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Abstract

While inorganic retrosynthesis planning is essential in the field of chemical science,
the application of machine learning in this area has been notably less explored
compared to organic retrosynthesis planning. In this paper, we propose Retrieval-
Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor
information of reference materials that are retrieved from the knowledge base
regarding domain expertise in the field. Specifically, instead of directly employing
the precursor information of reference materials, we propose implicitly extracting
it with various attention layers, which enables the model to learn novel synthesis
recipes more effectively. Moreover, during retrieval, we consider the thermo-
dynamic relationship between target material and precursors, which is essential
domain expertise in identifying the most probable precursor set among various
options. Extensive experiments demonstrate the superiority of Retrieval-Retro in
retrosynthesis planning, especially in discovering novel synthesis recipes, which is
crucial for materials discovery. The source code for Retrieval-Retro is available at
https://github.com/HeewoongNoh/Retrieval-Retro.

1 Introduction

Discovering new materials is a fundamental problem in materials science [28, 4, 25], providing
innovative options in various industry fields, such as semiconductors and batteries [37, 36]. On the
other hand, it is also important to establish synthetic routes for newly discovered materials [21], i.e.,
retrosynthesis planning, as the ability to synthesize these materials is essential for their successful
commercialization beyond mere discovery.

For organic materials, retrosynthesis planning approaches identify valid and efficient synthetic
routes [8] by breaking down complex target molecules into smaller molecules that are commercially
available and easily synthesizable. During the process, they focus on the structural information of
target molecules, such as functional groups and reaction centers, that are related to widely known
organic reaction mechanisms [21, 7, 9, 40, 22, 23]. Following the practice of organic retrosynthesis,
machine learning (ML) based approaches utilizing the molecular structure expressed as SMILES
strings [43] or molecular graphs have been extensively studied [45, 33].

However, unlike organic retrosynthesis, using the atomic structural information of inorganic materials
for retrosynthesis presents significant challenges due to 1) the high computational load incurred by
the larger number of atoms compared to organic molecules [7, 6], and 2) the failure of traditional
physical theories for the atomic structure computation caused by the inclusion of diverse and unusual
elements [11, 1]. Therefore, a chemical composition-based approach is essential for retrosynthesis
planning of inorganic materials. Besides the challenges of using the atomic structural information,
there is a lack of a clear and general theory regarding the mechanisms of inorganic synthesis reactions
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Figure 1: An example case where (a) the target material shares a subset of precursors with reference
material, and (b) the target material has an entirely new set of precursors, without sharing any subset
of precursors with reference material. (c) The proportion of subset cases and new cases among
the materials newly synthesized from 2017 to 2020. (d) The target material is more likely to be
synthesized using the precursor set that exhibits a more negative driving force.

[34]. For these reasons, inorganic retrosynthesis planning is a more challenging task compared to
organic retrosynthesis planning.

Given these challenges inherent in the retrosynthesis planning of inorganic materials, applying
existing ML-based organic retrosynthesis methods for inorganic purposes is infeasible. Consequently,
there has been limited research into inorganic retrosynthesis planning compared to that for organic
materials. As a pioneering work, CVAE [17] generates synthesis variables for target materials using
a generative model, and ElemwiseRetro [18] reformulates the precursor prediction task as a multi-
class classification problem with dozens of curated precursor templates. However, these approaches
overlook the common practices in conventional inorganic material synthesis, where chemists identify
reference materials similar to the target material and consult established synthesis recipes [12, 13].

More specifically, due to the aforementioned inherent challenges, chemists often engage in a costly
trial-and-error method by referencing precedent recipes of reference materials from prior literature
[21, 12]. Therefore, as illustrated in Figure 1 (c), the majority of the discovered synthetic routes for
a target material share a common set of precursors with the corresponding reference material from
previous studies (Figure 1 (a)), whereas only a small number of these routes involve a completely new
set of precursors (Figure 1 (b)). Inspired by the common practice, He et al. [12] propose to retrieve
reference materials that are similar to a target inorganic material from a knowledge base of previous
studies, and leverage their precursor information for retrosynthesis planning of the target material.

Although the method proposed by He et al. [12] has proven to be effective by emulating standard
practices in the field, it faces two significant limitations. The first limitation is that the model’s
predictive capability is limited to the precursor sets of retrieved reference material, thus inhibiting
its capacity to deduce novel synthetic pathway. This is due to the heavy reliance on the precursor
sets of reference materials. However, despite a small fraction of materials being synthesized with
entirely new synthetic recipes as shown in Figure 1 (c), it is widely known that discovering novel
synthetic routes with entirely new precursors can accelerate the inorganic material synthesis process
[29, 27] and facilitate the discovery of cost-effective recipes [26, 30]. Thus, despite a large number
of materials being synthesized through slight alterations to previously known synthesis recipes due to
the complexities of inorganic material synthesis, it remains critical to identify new synthetic pathways
that extend beyond the commonly known synthetic recipes.

The second limitation is that it neglects the widely known domain expertise in the field [17, 18, 12]:
the greater (more negative) thermodynamic driving force (∆G) between the target material and
the precursor set, the more feasible it is to actually form the target material through the precursor
set [31, 35]. As an example in Figure 1 (d), given a target material A2BCO4, a precursor set
{AO,AO2,BCO} exhibits a significantly greater ∆G compared to another set {A2CO2,BO}, making
it more probable that the target material will be synthesized from the first precursor set. Therefore, by
analyzing the thermodynamic relationships between the target material and various precursor sets, we
can identify which combinations of precursors are most feasible for material synthesis. For example,
considering such relationship enables the selection of precursor sets that are likely effective starting
materials for synthesizing the target material, thereby facilitating successful synthesis. However,
previous works [17, 18, 12] overlook this crucial domain expertise, leading to their inability to
identify these optimal precursor sets.
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To this end, we propose a novel inorganic retrosynthesis planning approach by implicitly extracting the
precursor information with the domain expertise-enhanced reference material retriever. Specifically,
instead of directly utilizing precursor information as in He et al. [12]—that is, explicitly incorporating
precursors from retrieved materials for prediction—we propose to implicitly extract this information
from reference materials using various attention layers that are designed to enhance and extract the
precursor details of the reference materials. By providing the model with greater flexibility, we expect
it to discover novel synthesis recipes that go beyond existing ones. Moreover, to determine which
material should be referenced, we utilize well-established domain expertise in the field, i.e., the
thermodynamic relationships between the target material and potential precursors, with a novel Neural
Reaction Energy retriever. With a novel retriever, our model effectively identifies which material
to refer to for inorganic retrosynthesis planning of the target material. Our extensive experiments
demonstrate the effectiveness of Retrieval-Retro in inorganic retrosynthesis planning, especially
discovering novel synthetic recipes, demonstrating the potential applicability of Retrieval-Retro in
real-world materials discovery.

In this study, we make the following contributions:
• We propose to implicitly integrate the precursor information of reference materials, which enables

the model to more effectively discover novel synthetic recipes of inorganic materials.
• Furthermore, we introduce a novel retriever inspired by domain expertise, which assists the model

in effectively determining which material to reference during inorganic retrosynthesis planning.
• Extensive experiments demonstrate the effectiveness of Retrieval-Retro in various scenarios,

particularly in the year split, which poses a more realistic and challenging environment. Additionally,
its exceptional capability in uncovering new synthetic recipes for inorganic materials highlights its
potential for practical application in real-world material discovery.

2 Preliminaries
2.1 Problem setup
Inorganic Retrosynthesis Planning with Chemical Composition. In inorganic retrosynthesis
planning, determining the atomic structure of inorganic materials poses significant challenges and
demands costly computational efforts. As a result, both chemists [21] and prior ML methodologies
[18, 17, 12] depend exclusively on composition information. In line with previous studies, we also
base our approach on the composition information of inorganic materials instead of structural data.

Notations. An inorganic material can be quantitatively described by a composition vector x ∈ Rd,
where d represents the total number of unique chemical elements. Each element in the vector x
represents the proportion of each chemical element that constitutes the material. As an example,
consider the material with chemical formula SiO2, where Si and O correspond to element numbers
14 and 6, respectively. It can be represented as x = (x1, x2, . . . , xd), where x14 = 1

3 , x6 = 2
3 ,

with all other x values being zero. Moreover, following a previous work [10], we construct a fully
connected composition graph G = (E ,A), where E is the set of elements associated with the nonzero
components of x, and A ∈ {1}n×n is the fully connected adjacency matrix with n indicating the
number of nonzero entries in x. We initialize the initial feature ei of each element ei in E with
Matscholar [44], whose element embedding is obtained from the vast amount of scientific literature.

Task: Precursor Prediction. Following a previous work [12], we formulate precursor prediction
as a multi-label classification problem. Given a fully connected graph G = (E ,A) representing an
inorganic material, our objective is to train a model F that predicts the possible precursors for the
material, i.e., y = F(G), where y ∈ {0, 1}l indicates the label vector with each element signifying
the predefined l precursors. That is, each element yi in the label vector y indicates whether i-th
precursor is necessary (yi = 1) or not (yi = 0) for synthesizing the target material G.

2.2 Composition Graph Encoder

To begin with, we briefly introduce the compositional graph encoder, which is used to encode the
material representation in the paper. Specifically, given a composition graph G = (E ,A) of a material,
we obtain the material representation g as follows:

g = Pooling(GNN(E ,A)), (1)
where “Pooling" refers to the sum pooling of the node representations within the composition graph
G, which are derived from a GNN encoder. The detailed architecture used in the paper is provided in
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Figure 2: (a) Training process of the Masked Precursor Completion (MPC) retriever. (b) Training
process of the Neural Reaction Energy (NRE) retriever.

Appendix A.1. Moreover, we examine whether the proposed framework can consistently improve in
various GNN architectures in Appendix E.1.

3 Proposed Method: Retrieval-Retro
In this section, we introduce our proposed method Retrieval-Retro, a novel inorganic retrosynthesis
planning approach that implicitly extracts the precursor information of reference materials retrieved
with two complementary retrievers, i.e., Masked Precursor Completion (MPC) Retriever and Neural
Reaction Energy (NRE) Retriever. The overall framework of Retrieval-Retro is shown in Figure 3.

3.1 Reference Material Retrieval

Before we extract precursor information from the reference materials, it is essential to decide which
material should be referenced for the extraction. To elaborately determine which materials to
reference, we employ two complementary retrievers: the Masked Precursor Completion (MPC)
retriever and the Neural Reaction Energy (NRE) retriever.

Masked Precursor Completion (MPC) Retriever. MPC retriever identifies the reference materials
sharing similar precursors with the target material by learning dependencies between precursors.
Specifically, given a chemical composition vector x of a target material, we obtain its representation
m = M(x), where M : Rd → Rd′

indicates two layered MLPs with non-linearity. We define a
learnable precursor embedding matrix P ∈ Rl×d′

, whose i-th row pi ∈ Rd′
represents a learnable

embedding vector for the i-th precursor. Concurrently, we generate a randomly perturbed precursor
vector ỹ from the provided precursor information y, and create a perturbed precursor matrix P̃ by
applying the perturbed precursor vector ỹ as a mask to the precursor matrix P. Specifically, p̃i is
masked if ỹi = 0, and is left unchanged otherwise. We then integrate the representation m and the
perturbed precursor matrix P̃ with cross-attention to form precursor conditioned representation of
the material s. Then, the model is trained to reconstruct the original precursor vector y from the
precursor conditioned representation s and precursor matrix P, by representing probability for each
precursor as follows σ(s⊤pi). The overall training procedure of MPC retriever is in Figure 1 (a).

By doing so, it enables the retriever to learn dependencies among precursors and the correlation
between the precursors and the target material. With the MPC retriever, we calculate the cosine
similarity between the representation of the target material and all materials in the knowledge base
obtained through M , and retrieve the top K materials that are similar to the target material.

Neural Reaction Energy (NRE) Retriever. Although the MPC retriever effectively identifies
reference materials with potentially similar sets of synthesis precursors, it overlooks widely recognized
domain expertise in the field, i.e., the thermodynamic relationships between materials, which is
essential for the inorganic synthesis process, particularly in selecting appropriate precursors [35, 27].
More specifically, the thermodynamic driving force between the target material and precursor set
can be quantified by Gibbs free energy (∆G), which is a measure of the material’s thermodynamic
stability. Under constant pressure and temperature, a negative ∆G indicates that the energy of the
target material is lower than that of the precursor set, signifying that the synthesis reaction can occur
spontaneously [31, 35]. As a result, it is widely known that the more negative ∆G, the more precursor
set is likely to synthesize the target material.

Based on this knowledge, it would be beneficial to retrieve materials that have the precursor set
capable of inducing favorable reactions with the target material by considering the thermodynamic
force. ∆G can be approximated by the difference ∆H between the enthalpy of the target and
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Figure 3: The overall framework of Retrieval-Retro.

precursor set ∆H as follows:

∆G ≈ ∆H = HTarget −HPrecursor set, (2)

where the HTarget and HPrecursor set represent the formation energy of the target and precursor
set. Therefore, a straightforward solution for calculating ∆H is to utilize the formation energy of
the target material and the precursor set that can be directly obtained from the extensive database of
structure-based DFT-calculated formation energy. However, it is widely known that DFT-calculated
values frequently diverge from experimental data, while actual material synthesis occurs in real-
world wet lab settings [16]. Even worse, there is no guarantee that these databases encompass all
materials of interest in inorganic retrosynthesis planning. Consequently, it is essential to develop a
composition-based formation energy predictor that is specifically designed for experimental data.

To this end, we propose a learnable Neural Reaction Energy (NRE) retriever, which is pre-trained
on abundant DFT-calculated formation energy data and then fine-tuned on experimental formation
energy data as shown in Figure 1 (b) [16]. Specifically, we initially pre-train the NRE retriever using
the Materials Project database [14], training the model to predict DFT-calculated formation energy
from representations derived from the composition graph encoder (see Section 2.2). Subsequently,
we fine-tune the retriever using experimental formation energy data [32], which allows the model to
adapt to experimental data. We demonstrate the effectiveness of the training mechanism in Appendix
E.2. Finally, given a trained NRE retriever, we can compute the formation energies of the target
material and the precursor set of reference materials in the knowledge base. We then retrieve K
reference materials that exhibit the most negative ∆G, selecting from those whose precursors contain
the same elements as the target material, along with other common elements such as C, H, O, and N.
Note that calculations are performed prior to training, so no additional training costs are incurred.

3.2 Implicit Precursor Extraction

Now, we discuss how to extract the precursor information from the reference materials elaborately
selected in Section 3.1. While the previous work [12] directly utilizes the precursor information of
the reference materials, this limits the model’s ability to learn and deduce new synthetic recipes for
the target material, which can significantly accelerate the materials discovery and reduce the cost of
material synthesis. Therefore, we propose to implicitly extract the precursor information from the
retrieved material with various attention layers, i.e., self-attention and cross-attention layers, which
aim to enhance the representation of reference materials by considering other reference materials and
extract the implicit precursor information from the enhanced representation, respectively.

To do so, we first encode the target material and K reference materials using their associated
composition graphs G via the composition graph encoder introduced in Section 2.2. As a result,
we obtain the representation of target material gt ∈ RD and the K reference materials Gr =
[g1

r , . . . ,g
K
r ] ∈ RK×D, where gk

r indicates the representation of the k-th reference material.

Reference Enhancing with Self-Attention. To effectively extract the precursor information from
the reference materials, we first enhance the representation of these materials through a self-attention
mechanism [39, 24]. This approach encourages the model to selectively determine which information
to extract from a particular reference material by considering the relationships among various refer-
ence materials. To do so, we first obtain a new matrix for reference materials G′0

r = [g′1
r, . . . ,g

′K
r ],

where g′k
r = ϕ1(g

k
r ||gt) indicates the modified representation of the k-th reference material regarding

the target material, where || denotes the concatenation operation, and ϕ1 : R2D → RD is a learnable
MLP. Note that by modifying the representation of the reference material through concatenation
with the target material, we allow the model to extract information pertaining to the target material,
rather than focusing solely on the reference materials. Then, we implement a self-attention mecha-
nism to determine which information to extract from the reference material, taking into account the
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relationships among the other reference materials:

G′s
r = Self-Attention(QG′s−1

r
,KG′s−1

r
,VG′s−1

r
) ∈ RK×D, (3)

where s = 1, . . . , S indicates the index of the self-attention layers. Different from the conventional
self-attention layers [39], we directly utilize G′s−1

r as query QG′s−1
r

, key KG′s−1
r

, and value VG′s−1
r

,
without any learnable parameters [24]. By analyzing the relationships between the reference materials,
the model improves the representations of these materials, thereby supplying more appropriate
references to be extracted by the cross-attention layer.

Reference Selection with Cross-Attention. Lastly, we extract the implicit precursor information
by merging the representation of the target material with that of the enhanced reference materials
via a cross-attention mechanism [38, 42]. With cross-attention layers, we expect the model to learn
favorable synthesis recipes from reference materials by selectively learning from reference materials
with attention weights. More formally, cross-attention layers are formulated as follows:

gc
t = Cross-Attention(Qgc−1

t
,KG′S

r
,VG′S

r
) ∈ RD, (4)

where c = 1, . . . , C indicates the index of the cross-attention layers. Note that we use an enhanced
reference material representation G′S

r and target material representation gt as inputs to the first cross-
attention layer, i.e., G̃′0

r = G′S
r and g0

t = gt. Moreover, we also utilize gc−1
t as query Qgc−1

t
, and

the reference material representation G′S
r as key KG′S

r
and value VG′S

r
identical to the self-attention

layer, without any learnable parameters. By employing cross-attention layers between the target
material and reference materials, rather than the precursor set of the reference materials, the model
effectively accesses the synthetic recipes of reference materials without explicitly using precursor
information, thus enabling the discovery of novel synthetic recipes for the target material. We employ
this implicit precursor extraction process for the reference materials gathered using both the MPC
retriever and the NRE retriever, resulting in gC

t:MPC and gC
t:NRE, respectively.

3.3 Model Training
Finally, we compute the model prediction ŷ as follows: ŷ = ϕclassifier(gt||gC

t:MPC||gC
t:NRE), where

ϕclassifier : R3D → Rl is an MLP with non-linearity. Note that each dimension in ŷ, i.e., ŷi, indicates
the model’s predicted probability of whether precursor i will be included or not. For model training,
we adopt Binary Cross Entropy (BCE) loss, which is commonly used for multi-label classification
learning [5, 47], as: L = − 1

l

∑l
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)].

4 Experiments
4.1 Experimental Setup
Datasets. We use 33,343 inorganic material synthesis recipes extracted from 24,304 materials science
papers [20] following prior studies [12, 18]. Due to the lack of an extensive database containing
inorganic synthesis recipes [20], we use the training set as the knowledge base, following a previous
work [12]. Additional details about datasets are provided in the Appendix B.

Baseline Methods. We compare Retrieval-Retro with two inorganic retrosynthesis methods (i.e.,
He et al. [12] and ElemwiseRetro [18]), two composition-based representation learning methods (i.e.,
Roost [10] and CrabNet [41]), and three newly proposed baselines (i.e., Composition MLP and Graph
Network [3], Graph Network + MPC) to demonstrate the effectiveness of Retrieval-Retro. The first
newly introduced baseline is called Composition MLP, which does not retrieve reference materials
but instead relies on the composition vector of the material. He et al. [12] conducts inorganic
retrosynthesis planning by using the MPC retriever to access reference materials based solely on
the material’s composition vector. ElemwiseRetro [18] acquires precursor information through a
fully connected graph that represents the constituent elements within the material. Furthermore, two
composition-based material representation learning approaches, namely Roost [10] and CrabNet
[41], explore the intricate interactions among elements within materials using message passing and
self-attention, respectively. Although these methods are initially designed for property prediction,
we have adapted prediction heads so that they can be effectively used for inorganic retrosynthesis
planning. We also evaluate two new baselines, Graph Network [3] and Graph Network + MPC.
The former predicts precursors without retrieving reference materials, while the latter does so after
retrieving references. As these methods utilize the same backbone GNN structure as in our approach,
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Table 1: Overall model performance in (a) Year split and (b) Random split. “Int.” denotes whether
the model accounts for interactions among constituent elements, while “Retr.” indicates whether the
model retrieves reference materials. Bold indicates the best performance, while undeline represents
the second best performance.

(a) Year Split (b) Random Split

Model Int. Retr. Top-K Accuracy Recall Top-K Accuracy Recall

Top-1 Top-3 Top-5 Top-10 Macro Micro Top-1 Top-3 Top-5 Top-10 Macro Micro

Composition MLP ✗ ✗
31.60 34.37 35.22 36.56 31.42 31.44 58.56 62.20 62.95 64.32 54.56 55.35
(1.70) (1.58) (1.43) (0.160) (0.030) (0.060) (0.47) (0.36) (0.029) (0.42) (0.44) (0.57)

He et al. [12] ✗ ✓
45.03 48.02 49.11 51.09 44.72 44.75 61.94 66.44 67.46 68.84 58.55 59.35
(1.85) (1.86) (1.77) (1.93) (1.83) (1.86) (1.5) (1.48) (1.55) (1.65) (1.45) (1.34)

ElemwiseRetro ✓ ✗
53.45 57.07 58.19 60.84 53.12 53.19 77.23 80.93 81.57 82.78 72.33 73.26
(0.58) (0.52) (0.72) (0.78) (0.60) (0.60) (0.70) (0.54) (0.67) (0.64) (1.14) (0.99)

Roost ✓ ✗
54.38 57.82 58.82 60.71 54.01 54.04 78.42 82.32 83.07 84.10 73.38 74.46
(0.75) (0.81) (1.00) (1.15) (0.75) (0.74) (0.91) (0.91) (0.83) (0.66) (1.41) (1.22)

CrabNet ✓ ✗
57.15 61.60 62.44 64.14 56.79 56.82 78.69 81.62 82.27 83.35 73.27 74.28
(0.77) (0.85) (0.82) (0.86) (0.77) (0.77) (0.78) (0.74) (0.67) (0.56) (1.21) (0.99)

Graph Network ✓ ✗
58.95 63.10 64.07 66.30 58.54 58.61 77.91 81.55 82.37 83.50 72.96 73.88
(0.41) (0.63) (0.68) (0.62) (0.42) (0.41) (1.31) (0.98) (0.92) (0.90) (1.53) (1.29)

Graph Network + MPC ✓ ✓
60.01 64.15 65.15 67.19 59.61 59.66 79.09 82.95 83.82 84.97 73.86 74.81
(1.10) (1.10) (1.17) (0.83) (1.10) (1.10) (1.25) (1.13) (1.19) (0.94) (1.34) (1.23)

Retrieval-Retro ✓ ✓
61.16 65.92 67.18 69.45 60.97 61.06 79.81 83.62 84.46 85.70 74.61 75.49
(0.38) (0.71) (0.76) (1.03) (0.62) (0.62) (0.68) (0.77) (0.78) (0.88) (0.98) (0.89)

they can be viewed as ablated versions of Retrieval-Retro. We provide further details about the
compared baseline methods in Appendix C.

Evaluation Protocol. We perform evaluations under two distinct settings, namely, random split and
year split. Following prior studies, under the random split setting, we randomly split the dataset into
train/valid/test of 80/10/10%. On the other hand, under the year split setting [12], the training set
includes synthesis recipes from papers published up to 2014, the validation set includes recipes from
papers published in 2015 and 2016, and the test set includes recipes from papers published between
2017 and 2020. This setup closely replicates the real-world material discovery conditions, allowing
for the evaluation of model performance without the need for costly wet-lab experiments.

Following previous works in retrosynthesis planning [45, 40, 18, 9], we adopt Top-K exact match
accuracy to evaluate the effectiveness of Retrieval-Retro. In addition, we also employ Macro and
Micro Recall, which are commonly used as metrics in the multi-label classification problem [5, 46].
We provide further details on evaluation protocol in Appendix D.

4.2 Empirical Results
Effectiveness of Retrieval-Retro in Inorganic Retrosynthesis Planning. In Table 1, we have
the following observations: 1) Modeling the interaction among the constituent elements (Int. ✓)
proves more effective than simply representing the material as a composition vector (Int. ✗). This
demonstrates the importance of modeling the interaction between the composition elements not
only for the material property prediction task [10, 41], but also for inorganic retrosynthesis planning.
2) By comparing the methods that utilize retrieval (Retr. ✓) with those that do not (Retr. ✗), it
becomes apparent that using precursor information from reference materials contained in a synthesis
literature knowledge base enhances the precursor prediction performance. This underscores the
significance of reference materials, which is also a standard practice in the traditional material
synthesis process. 3) We also find that Retrieval-Retro surpasses all baseline models, indicating
that our method successfully facilitates inorganic retrosynthesis planning. Furthermore, there is a
significant performance enhancement over baseline methods in the year split setting (Table 1 (a)),
which is a more realistic and challenging scenario, proving Retrieval-Retro’s efficacy in real-world
inorganic material synthesis processes.

Discovering Novel Synthesis Recipes. As shown in the previous section, the precursor information
of reference materials is beneficial for the inorganic retrosynthesis planning of the target material.
This observation raises a natural question: How can we effectively integrate the information from
reference materials into synthesis recipes, particularly for novel synthesis recipes? To answer this
question, we evaluate how each component in the model affects the model’s capability of deducing
novel synthetic recipes for the target material. To do so, we first divide the test set of the year
split dataset into Subset case and New case. As shown in Figure 1, the subset case includes target
materials that share a common set of precursors with those in the training set, while the new case
comprises target materials that have an entirely new set of precursors. Moreover, we mainly compare
Retrieval-Retro with “Graph Network + MPC” in Table 1, since the only difference between the
models lies in whether the model directly utilizes the precursor information from reference materials.
Then, we separately assess the model’s performance in the subset case and the new case.
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Table 2: Overall model performance in subset case and new case. “Refer.” indicates whether the
model explicitly or implicitly uses the precursor information from reference materials.

Model Refer.
Retriever Subset Case New Case

MPC NRE Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Graph Network Explicit
✗ ✗

63.98 67.95 68.83 70.83 16.37 22.00 23.78 27.93
(0.34) (0.53) (0.64) (0.81) (1.91) (3.47) (3.48) (1.66)

✓ ✗
65.01 69.06 69.98 72.03 17.63 22.45 24.22 26.22
(1.10) (1.17) (1.22) (0.92) (1.66) (2.63) (2.65) (2.74)

Retrieval-Retro Implicit
✓ ✗

65.07 69.44 70.41 72.47 19.70 24.52 26.30 30.15
(0.80) (1.27) (1.24) (1.46) (1.08) (1.42) (1.28) (2.05)

✓ ✓
66.00 70.51 71.76 73.92 20.15 27.04 28.37 31.56
(0.32) (0.61) (0.61) (0.90) (1.29) (1.93) (2.05) (3.44)

In Table 2, we have following observations: 1) By comparing the Graph Network with and without
the MPC retriever, we find that incorporating the precursor information from reference materials
enhances model performance in subset cases. One interesting observation is that, this information
negatively impacts performance in Top-10 new case, demonstrating that it can hinder the model’s
ability to deduce novel synthetic pathways. 2) Conversely, Retrieval-Retro, which implicitly
integrates the precursor information, consistently shows performance improvements in both the
subset and new cases, particularly widening the performance gap in the new case—a more realistic
and challenging scenario. These findings illustrate the importance of how precursor information from
reference materials should be integrated, particularly in identifying new synthetic pathways, which
can speed up the material discovery process and reduce synthesis costs. 3) Interestingly, we find
that the NRE retriever also consistently enhances the model performance, a benefit likely stemming
from its complementary relationship with the MPC retriever. Specifically, while the MPC retriever
captures dependencies between precursors and the target material based on previously observed
data, novel synthesis recipes might diverge from the existing synthesis patterns documented in the
literature. On the other hand, the NRE retriever employs domain expertise that is independent of
these existing patterns, thus filling gaps that the MPC retriever might overlook. By accessing such
complementary reference materials, the model is able to acquire additional new precursor information,
which contributes to the observed performance improvements. In Table 4, we conduct a qualitative
analysis of the materials retrieved by each retriever and examine their impact on model predictions.

In conclusion, we find that each element of Retrieval-Retro plays an effective role in inorganic
retrosynthesis planning, particularly in identifying new synthesis recipes, showcasing its potential
influence in the field of materials discovery.

4.3 Model Analysis

Ablation Studies: Effects of Retriever. To verify the effect of the retrievers, we conduct ablation
studies by removing the retriever modules. In Table 3, we have following observations: 1) When
reference materials are randomly retrieved without using trained retrievers, the model extracts pre-
cursor information that is irrelevant to the synthesis of the target material, leading to a deterioration
in performance. 2) Furthermore, using just one of the retrievers (i.e., either MPC or NRE) leads to
underperforms the case when both retrievers are used, showing that the two retrievers are complemen-
tary to each other as discussed in Section 4.2. In conclusion, we contend that both MPC and NRE
retrievers should be employed to provide informative reference materials to the model, facilitating the
extraction of valuable information in inorganic retrosynthesis planning. We provide further ablation
studies in Appendix E.3.

Sensitivity Analysis: Size of Knowledge Base. We evaluate how the size of the knowledge base
affects the model performance. More precisely, from the original database, we sample various sizes
of knowledge bases, such as 20%, 40%, and up to 100% (Full) of the size of the original database,
and then retrieve reference materials from these sampled subsets. In Figure 4 (a), as expected, the
larger the knowledge base, the more accurate the model’s predictions. These findings illuminate
potential avenues for further development of our model, particularly as more inorganic synthetic
recipes are uncovered in the future.

Sensitivity Analysis: Number of Reference Materials. Moreover, we investigate how the varying
number of reference materialsK affects the model performance. In Figure 4 (b), we notice that model
performance improves with an increase in the number of references up to a certain point, specifically
K = 3. This reaffirms the importance of incorporating precursor information from reference materials
for inorganic retrosynthesis planning. However, increasing the number of reference materials beyond
K = 3 does not further enhance model performance, likely due to the introduction of irrelevant or
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Table 3: Effect of retrievers on model performance.

Retriever
Top-K Accuracy Recall

Top-1 Top-3 Top-5 Top-10 Macro Micro

Random 58.42 63.57 64.53 66.61 58.98 59.02
(1.68) (0.64) (0.53) (0.64) (0.64) (0.64)

MPC only 59.96 64.49 65.57 68.14 59.57 59.64
(0.66) (0.74) (0.96) (0.81) (0.67) (0.69)

NRE only 60.28 64.70 65.75 68.00 59.88 59.95
(0.63) (1.21) (1.17) (1.39) (0.63) (0.60)

Retrieval-Retro
(MPC + NRE)

61.16 65.92 67.18 69.45 60.97 61.06
(0.38) (0.71) (0.76) (1.03) (0.62) (0.62)

Ac
cu

ra
cy

 (%
)

Figure 4: Sensitivity Analysis results. KB refers to
the knowledge base.

noisy precursor information that does not pertain to the target material. Thus, extracting precursor
information from a suitable number of retrieved materials is essential for optimal performance.

Qualitative Analysis. We present a qualitative analysis of our proposed method in retrosynthesis
planning for the target material Pb9[Li2(P2O7)2(P4O13)2], which can be synthesized from the precur-
sor set: {Li2CO3, NH4H2PO4, PbO}. As shown in Table 4, when only the MPC retriever is used, the
method fails to predict the entire precursor set due to insufficient extraction of precursor information
from the retrieved materials. However, when the NRE retriever is used alongside the MPC retriever,
our method successfully predicts the complete precursor set for the target material. This success is
attributed to the NRE retriever, which complements the model by providing complementary retrieved
materials whose precursors are feasible for synthesizing the target material, thereby enabling the
extraction of diverse precursor information. For instance, the NRE retriever allows our method to
extract precursor information from Pb3(PO4)2, which contains the essential precursor PbO, a direct
precursor for the target material. Due to the complementary nature of the retrievers, our method can
effectively extract precursor information from informative reference materials, leading to enhanced
predictions.

Table 4: Qualitative Analysis ( Target Material: Pb9[Li2(P2O7)2(P4O13)2] ).
Model Retriever Retrieved Material Corresponding Precursor Sets Predicted Precursor Set Answer

Only MPC MPC
LiNaPbPO {Li2CO3, H3PO4, Na2CO3, Pb3O4}

{Li2CO3, NH4H2PO4} ✗Li0.5Na0.5PO3 {Li2CO3, NH4H2PO4, NaPO3}
Li3V1.92Al0.08(PO4)3 {Al, V2O5, LiH2PO4}

MPC + NRE

MPC
LiNaPbPO {Li2CO3, H3PO4, Na2CO3, Pb3O4}

{Li2CO3, NH4H2PO4, PbO} ✓
(Ours)

Li0.5Na0.5PO3 {Li2CO3, NH4H2PO4, NaPO3}
Li3V1.92Al0.08(PO4)3 {Al, V2O5, LiH2PO4}

NRE
Pb3(PO4)2 {PbO, NH4H2PO4}

Li3P {P, Li}
PbP7 {P, Pb}

5 Related Works
5.1 Machine Learning for Inorganic Retrosynthesis
Owing to the intricate nature of inorganic retrosynthesis, the production of inorganic materials entails
a mix of numerous synthetic variables, leading to a variety of subtasks: 1) Learning favorable reaction
pathways with thermodynamic variables when a target and precursor set are provided [2, 27, 35],
2) Employing regression models to predict conditions of the reaction pathway, such as heating
temperature and time [13], and 3) Predicting possible precursor sets for a target material. In this
work, we focus on the precursor selection task, which aims to predict feasible sets of precursors for
synthesizing a target material [17, 18, 12].

Precursor Prediction Task. As a pioneering work, CVAE [17] generates synthesis actions and
precursors through a generative model, i.e., conditional variational autoencoder [19]. However, it
frequently produces chemically invalid precursors by relying on the generative model. ElemwiseRetro
[18] alleviates the issue by formulating the precursor prediction task as a multi-class classification
with dozens of manually created precursor templates. While it successfully suggests chemically valid
precursors, it fails to incorporate knowledge from synthesis literature, which is common practice in
the field of material science. More recently, inspired by the chemists’ synthesis practice, He et al.
[12] propose to use the precursor information of materials that are similar to the target material,
which is retrieved from the related literature. This approach utilizes the precursors of the retrieved
material as explicit conditions for predicting the precursors of the target material. However, such
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explicit utilization of precursor information can inhibit the model’s capability in providing novel
synthetic routes for target material. Different from the previous work, we propose to implicitly utilize
precursor information of similar material rather than directly using it.

5.2 Composition-based representation learning for Inorganic materials
While most machine learning approaches for inorganic materials predominantly utilize structural
information, in real-world material discovery, structural data is often unavailable due to the high costs
of computational resources. Consequently, some ML methods opt to use compositional information
of inorganic materials instead of structural details. For example, ElemNet [15] proposes to learn the
representation of material with compositional information using deep neural networks (DNNs). Roost
[10] learns material representation by building fully connected graphs based on the composition
to model interactions between elements by graph neural networks (GNNs). Additionally, CrabNet
[41] successfully applies a self-attention mechanism to the element-derived matrix to accurately
predict the properties of materials. Although these methods were originally designed for predicting
material properties, they can also be applied to inorganic retrosynthesis as they similarly rely on the
composition information of materials.

5.3 Difference between Inorganic Retrosynthesis and Organic Retrosynthesis

Both organic and inorganic retrosynthesis are challenging tasks that predict the synthesis of mate-
rials by breaking down the target material into simpler precursors. However, there are significant
differences between organic and inorganic retrosynthesis. Organic retrosynthesis [45, 40, 7, 9, 33]
deals with organic compounds, which are molecules primarily composed of elements such as carbon,
hydrogen, oxygen, nitrogen, and sulfur. These compounds are represented using molecular structure
graphs or SMILES strings. In contrast, inorganic retrosynthesis involves inorganic compounds,
which can include a wider variety of elements, often including metals, and have structures that
periodically repeat in unit cells. Another key difference lies in the use of structural information during
retrosynthesis planning. Organic retrosynthesis utilizes structural information such as functional
groups and reaction centers of organic compounds, which indicate the properties of a material and
its reactivity with other molecules, to predict simpler molecules (precursors) into which the target
molecule can be broken down. Inorganic compounds, however, have relatively unexplored generalized
synthesis mechanisms compared to organic compounds, and calculating their structures is expensive.
Therefore, it is challenging to directly use structural information for retrosynthesis planning. Instead,
inorganic retrosynthesis [12, 17, 18] often relies solely on the chemical composition of the materials,
distinguishing it from organic retrosynthesis.

6 Limitations

We aim to identify favorable precursor sets by considering the thermodynamic relationships between
materials and their precursor set. However, in the actual synthesis process, the phase changes of
materials are influenced by synthesis temperature, synthesis time, pressure condition and pairwise
reactions between precursors. Taking these factors into account would enable more accurate precursor
set predictions. Nevertheless, in situations where experimental data (such as temperature and pressure)
are unavailable, we estimate the reaction energy solely from the formation energy calculated under
consistent temperature and pressure conditions using a trained predictor, derived from the composition
of materials. Considering multiple synthesis conditions can lead to more precise predictions of
precursor sets.

7 Conclusion
In this study, we introduce Retrieval-Retro, a novel method for inorganic retrosynthesis planning
by extracting the precursor information of retrieved reference material implicitly. To do so, we
employ various attention layers that enhance and extract the information from the reference material.
Moreover, we design a neural reaction energy (NRE) retriever that provides complementary reference
material to the MPC retriever, allowing Retrieval-Retro to integrate precursor information from
a broader range of reference materials through domain expertise. Through extensive experiments,
including assessments in realistic scenarios, we demonstrate the effectiveness of implicit extraction
of precursor information and NRE retriever in discovering novel synthesis recipes of target material,
demonstrating the potential impact of Retrieval-Retro in the field.
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A Implementation Details

In this section, we provide implementation details of Retrieval-Retro.

A.1 Composition Graph Encoder

As a composition graph encoder, we mainly consider graph network [3], which is the generalized
version of various graph neural networks. Building on prior research, our graph neural networks
are divided into two components: the encoder and the processor. The encoder is responsible for
learning the initial representation of elements, while the processor manages message passing between
elements. To describe this more formally, for an element ei and the edge ai,j connecting element ei
to element ej , the node encoder ϕnode and the edge encoder ϕedge generate initial representations of
the element as follows:

e0i = ϕnode(ei), a0ij = ϕedge(aij), (5)

where ei is the initial feature of element i and aij is the concatenated feature of element i and j, i.e.,
aij = (ei||ej). Using the initial representations of elements and edges, the processor is designed to
facilitate message passing among the elements and to update the representations of both elements
and edges in the following manner:

al+1
ij = ψl

edge(e
l
i, e

l
j ,a

l
ij), el+1

i = ψl
node(e

l
i,
∑
j∈E

al+1
ij ), (6)

where E represents element set comprising the material, and ψ is a two-layer MLP with non-linearity.
Note that we use three message passing layers within the processor, i.e., l = 0, . . . , 2.

A.2 Training Details

Model Training. Our method is implemented on Python 3.8.13, and Torch-geometric 2.0.4. In
all our experiments, we use the AdamW optimizer for model optimization. We train the model for
500 epochs across all tasks, while the model is early stopped if there is no improvement in the best
validation Top-5 Accuracy for 30 consecutive epochs. All experiments are conducted on a 48 GB
NVIDIA RTX A6000.

Hyperparameters. We have detailed the hyperparameter specifications in the table 5. For Retrieval-
Retro, we adjust the hyperparameters within specific ranges as follows: number of message passing
layers in GNN L′ in {2, 3}, number of cross-attention layers C in {1,2}, size of hidden dimension D
in {256}, number of self-attention layers S in {1,2}, learning rate η in {0.0001, 0.0005, 0.001},batch
size B in {32, 64, 128} and number of retrieved materials K in {1,2,3,4,5,6}. We present the test
performance based on the best results obtained on the validation set.

Table 5: Hyperparameter specifications of Retrieval-Retro.
Hyperparameters Dataset Split

Year Split Random Split

# Message Passing 3 3Layers (L′)
# Self-Attention 1 1Layers (S)
# Cross-Attention 2 2Layers (C)

Hidden Dim. (D) 256 256

Learning Rate (η) 0.0001 0.0001

Batch Size (B) 128 32

# of Reference Materials (K) 3 3

B Dataset

In this section, we provide further details on the dataset used for experiments.
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• Following previous study[12], we use 33,343 inorganic solid-state synthesis recipes extracted
from 24,304 materials science papers [20] obtained from the github repository 2 of previous work
[12]. Following the preprocessing step of previous work, we obtain a total number of 28,598
target materials, which have a diverse number of possible precursor sets as shown in Table 6. In
other words, a single target material can have multiple corresponding ground-truth precursor sets.
Furthermore, in our experiments, we exclude materials from the validation and test sets that contain
precursors not present in the training set, as the classifier would not be trained on those absent
precursors. Consequently, for the year split, we use 24,034 entries for the training set, 1,842 for the
validation set, and 2,558 for the test set. For the random split, the number of target materials varies
across five different trials due to the differing compositions of the training, validation, and test sets
in each trial.

Table 6: The distribution of data based on the number of ground truth precursor sets.
# Precursor sets 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 23 28 29 34 Total

# Data 26,944 1,168 257 108 42 32 13 8 7 5 4 1 2 2 1 1 1 1 1 28,598

In Section 3.1, we propose to pre-train the Neural Reaction Energy (NRE) retriever with density
functional theory (DFT) calculated formation energy and then fine-tune to experimental data.

• For DFT-calculated data, we use Materials Project [14] database 3, which is an openly accessible
database that provides various material properties calculated using DFT. From the database, we
have collected 80,162 unique compositions along with their respective formation energies. It is
important to note that when a composition is associated with multiple structures and formation
energies, we only consider the lowest formation energy for the material, as it is the most likely to
exist.

• For experimental data [32], we download experimental formation energy data from previous work’s
repository[16]4, which aim to develop robust material property prediction models via transfer
learning. We then filter the data down to 1,637 entries using the same preprocessing methods as
those applied to DFT-calculated data.

• For calculating the Gibbs free energy, we use the formation energy from the Materials Project that
we used is calculated at 0 K and 0 atm using DFT and the experimental formation energy is taken
from [16], which reports measurements at 298.15 K and 1 atm.

C Baseline Methods

In this section, we provide detailed explanations of the baseline methods compared in Section 4. We
first provide details on the two previous inorganic retrosynthesis planning methods as follows:

• He et al. [12] introduces a new approach to inorganic retrosynthesis planning by retrieving reference
materials that share similar properties with the target material. Initially, it proposes using a masked
precursor completion (MPC) retriever, described in detail in Section 3.1, which depends solely on
the composition vector x of the inorganic material.

• ElemwiseRetro [18] introduces a method for inorganic retrosynthesis planning that represents
the target material as a fully connected composition graph and predicts the likelihood of various
precursor sets from the available precursor templates.

Furthermore, as outlined in Section 5.2, there are existing studies that develop material representations
based on the composition information of inorganic materials. Although these studies were originally
aimed at predicting material properties, we have adapted the prediction heads to make them suitable
for inorganic retrosynthesis planning. Here, we provide details on the methods as follows:

• Roost [10] suggests employing GNNs to learn representations of inorganic materials by representing
their composition as a fully connected graph, with nodes representing the unique elements within the

2https://github.com/CederGroupHub/SynthesisSimilarity
3https://materialsproject.org/
4https://github.com/wolverton-research-group/qmpy/blob/master/qmpy/data/

thermodata/ssub.dat
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composition. This enables the model to explore the complex relationships between the constituent
elements, thus capturing physically significant properties and interactions.

• CrabNet [41] proposes to model the complex interaction between constituent elements with a
Transformer self-attention mechanism [39] to adaptively learn the representation of elements based
on their chemical environment.

In addition to existing studies, we introduce further baseline models that can support our claims as
described below:

• Composition MLP aims to predict the set of precursors based on the composition vector x of the
inorganic material as follows:

ŷ = MLP(x). (7)

The sole distinction between Composition MLP and He et al. [12] is whether the model re-
trieves reference materials, highlighting the effectiveness of the retrieval mechanism in inorganic
retrosynthesis planning.

• Graph Network [3] aims to predict the set of precursors based on the composition graph G of the
inorganic material as follows:

ŷ = Graph Network(G). (8)

• Graph Network + MPC improves upon He et al. [12] by replacing its material encoder, originally
an MLP that processed the composition vector x, with a graph network. Since the primary
distinction between Graph Network and Graph Network + MPC is whether the model retrieves
reference materials, comparing these methods allows us to evaluate the effectiveness of using
reference materials in inorganic retrosynthesis planning. Furthermore, given that Graph Network
serves as the backbone architecture for Retrieval-Retro, comparing Graph Network + MPC
with Retrieval-Retro enables the assessment of the effectiveness of the implicit fusion and NRE
retriever.

D Evaluation Protocol

We use Top-K exact match accuracy, Macro recall, and Micro Recall for evaluating the capability of
Retrieval-Retro in the inorganic retrosynthesis task. To begin evaluation, we first define the number
of precursors of each material. Following many multi-label classification works [5, 47], the precursor
labels are considered to be positive if their probabilities ŷi are greater than 0.5. We set the number of
positive precursor labels, L as the number of precursor that each material has.

Top-K exact match accuracy. For Top-K exact match accuracy, we select K sets which has L
precursors, where each set is chosen based on the highest product of probabilities of its L precursors.
Then, for each of the K sets, if there exists a set that exactly matches the correct precursor set, it is
scored as 1; otherwise, it is scored as 0. The average is then calculated over all test materials.

Micro and Macro Recall. Note that a material can have a varied number of possible precursor sets,
as shown in Table 6. We use Micro and Macro Recall to evaluate such cases. We select the same
number of precursor sets as the material has in the same way as we evaluate for Top-K exact match
accuracy. We then calculated the macro recall by comparing each obtained set with the correct sets
for each material. If a set matched exactly, it was scored as 1; otherwise, it was scored as 0. These
scores were averaged for each test material. For micro recall, we calculated the overall average across
all test materials.

E Additional Experiments

E.1 Performance on Various Backbone Architecture

Since Retrieval-Retro is agnostic to the various composition graph encoder architectures, we
validate the effectiveness of Retrieval-Retro within a variety of GNN architectures. In Figure 5, we
observe performance improvements across all GNN architectures tested, confirming that Retrieval-
Retro framework can consistently improve vanilla GNN architecture for inorganic retrosynthesis
planning.
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Figure 5: Performance Improvements across Various GNN Backbones

E.2 Neural Reaction Retriever

As described in Section 3.1, we develop a composition-based formation energy predictor tailored for
experimental data. To do so, we initially pre-train the GNN predictor on extensive DFT-calculated data
[14] and then fine-tune on experimental formation energy data [32]. In this section, we demonstrate
whether the pre-train and fine-tune strategy is effective in predicting formation energies. To do so,
we divide the entire DFT dataset into three parts: 80% for training, 10% for validation, and 10% for
testing. The model is trained over 1,000 epochs, employing early stopping if there is no improvement
in the validation loss for 50 consecutive epochs. Similarly, we partition the experimental dataset
into 80/10/10% splits, following the same training approach as for the DFT data. While our model
begins training experimental data using pre-trained checkpoints from a model trained on DFT data,
we also conduct comparisons with a model trained exclusively on experimental data (Ablation in
Table 7). Table 7 shows that pre-training with a DFT-calculated dataset enhances model performance,
indicating that the NRE retriever efficiently retrieves reference materials related to formation energies.

Table 7: Formation energy predictor performance on experimental formation energy data.
DFT Exp. MAE (eV/atom)

Ablation ✗ ✓ 0.0761
Ours ✓ ✓ 0.0643

E.3 Ablation Study on Attention Layer

We conduct an ablation study on the self-attention layer in Retrieval-Retro. By removing the
self-attention layer, Retrieval-Retro extracts implicit precursor information by integrating the
representation of the target material without the enhanced reference materials through a cross-
attention mechanism. As shown in Table 8, this results in a noticeable decline in model performance,
underscoring the importance of extracting precursor information from the material’s enhanced
representation via self-attention. However, even with just the cross-attention mechanism, Retrieval-
Retro still outperforms the basic Graph Network.

Table 8: Effect of attention layers on model performance.

Model
Attention Layers Year Split

Self-Attention Cross-Attention Top-1 Top-3 Top-5 Top-10

Graph Network ✗ ✗
58.95 63.10 64.07 66.30
(0.41) (0.63) (0.68) (0.62)

Retrieval-Retro ✗ ✓
60.34 65.08 66.40 68.99
(0.34) (0.58) (0.60) (0.60)

Retrieval-Retro ✓ ✓
61.16 65.92 67.18 69.45
(0.38) (0.71) (0.76) (1.03)
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E.4 Model Training and Inference Time

In this section, we provide time and inference analysis to verify the efficiency of Retrieval-Retro ,
as shown in Table 9. We observe that methods using retrievers have slightly longer training times
compared to those that do not use retrievers. However, since we preprocess the materials to retrieve
using a pretrained retriever prior to training, the training time for the model utilizing retrievers remains
manageable. Additionally, Roost and CrabNet exhibit significantly longer training times compared to
other methods, which can be attributed to their distinctive modeling interaction mechanisms.

Table 9: Training and inference time per epoch (sec/epoch).
Model Retriever Training Time Inference Time

Composition MLP ✗ 0.4129 0.0007
He et al. [12] ✓ 1.6622 0.0103
ElemwiseRetro ✗ 0.7528 0.0012
Roost ✗ 2.6382 13.6702
CrabNet ✗ 9.7238 0.1123
Graph Network ✗ 0.6917 0.0019
Graph Network + MPC ✓ 2.4361 0.0107

Retrieval-Retro ✓ 3.2601 0.0116

F Broader Impacts

Potential Positive Scientific Impacts. Our work, Retrieval-Retro, explores the automation of
precursor prediction, a process traditionally dependent on a chemist’s expertise. We have developed a
model that learns novel synthesis recipes by implicitly extracting precursor information from retrieved
materials. This enables Retrieval-Retro to effectively recommend precursor sets for target materials
and facilitates its use in real autonomous material synthesis processes [35].

Potential Negative Societal Impacts. Although this work demonstrate good predictive capabilities
for precursor prediction, it lacks uncertainty estimation. Therefore, it is essential to use this model
collaboratively with chemists for effective precursor prediction.

G Pseudo Code

Algorithm 1: Pseudocode of Retrieval-Retro.
Input :Composition based fully connected graph G = (X,A), Retrieved reference material graph from

MPC retriever Gr: MPC = (Xr: MPC,Ar: MPC), Retrieved reference material sets from NRE retriever
Gr: NRE = (Xr: NRE,Ar: NRE), Number of self attention layer s, Number of cross attention layer c,
The number of Retrieved Material K, Graph Network GNN

1 gt ← GNN(X,A)
2 for i = 1 to K do
3 gi

r:MPC ← GNN(Xr: MPC,Ar: MPC)
4 end
5 G′s

r ← Self-Attention(g′k
r , s)

6 gc
t ← Cross-Attention(g′c−1

r ,G′s
r, c) // Repeat above process line 2 - 6 for NRE

retriever
7 ŷ← ϕclassifier(gt||gC

t:MPC||gC
t:NRE)

8 L ← Binary Cross Entropy(ŷ,y)
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Algorithm 2: Pseudocode of MPC Retriever.
Input :A chemical composition of material x, A learnable precursor embeddings P, An embedding for the

i-th precursor pi of P, Ground truth Precursor y, MLP M, Knowledge BaseKB
1 m←M(x)

2 Construct a perturbed P̃ by applying randomly perturbed ỹ as a mask. (p̃i is masked if ỹi = 0, and is left
unchanged otherwise.) // Masking embeddings P

3 s← Cross-Attention(m, P̃, P̃)

4 ŷ← σ(s⊤pi) // Calculate the probability of each precursor
5 LTraining ← Binary Cross Entropy(ŷ,y)
6 Calculate the cosine similarity between the target material and all materials in the KB using M
7 Retrieve the top K materials and save the retrieved material sets. // Construct retrieved material

Sets

Algorithm 3: Pseudocode of NRE Retriever.
Input :Composition based fully connected graph (material from DFT calculated data)

GDFT = (XDFT ,ADFT ), Composition based fully connected graph (material from experimental
data) GExp = (XExp,AExp), Ground truth Formation energy from DFT calculated data HDFT ,
Ground truth Formation energy from experimental data HExp, Graph Network GNN, Knowledge
BaseKB.

1 ĤDFT ← GNN(XDFT ,ADFT )

2 LPre−train ← MAE(ĤDFT ,HDFT ) // Pre-train using DFT calculated data
3 Initialize the GNN with weigths of pre-trained GNN
4 ĤExp ← GNN(XExp,AExp)

5 LFine−tune ← MAE(ĤExp,Form.EExp) // Fine-tune using Experimental data
6 Calculate the formation energy (H) of the target material in the dataset and the precursor set of all materials

in the knowledge base (KB) using a fine-tuned GNN. // Calculate ∆H
7 Calculate ∆G following ∆G ≈ ∆H = HTarget −HPrecursor set // Calculate ∆G
8 Retrieve K materials with most negative ∆G from KB per target material, then save the retrieved material

sets. // Construct Retrieved Material Sets
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We diligently outlined the main challenges of the task and our contributions in
the abstract and introduction sections
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe the limitation of our work in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include theoretical results
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details in the SectionA in the Appendix. Addition-
ally, we provide source code in anonymized way at https://github.com/HeewoongNoh/
Retrieval-Retro.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

25396https://doi.org/10.52202/079017-0799

https://github.com/HeewoongNoh/Retrieval-Retro
https://github.com/HeewoongNoh/Retrieval-Retro


Answer: [Yes]
Justification: We upload our source code to an anonymized repository https://github.
com/HeewoongNoh/Retrieval-Retro in accordance with the double-blind policy, mak-
ing it freely accessible to reviewers.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details of training and test are included in Section4 and SectionA.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We indicate standard deviations in parentheses below the corresponding
measured values.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the GPU requirements for conducting the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All content and results in this paper adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe the positive & negative societal impact in SectionF.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work don’t utilize any pretrained language models, generative models and
any scraped datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All copyrights reserved by the author(s), and all materials related to the paper
will adhere to the copyright policies of NeurIPS.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All details of proposed method are outlined in Section3 and SectionA.
Furthermore, the source code of our work is available in an anonymized repository at
https://github.com/HeewoongNoh/Retrieval-Retro.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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