliably generating highly structured
outputs, such as program code, mathematical formulas, or well-formed markup.
Constrained decoding approaches mitigate this problem by greedily restricting
what tokens an LLM can output at each step to guarantee that the output matches
a given constraint. Specifically, in grammar-constrained decoding (GCD), the
LLM’s output must follow a given grammar. In this paper we demonstrate that
GCD techniques (and in general constrained decoding techniques) can distort the
LLM’s distribution, leading to outputs that are grammatical but appear with likeli-
hoods that are not proportional to the ones given by the LLM, and so ultimately are
low-quality. We call the problem of aligning sampling with a grammar constraint,
grammar-aligned decoding (GAD), and propose adaptive sampling with approx-
imate expected futures (ASAp), a decoding algorithm that guarantees the output
to be grammatical while provably producing outputs that match the conditional
probability of the LLM’s distribution conditioned on the given grammar constraint.
Our algorithm uses prior sample outputs to soundly overapproximate the future
grammaticality of different output prefixes. Our evaluation on code generation
and structured NLP tasks shows how ASAp often produces outputs with higher
likelihood (according to the LLM’s distribution) than existing GCD techniques,
while still enforcing the desired grammatical constraints. 2

1 Introduction

Despite their remarkable success, pre-trained Large Language Models (LLMs) often struggle with
generating highly structured outputs, such as program code, configuration files, or mathematical
formulas. A naïve approach to enforcing structure is rejection sampling, which repeatedly samples
strings from the LLM and checks them against a validity oracle, typically in the form of a context-
free grammar (CFG). Rejection sampling is highly inefficient or simply intractable for restrictive
grammars and long output sequences—i.e., most generated strings will not be in the target grammar.

Constrained decoding addresses the inefficiency of rejection sampling by greedily “forcing” the
LLM output to satisfy the given constraint. Specifically, when the constraint is given as a grammar,
grammar-constrained decoding (GCD) [7, 27, 28], can build automata that allow for on-the-fly
masking of tokens that will provably lead to outputs outside of the grammar during decoding.

While GCD does not incur the overhead of rejection sampling—i.e., the generated output is always in
the language of the grammar—we show that GCD and in general all forms of structured decoding
introduce a new problem: structured decoding distorts the LLM’s learned language distribution,
effectively hindering the LLM’s capabilities.

∗Equal contribution
2Our code, datasets, and checkpoints are available at: https://github.com/ebmoon/transformers-GAD.
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This paper introduces and formalizes grammar-aligned decoding (GAD), the problem of sampling
from an LLM so that the outputs (1) are guaranteed to adhere to a given grammar, and (2) are
unbiased wrt. the LLM’s distribution. Although exact GAD is intractable in general (similar to
rejection sampling), we propose a new adaptive decoding algorithm for approximate GAD, which
starts off as GCD and gradually converges to the LLM’s distribution, and thus allows trading off
between efficiency and accuracy. The algorithm, which we dub Adaptive Sampling with Approximate
Expected Futures (ASAp), is built “on top” of existing constrained decoding algorithms. Whereas
GCD approaches simply mask out tokens that lead to non-grammatical sequences for a given prefix,
ASAp remembers for all sampled prefixes the probability associated with masked-out tokens and uses
it to upper bound the probability of grammaticality. By updating this bound when more samples are
observed, the decoding algorithm converges to the desired probability distribution—i.e., it samples
outputs from the LLM-induced probability conditioned on the outputs being accepted by the grammar.
The idea works for any structured decoding approach and not just for GCD, but in this paper we focus
our evaluation on constraints expressed via grammars.

We evaluate ASAp on two structured prediction tasks: formal program synthesis and constituency
parsing. Our experiments on program synthesis and NLP tasks show that GCD techniques generate
outputs that are grammatical but unlikely according to the LLM, while with ASAp, the likelihood
of the generated outputs improves over time, converging to the target constrained LLM—i.e., GAD
better respects the LLM while still enforcing the constraints.

2 Grammar-Aligned Decoding

In this section, we formalize the problem of grammar-aligned decoding (GAD) as decoding from
an autoregressive language model while enforcing the output sequence to be accepted by a given
context-free grammar. We also demonstrate the limitations of existing approaches to this problem.

Language Models An (autoregressive) language model defines a probability distribution P on
the set of all strings w ∈ Σ∗ over a vocabulary of tokens Σ via a product of left-to-right next-token
conditional distributions P (w1 . . . wn) = Πn

i=1P (wi | w1:i−1).

S ::= 00000 | 1A2

Ai ::= 0Ai+1 | 1Ai+1, for i = 2, 3, 4
A5 ::= 0 | 1

Figure 1: CFG Gsk over tokens Σ = {0, 1},
written in Backus-Naur form (BNF) notation.
This grammar accepts the string 00000 and all
length-5 strings that start with a 1.

Context-Free Grammars A context-free grammar
(CFG) is a quadruple G = (Σ,N , S,R), where Σ is
a vocabulary of tokens (also called terminal symbols), N
is a finite set of non-terminal symbols, S ∈ N is the start-
ing non-terminal, and R is the set of production rules. An
example CFG is shown in Fig. 1. A grammar G defines
a single-step derivation relation on sequences of symbols
α, β, γ ∈ (N ∪ Σ)∗: αAγ ⇒ αβγ if A → β ∈ R.
The reflexive transitive closure of this relation is called
derivation and written ⇒∗. A sequence of tokens w is a
sentence if it is derivable from S; the set of all sentences is called the language of the grammar G,
that is, L(G) = {w ∈ Σ∗ | S ⇒∗ w}. The following example illustrates these definitions.

Example 1 (CFG Derivations). Given the CFG Gsk shown in Fig. 1, the string 00000 belongs to the
language L(Gsk) because it can be derived using the derivation S ⇒ 00000. The string 10101 is also
in L(Gsk) and can be derived as follows:

S ⇒ 1A2 ⇒ 10A3 ⇒ 101A4 ⇒ 1010A5 ⇒ 10101

Each step replaces a nonterminal symbol using a production rule in Gsk—e.g., in the string 10A3, the
nonterminal A3 is rewritten as 1A4 by applying the rule A3 → 1A4, resulting in the string 101A4.

In addition, we define the prefix language of G as the set of all prefixes of sentences in L(G):
Lprefix(G) = {w ∈ Σ∗ | wv ∈ L(G)}.

Grammar-Aligned Decoding Given a model distribution P and a CFG G, grammar-aligned
decoding (GAD) is the task of sampling from the distribution QP,G that is proportional to P but
restricted to sentences in G:

QP,G(w) =
1[w ∈ L(G)] · P (w)∑
w′ 1[w′ ∈ L(G)] · P (w′)

2

24548https://doi.org/10.52202/079017-0774



When P and G are clear from context, we will write Q(w) instead of QP,G(w).

Example 2 (GAD). Consider the distribution P that arises from prompting an LLM to “generate
a binary string that ends with a 1”. We expect P to assign high probability to strings of the form
(0 | 1)∗1—i.e. those that satisfy the prompt (Mixtral-8x7B-Instruct-v0.1 (temperature=1) generates
binary strings that end with a 1 around 90% of the time.) A snippet of a possible distribution P is
depicted in Fig. 2.

Suppose we constrain the model’s output to the language of the grammar Gsk in Fig. 1, which only
accepts strings of length 5. Moreover, Gsk only accepts one string that starts with 0, i.e., 00000, which
does not end with 1. In Fig. 2, the grayed out parts of the trie are tokens that lead to sequences
outside of the grammar Gsk. According to the definition of GAD, the target sampling distribution
QP,Gsk should assign: (i) high probability to all eight strings of the form 1w2w3w41—which conform
both to the grammar and the prompt; (ii) low probability to the string 00000—which conforms to the
grammar but not the prompt; and (iii) zero probability to all other strings.

… (0.1)

… (0.1)

…

0 (0.45) 0 (0.45) 0 (0.45)
…

1 (0.3)

… (0.1)

1 (0.3) 1 (0.3) 1 (0.3)

…

$ (10-8)

… … …

$ (0.3)

…

…

… … …

…

Figure 2: Fragment of the conditional model distribution
P for Ex. 2 depicted as a trie. Each node corresponds to
a prefix w1:i−1, and each edge is annotated with the next
token wi and its conditional probability P (wi | w1:i−1).
Filled nodes are complete strings. Grayed out parts of
the trie are outside of the grammar Gsk.

Exact GAD Can one exactly sample from
QP,G? Rejection sampling, which repeatedly
draws from P until a sample lands in L(G),
provably yields exact samples according to
QP,G , but if P assigns most of its mass outside
of L(G), it is intractably slow, especially if the
prompt is not including information about the
grammar (see [27]). For Ex. 2, rejection sam-
pling would be highly inefficient because the
model would generate many strings that are not
of length five.

In contrast, exact sampling from P is efficient
because its joint distribution is represented by
a product of easily computed left-to-right con-
ditionals, enabling ancestral sampling (i.e., gen-
erating tokens left to right, conditioned on al-
ready generated tokens). Can we similarly fac-
tor Q into a product of left-to-right conditionals
QP,G(wi|w1:i−1), to enable ancestral sampling?

For simplicity, let us assume that P is a distribution over sequences of exactly length n (although, in
practice, language models can produce ‘stop’ tokens which allow for a valid distribution on sequences
of all lengths). The exact conditionals of QP,G are given by:

QP,G(wi | w1:i−1) ∝
∑

wi+1:n

[
1[w ∈ L(G)] ·Πn

j=iP (wj | w1:j−1)
]

∝ P (wi | w1:i−1) · EP (wi+1:n|w1:i)[1[w ∈ L(G)]] (1)

Thus, exact left-to-right sampling from QP,G consists of sampling from model conditionals P (wi |
w1:i−1), with an additional weighting term c(w1:i) = EP (wi+1:n|w1:i)[1[w ∈ L(G)]] that considers
the grammar.

We refer to c(w1:i) as expected future grammaticality (EFG), i.e. the probability that a continuation of
w1:i sampled from P lands in L(G). Using this notation, we can write the exact left-to-right sampling
conditional explicitly as:

QP,G(wi | w1:i−1) =
P (wi | w1:i−1) · c(w1:i)∑

w′
i
P (w′

i | w1:i−1) · c(w1:i−1, w′
i)

(2)

To see why computing this conditional is intractable, consider using dynamic programming to
compute c(w1:i) by marginalizing over a product of potential functions: the set of model conditionals
and an indicator potential for the grammar. While the indicator potential can be factorized across rules
in the grammar, the model’s contribution generally does not factorize: in practice, the final conditional
probability P (wn | w1:n−1) is a global potential function, defined by a non-linear neural network
touching every variable. Thus, the main goal of this paper is to develop effective approximations to
the EFG c(w1:i), which would enable us to compute the left-to-right conditionals of Q.

3
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Limitations of Grammar-Constrained Decoding Existing work [27, 28] has proposed grammar-
constrained decoding (GCD) as a way to efficiently sample from an autoregressive language model
subject to grammar constraints. Although the exact details of these techniques vary depending
on class of grammars they support, the common thread is that they rely on an incremental parser,
which can efficiently check whether a given string w is a prefix of a sentence in the grammar, i.e.,
w ∈ Lprefix(G). When given a sentence w1:i−1, GCD techniques use this parser during decoding
to mask out any next token wi that results in a prefix w1:i for which no completion will produce a
sequence in the grammar. Using the trie in Fig. 2 as an example, one can think of GCD as sampling a
path through the trie by selecting only among the black outgoing edges from every node, proportional
to their conditional probabilities in the diagram (e.g. the first token is 0 or 1 with equal probability).

In terms of the GAD problem, we can view GCD as approximating the exact left-to-right conditionals
QP,G(wi | w1:i−1) by the conditional distribution Q̃GCD(wi | w1:i−1), defined as follows:

Q̃GCD(wi | w1:i−1) =
P (wi | w1:i−1) · 1[w1:i ∈ Lprefix(G)]∑

w′
i
P (w′

i | w1:i−1) · 1[w1:i−1, w′
i ∈ Lprefix(G)]

Though not originally formulated in this way, we can view recent work on GCD [27, 28] as forming a
binary approximation 1[w1:i ∈ Lprefix(G)] to the EFG c(w1:i). In other words, while GCD considers
the possibility of future grammaticality, it makes no attempt to integrate the model’s likelihood
to estimate expected future grammaticality, which can lead to substantial bias in the sampling
distribution—i.e., every EFG such that c(w1:i) > 0 will simply be approximated via the value 1.

Example 3 (GCD). Consider again the GAD problem from Ex. 2, where our target sampling
distribution QP,Gsk assigns high probability to strings that both start and end with a 1 and a low
probability to the string 00000. However, we observe that GCD [8] generates strings ending with a
1 only 30% of the time—i.e., GCD has effectively ruined the LLM’s ability to follow the prompt by
biasing sampling towards 00000, an incorrect output.

When generating the first token (0 or 1), the GCD algorithm does not know how many grammatical
strings can start with each character and, more importantly, how likely these strings are under P .
Since both tokens 0 and 1 have the possibility of leading to a grammatical string, GCD will estimate
their expected future grammaticality as 1, and choose each of them roughly half of the time (since
P (0) ≈ P (1)). Once GCD has chosen 0, however, it becomes “trapped” in the part of the search
space where the only grammatical string is the low-probability sequence 00000.

Ex. 3 illustrates how existing GCD approaches can hinder the language model’s abilities to explore
the space of possible outputs according to the learned distribution, thus highlighting the importance
of designing a better approximation to the EFG c(w1:i); this is addressed in the next section.

3 Adaptive Sampling with Approximate Expected Futures (ASAp)

In this section, we propose an adaptive sampling algorithm that iteratively builds better approximations
of the future grammaticality of a sequence. Our procedure operates by sampling repeatedly, each
time bounding lost probability mass to provably ungrammatical areas of the search space in order to
better guide the next sampling iteration. As a result, our algorithm converges over many iterations
to exact samples from the constrained LLM distribution, allowing for a flexible trade-off between
efficiency and accuracy.

Overview of the Algorithm GCD approaches poorly approximate the desired distribution because
they greedily sample prefixes without worrying about the EFG. When sampling the first token in
Ex. 3, GCD simply uses the likelihood for tokens 0 and 1 assigned by the LLM without considering
the probability that these next tokens would result in grammatical completions if sampling were
unconstrained—i.e. without incorporating the critical EFG re-weighting terms that are necessary
for unbiased sampling from the constrained LLM distribution. However, if GCD ends up sampling
0 as the first token for Ex. 3, it will necessarily sample the string 00000 since no other sequences
starting with 0 are allowed by the grammar. We can “learn” from this result: the true probability
mass assigned to all grammatical sequences starting with a 0 is not 0.45 as the LLM’s next token
probability would have us believe; instead, the total grammatical mass in this section of the search
space is the joint probability of the single string 00000, which is the much lower value of 0.455 ∗10−8

4
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1 (0.45)

$ (10-8)0 (0.45) 0 (0.45) 0 (0.45)

0 (0.45)

*10-8*0.45*10-8*0.452*10-8*0.453*10-8

*0.455*10-8

$ (10-8)0 (0.45*10-8)0 (0.452*10-8)0 (0.453*10-8)

1 (0.3) 1 (0.3) 1 (0.3) 1 (0.3) $ (0.3)
*0.3*0.09 + 0.3*0.12 + 0.3*0.13 + 0.3

Figure 3: Illustration of the trie built by ASAp after sampling 00000 as the first string (left) and after sampling
11111 as the second string (right). EFG updates after each iteration are shown in red.

as depicted in Fig. 3. In other words, simply by sampling 00000, we can better approximate (in this
case, exactly) the EFG of tokens along this path.

The key insight behind our algorithm, which we call ASAp, is that we can iterate this process of
discovering lost grammatical probability mass by repeatedly sampling and revising transition weights
after each sample is produced. More formally, we can think of this procedure as starting with GCD’s
over-approximation to each EFG c(w1:i) term, and then, through repeated sampling and discovery of
mass assigned to non-grammatical completions, reducing each overapproximation to make it more
accurate. In the limit, the approximations converge to exact EFG estimates and unbiased sampling.

Two possible first iterations of the ASAp algorithm are depicted in Fig. 3. In the first iteration (left of
Fig. 3), after sampling the sequence 00000, the algorithm directly addresses the issue that arose in
Ex. 3 by attempting to better approximate the probability mass of potential grammatical completions
of each prefix of 00000 (red quantities). For example, the expected future grammaticality of the prefix
0000 it is now 0.45 ∗ 10−8—i.e., the algorithm effectively “looks ahead” to determine that only one
valid (but low probability) string 0$ that can follow 0000. The ideas developed in GCD allow us to
efficiently compute, for a given string, the likelihood of the next tokens that will immediately result
in non-grammaticality.

If we only sample one string from the LLM, we cannot hope to do better than GCD in terms of
sampling faithfully in a grammar-aligned way. However, if we were to now sample once more, we
could now better direct our sampling strategy. In the second iteration (right of Fig. 3), the string 11111

is sampled and the expected future grammaticality is updated (red quantities). Note that at this point
the probabilites assigned to the string 00000 from the earlier iteration have already been updated.

By repeating the above approach multiple times (i.e., by producing more samples), the ASAp
algorithm produces precise approximations of the expected future grammaticalities and thus better
samples from the constrained LLM.

Algorithm Formalization The key quantity that the algorithm approximates based on past samples
is the expected future grammaticality (EFG) c(w1:i) = Ep(wi+1:n|w1:i)[1[w ∈ L(G)]]. At iteration
m + 1, our algorithm uses the set of samples S = {s1, . . . , sm} observed so far to compute an
overapproximation c̃S(w1:i) of cS(w1:i) for every possible string w1:i. The overapproximation is
inductively defined:

c̃S(w1:i) = 1[w1:i ∈ Lprefix(G)] no string in S starts with w1:i

c̃S(w1:i) =
∑

wi+1
P (wi+1 | w1:i) · c̃S(w1:i+1) otherwise (3)

Intuitively, if no samples in S start with the prefix w1:i, then c̃S(w1:i), the overapproximation of EFG
is simply whether the string is or is not a valid prefix in the grammar—i.e. the same overapproximation
used by GCD. If, on the other hand, we have encountered the prefix w1:i before in previous samples
in S, the overapproximation uses the next token likelihoods that were computed during the previous
sampling runs of the algorithm to compute a better estimate of EFG.

For example, in Fig. 3, once we have sampled the sequences 00000 and 11111, we have that c̃S(0000) =
0.45 ∗ 10−8 and c̃S(110) = 1 (i.e., we have not seen a sample with the prefix 110 yet).
Theorem 1. ∀w1:i ∈ Σ∗, c̃S(w1:i) ≥ c(w1:i).

Proof. To see that c̃S(w1:i) is indeed an upperbound on c(w1:i), consider two cases: First, sup-
pose w1:i is not a prefix of any string in S. In this case, c̃S(w1:i) = 1[w1:i ∈ Lprefix(G)]
and, like GCD, provides a trivial upper bound. When 1[w1:i ∈ Lprefix(G)] = 0, there is

5
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no possibility of grammaticality along this path and the EFG is therefore also zero. When
1[w1:i ∈ Lprefix(G)] = 1 it trivially bounds EFG, which is a probability. Second, we need to
prove that ∀w1:i ∈ prefix(S), c̃S(w1:i) ≥ c(w1:i). where prefix(S) is the set of (finitely many)
prefixes of string in S. We proceed by induction, where the base case is when w1:i is in prefix(S) but
no w1:i+1 is in prefix(S) for any possible next token wi+1. Consequently, every w1:i+1 falls under
the first case, leading us to the following inequality:

c̃S(w1:i) =
∑
wi+1

P (wi+1 | w1:i) · c̃S(w1:i+1) ≥
∑
wi+1

P (wi+1 | w1:i) · c(w1:i+1) = c(w1:i) (4)

Next, we move on to the inductive step where w1:i is in prefix(S) and for any wi+1, the string w1:i+1

can either be a node that is not a prefix of S, which falls under the first case, or it can in prefix(S), for
which the property holds by induction. Therefore, the reasoning used in Eq. 4 works for the inductive
case as well.

The sampling procedure itself proceeds autoregressively like GCD, but using the iteratively updated
EFG estimates we have just defined, c̃S . Specifically, the left-to-right sampling conditional for our
procedure, Q̃S(wi|w1:i−1), after having previously sampled the strings in S, is defined as follows:

Q̃S(wi|w1:i−1) =
P (wi | w1:i−1) · c̃S(w1:i)∑

w′
i
P (w′

i | w1:i−1) · c̃S(w1:i−1, w′
i)

(5)

Algorithm 1 ASAp algorithm

Initialize S := {}, c̃S(·) := 1
for m ≤ M do

Draw w1:n ∼ Q̃S via ancestral sampling
S := S ∪ {w1:n}
for i in (n− 1) . . . 1 do

for w′ in {w′ | w1:i · w′ /∈ Lprefix(G)} do
c̃S(w1:i · w′) := 0

c̃S(w1:i) :=
∑

w′P (w′ |w1:i) · c̃S(w1:i ·w′)

return Final sample w1:n

Our overall algorithm, which is presented
in Algorithm 1, then proceeds iteratively,
using past samples to improve subsequent
samples. Whenever the sample set S is
updated with a new sample w1:n, the over-
approximation c̃ is updated for the prefixes
of w1:n. The update begins at the end of
the sequence and proceeds backward to-
ward the start, by the recursive definition in
Eq. 3. In the listing, we assume that we are
only interested in the final sample, but in
our evaluation we will analyze whether the
algorithm induces the desired distribution.

Next we provide a proof that this algorithm
converges to exact estimates of EFG in the limit of infinite iterations, and therefore to exact samples
from the constrained LLM distribution. The theorem assumes almost sure termination of ancestral
sampling in the unconstrained LLM distribution P—i.e., the LLM eventually terminates.

Theorem 2. Assume that as L → ∞, the distribution P assigns vanishingly small probability mass
to sequences longer than length L. Now, let Sm = {s1, . . . , sm} be the set of recorded samples up to
the mth iteration of ASAp. Then, ∀w1:i ∈ Lprefix(G), c̃Sm(w1:i)

p→ c(w1:i) as m → ∞.

Proof. Let w1:i be an arbitrary sequence in Lprefix(G). The approximation gap after m iterations of
sampling with ASAp, ϵm = c̃Sm

(w1:i)− c(w1:i), is equal to the marginal probability under P of all
ungrammatical continuations of w1:i that have not yet been encountered in the first m samples, Sm.
Now consider an arbitrarily small ϵ > 0. By assumption, there exists an L such that the probability
mass P places on sequences longer than L is less than ϵ. Further, ASAp samples according to P , but
re-weighted by an upper bound on the true EFG (Theorem 1). Thus, the probability of encountering
a previously unseen ungrammatical continuation of w1:i no longer than L on any given iteration is
at least as high as the probability of encountering the same continuation when sampling directly
from P . Because the number of sequences no longer than L is finite, this implies that the probability
mass under P of ungrammatical continuations of w1:i that are no longer than L and that are not
yet encountered in Sm becomes vanishingly small as as m → ∞. The remaining unencountered
ungrammatical continuations of w1:i are longer than L, and thus their total mass is bounded by ϵ.
Therefore P (ϵm > ϵ) → 0 as m → ∞.

6
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; Determines what terms can appear

(set-logic SLIA)

; The function to synthesize

(synth-fun f ((name String)) String

; The grammar for f to be synthesized in

((Start String (S))

(S String

(name " " "."

(str.++ S S)

(str.at S I)

(str.replace S S S)

(str.substr S I I)))

(I Int

(0 1 2 (+ I I) (- I I)

(str.len S)

(str.indexof S S I)))))

; Specifications to satisfy

(constraint (= (f "Nancy FreeHafer") "N.F."))

(constraint (= (f "Andrew Cencici") "A.C."))

(constraint (= (f "Jan Kotas") "J.K."))

(constraint (= (f "Mariya Sergienko") "M.S."))

(a) SLIA/initials-small

; Determines what terms can appear

(set-logic BV)

; The function to synthesize

(synth-fun inv

((s (BitVec 4)) (t (BitVec 4)))

(BitVec 4))

; Helper functions

(define-fun min () (BitVec 4)

(bvnot (bvlshr (bvnot #x0) #x1)))

(define-fun max () (BitVec 4) (bvnot min))

(define-fun l

((s (BitVec 4)) (t (BitVec 4))) Bool

(bvsgt (bvnot (inv s t)) t))

(define-fun SC

((s (BitVec 4)) (t (BitVec 4))) Bool

(distinct t max))

; Specifications to satisfy

; with universally quantified variables

(declare-var s (BitVec 4))

(declare-var t (BitVec 4))

(constraint (=> (SC s t) (l s t)))

(b) INV-BV/find_inv_bvsle_bvlshr1_4bit

Start ::= S

S ::= name | " " | "."
| str.++ S S | str.at S I

| str.replace S S S

| str.substr S I I

I ::= 0 | 1 | 2 | + I I | - I I

| str.len S | str.indexof S S I

(c) Grammar for f

Start ::= BV

BV ::= s | t
| #x0 | #x7 | #x8
| bvneg BV | bvnot BV

| bvadd BV BV | bvsub BV BV

| bvand BV BV | bvlor BV BV

| bvlshl BV BV | bvlshr BV BV

(d) Grammar for inv

Figure 4: (a) A SLIA problem in which the grammar for the target function is explicitly defined. (b) INV-BV
problem in which the grammar for the target function inv is implicitly defined. (c) The explicitly defined
grammar for f written in BNF notation. (d) The implicitly defined grammar for inv written in BNF notation.
The grammar is implicitly defined by primitives of BV logic and parameters of inv. The goal of each problem is
to find an implementation for synth-fun functions that satisfies all the constraints within a specified grammar—
i.e., to find implementation of f in the grammar (c) and inv in the grammar (d).

4 Experiments

We implemented the ASAp algorithm as an extension of the Transformers-CFG implementation
of GCD [8]. When the LLM generates a sequence w1:n, the ASAp algorithm keeps track of the
original LLM’s probability P (wi | w1:i−1) for 1 ≤ i ≤ n and the set of allowed next tokens {wi |
w1:i−1, w

′
i ∈ L(G)} determined by the incremental parser in the Transformers-CFG library. After the

LLM finishes generating a sequence, our implementation of ASAp updates the overapproximation c̃S
from the end of sequence by back-propagating the quantity 1 minus probability of the tokens that will
for sure lead to non-grammatical sequences. The implementation of ASAp updates c̃S(w1:n−1, w

′
n)

for all possible tokens w′
n, and then moves on to update c̃S(w1:n−2, w

′
n−1) . . ., c̃S(w1, w

′
2), c̃S(w

′
1)

using Equation (3).

Datasets and Models. We consider the benchmark from Example 3 and three structured-decoding
tasks. Two of our tasks involve solving Syntax-Guided Synthesis Problems (SyGuS) [2]. SyGuS
is a standardized format where one provides a logical specification and a context free grammar of
first-order terms and the goal is to synthesize a term in the grammar that satisfies the specification.
SyGuS is a natural fit for GAD and we consider two tasks from the standard SyGuS benchmarks
where grammars vary from benchmark to benchmark: strings with linear integer arithmetic (SLIA)
and loop invariant generation with bit-vector arithmetic (INV-BV). In the former, the grammar is
used to restrict what constant strings one can use when building string-manipulating programs and in
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(a) Illustrative Ex. 3 (b) SLIA/name-combine-4-long (c) SLIA/initials-small

Figure 5: KL(QASAp∥P ) and KL(QGCD∥P )

(a) Illustrative Ex. 3 (b) SLIA/name-combine-4-long (c) SLIA/initials-small

Figure 6: Expectations of Q̃ASAp, Q̃GCD , and P

the latter the grammar is used to restrict constant bit-vectors and operations used to build invariants.
Fig. 4 provides examples of SLIA and INV-BV problems. For both families of benchmarks, our
prompts consist of 3 in-context examples of the form (specification, solution) and the grammar is
then provided as a constraint for GAD. Our third task is the constituency parsing (CP) task already
used in prior GCD work [7] where the grammar is used to help the model produce well-parenthesized
parse trees for English sentences.

Due to constrained resources and needing to run inference multiple times to measure whether the
distribution Q̃ is faithful to Q, we randomly select 15 SLIA problems, 15 INV-BV problems, and 6
CP problems. We select the open-source Mistral-7B [12] for evaluation due to its superior reasoning
and code generation capabilities.

Measures. We run both algorithms for 2,000 iterations/sample on each benchmark.

To assess converge to the target distribution, we measure the Kullback–Leibler (KL) divergence
between the distributions of GCD and ASAp from the target distribution Q for a given number of
samples. Because the ideal GAD distribution QP,G is proportional to the original LLM’s distribution
P for sequences allowed by a grammar G, we can use the LLM’s distribution P on all observed
samples as an estimate QP,G . The quantity KL(Q∥P ) only differs by a constant from the KL
divergence between empirical distributions and the ideal GAD distribution:

KL(Q̃∥P )=EQ̃

[
log

Q̃

P

]
=EQ̃

[
log

Q̃

C·QP,G

]
=EQ̃

[
log

Q̃

QP,G

]
− logC=KL(Q̃∥QP,G)− logC

where C =
∑

w 1[w ∈ L(G)]P (w). Thus, KL(Q̃∥P ) can be used to quantify the alignment between
the empirical distributions of GCD and ASAp with the ideal GAD distribution.

For example, Fig. 5a shows convergence results for the first 75 iterations on the illustrative Ex. 3—i.e.,
the KL divergence for Q̃ASAp quickly converges to 0 whereas the one for Q̃GCD doesn’t.

We also compare the empirical expectations of the variables Q̃GCD, Q̃ASAp, and P . For example,
Fig. 6a shows convergence results for the first 75 iterations on the illustrative Ex. 3—i.e., Q̃ASAp

converges to the right expectation.
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(a) SLIA (b) INV-BV4 (c) CP

Figure 7: Scatter plots of Q̃ASAp (•) and Q̃GCD (×) vs. expectations of P after 2,000 samples. Proximity to the
diagonal indicates proximity to the actual expectation—e.g., a • at (0.45,0.4) indicates a benchmark where the
empirical expectation of P was 0.45 and Q̃ASAp had converged to an expectation of 0.4 after 2,000 iterations.

Results. Fig. 5b and Fig. 6b illustrate a benchmark in which our ASAp algorithm quickly converges
to the target distribution. Fig. 5 depicts the KL divergence of a sliding window of size 500 (e.g., the
points at x=800 denote the KL divergence of the samples 800-1300). Fig. 6 depicts all the samples
from the experiment, as well as how the expectations converges (a point at x=i denotes the empirical
expectation on the first i samples. For this case the expecation for GCD stays very close to 0.

Similarly, Fig. 5c and Fig. 6c illustrate a benchmark in which our ASAp algorithm converges slowly.
In this case, bot ASAp and GCD are far from the target expectation (Fig. 6c), but because GCD
happens to be biased towards the most likely outcome, it exhibits better KL divergence. The complete
set of plots is shown in Sec. E.1.

To better understand how the algorithms respectively converge, Fig. 7 plot for each benchmark
category the expectations for each benchmark computed by GCD and ASAp against the target
expectation of P after 2,000 iterations. The sum of least square difference between expectations
computed by GCD and the expectations of P are 2.259 (SLIA), 1.852 (INV-BV4), and 0.109 (CP).
The sum of least square difference between expectations computed by ASAp and the expectation and
those of P are 1.242 (SLIA), 0.802 (INV-BV4), and 0.159 (CP). While we have too few points for
CP to draw conclusions, the expectations computed by ASAp are much closer to the ones computed
by GCD across our experiments.

While our work is interested in the theoretical convergence of the ASAp algorithm, we also report
how the GCD and ASAp differ for solving the SLIA and INV-BV4 tasks—i.e., how many of the
sampled programs are correct solutions to the given problem. GCD and ASAp solve approximately
the same set of problems (there is just one SLIA benchmark for which ASAp returns a valid solution
on one sample and GCD never does so). ASAp produces correct samples 38% more often than GCD
(geomean), whereas for SLIA benchmarks that both tools can solve, ASAp produces correct samples
73% less often than GCD (geomean). Detailed results can be found in Sec. E.2. These results are in
line with the fact ASAp shows faster convergence on INV-BV4 benchmarks. For example, for the
benchmark illustrated in Fig. 5b, ASAp returns the correct solution for 1588 samples, whereas GCD
only returns the correct solution 12 times, whereas for the benchmark in Fig. 5c, ASAp returns the
correct solution 69 times and GCD 363 times.

Discussion and Limitations. As predicted by our theorems, on most benchmarks the ASAp
algorithm converges to the desired distribution P whereas GCD does not improve over time (i.e., it
exhibits the bias described in this paper).

While ASAp has no strong effect on solving downstream tasks, we observe that on instances where
the convergence is prominent, ASAp ends up sampling correct solutions more often than GCD, which
is what we expect when the LLM has “learned” how to solve the given task.

The key limitation of our work is the current slow convergence of the ASAp algorithm. In some
benchmarks, even after 2,000 iterations the KL divergence barely improves and even though the
expectation of Q̃ASAp is improving, it converges very slowly.

We highlight that the contributions of this paper are discovering and formalizing the bias of existing
constrained decoding approaches and proposing the first converging algorithm to address this problem.

9

24555 https://doi.org/10.52202/079017-0774



Now that we have identified the problem, there are many “low-hanging fruits” to improve our
sampling strategy, which are great targets for future work—e.g., using forms of targeted beam search
to bootstrap our sample set to better explore grammar paths and avoid sampling similar strings.

5 Related Work

Constrained Decoding Past work has extensively explored constrained decoding algorithms,
which modify the original decoding process of LLMs to ensure the output adheres to a user-specified
regular [18, 28] or context-free language [5, 6, 7, 19, 23, 24, 25, 26] in a discrete space. Other works
enforce hard output constraints using dynamic monitoring and verification methods [1, 15, 27] or by
modifying beam search techniques to impose lexical constraints, which require specific keywords to
appear in the generated text [4, 9, 10, 16, 17, 20]. At a high level, these methods involve running the
LLM decode in parallel with a monitoring scheme (e.g., parsing algorithms for CFGs) to identify
which next tokens or beams can produce valid output sequences that meet the constraints. The
decoder then masks out any tokens that would lead to invalid sequences, sampling only from the
permissible ones.

To incorporate sequence-level soft semantic or contextual constraints, Amini et al. [3], Kumar et al.
[13], Li et al. [14], Qin et al. [21] have applied gradient-based sampling techniques that relax those
constraints to differentiable ones, used them as classifiers to further guide the decoding process. While
these works guarantee that the decoded output meets the specified constraints (whether in the form of
grammar, monitoring schemes, or differentiable functions), they often operate greedily and introduce
bias into the output distribution in the way that has been discussed in this paper. Depending on the
application one considers, this problem may or may not affect downstream tasks, but as we have
argued in this paper, the bias can be quite prominent and sometimes affect downstream performance.
Our adaptive decoding algorithm improves decoding over time by analyzing how previous samples
led to nongrammaticaility.

Constraint-Aligned Decoding This paper formally defines the problem of aligning the output
distribution of an LLM in the presence of a constraint. We focus our attention on constraints expressed
as grammars, but our definitions and algorithm apply to any constraint for which possible satisfaction
(in our case grammaticality) can be evaluated in a left-to-right manner.

In some settings, one is interested in generating multiple outcomes with an LLM to approximate a
distribution of interest [11, 22]—e.g., to generate a random number or a set of good test cases for
a program. As we have shown, constrained decoding can heavily skew the LLMs distribution and
result in biasing the model towards certain constraint-matching sequences. While our work is at this
point theoretical, now that the problem of aligning an LLM’s distribution with constraints has been
defined, we expect advances in how sampling is performed to quickly converge to better distributions
faster (e.g., using beam search to quickly explore possible paths instead of just sampling).

6 Conclusion

We have introduced a new analysis of the ideal target for constrained sampling from an LLM using a
grammar, which we call grammar-aligned decoding (GAD). We proposed a new algorithm for GAD
which we call ASAp that iteratively builds better approximations to the critical re-weighting term
required for GAD: the expected future grammaticality. We analyzed the convergence of our proposed
algorithm and demonstrated its effectiveness in relation to existing grammar-constrained decoding
techniques on a set of benchmark code generation tasks. We analyzed and evaluated our approach
using constraints enforced by a context-free grammar; however, extensions of our approach might be
applied to more general classes of constraints for LLM decoding.

While the primary goals of this work are to formalize the likelihood misalignment problem of existing
grammar-constrained decoding approaches and to provide an initial solution with provable asymptotic
guarantees, future work may explore faster-converging approaches, such as sampling multiple tokens
simultaneously, to improve efficiency further. We hope this work lays a solid foundation for generating
structured outputs from LLMs without distorting the original distribution, advancing the field toward
more efficient, trustworthy, and constraint-aligned approaches in LLM-driven generation.
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Appendix

A Hardware and Software

Our experiments are conducted on 4 NVIDIA RTX A6000 GPUs and 4 NVIDIA A100 GPUs. Our
implementation is based on Python 3.10 and PyTorch 2.1.2.

B Hyperparameters

The hyperparameters discussed in this paper pertain to the decoding strategy of language models. As
we aim to investigate the LM’s original distribution, we set Top-P at 1.0, Temperature at 1.0, and
Top-K at 0 to consider the complete token vocabulary.

C Model Checkpoint

We use the Mistral-7B model checkpoint provided by Hugging Face: https://huggingface.co/

mistralai/Mistral-7B-Instruct-v0.2.

D Experimental Details

D.1 SLIA and INV-BV

Prompt Construction For both families of benchmarks, our prompts adopt standard in-context
learning format which consist of 3 in-context examples of the form (specification, solution) and ask
the model to provide the solution for the last example. A concrete example would be

You are an expert in program synthesis.

You are tasked with solving a Syntax-Guided Synthesis (SyGuS) problem.

Your goal is to output a function that should produce outputs that satisfy

a series of constraints when given specific inputs.

Question:

(set-logic BV)

(synth-fun inv ((s (BitVec 4)) (t (BitVec 4))) (BitVec 4))

(declare-var s (BitVec 4))

(declare-var t (BitVec 4))

(define-fun udivtotal ((a (BitVec 4)) (b (BitVec 4))) (BitVec 4)

(ite (= b #x0) #xF (bvudiv a b)))

(define-fun uremtotal ((a (BitVec 4)) (b (BitVec 4))) (BitVec 4)

(ite (= b #x0) a (bvurem a b)))

(define-fun min () (BitVec 4)

(bvnot (bvlshr (bvnot #x0) #x1)))

(define-fun max () (BitVec 4)

(bvnot min))

(define-fun l ((s (BitVec 4)) (t (BitVec 4))) Bool

(bvsle (bvlshr s (inv s t)) t))

(define-fun SC ((s (BitVec 4)) (t (BitVec 4))) Bool

(or (bvult t min) (bvsge t s)))

(constraint (=> (SC s t) (l s t)))

(check-synth)

Solution:

(define-fun inv ((s (BitVec 4)) (t (BitVec 4))) (BitVec 4) (bvnot (bvor s #b0111)))

... (2 more examples)
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Question:

(set-logic BV)

(synth-fun inv ((s (BitVec 4)) (t (BitVec 4))) (BitVec 4))

(declare-var s (BitVec 4))

(declare-var t (BitVec 4))

(define-fun udivtotal ((a (BitVec 4)) (b (BitVec 4))) (BitVec 4)

(ite (= b #x0) #xF (bvudiv a b)))

(define-fun uremtotal ((a (BitVec 4)) (b (BitVec 4))) (BitVec 4)

(ite (= b #x0) a (bvurem a b)))

(define-fun min () (BitVec 4)

(bvnot (bvlshr (bvnot #x0) #x1)))

(define-fun max () (BitVec 4)

(bvnot min))

(define-fun l ((s (BitVec 4)) (t (BitVec 4))) Bool

(bvsgt (bvnot (inv s t)) t))

(define-fun SC ((s (BitVec 4)) (t (BitVec 4))) Bool

(distinct t max))

(constraint (=> (SC s t) (l s t)))

(check-synth)

Solution:

Grammar Constraint While most SYGUS problems contain grammar constraints, some problems
have grammars implicitly defined by the theory. We explicitly converted the grammar constraint of
the problem into EBNF format for constrained-decoding. The example for the last example would be

root ::= "(define-fun inv ((s (BitVec 4)) (t (BitVec 4))) (BitVec 4) " Start ")"

Start ::= "s" | "t" | "#x0" | "#x8" | "#x7"

| "(" "bvneg" " " Start ")" | "(" "bvnot" " " Start ")"

| "(" "bvadd" " " Start " " Start ")" | "(" "bvsub" " " Start " " Start ")"

| "(" "bvand" " " Start " " Start ")" | "(" "bvlshr" " " Start " " Start ")"

| "(" "bvor" " " Start " " Start ")" | "(" "bvshl" " " Start " " Start ")"

D.2 Constituency Parsing

For Constituency parsing task, our prompts consist of 8 in-context examples of the form. A concrete
example would be

Perform constituency parsing on the provided sentences in accordance with the Penn TreeBank

annotation guidelines. Fill in the last mapping.

Ad Notes

->

[ ( NP-HLN ( NN Ad ) ( NNS Notes ) ) ]

The market crumbled

->

[ ( S ( NP-SBJ ( DT The ) ( NN market ) ) ( VP ( VBD crumbled ) ) ) ]

I felt betrayed he later said

->

[ ( S ( S-TPC-1 ( NP-SBJ ( PRP I ) ) ( VP ( VBD felt ) ( ADJP-PRD ( VBN betrayed ) ) ) )

( NP-SBJ ( PRP he ) ) ( ADVP-TMP ( RB later ) ) ( VP ( VBD said ) ) ) ]

Friday October 13 1989

->

[ ( NP ( NNP Friday ) ( NNP October ) ( CD 13 ) ( CD 1989 ) ) ]
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The Arabs had merely oil

->

[ ( S ( NP-SBJ ( DT The ) ( NNPS Arabs ) ) ( VP ( VBD had )

( NP ( RB merely ) ( NN oil ) ) ) ) ]

Energy

->

[ ( NP-HLN ( NN Energy ) ) ]

Some U.S. entrepreneurs operate on a smaller scale

->

[ ( S ( NP-SBJ ( DT Some ) ( NNP U.S. ) ( NNS entrepreneurs ) ) ( VP ( VBP operate )

( PP-MNR ( IN on ) ( NP ( DT a ) ( JJR smaller ) ( NN scale ) ) ) ) ) ]

Knowledgeware Inc.

->

[ ( NP-HLN ( NNP Knowledgeware ) ( NNP Inc. ) ) ]

They are more sophisticated this time

->

Grammar Constraint For the constituency parsing (CP) task we used the grammar provided in
prior GCD work [7]. The grammar is too large to attach, but it is used to help the model produce well-
parenthesized parse trees and ensure that all words in a given English sentence appear in left-to-right
order.
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(a) KL divergences (b) Expectations

Figure 8: SLIA/dr-name

(a) KL divergences (b) Expectations

Figure 9: SLIA/firstname_small

(a) KL divergences (b) Expectations

Figure 10: SLIA/firstname

(a) KL divergences (b) Expectations

Figure 11: SLIA/initials_small

(a) KL divergences (b) Expectations

Figure 12: SLIA/initials-long-repeat

(a) KL divergences (b) Expectations

Figure 13: SLIA/lastname

(a) KL divergences (b) Expectations

Figure 14: SLIA/name-combine-2_short

(a) KL divergences (b) Expectations

Figure 15: SLIA/name-combine-2-long-repeat

(a) KL divergences (b) Expectations

Figure 16: SLIA/name-combine-4_short

(a) KL divergences (b) Expectations

Figure 17: SLIA/name-combine-4-long

E Detailed Experimental Results

We provide additional plots and experimental data.

E.1 Plots

Figures 8–22 provide the KL divergence and expectation results for the SLIA benchmarks. Figures 23–
37 provide the KL divergence and expectation results for the INV-BV benchmarks. Figures 38–43
provide the KL divergence and expectation results for the INV-BV benchmarks.
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(a) KL divergences (b) Expectations

Figure 18: SLIA/phone-3-long

(a) KL divergences (b) Expectations

Figure 19: SLIA/reverse-name-long

(a) KL divergences (b) Expectations

Figure 20: SLIA/univ_1_short

(a) KL divergences (b) Expectations

Figure 21: SLIA/univ_1

(a) KL divergences (b) Expectations

Figure 22: SLIA/univ_2_short

(a) KL divergences (b) Expectations

Figure 23: INV-BV/find_inv_bvsge_bvlshr1_4bit

(a) KL divergences (b) Expectations

Figure 24: INV-BV/find_inv_bvsge_bvneg_4bit

(a) KL divergences (b) Expectations

Figure 25: INV-BV/find_inv_bvsge_bvnot_4bit

(a) KL divergences (b) Expectations

Figure 26: INV-BV/find_inv_bvsgt_bvor_4bit

(a) KL divergences (b) Expectations

Figure 27: INV-BV/find_inv_bvugt_bvashr0_4bit

E.2 Correctness Results for SYGUS Tasks

Table 1 shows how many samples (out of 2000) yielded correct solutions for each benchmark (bold is
better). The task initials_long-repeat was only solved using ASAp.
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(a) KL divergences (b) Expectations

Figure 28: INV-BV/find_inv_bvugt_bvneg_4bit

(a) KL divergences (b) Expectations

Figure 29: INV-BV/find_inv_bvule_bvurem0_4bit

(a) KL divergences (b) Expectations

Figure 30: INV-BV/find_inv_bvule_bvurem1_4bit

(a) KL divergences (b) Expectations

Figure 31: INV-BV/find_inv_eq_bvand_4bit

(a) KL divergences (b) Expectations

Figure 32: INV-BV/find_inv_eq_bvlshr0_4bit

(a) KL divergences (b) Expectations

Figure 33: INV-BV/find_inv_ne_bvneg_4bit

(a) KL divergences (b) Expectations

Figure 34: INV-BV/find_inv_ne_bvudiv0_4bit

(a) KL divergences (b) Expectations

Figure 35: INV-BV/find_inv_ne_bvudiv1_4bit

(a) KL divergences (b) Expectations

Figure 36: INV-BV/find_inv_ne_bvurem0_4bit

(a) KL divergences (b) Expectations

Figure 37: INV-BV/find_inv_ne_bvurem1_4bit

F Will ASAp still be more aligned than GCD after fine-tuning?

F.1 Experimental setup for fine-tuning

We adhere to the established QLoRA finetuning pipeline and create task-specific datasets of INV-BV4
and CP for instruction tuning. In line with our paper’s methodology, we incorporate in-context
examples in the instruction tuning dataset to enhance the models’ performance in in-context learning.
For each task, we independently finetune Mistral-7B, resulting in two versions of the model (for
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(a) KL divergences (b) Expectations

Figure 38: CP/CP_re_ptb_460

(a) KL divergences (b) Expectations

Figure 39: CP/CP_re_ptb_482

(a) KL divergences (b) Expectations

Figure 40: CP/CP_re_ptb_486

(a) KL divergences (b) Expectations

Figure 41: CP/CP_re_ptb_605

(a) KL divergences (b) Expectations

Figure 42: CP/CP_re_ptb_1434

(a) KL divergences (b) Expectations

Figure 43: CP/CP_re_ptb_1643

INV-BV4 and CP). We employ a standard train-validation-test split of 70-10-20%. Instruction tuning
is conducted on the training set, and model selection is based on the lowest validation loss. Key
hyperparameters include a learning rate of 2e-4, a warmup ratio of 0.03, a maximum sequence length
of 2048, LoRA alpha of 32, LoRA dropout of 0.05, and LoRA rank of 64. The best checkpoints were
at 328 and 536 steps for INV-BV and CP, respectively.

F.2 Additional Results

No significant differences in convergence rates post fine-tuning. In Section 4, we evaluate ASAp
and GCD on the base model Mistral-7B. A natural extension of this evaluation is determining whether
ASAp retains its advantages over GCD after fine-tuning the base model on task-specific datasets,
which optimizes the LLM for higher grammatical accuracy from the start.

In our fine-tuning step, we want to teach the LLM to assign higher probabilities to grammatical outputs
for the specific task DSL. We randomly selected two INV-BV problems (find_inv_bvsge_bvneg_4bit
and find_inv_bvsgt_bvor_4bit for INV-BV) and four CP problems (CP_re_ptb_215, CP_re_ptb_434,
CP_re_ptb_1627 and CP_re_ptb_1643 for CP) from the test set, and instrction tuned input-output pairs
of prompt and output programs in the training set for the base model Mistral-7B. We obtained two
fine-tuned models, one for INV-BV and one for CP.

We tested GCD and ASAp on the finetuned Mistral-7B on the randomly left-out problems and
checked the convergence rates of the KL-divergence. The results from finetuned Mistral-7B did
not show significant differences in terms of convergence compared to the base Mistral-7B. As done
in Section 4, we computed the expectation for each benchmark obtained via GCD and ASAp after
2,000 iterations and compared it against the target expectation QP,G of GAD. The sum of least
squares difference between expectations computed by GCD and the expectations of QP,G are 0.677
(INV-BV4), 0.278 (CP), while ASAp achieved lower errors: 0.051 (INV-BV4), 0.201 (CP), indicating
that ASAp more closely aligned with the exact GAD expectations. We did not include SLIA as we
did not have sufficient data for further fine-tuning.
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Table 1: Correctness of solutions for different algorithms.

Benchmark Correct ASAP Correct GCD

SLIA

phone-3-long 0 0
name-combine-2_short 171 319
name-combine-2-long-repeat 0 0
name-combine-4-short 20 11
name-combine-4-long 1588 12
lastname 285 1526
firstname 1960 1997
firstname_small 1754 1997
reverse-name-long 1981 1859
univ_1 67 40
univ_1_short 605 1859
univ_2_short 0 0
dr-name 357 1654
initials_small 69 363
initials_long 540 1584
initials_long-repeat 3 0

INV-BV

find_inv_ne_bvudiv1_4bit 0 0
find_inv_bvugt_bvashr0_4bit 83 49
find_inv_eq_bvlshr0_4bit 635 228
find_inv_eq_bvand_4bit 1599 1305
find_inv_bvule_bvurem0_4bit 1813 1710
find_inv_bvsgt_bvor_4bit 11 10
find_inv_bvugt_bvneg_4bit 84 36
find_inv_bvule_bvurem1_4bit 143 227
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are well-supported by the algorithm formalization and
theoretical results in Section 3, and comprehensive experiments in Section 4, and further
results in the Appendix.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide detailed limitations in Section 4.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems are accompanied by formal proofs.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the hyperparameters we use in Appendix B, model checkpoints
in Appendix C and experimental details in Appendix D to support the reproducibility of our
experiments. The codebase and datasets with detailed instructions will also be released.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will attach datasets we covered in this paper during submission and the
code will be released with detailed instructions.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are included in Appendix B. All experimental details are
included in Appendix D to facilitate a better understanding of our setting.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments are run on 2,000 sampling iterations for which we show plots
for convergence. Given the cost of the experiments we cannot run on multiple seeds, but a
high number of iterations mitigates the problem. Therefore, error bars are not applicable.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide hardware and software details in Appendix A.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and made sure the paper
follows the NeurIPS Code of Ethics in every aspect.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper simply improves sampling. Existing LLM approaches will benefit
from it, but the work will not directly lead to specific broader impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites the original paper or sources whenever an asset is
used. URL of the model checkpoint is included in Appendix C.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will attach the datasets as part of our submission and the code will be
released with well-documented instructions.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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