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Abstract

Neural network sparsification is a promising avenue to save computational time
and memory costs, especially in an age where many successful AI models are
becoming too large to naïvely deploy on consumer hardware. While much work
has focused on different weight pruning criteria, the overall sparsifiability of the
network, i.e., its capacity to be pruned without quality loss, has often been over-
looked. We present Sparsifiability via the Marginal likelihood (SpaM), a pruning
framework that highlights the effectiveness of using the Bayesian marginal likeli-
hood in conjunction with sparsity-inducing priors for making neural networks more
sparsifiable. Our approach implements an automatic Occam’s razor that selects
the most sparsifiable model that still explains the data well, both for structured
and unstructured sparsification. In addition, we demonstrate that the pre-computed
posterior precision from the Laplace approximation can be re-used to define a cheap
pruning criterion, which outperforms many existing (more expensive) approaches.
We demonstrate the effectiveness of our framework, especially at high sparsity
levels, across a range of different neural network architectures and datasets.

1 Introduction

The availability of large datasets and powerful computing infrastructure has fueled the growth of deep
learning, enabling the training of increasingly complex neural networks (NNs). While catalyzing
performance gains across various domains, such as image recognition [1] and text generation [2],
this development has amplified the challenge of over-parameterization [3, 4] and raised concerns
about the increase in model size and computational cost. Over-parameterized neural networks present
significant deployment challenges, particularly in hardware-constrained environments [5, 6]. This has
sparked the research field of NN sparsification or pruning, where the goal is to remove a (potentially
large) number of parameters from a trained network to make it smaller and ultimately cheaper to
apply [7, 8]. However, most existing research in this domain has focused on the question of finding
better pruning criteria, that is, scoring functions that decide which parameters to prune away [9, 4, 10].
This ignores the challenge that many trained networks are not inherently sparsifiable, i.e., they resist
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Figure 1: Overview of our proposed SpaM method. We start by training the network to maximize
the marginal likelihood using the Laplace approximation, while simplifying the Hessian computation
through either the KFAC or a diagonal approximation. We can then use our precomputed posterior
precision as a pruning criterion (OPD). For the case of unstructured pruning, we compute thresholds
to achieve different target sparsities, compute the mask, and apply it, while for the structured approach,
we aggregate the score per layer for easier weight transfer, compute the mask, and then delete the
masked structures to obtain a smaller model.

effective pruning, regardless of the chosen criterion. Indeed, standard training of NNs does not
encourage sparsifiability at all, so it should not be surprising that such trained NNs would use all of
their parameters to some degree to fit the data.

Our work tackles this problem by modifying the training process itself, showing that more sparsifiable
networks can be achieved through Bayesian model selection using the marginal likelihood [11, 12] in
conjunction with an adequate prior that will induce such sparsifiability. We call this Sparsifiability
via the Marginal likelihood, or SpaM. Our approach implements an automatic Occam’s razor [13],
guiding the training process towards models that are faithfully fitting the data using only a small subset
of their available parameters, such that the remaining ones can be pruned afterwards. This is achieved
by optimizing thousands of prior hyper-parameters to adaptively regularize weight magnitudes. We
make use of recent advances in Laplace inference for Bayesian neural networks (BNNs) [12, 14],
allowing us to approximate the marginal likelihood [11] efficiently.

Once trained, we can use any pruning criterion to more effectively sparsify these networks. Notably,
the pre-computed posterior precision of the Laplace approximation obtained from the marginal
likelihood training readily translates into a powerful pruning criterion, which we call Optimal
Posterior Damage (OPD), similar to the popular Optimal Brain Damage [OBD; 3]. Since it reuses
existing computations, it is cheaper than many existing criteria in practice, and it often performs on
par or even better.

Extensive empirical evaluations demonstrate the strength of our SpaM approach and the derived
OPD pruning criterion in both unstructured and structured sparsification tasks across various datasets
and architectures. Moreover, they show that our framework strikes a compelling balance between
performance and computational cost.

We make the following contributions:

• We propose SpaM, a novel approach to improve the sparsifiability of neural networks
during training, using Bayesian model selection with the Laplace-approximated marginal
likelihood, which works well in structured and unstructured pruning scenarios and with
different pruning criteria.

• We provide evidence-based recommendations for prior selection within the SpaM framework,
showing that some priors can improve sparsifiability significantly better than others.
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• We present OPD, a cheap pruning criterion similar to the popular OBD, which performs
comparably or better than many other criteria in practice and conveniently reuses computa-
tions performed in the context of SpaM.

2 Background

We use deep neural networks to model learning tasks with inputs xn ∈ RD and targets yn ∈ RC

collected in a dataset D = {(xn,yn)}Nn=1 of N pairs. A model is parameterized by weights
θ ∈ RP , and maps from inputs to targets using the neural network function fθ(x). Assuming the
data are i.i.d., we have a likelihood p(D|θ) =

∏N
n=1 p(yn|fθ(xn)). We minimize the negative log

likelihood, which corresponds to common losses like the cross-entropy in classification. Additionally,
regularization in the form of weight decay is commonly used and corresponds to a Gaussian prior
on parameters p(θ) = N (θ;0,diag(δ)) with diagonal precision. We employ Gaussian priors due to
their analytical tractability and seamless integration with the Laplace approximation, which requires
differentiability. This is essential for maintaining computational efficiency in our framework to
approximate the marginal likelihood in a practical and scalable manner. Furthermore, Gaussian
priors enable automatic relevance determination by allowing each parameter to have its own variance,
facilitating the regularization process without introducing significant computational overhead.

2.1 Marginal Likelihood for Deep Learning

The marginal likelihood serves as the probabilistic foundation for model evaluation and selection.
It provides an objective to optimize the tradeoff between data fit and model complexity, akin to
the concept of Occam’s razor [13, 15], by quantifying how well a modelM, with all its inherent
uncertainties, explains the observed data:

p(D|M) =
∫
p(D|θ,M) p(θ|M) dθ. (1)

However, it requires computing an intractable integral over all neural network parameters.

The Laplace approximation [LA, 16] provides a tractable and effective approximation to the
marginal likelihood for deep learning [12]. It arises from a second-order Taylor approximation around
an estimate of the mode, θ∗, resulting in

log p(D|M) ≈ log p(D,θ∗|M)− 1
2 log |

1
2πPθ∗(M)|, (2)

where Pθ∗ is the posterior precision given by the Hessian of the negative log joint distribution,
−∇2

θ log p(D,θ|M), evaluated at θ∗. Defining Hθ∗ as the Hessian of the negative log likelihood
objective −∇2

θ log p(D|θ,M), the posterior precision decomposes as Pθ∗ = Hθ∗ + diag(δ).

In practice, the Hessian of the negative log likelihood is often approximated by the positive semidefi-
nite generalized Gauss-Newton [GGN, 17],

Hθ ≈
∑N

n=1∇θfθ(xn)∇2
f log p(yn|fθ(xn))∇T

θfθ(xn), (3)

which relies on the Jacobians of the neural network function and second derivative of the negative log
likelihood at the output. Further, it is amenable to efficient structured approximations like diagonal or
layer-wise variants [e.g., 18, 19].

Diagonal and block-diagonal GGN approximations are efficient, and therefore commonly used for
Laplace approximations in deep learning [20, 14]. The diagonal LA is cheap in terms of storage and
computation by only modeling the marginal variances of parameters. Kronecker-factored LA [KFAC
LA, 20] instead relies on a block-diagonal approximation to the GGN of the parameters θl in the lth
layer,

Hθl
≈ Al ⊗Gl, (4)

where the factors are given by the outer products of pre-activations and Jacobians w.r.t. the output of
a layer, respectively [18, 19]. Here, Al and Gl are the uncentered covariances of the respective layer
inputs and output gradients. The top left of Figure 1 shows a comparison of both structures.

2.2 Neural Network Pruning

The goal of the pruning procedure is to remove parameters from θ without affecting the quality of
the model output fθ(x). While unstructured pruning consists in zeroing individual entries θp of the
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weight matrices, structured pruning consists in deleting entire structured sets of parameters g, like
rows or columns [21, 22]. The results of structured pruning enable smaller matrix multiplications
that directly provide real-world efficiency gains on most hardware, including GPUs.

Pruning procedures usually follow three steps: (1) We use a scoring function S(·) to evaluate the
importance of each individual parameter S(θp) for unstructured pruning, or of a structured set of
parameters S(g) for structured pruning. (2) We compute a binary mask m with the same dimensions
as θ, which assigns 0 values to parameters whose unstructured or structured pruning scores are below
a threshold T , and 1 otherwise. While the threshold T is determined based on the target sparsity
across layers for global pruning, it is determined per layer for uniform pruning [21]. (3) We apply
the mask on the weight matrix with element-wise multiplication, m ◦ θ, to effectively remove the
least important parameters. Alternatively, structured pruning enables us to directly remove rows or
columns whose mask values are 0 to reduce weight matrix dimensions.

3 Shaving Weights with Occam’s Razor

We identify sparsifiable neural networks by automatically regularizing (groups of) parameters to have
small magnitudes, to facilitate pruning the least important ones, within a probabilistic framework.
Specifically, we utilize priors that regularize parameters in potentially structured ways, leading to
smaller magnitudes. To optimize the resulting prior hyperparameters, we employ the Bayesian
marginal likelihood as a differentiable objective function, effectively implementing a Bayesian
variant of Occam’s razor that drives irrelevant parameters towards smaller absolute magnitudes. The
regularized networks can then be pruned with any method. However, we additionally propose to reuse
the computed posterior precision for sparsification as a cheap and effective criterion.

3.1 Structured Priors for Regularization

To reduce the magnitude of parameters and make them more amenable to pruning, we introduce
structured priors and show how to combine them with diagonal and KFAC Laplace approximations.
While a scalar prior, corresponding to weight decay, is the most common, it suggests that all
parameters in a neural network are equally relevant and favors a uniform magnitude of parameters,
which is suboptimal for pruning [23, Sec. 3.6].

Instead of scalar priors, we regularize parameters with different strengths using layer-, unit-, and
parameter-wise priors. Layer-wise priors regularize individual layers differently and have been shown
to aid pruning and improve generalization [12, 24, 25, 26]. Unit-wise regularization has been used
mostly in traditional statistics, for example, for group sparsity [27], but recently also for channels or
feature dimensions in neural networks [28, 29].

We consider different priors in the context of the Laplace approximation for marginal likelihood
optimization and pruning: Scalar priors correspond to standard weight decay and are identical for
all weights. Layer-wise priors provide a scalar regularizer δl per layer that is stacked into a vector
δ in line with the number of parameters per layer. Parameter-wise priors allow to specify δp for
each parameter p individually. We define unit-wise priors so that each unit, which denotes a channel
for convolutional and a hidden neuron for fully-connected layers, has a regularization strength for
incoming and outgoing weights separately. Thus, a weight θp that connects unit i at layer l-1 with unit
j in layer l has prior N (0, [δl-1]i · [δl]j), that is, each layer l with Ml hidden units has a prior vector
δl ∈ RMl . A weight is thus regularized more strongly whenever both its in- and output neurons are.

Our different priors are simple to combine additively with a diagonal Hessian approximation for the
Laplace approximation (Equation (2)) but not with a KFAC structure. For that reason, so far, only
scalar or layer-wise priors have been used for KFAC posterior approximations [14]. The main issue
is that we have to preserve the Kronecker factors to keep the resulting memory cost low. For scalar or
layer-wise priors, this can be achieved by an eigendecomposition of the individual factors

A⊗G+ Iδ
def
= QAΛAQ

T
A ⊗QGΛGQ

T
G + Iδ = (QA ⊗QG)(ΛA ⊗ΛG + Iδ)(QT

A ⊗QT
G), (5)

which means that the precision only needs to be added to the diagonal eigenvalues and no Kronecker
product needs to be calculated for inversion or determinant calculation.

To add a diagonal prior precision δl to the KFAC of the lth layer, we derive an optimal approximation
in the KFAC eigenbasis, so as to maintain the Kronecker-factored structure of the posterior:
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Proposition 3.1 (Diagonal Prior in KFAC Eigenbasis). Considering the Frobenius norm, the optimal
diagonal perturbation of the KFAC eigenvalues ΛA ⊗ΛB to add a diagonal prior precision is given
by ΛA ⊗ΛB + δ̂ with mat(δ̂) = (QT

G)
2mat(δ)Q2

A where the square is element-wise and mat(·)
reshapes the vector to match the parameter shape used in KFAC. Thus, it can be computed efficiently
without computing a Kronecker product.

We provide the proof in Appendix A. The approach is similar to that of George et al. [30], who
correct KFAC’s eigenvalues towards the diagonal Gauss-Newton, but solves the problem of adding a
full-rank diagonal instead of a rank-1 outer product to the KFAC eigenbasis.

3.2 Learning Regularization with the Marginal Likelihood

To optimize the potentially millions of regularization parameters, for example, arising from a
parameter-wise prior, we employ the marginal likelihood as a differentiable objective. Optimizing
regularization parameters has the advantage that different (groups of) parameters will be regularized
differently and, therefore, become easier to prune. While it would be intractable to optimize that
many regularization parameters using validation-based forms of optimization, the marginal likelihood
can be estimated and differentiated during training [12, 31, 32].

Automatically determining the relevance of parameter-groups (ARD) is a common approach in
Bayesian learning that can lead to sparsity and smaller parameter magnitudes [33, 34] and has been
used especially in linear models. The marginal likelihood provides an objective that automatically
regularizes irrelevant parameter groups more to lower their magnitude. Therefore, it implements a
Bayesian variant of Occam’s razor, finding the simplest model that explains the data well [13].

Mathematically, all the prior parameters δ constitute the hyperparameters of the modelM in the log
marginal likelihood (Equation (1)) that we optimize interleaved with the neural network parameters.
When optimizing the prior parameters, we use gradient ascent

δt+1 ← δt + α∇δ log p(D|δ)|δ=δt
, (6)

or adaptive optimizers like Adam [35]. We follow Immer et al. [12] and optimize the Laplace
approximation to the marginal likelihood after an initial burn-in phase with a certain frequency. We
describe the optimization process and the related hyperparameters in Appendix D.4

3.3 Optimal Posterior Damage (OPD)

While sparsity regularization learned by marginal likelihood training can be advantageously combined
with any pruning criterion, like Single-shot Network Pruning [SNIP; 36], variants of Gradient Signal
Preservation [GraSP; 37, 38, 39], or magnitude pruning [7], we further propose a new pruning
criterion that uses our Laplace approximation and extends the unstructured Optimal Brain Damage
(OBD) pruning criterion [3]. While OBD traditionally uses the Hessian (approximation) Hθ of the
loss, we propose to adapt it to use the posterior precision Pθ, which additionally includes the prior
precision δ. The importance score S(θp) for parameter θp becomes

S(θp) = Ppp × θ2p (7)

where Ppp denotes the posterior precision for the parameter θp, extracted from the diagonal of the
posterior precision matrix Pθ . We call this novel posterior-based pruning criterion Optimal Posterior
Damage (OPD). Intuitively, individual weights with high scores indicate certainty of the posterior
distribution and a significant contribution to the model’s functionality, as indicated by the magnitude.

We also propose a structured version of OPD by aggregating the score over a set of parameters g, i.e.,

S(g) =
∑
p∈g

S(θp) =
∑
p∈g

Ppp × θ2p (8)

In practice, the structured set of parameters g corresponds to all parameters along one dimension of the
weight matrix inside a layer, in order to reduce the size of the matrix multiplications. Since subsequent
layers might have significantly different weight matrix dimensions impacting the magnitude of the
aggregated sum, we opt for uniform structured pruning to guarantee a fair pruning treatment across
all layers. This means we prune each layer by the same target percentage, reducing the dimensions
of each layer by the same proportion relative to the unpruned model. This approach contrasts with
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Table 1: Accuracies of pruned ResNets on CIFAR-10. The best training method for each pruning
criterion is highlighted in green, where we see that SpaM improves performance for all criteria except
the random baseline. The best performances overall at each sparsity level are shown in bold, showing
that our cheap OPD criterion outperforms the others at high sparsities.

Criterion Training Sparsity (%)
80 85 90 95 99

OPD MAP 88.06 (±0.12) 82.32 (±0.44) 64.08 (±1.32) 37.52 (±2.34) 17.32 (±1.01)
SpaM 90.78 (±0.66) 90.78 (±0.65) 90.68 (±0.65) 89.98 (±0.61) 66.28 (±5.89)

GraSP MAP 82.87 (±0.48) 68.78 (±1.88) 48.65 (±2.69) 26.46 (±1.86) 15.75 (±0.80)
SpaM 91.50 (±0.66) 90.94 (±0.65) 89.42 (±0.71) 82.18 (±2.65) 41.48 (±7.95)

SNIP MAP 53.96 (±2.72) 37.74 (±2.21) 26.74 (±3.17) 13.88 (±0.87) 12.58 (±0.36)
SpaM 67.40 (±5.68) 52.62 (±6.84) 33.75 (±5.71) 17.06 (±2.23) 11.90 (±0.51)

Magnitude MAP 88.17 (±0.12) 81.92 (±0.37) 61.60 (±1.11) 32.88 (±1.52) 16.12 (±0.90)
SpaM 91.55 (±0.64) 90.92 (±0.64) 89.23 (±0.62) 81.80 (±2.22) 41.78 (±7.20)

Random MAP 11.25 (±0.48) 12.15 (±0.92) 11.65 (±0.62) 10.45 (±0.17) 10.27 (±0.17)
SpaM 11.00 (±0.48) 10.47 (±0.86) 10.56 (±1.15) 10.01 (±0.45) 9.81 (±0.61)

achieving a global target sparsity that varies across layers, which can make it more difficult to
consistently compress and adjust the model’s size.

Moreover, as removing a full structure is more aggressive, we also apply gradual pruning during
training. Finally, we omit pruning the final layer to mitigate overly strong impact on classification
accuracy and computational stability [40].

When using our SpaM approach, the precomputed precision matrix from the Laplace approximation
can be reused to compute OPD without computational overhead, in contrast to the other pruning
criteria, which often require additional computations to be performed. Note that we will also show in
our experiments that OPD additionally avoids the need for potentially expensive fine-tuning after
pruning. Moreover, even in the case of maximum a posteriori (MAP) training, Laplace approximations
of the inverse Hessian at θ∗ can be additionally computed to approximate OPD. Finally, the OPD
criterion can not only be computed post-hoc after training, but even online during training.

4 Related work

Laplace-approximated BNNs. From the early inception of Bayesian neural networks [41, 42],
the Laplace approximation was a popular inference method [16]. In recent years, it has undergone
a renaissance [18, 19, 20, 14], including critical work on using more scalable approximations for
the associated marginal likelihood in the context of model selection [11, 12, 43], which we use in
our framework. To the best of our knowledge, we are the first to study the benefits of this Laplace-
approximated marginal likelihood in the context of sparsification of deep neural networks. However,
similar methods that automatically quantify the relevance (ARD) of parameters have been derived and
used for linear, bilinear, and kernel models [34, 44, 45] as an alternative to the Lasso. More recently,
van der Ouderaa et al. [46] and Bouchiat et al. [47] used the ARD mechanism in deep learning to
select layers and features by regularization, respectively.

Pruning neural networks. Various pruning criteria have been proposed to determine the importance
of model parameters. Many criteria prune based on the weight magnitude [7, 48, 49] but usually
required additional fine-tuning to recover accuracy. Sun et al. [8] proposed to combine activation
and weight norms for pruning without fine-tuning. Other approaches include pruning using first-
order information based on connectivity [36] or synaptic flow conservation [50], or second-order
information aiming at preserving gradient flow [37, 38, 39]. Recently, van der Ouderaa et al. [51]
focused on pruning LLMs based on a second-order Taylor expansion. In contrast, OPD uses second-
order information provided by the posterior precision given by the Laplace approximation. Beyond
pruning criteria, there have been many approaches to prune at initialization [36, 37, 50], during
training [52, 53], and after training [7, 8]. In particular, multiple works proposed to leverage specific
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Figure 2: Predictive performance as a function of sparsity level in unstructured pruning. We see
that SpaM improves the performance over MAP training across most architectures, datasets, and
pruning criteria, and that OPD often outperforms the other pruning criteria. Both of these effects are
particularly visible at higher sparsity levels. The black star in each subfigure denotes the performance
of the unpruned models, which is often identical to the performance of models pruned at 20% sparsity.

training schemes promoting zero-invariant parameter groups for structured pruning [54, 55]. In
contrast, SpaM induces sparsifiability during training, and is agnostic about the criterion.

5 Experiments

We conduct experiments on various datasets and models and outline our experimental setup in
detail in Appendix D. We compare MAP training with our proposed SpaM approach with different
priors, comparing our OPD pruning criterion with random pruning, magnitude pruning, SNIP
[36], GraSP [37, 38], and SynFlow [50]. We show that SpaM improves pruning performance
with different pruning criteria, especially at higher sparsities, and that our OPD criterion often
outperforms the other criteria. This observation extends not only to predictive accuracy, but
also uncertainty estimation. Moreover, we show that the choice of prior can play a significant role,
and we introduce parameter-wise and unit-wise priors for the KFAC approximation. Finally,
we show that SpaM and OPD also work in a structured pruning setting, leading to significant
computational benefits. The code for our methods and experiments can be found at https:
//github.com/fortuinlab/spam-pruning.

5.1 SpaM Improves Performance at High Sparsities

We compare SpaM to MAP training with different pruning criteria, including OPD, across different
models on tabular, vision, and language datasets. For SpaM in this unstructured pruning context, we
use the diagonal Laplace approximation with a parameter-wise prior. Encouragingly, MAP and SpaM
reach comparable performance during training, showing that the increased sparsifiability of SpaM
comes at no additional cost in unpruned performance (see Figure B1 in the appendix).

We see in Table 1 and Figure 2 that SpaM drastically improves the performance for many pruning
criteria, especially magnitude pruning, GraSP, and OPD. We also see that OPD, despite being a
cheap byproduct of our marginal likelihood computation, often outperforms the other pruning criteria,
especially at higher sparsities. For instance, at 95 % pruning rate (i.e., with 20x fewer parameters), our
combination of SpaM and OPD still retains almost the same performance as the unpruned model on
vision tasks, while the other pruning criteria with MAP training have dropped to essentially unusable
performance levels at this sparsity.
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Figure 4: Comparison of different priors and Hessian approximations for SpaM-OPD unstructured
pruning. The unit-wise and parameter-wise priors show better performance at high sparsity levels,
with the parameter-wise one bridging the gap between Diag and KFAC LA.

Fine-tuning. We see in Figure B4 in the appendix that some of this performance difference can be
remedied by costly fine-tuning of the networks after pruning, which however still does not allow the
other methods to reach the full SpaM-OPD performance. Interestingly, in the case of OPD, this does
not further improve its already near-optimal performance.

Online pruning. Figure B5 in the appendix shows that our online version of SpaM, which uses the
marginal likelihood and OPD during training to iteratively prune the network, reaches comparable
performance levels to the post-hoc version, thus offering a computationally even more convenient
way to effectively sparsify neural networks.

Uncertainty estimation. Given that SpaM is a Bayesian method, it does not only offer high predictive
accuracies but also calibrated uncertainty estimates. Indeed, we see in Figure 3 that the trends we
have seen for accuracy also apply for negative log-likelihood, expected calibration error, and the
Brier score. Again, SpaM improves the uncertainty estimates over MAP training, OPD outperforms
most other criteria, and we achieve well-calibrated models up until very high sparsity levels. Note
that the random baseline also achieves a low ECE at high sparsity levels because it essentially reverts
to random guessing, which is a known weakness of the ECE metric [56].
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SpaM (using a unit-wise prior) improves performance over MAP and that OPD mostly outperforms
other pruning criteria, especially at higher sparsity levels. The black stars reflect the performance of
the unpruned models.
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Figure 6: Structured pruning with LeNet on FashionMNIST, using unit-wise priors. We see that
our SpaM-OPD dominates the Pareto frontier, in terms of predictive performance as a function of
computational time and memory cost, and is particularly competitive at lower costs.

5.2 Influence of Priors on Sparsifiability

To understand the influence of the prior and Hessian approximation on performance in our proposed
SpaM-OPD approach, we compare diagonal and KFAC approximations with scalar, layer-wise,
unit-wise, and parameter-wise priors. Note regarding the latter two, that in this work, we are the
first to implement them for the KFAC approximation, thus contributing to the general framework of
Laplace-approximated BNNs [14], independent of the pruning use case.

We see in Figure 4 that our newly introduced unit-wise and parameter-wise priors for KFAC indeed
outperform the others, especially at high sparsities. When comparing KFAC to the diagonal ap-
proximation, we see that KFAC often leads to slightly better performance at lower sparsity levels.
However, we also see that the relatively simple choice of parameter-wise prior and diagonal Hessian
approximation, as used in our previous experiments above, is a strong baseline across the board and
can be recommended as a safe default option for unstructured pruning. Note that the unit-wise priors
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can be especially useful for structured pruning, as we will see in the following experiment. More
detailed prior comparisons can be found in Appendix B.3.

5.3 SpaM Extends to Structured Sparsification

Here, we study the effect of SpaM and OPD in the more challenging setting of eliminating entire
network structures, such as convolutional kernels. Studying different network architectures, we
aim to generalize our unstructured pruning approach to the setting of structured pruning, where the
structures can be freely defined depending on the use case.

Encouragingly, we see in Figure 5 that our findings from the unstructured case transfer qualitatively
also to the structured case, with SpaM-OPD outperforming the baselines at high sparsities. Crucially,
while the sparsity patterns generated by unstructured pruning are more difficult to translate into
computational benefits, structured pruning directly leads to computational savings on standard GPUs
(see also Figure B11 in the appendix). We see in Figure 6 that SpaM-OPD dominates the Pareto
frontier of the tradeoff between performance and computational cost at high sparsities (i.e., low costs),
yielding 10x–20x savings in FLOPS and memory consumption with only minimal deterioration in
performance. This positions our proposed framework as a potentially promising approach for the
deployment of AI models in resource-constrained environments.

6 Conclusion

We have shown that the Bayesian marginal likelihood, with its associated Occam’s razor effect, can be
used during training to select neural network models that are inherently more sparsifiable. Crucially,
we have shown that this sparsifiability extends across different pruning criteria and enables large
gains in performance and uncertainty estimation, especially at high sparsity levels. Conveniently,
the computations needed for the marginal likelihood estimation using the Laplace approximation
can be re-used to define a novel pruning criterion called OPD, which outperforms many existing
(more expensive) criteria in our experiments. We have also presented guidelines for choosing priors
within our framework and have shown that even in the challenging setting of structured pruning, our
proposed SpaM approach can yield up to 20x savings in computational time and memory, with only
small reductions in performance. Our work thus offers a promising path towards pruning large AI
models at high sparsity levels for deployment on resource-constrained devices.

Limitations. Our approach naturally inherits some limitations of the Laplace approximation, for
instance, the fact that it only captures the local geometry of a single posterior mode or potential
numerical instabilities in the Hessian computations when used with low-precision weights. Moreover,
it accrues an additional computational cost compared to MAP training, which is then, however,
amortized by the computational savings during the deployment of the sparsified model.
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A Proof for Diagonal Prior in a Kronecker-factored Eigenbasis

Proposition A.1 (Diagonal Prior in KFAC Eigenbasis). Considering the Frobenius norm, the optimal
diagonal perturbation of the KFAC eigenvalues ΛA ⊗ΛB to add a diagonal prior precision is given
by ΛA ⊗ΛB + δ̂ with mat(δ̂) = (QT

G)
2mat(δ)Q2

A where the square is element-wise and mat(·)
reshapes the vector to match the parameter shape used in KFAC. Thus, it can be computed efficiently
without computing a Kronecker product.

Proof. We prove this result in two steps. First, we show what the optimum looks like in terms of
the Frobenius norm. Second, we show how to simplify the results to enable efficient computation
without computing Kronecker products. We have a KFAC Hessian approximation A ⊗ B with
A ∈ RDin×Din and B ∈ RDout×Dout where the dimensionalities D· depend on the layer type [18]. In
the case of a fully-connected layer, these are simply the dimensionality of the in- and output hidden
representation. The same layer will have Din ×Dout parameters and thus the corresponding diagonal
prior precision is given by δ ∈ RDinDout . For the Laplace approximation, the eigendecomposition of
individual Kronecker factors is already computed as A = QAΛAQ

T
A and similarly for G as shown

in Equation (5). Recall also that diag(·) turns a vector into a diagonal matrix and extracts the diagonal
entries of a matrix into a vector. We are interested in the Frobenius-optimal diagonal perturbation of
the eigenvalues so as to maintain the efficiency structure of the KFAC, and, thus, the downstream
Laplace approximation:

argmin
δ̂

∥(QA ⊗QG)(ΛA ⊗ΛG + diag (δ̂))(QT
A ⊗QT

G)

− (QA ⊗QG)(ΛA ⊗ΛG)(Q
T
A ⊗QT

G) + diag (δ)∥2F
=argmin

δ̂

∥ΛA ⊗ΛG + diag (δ̂)−ΛA ⊗ΛG + (QT
A ⊗QT

G) diag (δ)(QA ⊗QG)∥2F

=diag ((QT
A ⊗QT

G) diag (δ)(QA ⊗QG)),

where we first multiplied the orthogonal bases from left and right and then realized that the values of
δ̂ need to be set to the entries of the prior δ projected into the basis.

Naïvely, computing the optimum of δ̂ would require expanding the Kronecker product above and lead
to a potentially intractable complexity of O(D2

inD
2
out). However, it is possible to simplify it further to

maintain efficient computation: For simplicity, consider the case without Kronecker factorization.
We have

diag (QT diag (d)Q) = (QT ◦QT)d,

where ◦ is the element-wise Hadamard product. So we can express the diagonal of the matrix-matrix
product as a matrix-vector product with the diagonal d as the vector. In the Kronecker-factored case,
we need just one more simplification:

diag((QT
A ⊗QT

G) diag (δ)(QA ⊗QG)) = ((QT
A ⊗QT

G) ◦ (QT
A ⊗QT

G))δ

= ((QT
A ◦QT

A)⊗ (QT
G ◦QT

G))δ

= vec((QT
G ◦QT

G)mat(δ)(QA ◦QA))

= vec(QT
G)

2 mat(δ)Q2
A,

where we have used the mixed-product property of the Kronecker product and the properties for
multiplying a Kronecker-product with a vector. The vec operator “flattens” a matrix, that is, turns a
Dout ×Din matrix into a DoutDin vector, and mat does the opposite. The final approximation δ̂ can
be computed efficiently in O(D2

in +D2
out).

B Additional Results

B.1 Baseline training

Figure B1 illustrates that both MAP and SPAM achieve similar levels of performance throughout
the training process. This observation underscores that SPAM’s enhanced sparsifiability is achieved
without compromising the unpruned performance. Furthermore, the comparable unpruned accuracies
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Figure B1: Training curves for MAP and SpaM training with different priors and Hessian approxima-
tions. We see that all methods achieve a similar performance by the end of training.

of SPAM and MAP models indicate that SPAM’s sparsifiability benefits are not merely a result of
higher baseline accuracies, but rather a distinct advantage offered by the SPAM methodology. The
sparsification methods are performed on these models in a way that once the model is trained for a
specific seed, we copy it and use it to perform the different sparsification methods; we repeat the steps
for a minimum of 4 different seeds, ensuring the robustness of our findings. In addition, the model
trained with SpaM only uses a single forward pass over the pruned architecture during inference,
thus guaranteeing a fair comparison with the baselines. The posterior is solely used to estimate the
marginal likelihood during SpaM training.

B.2 Tables

In tables B1 and B2, we present our results comparing different methods using MAP and SpaM with
various priors. Notably, SpaM with Diag LA and parameter-wise priors significantly outperforms
MAP and other SpaM variants at high sparsity levels.

B.3 Prior effects

Figure B2 and Figure B3 illustrate our findings when applying SpaM with various priors for both
OPD and GraSP. Notably, Diag LA, using parameter-wise priors, excels in high-sparsity scenarios,
even with complex models and datasets like ResNets. Furthermore, for MLPmixer, we observe
that SpaM variants, employing parameter-wise priors and layerwise approaches, preserve baseline
accuracy even at extreme sparsities of 99%.

B.4 Unit-wise and Parameter-wise KFAC for GraSP

As shown in Section 5, networks trained using SpaM and parameter-wise priors were able to maintain
a high accuracy at challenging sparsity levels up to 99%. Moreover, parameter-wise KFAC and
unit-wise priors showed high performance for the OPD pruning approach. We show in Figure B3
that the combination of SpaM and these priors with the GraSP criterion yield qualitatively similar
performance rankings as with our OPD criterion.

B.5 One Shot Efficiency

As seen in Figure B4, our proposed post-hoc pruning criterion, OPD, consistently demonstrates
stable performance across diverse model architectures and datasets, achieving significant sparsity
levels without the need for fine-tuning. It seamlessly operates either post-training or with pre-trained
models, providing a highly flexible and versatile solution.
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Table B1: Comparison of pruning accuracies of SpaM training with different pruning criteria, Hessian
approximations, and priors for post-hoc pruning LeNet on MNIST.

Sparsity (%) 20 40 60 70 75 80 85 90 95 99
Criterion Approximation Prior

GraSP

Diag
parameter-wise 98.75 98.75 98.74 98.75 98.75 98.75 98.75 98.74 98.72 52.19
layerwise 99.08 99.09 99.10 98.96 98.50 97.79 93.50 78.93 63.71 16.67
scalar 99.11 99.11 99.12 98.84 98.41 97.74 87.67 57.99 44.60 15.73

KFAC layerwise 99.25 99.25 99.26 99.01 98.74 97.86 91.48 82.78 50.75 13.48
scalar 99.24 99.24 99.24 99.02 98.58 98.02 92.03 73.64 42.18 12.23

MAP MAP 99.01 99.01 99.01 98.99 98.91 98.75 98.28 96.10 77.30 20.43

SNIP

Diag
parameter-wise 98.73 98.73 98.68 97.95 95.70 83.90 57.55 20.47 13.00 9.10
layerwise 99.08 98.34 46.42 17.69 21.89 14.61 14.47 13.50 11.94 9.83
scalar 99.11 99.11 98.56 91.82 84.70 62.25 34.56 10.75 16.28 16.70

KFAC layerwise 99.25 99.20 79.59 27.70 43.76 23.85 10.28 16.19 19.90 10.27
scalar 99.24 99.24 98.56 94.82 70.25 48.28 27.02 26.88 25.95 9.86

MAP MAP 99.01 99.01 98.95 98.31 97.21 94.26 87.19 65.42 25.15 12.56

OPD

Diag
parameter-wise 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 75.92
layerwise 99.08 99.09 99.08 99.07 99.04 98.98 98.84 98.40 94.71 36.25
scalar 99.11 99.11 99.10 99.11 99.06 98.89 98.28 95.32 74.78 16.12

KFAC layerwise 99.25 99.25 99.24 99.23 99.18 99.11 98.95 98.60 95.90 28.16
scalar 99.24 99.24 99.24 99.16 99.10 98.90 97.97 95.88 76.11 27.38

MAP MAP 99.01 99.01 99.03 98.99 98.95 98.90 98.71 98.17 92.82 27.19

Magnitude

Diag
parameter-wise 98.72 98.72 98.72 98.70 98.69 98.67 98.65 98.59 98.03 38.61
layerwise 99.08 99.09 99.08 99.06 99.01 98.92 98.46 94.20 39.86 10.19
scalar 99.11 99.11 99.09 99.12 99.07 98.98 98.48 95.69 74.30 13.53

KFAC layerwise 99.25 99.25 99.22 99.18 99.08 98.95 98.38 91.93 28.52 9.80
scalar 99.24 99.24 99.20 99.14 99.04 98.92 98.62 97.08 84.66 22.21

MAP MAP 99.01 99.01 98.99 98.96 98.93 98.85 98.57 97.69 88.82 15.42

Random

Diag
parameter-wise 55.88 25.95 11.15 10.88 11.13 10.56 11.88 11.35 9.95 9.81
layerwise 78.86 17.47 22.35 14.23 12.06 11.80 10.18 12.82 9.35 9.80
scalar 88.75 60.17 25.35 15.98 14.26 11.91 8.63 9.74 9.05 9.80

KFAC layerwise 89.90 18.70 20.36 14.13 14.56 12.61 9.72 12.00 8.93 9.80
scalar 90.46 34.14 19.98 12.72 8.49 11.40 10.08 10.54 9.74 9.80

MAP MAP 79.03 43.25 22.86 9.68 10.34 9.96 11.50 9.50 10.85 9.80

B.6 Online pruning.

Figure B5 shows that our online version of SpaM, which uses the marginal likelihood and OPD during
training to iteratively prune the network, reaches comparable performance levels to the post-hoc
version, thus offering a computationally even more convenient way to effectively sparsify neural
networks. In the online approach, we prune jointly during SpaM training to reach a target sparsity;
we perform the sparsity updates (dynamic masking) based on the marginal likelihood optimization
parameters we refer to as n_epochs_burnin and marglik_frequency. Here, n_epochs_burnin specifies
when we start the marginal likelihood optimization and marglik_frequency specifies after how many
epochs we update the estimate. Pruning occurs only after a new marginal likelihood calculation,
and the sparsity percentage is adjusted incrementally to reach the target by the training’s end. The
curve of OPD-Online reflects training progress (x-axis explicitly epochs / reached sparsity), which
explains the curve of LeNet on CIFAR-10 that is still converging while pruning. At the same time,
the one-shot post-training approach reflects converged models copied and pruned at different sparsity
levels.

B.7 Comparing SpaM to L1 regularization

We conducted experiments using L1 regularization, which is well-known for inducing sparsity in
neural networks. To optimize performance, we performed an extensive search for the appropriate L1
regularization coefficient and applied various strengths during training.

We found that SpaM consistently outperforms L1 regularization, achieving much higher levels
of sparsity while maintaining the network’s predictive performance as shown in Figure B6. L1
regularization, while effective at inducing sparsity, often proved too aggressive, leading to networks
that were excessively pruned, negatively affecting performance. In contrast, our method offers a key
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Table B2: Comparison of pruning accuracies of SpaM training with different pruning criteria, Hessian
approximations, and priors for post-hoc pruning MLP-Mixer (2 blocks) on MNIST.

Sparsity (%) 20 40 60 70 75 80 85 90 95 99
Method Approximation Prior

GraSP

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.51 98.52 98.51 98.52 98.50
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 90.35
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 92.54

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.11 95.45
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.15 97.92 57.14
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.21 64.88

MAP MAP 98.41 98.41 98.38 98.38 98.33 98.35 98.17 97.38 89.43 38.89

SNIP

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.52 98.49 97.70 83.76 20.00
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 12.41
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 75.84

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 97.84 32.84
layerwise 98.16 98.16 98.16 98.16 98.15 98.15 98.14 98.10 92.04 28.16
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 97.89 54.69

MAP MAP 98.38 98.36 98.34 98.22 98.02 97.44 96.04 92.22 81.42 35.36

OPD

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.51 98.52 98.52 98.51 98.50
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 96.06
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 96.47

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 96.97
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.15 97.84 86.81
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.23 84.91

MAP MAP 98.38 98.39 98.38 98.35 98.34 98.32 98.20 97.72 94.26 57.66

Magnitude

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.52 98.52 98.51 98.52 98.48
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.70 76.89
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 96.24

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 94.22
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.14 97.89 36.31
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.24 82.57

MAP MAP 98.38 98.39 98.38 98.36 98.34 98.30 98.16 97.77 93.56 53.16

Random

Diag
parameter-wise 90.09 62.13 39.76 31.51 19.52 22.50 18.93 14.84 15.57 11.81
layerwise 83.18 53.42 32.12 28.44 22.51 22.82 18.88 17.00 12.95 11.02
scalar 85.66 57.33 37.74 25.43 23.45 20.28 22.31 16.64 14.89 9.85

KFAC
parameter-wise 85.95 58.41 39.27 27.96 24.64 21.94 18.72 17.04 13.66 9.37
layerwise 87.00 58.40 41.93 33.39 30.62 27.91 20.77 21.02 14.07 10.49
scalar 90.16 64.54 40.36 34.11 30.63 28.92 17.88 18.35 13.82 11.47

MAP MAP 97.26 87.54 65.94 52.32 47.22 44.12 40.72 22.46 16.59 8.87

Table B3: NLL of unstructured pruned ResNets on CIFAR-10. The best training method for each
pruning criterion is highlighted in green, showing that SpaM improves performance over MAP for
most criteria. The best performances (lowest NLL) overall at each sparsity level are shown in bold,
showing that our OPD criterion outperforms the others at most sparsity levels.

Criterion Training Sparsity (%)
70 75 80 85 90 95 99

OPD MAP 0.53 ± 0.0013 0.52 ± 0.0011 0.54 ± 0.0011 0.69 ± 0.0036 1.31 ± 0.0086 2.08 ± 0.0190 2.62 ± 0.0106
SpaM 0.36 ± 0.0016 0.36 ± 0.0016 0.37 ± 0.0014 0.38 ± 0.0022 0.44 ± 0.0056 0.80 ± 0.0270 3.43 ± 0.0179

GraSP MAP 0.51 ± 0.0008 0.54 ± 0.0032 0.66 ± 0.0046 1.11 ± 0.0195 1.73 ± 0.0193 2.35 ± 0.0276 2.69 ± 0.0088
SpaM 0.37 ± 0.0007 0.38 ± 0.0006 0.40 ± 0.0015 0.42 ± 0.0032 0.51 ± 0.0093 0.97 ± 0.0317 3.71 ± 0.0709

Magnitude MAP 0.54 ± 0.0014 0.53 ± 0.0011 0.55 ± 0.0015 0.73 ± 0.0034 1.54 ± 0.0098 2.65 ± 0.0239 2.70 ± 0.0113
SpaM 0.37 ± 0.0011 0.37 ± 0.0012 0.38 ± 0.0016 0.41 ± 0.0028 0.49 ± 0.0072 0.92 ± 0.0320 3.63 ± 0.0418

Random MAP 2.79 ± 0.0438 2.63 ± 0.0089 2.42 ± 0.0146 2.36 ± 0.0042 2.33 ± 0.0037 2.34 ± 0.0043 2.30 ± 0.0000
SpaM 2.60 ± 0.0292 3.22 ± 0.0701 2.60 ± 0.0230 2.70 ± 0.0447 2.38 ± 0.0044 2.31 ± 0.0009 2.31 ± 0.0003

SNIP MAP 1.54 ± 0.0595 1.45 ± 0.0235 2.18 ± 0.0331 2.51 ± 0.0350 2.90 ± 0.0450 4.44 ± 0.0864 3.28 ± 0.0203
SpaM 0.84 ± 0.0320 1.27 ± 0.0474 2.01 ± 0.0814 2.93 ± 0.1060 3.72 ± 0.1244 3.97 ± 0.0907 3.26 ± 0.0841
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Figure B2: Effect of different priors and Hessian approximations on the sparsification performance
with SpaM-OPD. The diagonal approximation with parameter-wise priors is a strong choice, espe-
cially at higher sparsities, while the KFAC approximation with layerwise prior yields slightly better
performances at lower sparsities.
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Figure B3: Priors and Hessian approximations for GraSP pruning with SpaM and MAP, including
our newer priors (parameter-wise and unit-wise). We see that the effects are qualitatively similar to
pruning with OPD.

advantage: it adapts the regularization to each individual weight based on the data, rather than relying
on a single global parameter, allowing for more nuanced control over sparsity.

B.8 Additional Pruning Results

B.8.1 Wide ResNet

In Figure B7, we demonstrate how SpaM enhances the sparsity performance of Wide ResNet models.
This is specifically illustrated in the case of OPD, GraSP, and Magnitude, all while maintaining a low
Brier score, ECE, and NLL up to 95% sparsity.
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Figure B4: SpaM post-hoc pruning efficiency with optional fine-tuning after the pruning. Unlike
other pruning criteria, OPD does not require additional tuning to achieve optimal performance across
different architectures and often still outperforms the other fine-tuned methods.

20 40 60 80 100

40

60

80

Te
st

A
cc

ur
ac

y
(%

)↑

FCN (Breast Cancer)

20 40 60 80 100

20

40

60

80

100

FCN (MNIST)

20 40 60 80 100

20

40

60

80

100

LeNet (MNIST)

20 40 60 80 100

Sparsity (%)

20

40

60

80

Te
st

A
cc

ur
ac

y
(%

)↑

LeNet (FashionMNIST)

20 40 60 80 100

Sparsity (%)

20

40

60

LeNet (CIFAR-10)

20 40 60 80 100

Sparsity (%)

20

40

60

80

ResNet (CIFAR-10-Augmented)

MAP-OPD
SpaM-OPD-Post-Hoc
SpaM-OPD-Online

MAP-GraSP
SpaM-GraSP

MAP-SNIP
SpaM-SNIP

MAP-Magnitude
SpaM-Magnitude

MAP-Random
SpaM-Random

Figure B5: Predictive performance as a function of sparsity level in unstructured pruning. We include
our online pruning approach that progressively prunes a model during the training compared to the
other curves demonstrating the performance of 10 pruned models based on a converged baseline.
our online pruning approach is often competitive with post-hoc pruning.

B.8.2 Vision Transformer

Figure B8 demonstrates the impact of SpaM on Unstructured Pruning for a Vision Transformer (ViT)
trained on MNIST. These results align with the findings presented in Section 5 with SpaM diagonal
LA and parameter-wise priors leveraging the sparsifiability of models using OPD, Magnitude and
GraSP, maintaining a test accuracy of 97% for OPD and Magnitude at 95% sparsity compared to an
accuracy of lower than 20% under MAP for the same methods. This serves as a proof-of-concept for
vision transformers but efficacy has to be verified at a larger scale where such models perform best.
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Figure B6: Comparing SpaM and MAP to L1 Regularization. We see that SpaM consistently
outperforms L1 regularization.
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Figure B7: SpaM post-hoc efficiency for Wide ResNet on CIFAR10. Leveraging OPD, GraSP, and
Magnitude performance under SpaM in comparison to MAP show superior test accuracy at increased
sparsity levels coupled with a low ECE, Brier Score, and NLL.

B.8.3 GPT-2

We demonstrate the efficacy of OPD on a pre-trained GPT-2 model (124M parameters), fine-tuned
for sentiment analysis on the IMDB dataset. To manage computational resources, we limit both
the Laplace approximation and SpaM to two steps. Despite this constraint, OPD maintains high
predictive performance even at 60% sparsity, as shown in Figure B9. This suggests that extending
SpaM optimization with more epochs and a more refined posterior could further enhance performance.

B.9 Visualization of the Pruning Process

In order to illustrate the structural evolution of the model throughout the different sparsification
approaches (unstructured and structured), we provide a sequence of filter bank visualizations that
delineate the principal stages of pruning, progressing from the initial dense architecture to the ultimate
compact configuration. These visualizations also reveal the influence of parameter-wise and unit-wise
priors on the weights (Figure B10).
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Figure B8: SpaM post-hoc efficiency for ViT on MNIST. Leveraging OPD, GraSP, and Magnitude
performance under SpaM in comparison to MAP show superior test accuracy at increased sparsity
levels coupled with a low ECE, Brier Score, and NLL.
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Figure B9: GPT-2 (124M) on IMDB. We tune GPT-2 for sentiment analysis on IMDB datasets. Our
results show that OPD maintains significantly higher accuracy than other methods, which degrade
towards random classifier performance (50%) at 60% sparsities.

B.10 Network Compression

In Figures B11 and B12, we demonstrate the efficiency gains achieved by our SpaM-OPD approach.
For the fully connected network on the Cancer dataset, it achieves a remarkable reduction of over 20
times in disk size and 24 times in FLOPs while simultaneously maintaining baseline test accuracy.
Additionally, it boasts a Brier score of 0.15 and a negative log marginal likelihood (Neg Log MargLik)
lower than the original model. These results highlight the effectiveness of SpaM-OPD in achieving
significant model compression without compromising performance on key metrics.

C Technical Details

C.1 Resizing and Compression

Post structured pruning, the model may undergo fine-tuning to regain performance. In this process,
pruned structures are completely removed from the architecture rather than merely being zeroed out.
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Figure B10: Visualization of the sparsification effect on the model’s layers for LeNet on FashionM-
NIST sparsified at 95% using both the structured and unstructured approach. Blocks in black refer to
masked filters, and columns refer to neurons pruned. We see that for unit-wise priors, a 95% sparsity
yields more entire kernels and neurons being masked compared to parameter-wise priors.
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Figure B11: Structured and unstructured pruning of LeNet on FashionMNIST with SpaM-OPD. We
see that through structured sparsification, we are able to obtain models that are still performant at a
significantly reduced computational and memory cost, while unstructured pruning does not directly
translate into computational benefits.
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Figure B12: Structured and unstructured pruning of FC on Cancer with SpaM-OPD. We see
that through structured sparsification, we are able to obtain models that are still performant at a
significantly reduced computational and memory cost. At the same time, unstructured pruning does
not directly translate into computational benefits.

This leads to a network with fewer filters in convolutional layers and a reduced number of neurons in
fully connected layers, resulting in a leaner and more efficient model.

The process of compaction involves transferring the weights from the pruned model to a newly
created, smaller architecture that is aligned with the dimensions of the retained active structures. This
results in a denser, storage- and computation-optimized model.

Algorithm 1 summarizes this entire process of structured pruning and model compaction.

This approach transitions the model from a pruned state to a compact and optimized architecture. The
final compressed model Mcompact not only retains essential predictive capabilities but is also further
tuned for performance. The newly configured Mcompact is saved with updated parameters, ensuring
efficient inference and ease of deployment, especially on resource-constrained edge devices.

The reduced memory footprint and FLOPS of Mcompact are particularly beneficial for deployment
on edge devices with limited computational resources. When models exceed the hardware limits,
aggressive compression techniques like quantization may be required, which can compromise perfor-
mance. Our method aims to significantly reduce the memory size of the model while minimizing
performance trade-offs. The effectiveness of our approach in achieving this balance is explored in
Section 5.

C.2 Pseudocodes

Algorithm 1 outlines our structured pruning procedure, highlighting how we efficiently achieve a
simpler model by transferring weights to a smaller one.

D Experimental Setup

D.1 Datasets

• Breast Cancer Wisconsin (Diagnostic) (UCI): This dataset, derived from digitized images of
fine needle aspirates of breast masses, includes features describing characteristics of cell
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Algorithm 1 Structured OPD pruning
Require: Trained Model M , Target Sparsity Threshold T
Ensure: Compacted Model Mcompact, Count of Pruned Units Npruned

1: for each layer l in M do
2: if l is not the output layer then
3: for each structure s in layer l do
4: Calculate As =

∑
i∈S Pii · θ2i

5: end for
6: Sort structures in l by As in ascending order
7: Determine the number of structures to prune based on T
8: Prune determined number of structures with the lowest As values
9: end if

10: end for
11: Update Npruned with the count of pruned structures
12: Fine-tune the pruned model M
13: Initialize Mcompact with dimensions aligned to the unpruned structures of M
14: Transfer weights from unpruned structures of M to Mcompact
15: Save Mcompact with updated parameters

nuclei in the images. It is a classic binary classification dataset used extensively in breast
cancer research [57].

• MNIST: A foundational benchmark dataset in machine learning, MNIST consists of 60,000
training and 10,000 test images of handwritten digits (0 to 9) in 28x28 pixel grayscale format
[58].

• FashionMNIST: A drop-in replacement for MNIST, Fashion-MNIST offers a greater chal-
lenge with its 60,000 training and 10,000 test images in grayscale (28x28 pixels). Each
image represents one of ten clothing categories [59].

• CIFAR-10: This dataset contains 60,000 color images (32x32 pixels) divided equally among
10 classes (e.g., airplane, bird, cat) [60]. For our ResNet experiments, we augment CIFAR-10
with random flipping and cropping.

• CIFAR-100: A more fine-grained version of CIFAR-10, this dataset includes 60,000 color
images (32x32 pixels) across 100 classes, with 600 images per class [60]. We apply random
flipping and cropping for augmentation.

• IMDB Movie Review: This dataset is a collection of 50,000 movie reviews, balanced between
positive and negative sentiments. It is commonly used for binary sentiment classification
tasks [61].

D.2 Models

• FCN for MNIST (784, 256, 10): This Fully Connected Network (FCN) is specifically
designed for the MNIST dataset. It comprises an input layer with 784 nodes, a hidden layer
with 256 nodes, and an output layer with 10 nodes, making it a 2-layer FC network. Its
architecture is optimized to handle the simplicity and characteristics of handwritten digit
images.

• FCN for CANCER (30, 100, 2): Customized for the CANCER dataset, this FCN includes an
input layer of 30 nodes, two hidden layers, each containing 100 nodes, and a final output
layer of 2 nodes. The 3-layer structure of this network is instrumental in distinguishing
between benign and malignant tumors based on cellular features.

• LeNet: As a foundational Convolutional Neural Network (CNN), LeNet has shown excep-
tional performance in digit and image recognition tasks. We have applied LeNet to the
MNIST, Fashion MNIST, and CIFAR-10 datasets, leveraging its capability to handle varying
complexities of image data [58]. LeNet on CIFAR-10 is not a very common benchmark
for pruning; here, it is used to demonstrate how SpaM, and specifically SpaM-OPD, is
able to prune at high percentages without a performance loss up to 80% in a model that
struggles with representing the data’s complexity, showing that our work extends beyond
over-parametrized networks for the task at hand.
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• MLPMixer: The MLPMixer serves as a streamlined alternative to more complex models like
CNNs and transformers. It relies solely on Multi-Layer Perceptrons (MLPs) for integrating
inputs across spatial and channel dimensions [62]. We implement an MLPMixer with 2
blocks designed for MNIST.

• ResNet with inplanes 64 and depth 18 for CIFAR-10: We modify the implementation of
ResNet and incorporate fixup initialization and custom bias and scale parameters to align
with the constraints of the ASDL backend [63] used for the Laplace computations in this
work, which does not support batch normalization.

• Wide ResNet: decreases depth compared to ResNet and increases the width of residual
networks [64] with a depth of 16 and a widening factor of 4 (WRN16-4). We use fixup
blocks to be able to utilize ASDL backend [63].

• Vision Transformer (ViT) [65]: unlike CNNs, which extract local features through filters and
pooling layers, ViT breaks down images into fixed-size patches, treating each as a "token"
in a sequence [65]. This allows it to leverage the Transformer architecture, initially designed
for language processing, to analyze relationships between patches through self-attention
mechanisms [66].

• DistilBERT: DistilBERT [67] is a smaller, faster, and cheaper version of BERT, achieved
by leveraging knowledge distillation during the pre-training phase. This model re-
tains 97% of BERT’s language understanding capabilities while being 60% faster and
40% smaller. We use the pre-trained DistilBERT hosted in Hugging Face under
(distilbert-base-uncased) [67] and tune it for sentiment analysis to classify reviews
in the IMDB dataset [61] , which involves predicting the sentiment (positive or negative) of
user reviews based on their textual content.

• GPT-2: a large-scale transformer-based language model developed by OpenAI, with impres-
sive text generation capabilities. Trained on a vast corpus of internet text [68]. In our study,
we leverage the 124M parameter version of GPT-2, fine-tuning it on the IMDB dataset for
sentiment analysis to assess its performance under different pruning conditions.

D.3 Dependencies

For the computation of second-order information (e.g., Hessian, Fisher information)
needed for the Laplace approximation, we utilize the ASDL Library [63]. We
use the library in its version under https://github.com/kazukiosawa/asdl/tree/
011a942b2698b9ec33b0c8c47c96bd49335e5d80. The ASDL Library is distributed under the
MIT License, which allows for reuse with a few restrictions that we respect in our work.

D.4 Hyperparameters

Marginal Likelihood

• Hessian Approximation: The choice between GGN and EF. GGN was initially employed
for fully connected networks, LeNets, and ResNets. However, for complex architectures
(WRNs, ViTs, DistilBERT), GGN’s computational cost became prohibitive, exceeding
MAP runtime by up to 20x and even more for casual modeling tasks. Switching to EF
maintained pruning performance while closely matching MAP runtime, which is particularly
beneficial as GGN scales linearly with the number of classes. We discuss further the cost in
Appendix D.7.

• n_epochs_burnin Dictates the number of epochs after which marginal likelihood optimiza-
tion starts. If set superior to the number of training epochs, marginal likelihood is skipped,
and the training is equivalent to MAP.

• marglik_frequency Controls the frequency of marginal likelihood estimation. The default
value of 1 signifies re-estimation after each epoch, while a value of 5 indicates approximation
for every fifth epoch.

We use these parameters to manage the computational cost of our experiments, where for small
models like LeNets, FC Networks, the n_epochs_burnin is set to zero and marglik_frequency to one
reflecting estimating each epoch since the start of the training. In contrast, for complex networks like
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MLPMixer, ResNets, WideResNet, and ViT that we train from scratch, we start after 20 epochs and
at an interval frequency of 5 epochs.

Hyperparameters Table D4 presents the specific hyperparameters employed for each dataset-
architecture combination. We use † to denote the use of data augmentation in the training process.
The symbols ⋆ and ⋄ represent the use of the Generalized Gauss-Newton (GGN) and Empirical
Fisher (EF) approximations for the Hessian, respectively. We use cosine decay scheduler towards a
fixed minimum learning rate of 1e-6 across all experiments. The symbols D1, D2, etc., represent the
following datasets:

• D1: Breast Cancer Wisconsin (Diagnostic)
• D2: MNIST
• D3: FashionMNIST
• D4: CIFAR-10
• D5: CIFAR-100
• D6: IMDB Movie Review

All models are trained from scratch, denoted by the symbol ▲, except for DistilBERT and GPT-2,
which are fine-tuned from pre-trained weights and are indicated by ▼.

Table D4: Hyperparameters used in the experiments.

Dataset (Arch.) Marglik Freq. Batch Size Learning Rate Optimizer Temp. Burn-in / Epochs

D▲
1 (FCN) 1 ⋆ 64 0.001 Adam 1.0 0 / 50
D▲

2 (FCN) 1 ⋆ 64 0.001 Adam 1.0 0 / 100
D▲

2 (LeNet) 1 ⋆ 128 0.001 SGD 1.0 0 / 100
D▲

3 (LeNet) 1 ⋆ 128 0.001 SGD 1.0 0 / 100
D▲

3 (MLPMixer) 1 ⋆ 128 0.001 Adam 1.0 0 / 100
D†

4 (ResNet) 5 ⋆ 128 0.1 SGD 5 20 / 100
D†

5 (WRN) 5 ⋄ 128 0.1 SGD 5 20 / 200
D▲

2 (ViT) 5 ⋄ 128 0.001 Adam 1.0 20 / 100
D▼

6 (DistilBERT) 5 ⋄ 32 2e-5 AdamW 1.0 5 / 20
D▼

6 (GPT-2) 5 ⋄ 8 2e-5 Adam 1.0 5 / 10

Computational resources Our experiments are run on GPUs. We run our experiments in a single
GPU configuration on available variation between 1080 Tis, V100s, and A100s, with the majority
being run on A100s with 40GB memory as we run the experiments intensively one after the other for
different architecture on the same allocated GPU and in order to provide enough GPU memory. For
models such as FCs, LeNets, ResNets, and MLP-Mixer, a GPU with 12GB of memory ( 1080 Ti)
proved sufficient to run our method for our recommended laplace and prior, which is diagonal with
parameter-wise priors and reproduce the results. For the sentiment analysis task using GPT-2, we
recommend using a 32 GB GPU for tuning to be able to utilize a high batch size and to use diagonal
approximation to fit laplace on the data without running into memory shortage.

Runtime

Table D5 presents the training and pruning runtimes on A100 for each dataset-architecture combina-
tion. Training times are given for both SpaM diagonal with parameter-wise prior and MAP, while
pruning time is identical to both. Pruning runtimes refer to the time taken for OPD to compute and
prune a model at 10 target sparsities. OPD and magnitude are very close in terms of runtime and the
most efficient compared to SNIP, which is slightly slower due to it requiring an additional forward
pass, and GraSP, which is significantly slower as it accumulates the gradient as shown in Figure D13.

D.5 Pruning Criteria

• SNIP: Uses connection sensitivity, how much a specific weight contributes to the output
loss, for effective pruning [36].

• GraSP: Employs gradient signal preservation. GraSP relates to the concept of Gradient
Flow (GF), defined as:

GF = gL(Θ)T gL(Θ) = ||gL(Θ)||22, (D1)
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Table D5: Runtimes for the experiments. Train: Training time (h:m), Prune: Pruning time (m:s).

Dataset (Arch.) Train Prune

SpaM MAP OPD

D▲
1 (FCN) 0:01 0:01 0:04
D▲

2 (FCN) 0:15 0:5 0:23
D▲

2 (LeNet) 0:16 0:10 0:15
D▲

3 (LeNet) 0:16 0:10 0:21
D▲

3 (MLPMixer) 0:05 0:07 0:10
D†

4 (ResNet) 1:24 0:25 0:55
D†

5 (WRN) 1:17 1:12 0:51
D▲

2 (ViT) 0:26 0:15 0:24
D▼

6 (DistilBERT) 5:20 2:15 1:05
D▼

6 (GPT-2) 17:34 6:24 17:41
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Pruning Time with Standard Error Bars by Method for WRN on CIFAR-100

Figure D13: Mean relative pruning time with standard error bars on WRN with CIFAR-100. OPD and
Magnitude are the most efficient as they use pre-computed parameters, with SNIP being slower due
to requiring an additional forward pass, while GraSP is significantly slower as it needs to accumulate
the gradient.

emphasizing the impact of pruning on the training dynamics [37]. We replicate the GraSP im-
plementation of Rachwan et al. [39], where we consider the absolute value of the importance
score initially proposed by Lubana and Dick [38] given by:

I(Θt) = |ΘT
t HL(Θt)gL(Θt)| (D2)

Note that while the importance score was initially used before training, we propose to use
this importance score as a one-shot criterion after the training process and show how SpaM
can leverage the performance of GraSP.

• Structured-SynFLow: We challenge the capabilities of SynFlow [50], a data-agnostic
pruning approach that prevents layer collapse that happens at high sparsities where layers are
no longer able to perform at the model’s predictive power. This typically occurs when the
pruning algorithm, intentionally or inadvertently, removes a significant portion of weights or
filters from a specific layer, effectively collapsing its functionality [50]. We push SynFlow to
its limits through advanced structured pruning strategies, where we prune layers aggressively
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at the same target sparsity, which facilitates the compression process and resizing. By
applying rigorous layer-specific filtering and neuron pruning, we aim to test the robustness
and effectiveness of SynFlow in extreme sparsity structured scenarios. This approach not
only benchmarks SynFlow’s performance under stringent conditions but also explores its
potential to maintain network functionality and accuracy in highly sparse neural network
architectures.

• Magnitude Pruning: Relies on the magnitude of weights for pruning, aiming to maintain
model performance while reducing complexity [69]. After the success shown by Han
et al. [69], many methods adapted magnitude as a pruning criterion coupled with different
scheduling [49, 70, 48].

• Random Pruning: Prune weights or structure randomly.

D.6 Structured Sparsification Process

For structured sparsification, contrasting with the unstructured approach, the process necessitates
reshaping the weight matrices to effectively reduce model complexity. The steps include:

1. One-shot structure masking based on aggregated importance scores.
2. Continue training for five epochs using the model from Step 1 for preliminary evaluation.
3. Implementing two software design approaches:

• In-place layer replacement in the model with smaller ones fitting the non-masked
regions.

• Creating a new, flexible model initialized to match the dimensions of the non-masked
areas, requiring repeated reading of the nonzero mask for state-dictionary and metadata
alignment.

4. Transferring non-zero structures to smaller layers and tuning the model.

Post structure removal, we extend the training phase to adapt the model weights and re-evaluate,
ensuring seamless functionality once transferred to smaller layers. Particularly after significant
structural reduction, our primary objective shifts to maximizing performance in the downsized model.
This fine-tuning spans 5 or 10 epochs depending on the complexity of the original model’s structure,
which was initially trained for either 50 or 100 epochs.

D.7 Computational Cost

Instead of using the Generalized Gauss-Newton (GGN) approximation, which scales linearly with
the number of classes, we can also use the Empirical Fisher (EF). For most architectures, using EF
instead of GGN for SpaM does not add a very large computational overhead to MAP, as EF costs
roughly as much as gradient computation. This is particularly beneficial as GGN scales linearly with
the number of classes. The pruning results are not significantly affected by the choice of GGN or EF.

The runtime of MAP and SpaM was close (roughly 1h and 20 minutes on A100s) for WRN-16 on
CIFAR100 using SpaM (EF) with diagonal LA and parameter-wise priors (our recommended settings
for pruning). For language transformers, specifically DistilBERT and GPT-2, SpaM with EF does
result in a longer training time compared to MAP. However, this increase is considerably less than
when using GGN, where a single epoch can take longer than the entire SpaM training with EF.

In prior works [71], it was found that GGN gives a better posterior predictive approximation, but we
do not use it in this work. We find that EF works similarly well for pruning at a much lower cost.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide experimental evidence in Section 5 that supports our claims made
in the abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of our approach in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a proof of our theoretical result for diagonal priors when using
KFAC (Proposition A.1) in Appendix A. The proof was also numerically verified.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the SpaM training approach, how we
compute it, and how we derive our importance score. We provide a detailed description of
pruning criteria and hyperparameters in Appendix D.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We released our code publicly at https://github.com/fortuinlab/
spam-pruning. The code contains the script for SpaM, unstructured and structured pruning,
as well as our experiment manager.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain how we train the models using MAP and SpaM and how we
perform the pruning. We describe the experiments in detail in Appendix D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct each experiment at least for 4 different seeds and compute the
standard error to mitigate the effect of randomness. In the case we do not have enough seeds,
which is for our experiment of tuning GPT-2, we feature the results only in the appendix.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide a detailed description of our experimental setup and implementa-
tion in Appendix D.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We developed a method that improves the sparsifiability as well as the pruning
of neural networks. Pruning weights leads to potentially lower storage and inference costs
for any neural network and thus does not immediately imply any possible harm.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper used publicly available datasets and architectures that do not pose
(new) risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
In Appendix D.3, we state that we use the ASDL library to compute second-order information
needed for the Laplace approximation and align with its license restrictions. The paper itself
is under the CC BY 4.0 license and the library is under the MIT license.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We released the code including documentation.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This does not apply as we do not experiment with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This does not apply as we do not experiment with human subjects.
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