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Abstract

The relationship between the number of training data points, the number of parame-
ters, and the generalization capabilities of models has been widely studied. Previous
work has shown that double descent can occur in the over-parameterized regime
and that the standard bias-variance trade-off holds in the under-parameterized
regime. These works provide multiple reasons for the existence of the peak. We
postulate that the location of the peak depends on the technical properties of both
the spectrum as well as the eigenvectors of the sample covariance. We present two
simple examples that provably exhibit double descent in the under-parameterized
regime and do not seem to occur for reasons provided in prior work.

Introduction

This paper demonstrates interesting new phenomena that suggest that our understanding of the
relationship between the number of data points, the number of parameters, and the generalization
error is incomplete, even for simple linear models. The classical bias-variance theory postulates that
the generalization risk versus the number of parameters for a fixed number of training data points is
U-shaped (Figure . However, modern machine learning has shown that if we keep increasing
the number of parameters, the generalization error eventually starts decreasing again [2| 3] (Figure
. This second descent has been termed as double descent and occurs in the over-parameterized
regime, which is when the number of parameters exceeds the number of data points. Understanding
the location and the cause of such peaks in the generalization error is of significant importance.
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Figure 1: Bias-variance trade-off and double descent.

Many different theories have been postulated for the appearance of the peak. The prevalent theory
is that when the model is under-parameterized, the learning is constrained. This constraint on the

1Image source [/1f]
*Image source [3]
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learning results in increased variance until the interpolation point. After this point, there exists a high
dimensional space of solutions, and learning methods, such as gradient descent, pick solutions that
generalize well. This conjecture has been empirically validated for deep neural networks. Due to
the challenges of analyzing deep neural networks, theoretical understanding of this phenomenon has
focused on linear models - linear regression [4-13]] and kernelized regression [14-22[]. These works
show that there exists a peak at the boundary between the under and over-parameterized regimes.
Hence validating the above postulated theory for their setting. Careful theoretical analysis then shows
that the generalization error can be decomposed into various terms, one of which is the norm of the
estimator. Specifically, it has been shown that the curve for the norm of the estimator versus the
dimension of the data also exhibits double descent, with the peak occurring at the same point as the
peak in the generalization error curve. In most cases, this is the only term in the decomposition that
exhibits double descent. This leads to a second theory for the occurrence of the peak, that is, the peak
in the generalization error for linear models occurs due to the norm of the estimator blowing up.

Contributions. Since understanding the reasons that peaks occur is of critical importance, it is
crucial that we have a robust theory for their appearance. However, most work focuses on the over-
parameterized regime and ignores the under-parameterized regime. This is because it is commonly
believed that the variance is monotonic in the under-parameterized regime. We show that this is not
true and present two simple examples that exhibit double descent in the under-parameterized regime.

* Why does the Peak Occur. We argue that the location of the peak depends on two factors: the
alignment between the targets y and singular vectors V' of the training data matrix and the spectrum
of the data. We show that by modifying these quantities appropriately, we can move the peak into
the underparameterized regime.

* Modifying the Alignment. For the first example, we consider a spiked covariate model, where one
eigendirection dominates, and the regression target only depends on the dominant eigendirection.
For this model, we consider the ridge regularized problem with ridge parameter 2 and show that
the ridge parameter 12 controls the alignment between the targets y and the singular vectors V. We
show that for 4 > 0 the peak occurs in the under-parameterized regime (Theorem[2). Specifically,
when the ratio of the dimension to the number of training data points c is equal to (1 + p?)~
(c:=d/n=1/(1+ pu?)).

* Modifying the Spectrum For the second example, we consider training data that is a mixture
of isotropic Gaussian vectors and vectors from along a fixed direction z. By varying the mixture
proportions (71, m2), we can modify the spectrum of the covariance matrix. We show that the
expected risk displays under-parameterized double descent (Theorem ), with the peak occurring
when ¢ := d/n = m).

* Norm of the estimator. We further analyze the first example and show that if we fix the number
of training data points n and vary the dimension d of the problem, then for large values of p, the
risk curve does not display a double descent. However, the curve for the norm of the estimator
does display descent. Thus, the peak in the norm of the estimator does not imply a peak in the
generaliation error.

Organization. The rest of the paper is organized as follows. Section 2] presents a quick overview
of prior work on double descent for linear models. Section [3]highlights two less-studied properties
that influence the location of the peak. Section [ presents the first of the two examples of under-
parameterized double descent. This model also shows that a double descent in the norm of the
estimator does not translate to a double descent in the risk. Finally, Section 5 presents the second
example of under-parameterized double descent.

2 Prior Work on Double Descent

In this section, we present the current prevailing theories for the occurrence of local maximums in the
risk curve. Concretely, consider the following simple linear model that is a special case of the general
models studied in [5, 8} 11} [23] amongst many other works. Let x; ~ N (0, I4) and let 3 € Rébea
linear model with ||3]| = 1. Let y; = 8T x; + & where & ~ N(0, 1). Then, let 3, be the minimum
norm solution to arg ming 18 Xtrm — BT Xtpn +Etrn ||, where &gy € R 1, One important quantity
is the aspect ratio of X. Specifically, for a d x n matrix, the aspect ratio is ¢ := d/n. With this
terminology, we see that a model is under-parameterized if ¢ < 1 and over-parameterized when ¢ > 1.
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Table 1: Table showing various assumptions on the data and the location of the double descent peak
for linear regression and denoising. We only present a subset of references for each problem setting.
For the low rank setting in this paper, see Appendix @

Noise Ridge Reg. Dim. Peak Location Reference
Input Yes 1 Under-parameterized This paper.
Output No Full Under-parameterized This paper
Input No Low Interpolation point [24,(37]
Input Yes Full Interpolation point [I38]]
Output No Full  Over-parameterized/interpolation point  [|5, 8} /11]
Output Yes Full  Over-parameterized/interpolation point [[11} 23]
Output No Low Over-parameterized/interpolation point [39]
Output Yes Low  Over-parameterized/interpolation point [40]
Output No Low No peak [41]

Finally, the interpolation point, i.e., the point at which we can exactly fit the training data, is ¢ = 1,
assuming we have full-rank data.

Then, the excess risk R and the expected norm of ,,: can be expressed as follows:

< c<1 1+ ¢<1
R:{é‘f Loe>1 and 5"”t:{1+1lc e>1"

c c—1

In this model, there are a few important features that are ubiquitous in many prior double descent
studies for linear models:

1. The peak happens at ¢ = 1, on the border between the under and over-parameterized
regimes.

2. Further, at ¢ = 1 the training error equals zero. Hence, this is the interpolation point.

3. The peak occurs due to the expected norm of the estimator /3,,; blowing up near the
interpolation point.

This is further validated by works that study ridge regularized regression [[23-26]. Works such as
[23]] have shown that optimally regularized regression no longer exhibits double descent. Further,
increasing the amount of regularization from zero to the optimal amount of regularization results in the
magnitude of the peak in the generalization getting smaller until a peak no longer exists. However, the
location of the peak does not change by changing the amount of regularization. Further, Chen, Min,
Belkin, and Karbasi [27]] proved that double descent cannot take place in the under-parameterized
regime for the above model.

Subsequently, works such as [10, 23} 28-31]] show that there can be multiple descents in the over-
parameterized regime. Specifically, d’ Ascoli, Sagun, and Biroli [30] show that the first peak in triple
descent is due to the norm of the estimator peaking and that the second peak is due to the initialization
of the random features. Their results, Figure 3 in [30], show that the peaks only occur if the model is
over-parameterized. Further Chen, Min, Belkin, and Karbasi [27] show that by considering a variety
of product data distributions, any shaped risk curve can be observed in the over-parameterized regime.
Finally, Curth, Jeffares, and van der Schaar [32] says that the peak occurs at the point of effective
dimensionality of the model and not the true dimensionality. Here, we see that there are three other
reasons provided for the occurrence of peaks in the risk curve.

1. Regularization can reduce the effective dimensionality of the model and move the peak to
the right into the over-parameterized regime [32].

2. For random feature models, we see that the random initialization results in a second peak in
the over-parameterized regime [30].

3. Due to the data having a complex covariance structure, any shaped risk curve is possible in
the over-parameterized regime [27].

Other works [33H36] have considered the problem for other loss models and shown a variety of
different risk curves can exist. Table|l|summarizes some of the prior work.
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Double Descent with Input Noise. There has also been prior work that studies double descent for
models with input noise rather than output noise [24, |37, |38|]. From these Sonthalia and Nadakuditi
[24] and Kausik, Srivastava, and Sonthalia [37]] consider the unregularized problem and show that
the peak occurs at the boundary. Dhifallah and Lu [38]] considers ridge regularization with isotropic
Gaussian data and again sees that the peak occurs at the boundary.

3 Spectral Properties of the Data Affect the Peak Location

In this section, we identify two important spectral properties that govern the location of the peak. In
later sections, we delve into two examples that modify these properties and move the peak into the
under-parameterized regime. We begin with definitions and notations. Throughout the paper, we
assume that training data X = [v1 ... 2,,] € R”™ andy = [y; ...,yn] € RF*". We are interested
in the standard ridge regularized least squares problem.

rrgnlly — BTX|% + 1?82

In the unregularized case, the minimum norm solution is given by BT = yXT, where X1 is the
Moore-Penrose Pseudoinverse of X . Prior work on linear models has shown that a double descent in
the risk is due to a double descent in the norm of the estimator. Suppose X = UX V7 is the SVD,

B € R%¥1 then using unitary invariance, we have that
rank(X)
A2 (?JV)?
1611 =Y
i=1 i

where o; is the ith singular value. Hence, this is controlled by

1. The alignment between y and V. Here V' are the eigenvectors of the data gram matrix.
2. The spectrum of the gram matrix X7 X.

Many prior works deal with the alignment in one of two ways. If y = 87X + &, with £ having an
isotropic distribution, then prior works either assume that 3 has an isotropic distribution [4} |5} 42] or
they assume that X is isotropic Gaussian or that z; = »:1/2;. where z; is from an isotropic Gaussian
[23,143]] and Y is a deterministic matrix. For example, if § has an isotropic distribution, taking the
expectation with respect to 3, £ we get that

rank(X)
3 1
Ese [1812] = EISNIXXTIE +El6}] Y. =
=1 1

This quantity is then studied by looking at the distribution of the spectrum as d,n — oc.

Definition 1. Given a random matrix A, if M1, ..., g are its eigenvalues. Then the empirical
spectral distribution (ESD) is the following sum of Dirac delta measure

e 1 z
v :EZ(S,\i
i=1

and the limiting spectral distribution v is a measure such that v* — v weakly almost surely.

In general, the limiting distribution v, depends on the limiting aspect ratio (i.e.,d/n — c).
Definition 2. Given a measure v, that is supported on the interval J C R, the Stieltjes transform is

m%@):EM%[A1<}7CEC\J

One common assumption is that the limiting distribution of the empirical spectral distribution is the
Marchenko-Pastur distribution [44]]. Other limiting distributions have been considered in [5} 45/ |46].
For the Marchenko-Pastur distribution, it is known (see, for example, Lemma 5 in [24]]) that

1 — c<1
my,.(0) = Exwy, L\} = {1IC

— c¢>1
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Hence, the risk is governed by the value of the Stieltjes transform of the limiting spectrum at ¢ = 0.
In particular, for the above example, the location of the peak of the risk as a function of ¢ depended
on the location of the peak of

c—my, (0) =: G(e).

Hence the risk depends on both the spectrum and the alignment between y and V. Thus, the peak
occurs at ¢ = 1 because of the following two conditions.

Alignment of y and right singular vectors of X

Assumption 1. If X = UXVT is the SVD, then yV is isotropic.

Stieltjes Transform Peak Assumption

Assumption 2. The function c — m,,_(0) =: G(c) has a local maximum at ¢ = 1.

In this paper, we show that violating either one of the above two assumptions can move the peak from
the interpolation point into the under-parameterized regime.

4 Alignment Mismatch

In this section, we present the first example that exhibits double descent in the under-parameterized
regime. This model violates Assumption|[I}

4.1 Model Assumptions

For any k < d, let 3 € R%*¥ be fixed such that the operator norm ||37|| is ©(1). Let Xy, € R*"
be the signal matrix and A;,,, € R?™ be the noise matrix. Then, the ridge regularized least square
estimator W, is the minimum norm solution to

Wopt := argvénin 187 Xt = W (Xern + Aern) |7 + 02| W 1[5 )

Given test data X5 + Ayst, the mean squared generalization error is given by

||5Ttht — Wopt (Xist + Atst)”%‘

Nitst

R(WOPt) = EAtrmAt,st )

Assumption 3. Let Y C R? be a one dimensional space with a unit basis vector u. Then let
Xipn = atmuvtTm € R¥>" and X1gr = atstuvg‘rst € RIX"st pe the respective SVDs for the training
data and test data matrices. We further assume that oy, = O(\/n) and o5t = O(\/Titst)-

There are no assumptions on the distribution of v,.,,, v+5: besides having unit norm. First, we see
that the data X + A has a spiked covariance, with the dominant eigendirection closely aligned with
u. Since the targets only depend on X, we consider A to represent noise. Even with the rank 1
assumption, the model captures many different scenarios. If £k = 1, then the problem is similar to
error-in-variables regression. If kK = d and 3 = I, then this is the supervised denoising problem. If
the columns of X4,.,, are all v and 3 = u, then this captures the binary classification problem (with
MSE loss) for two Gaussian clusters centered at u and —u with labels +1.

Assumptions about A. The analysis works for general assumptions in [24]. For simplicity, we
assume that the matrix A has LLD. entries drawn from a normalized Gaussian.

Assumption 4. The entries of the matrices A € R¥™ are LLD. from N'(0,1/d).

4.2 Expected Risk and Peak Location

We begin by providing a formula for the generalization error given by Equation [2]for the least squares
solution given by Equation|[I] All proofs are in Appendix[E]
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Theorem 1 (Generalization Error Formula). Suppose the training data X, and test data X;s;
satisfy Assumption 3| and the noise Ay, Aysi satisfy Assumption ] Let i be the regularization
parameter. Then for the under-parameterized regime (i.e., ¢ < 1) for the solution Wy to Problem
the generalization error or risk given by Equation[2is given by

Rie, ) = ot (05 +1)) 1+ c+ pe — co?., (02, +1)) +772@+0 1
7 2dr* (U= e+ pi20)? + 4P 2d nest \d)
where
1_ 2[| 87 ul|
T 2+O—?’r‘n(1+c+p“2€_ \/(1_C+M20)+4,U1202)

Sketch. The proof proceeds in four key steps. First, we use the Sherman-Morrison formula for
pseudoinverses [47]]. Next, we decompose the error into constituent dependent quadratic forms.
Through random matrix theory and concentration of measure arguments, we demonstrate that each
quadratic form concentrates around a deterministic value characterized by the Stieltjes transform
of the limiting empirical spectral distribution. Finally, we establish concentration bounds for the
products and sums of these dependent forms, yielding the desired error rate. [

Since the focus is on the under-parameterized regime, Theorem [I] only presents the under-
parameterized case. The over-parameterized case can be found in Appendix [E3] Due to the
complexity of the expression, it is difficult to discern how the risk scales with respect to the training
data signal strength o2, , the regularization strength p, or the aspect ratio c. Since the focus of the
paper is the scaling with respect to ¢, we present the connection between the risk curve and c in the
main text. However, the shape of the risk curve with respect to the other parameters is also interesting
and can be found in Appendix [D]

To understand the shape of the risk curve as c varies, we first consider that data scaling regime. That
is, fix d and change n. The following theorem [2| shows that the risk curve is theoretically guaranteed
to have a peak at c = ﬁ

Theorem 2 (Under-Parameterized Peak). Let 1 € R, 02.,, =n = d/cand o2, = nist, and d is
sufficiently large, so that the error term o(1/d) is small, then the risk R(c) from Theoreml[l} as a
function of ¢, has a local maximum in the under-parameterized regime at c = ﬁ
Theorem [2] contrasts with prior works, in which double descent occurs in the over-parameterized
regime or on the boundary between the two regimes. We numerically verify the predictions from
Theorems[T]and 2] Figure 2]shows that the theoretically predicted risk matches the numerical risk,
thus verifying that double descent occurs in the under-parameterized regime.E]

Under-Parameterized
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Figure 2: Figure showing the theoretical risk curve from Theorem E] and empirical values in the
data scaling regime for different values of p [(L) p = 0.1, (C) . = 1, (R) ¢ = 2]. Here o4, =
VN, 015t = /Nigst, d = 1000, nys; = 1000. For each empirical point, we ran at least 100 trials. More
details can be found in Appendix E}

3All code for the experiments can be found at https://github.com/rsonthal/Under-Parameterized-Double-
Descent
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4.3 The Peak Occurs Due to Alignment Mismatch

We now show that the peak occurs due to a mismatch between the target vector and the right singular
vectors of the input data. To begin, note that the ridge regularized problem can be written as follows

||5T [Xtrn Oaxd] =W ([Xtrn Oaxal + [Atrn ,L‘I]DH%
———— ——
Xern Arn

In this expression, y = BTXtm = (BT )[vk., 0,]. Hence the direction is given by 6., = [vl. 0,].
The right singular vectors of Xtm + Atm are more difficult to compute,thus we use proxies. Since
X, is rank 1, we use the right singular vectors of Ay asa proxy. Lemmam the appendix, shows
that if A = UEVT then we can express Ay as USVT  where U = U, 32 = %2 + p2I, and

Vi pZZ , | € RM+4xd Here V3., are the first d columns of V. Then,

wU S
yv = (BTU) (vtrnvl d)zz 1

Since V7.4 came from a Gaussian random matrix, (vthLd) has isotropic entries. However, the

diagonal matrix $5 -1 results in the entries of 4V not being isotropic. Note when p = 0, el =1,
hence it is isotropic. Hence, u controls the deviation from isotropy.

We use 2757 as a proxy for the spectrum of the sample covariance. By Lemma |5} we have that
TS = 2T+ 2. We know that the limiting spectrum for 7’3 is the Marchenko-Pastur distribution
for which the map G(c¢) = m,,,(0) has a maximum for ¢ = 1. Shifting the spectrum changes the
magnitude of the peak but does not change the location. This suggests that the peak occurs due to the
misalignment between the target vector and the right singular vectors of the input data.

Ablation experiment To verify that the location of the peak is due to the misalignment, we conduct
two experiments. First, we solve the unregularized problem. However, we change the spectrum of
the noise matrix Ay,,,. That is, instead of using A;., = ULVT, we use A = U(X2 4 p21)1/2v T,
If the spectrum was the primary factor determining the location of the peak, the peak should occur at
c=1/(1 + p?). However, as seen in Fi ure a it still occurs at ¢ = 1. Second, we replace V with a
uniformly random orthogonal matrix Q[*} Clearly, yQ is now isotropic. Flgure shows that, in this
case, the peak moves to the over-parameterized regime.

u=1 u=1

102

=
2

Generalization Risk
Generalization Risk

=

Figure 3: Risk for the ablation experiment. Left: Empirical Expected Risk when using A for the
noise. Right: Empirical risk when we replace V' with a random orthogonal matrix.

Connection to Prior Double Descent Theory Prior double descent theory postulates that the peak
for the ridge regularized model occurs at the interpolation point for the unregularized model or further
to the right into the over-parameterized regime. Hence, this model goes against prior expectations,
with the peak moving to the left into the under-parameterized regime. However, there might still be
some connection between the training error and the location of the peak. For example, the peak may
correspond to a local minimum of the training loss. We explore this in Appendix [C|and see only a
weak connection with the third derivative of the training error.

*We obtain such a matrix by computing the full SVD of a Gaussian random vector in Pytorch
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4.4 Peak in the Norm of the Estimator Does Not Imply a Peak in the Risk

Prior double descent theories suggest that double descent occurs due to the norm of the estimator
increasing and then decreasing. This is true for the above model where we fixed d and varied n. How-
ever, the connection breaks if we fix n and vary d instead (parameter scaling regime). This difference
between the two regimes is due to the normalization considered and has been observed before [30].

Figure [ shows that for the parameter scaling regime, for small values of x, we see under-
parameterized double descent. However, as we increase p, the risk curve becomes monotonic.
Nevertheless, as shown in Figure[5] for larger values of (i, there is still a peak in the curve for the
norm of the estimator ||W,,:||%. Hence, the curve for the norm of the estimator exhibits under-
parameterized double descent even if the risk does not. This is further highlighted in Figure[6] Here,
we see that even though the variance is non-monotonic, the risk is dominated by the bias term. Thus,
we show that a peak in the generalization error for linear models does not imply a peak in the norm of
the estimator. The following theorem provides a local maximum in the E [||Woy¢||%] curve for ¢ < 1.

Theorem 3 (||W,,.|| r Peak). If 015t = \/Nitst, Otrn = /v and p is such that p(u) < 0, then for
fixed n that is sufficiently large enough, we have that E [||Wop|| 7] versus ¢ = d/n curve has a local
maximum in the under-parameterized regime at ¢ = (2 + 1)~
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il
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ion Error
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Figure 4: Figure showing the theoretical risk curve from Theorem |l{ and empirical values in the
parameter scaling regime for different values of p [(L) 4 = 0.1, (C) p = 0.2, (R) p = 0.5]. Here,
only i = 0.1 has a local peak. Here n = n;s; = 1000 and oy,,, = 0154 = v/1000. Each empirical
point is an average of 100 trials.
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5 = 0010 5 0010
£ 0.010 08 £ 08 £ 0.8
"'C" 0.009 "‘C" 0.008 '-'C-' 0.008
S 06 O 06 O 0.6
-S 0.008 S 2
T © T o006 © ooos o
= 0007 04 = 04 = 0.4
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@p=01 G p=1 ©p=2

Figure 5: Figure showing generalization error versus E [”Wopt ||§,] for the parameter scaling regime
for three different values of .

5 Shifting Local Maximum for Stieltjes Transform as a Function of ¢

In this section, we present the next example of under-parameterized double descent that violates
Assumption 2| In particular, the maximum of the map ¢ — m,, (0) does not occur at ¢ = 1. We show
that the maximum can be chosen to be any value in (0, 1). We consider the following mixture model.
Let 7y, m2 be mixture weights such that m; 4+ w9 = 1. Then, with probability 7, the data is sampled
from (0, 31) and with probability 7, the data point is ez for fixed z € R? and o ~ N(0, 1). For
this model, the uncentered covariance matrix is given by

E[zzT] = B a0, 11) [z2T] + mE[a?22T] = %I + moz2 T
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Figure 6: Figure showing the E [||W,||%], and the generalization error in the parameter scaling

regime for y = 1, oy = /1, and oy = \/Nys. Here n = 1000 and nys; = 1000. For each
empirical data point, we ran at least 100 trials. More details can be found in Appendix El

Then, the expected excess risk for a solution B compared to 3 is
~ e ~ ~
R = E[||872 — A7)/ X] = E [ 21|87 - 37|12 + mall (8 — B)" 21X -

Let Xy, = [A 20T € RYX™, where the A € R?X"~* with each column a data point sampled L.LD.
from A/(0, $1) and v € R” is the vector with random coefficients in front of z. Let 8 € R? be the
target regressor function and let y*' = 87 Xy,.,, + €., where €2, has L.LD. entries from a standard
normal. Let ﬂg;n =yT XL (X4 XE,)~! be the minimum norm. Then, Theorem 4| shows that the
peak occurs when d/n = ¢ = m; < 1. To experimentally verify Theoremwe consider two cases,
one where we enforce S | z and one where we do not. As seen in Figure|7/} Theoremis accurate
for both cases. This suggests that the 8 L z assumption seems to only be needed for simplifying the
proof.
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—— Theoretical Risk —— Theoretical Risk
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Figure 7: Figure showing under-parameterized double descent. (Left) We have 5 = d - z. (Right) We
have 3 L z. The solid blue line represents the theoretical estimate from Theorem [ and the scatter
points are from empirical experiments with d = 600. For the empirical points, we average over 50
trials. The dashed vertical purple line is 7.

Theorem 4 (Under-parametrized Peak). For the above model, if k/n — s, and d/n — ¢, then the

mic
Ti—c c <

2 T _\2 .
A0 () e m

Theorem []is quite surprising as it shows that the only peak in the risk curve occurs in the under-
parameterized regime. One might assume that is due to the low rankness of the data from the
second mixture. While this is true, prior work does not indicate that this is the reason. Specifically,
Huang, Hogg, and Villar [41] shows that projecting onto low-dimensional versions of the data
acts as a regularizer and removes the peak altogether. Xu and Hsu [[39], also looks at a similar
problem, but they consider isotropic Gaussian data and project onto the first p components. In
this case, the data is artificially high-dimensional (since only the first k coordinates are non-zero).

expected risk is given by R = {
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They again see a peak at the interpolation point (n = p). Wu and Xu [40]] also looks at a version
of Principal Component Regression in which the data dimension is reduced. That is, the data is
not embedded in high-dimensional space anymore. Wu and Xu [40] sees a peak at the boundary
between the under and over-parameterized regions. Finally, Sonthalia and Nadakuditi [24] and Kausik,
Srivastava, and Sonthalia [37] look at the denoising problem for low-dimensional data and have peaks
at ¢ = 1. Therefore, prior work does not immediately imply that low dimensional data results in
under-parameterized double descent. If we had only low-dimensional data, then the peak “should”
move into the over-parameterized regime. This is because if the true dimensionality of the data is
r < d. Then, one might think that the peak occurs when the number of training data points n equals
r since that is the interpolation poinlﬂ We are in the over-parameterized regime since d > r = n.

We can understand this phenomenon as follows. The data from the second mixture does not affect
the smallest eigenvalue of the covariance matrix. This is because the second mixture lives in a
one-dimensional space. Hence, it only affects the top eigenvalue. Since the Stieltjes transform at 0 is
dominated by the behavior of the smallest non-zero eigenvalue, data from the second mixture has
very little effect on the Stieltjes transform of the ESD at 0. We expect the above intuition to hold,
even when replacing rank 1 with rank r for any fixed small r.

Connection to Prior Double Descent Theory For this example, it is easy to show that there is a
strong connection to prior double descent theory. Specifically, even though we cannot interpolate the
data, the minimum training error will occur at ¢ = ;. Further, we see that the blow-up in the excess
risk is due to the norm of the estimator blowing up.

Additionally, we see that comparing with the result from [[11]] (which is the case when w5 = 0), we
see that the my > 0 results in sifting the peak to m; and rescales the variance by m;. However, we
also see an additional correction term in the overparameterized regime:

(t-2) (‘(nﬁzTnz)czQ)

Here we see that the term depends on the alignment between the target /5 and the spike direction z.

6 Conclusion

This paper presents two simple models with double descent in the under-parameterized regime.
While such peaks seem limited to special cases, understanding the cause is important for a complete
understanding of the double descent phenomenon. Our analysis reveals that the location of peaks
depends critically on two properties: the alignment between targets and the eigenvectors of the
training data gram matrix and the behavior of the Stieltjes transform of the limiting empirical spectral
distribution.

We demonstrate that violating either of these properties can shift the peak into the under-parameterized
regime. The first model shows that ridge regularization can create a misalignment between targets
and singular vectors, leading to a peak at ¢ = 1/(1 + p?). The second model, using a mixture of
isotropic Gaussian vectors and directional vectors, demonstrates that modifying the spectrum can
result in a peak at ¢ = m;. These findings challenge several prevailing theories about double descent.
They show that peaks need not occur at or beyond the interpolation threshold and that a peak in the
estimator’s norm does not necessarily imply a peak in the generalization error.

Investigating the interaction between spectral properties and generalization in deep neural networks
to provide a general theory of double descent is an important avenue for future work. Understanding
whether similar phenomena occur in other architectures and the implications for model selection and
regularization remain open questions.
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Figure 8: Generalization Error for low-dimension MNIST using a linear denoiser. For the left figure,
we use 10 dimensions and ;. = 0.1. For the central figure, we use 5 dimensions and ¢ = 1. For the
right figure, we use 784 dimensions and ;= 1.

A Higher Rank for Denoising Model

One might be led to believe that the restriction that the data lie on a line embedded in high dimensional
space is crucial to the appearance of this phenomenon. However, this is not true. As long as the
rank of the data is relatively low, for the input noise setting, we can see this phenomenon. Hence,
we extend our results beyond the one-dimensional case to the low-dimensional case. Due to space
constraints, the conjectured formula for the risk is in Appendix We verify the conjectured formula
as well as the role of low dimensionality using MNIST data. Specifically, we project the data
onto a r-dimensional subspace. We then add noise to the low-dimensional representation and then
solve the denoising problem. The left two figures in Figure [§|show that the phenomenon exists for
low-dimensional data. That is, we see that a peak occurs in the under-parameterized regime, and
the location of the peak seems to occur at ﬁ However, running the same experiment without
projecting to a low-dimensional space (right figure) results in very different phenomena. We no
longer see double descent at all. Hence we see that if a peak occurs, then its location does not depend
on the dimension. However, the occurrence of the peak does depend on the dimension. Thus, we see
that this complements the results in [|38]].

SWhile these are currently presented as a conjecture. This is because we only computed the expectation
terms. Careful analysis of the variance would allow us to formalize the statement.
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Figure 9: Generalization Risk and Training error for denoising a low-dimensional version of MNIST
using a 1-hidden layer neural network. Here d = 2 - 784.

B Non-Linear Model

To show that under-parameterized peak occurs for non-linear models. We conducted an experiment
on MNIST with a 1-hidden layer neural network with a width of 784. The network has no bias, so has
2 - 7842 parameters. Let V be a random 10-dimensional subspace. We project our data onto V), add
noise to the low dimensional representation, and train our network to remove this noise. We use full
batch gradient descent with weight decay of 0.001 to train the model for 500 epochs with a learning
rate of 2 x 1072, We test it on the complete MNIST test data. Figure E] shows the training error and
generalization error as a function of the number of training data points. As seen in the figure, we
have multiple peaks in the under-parameterized regime, and the peaks in the risk correspond to local
minimums in the training error. Interestingly, the risk curve here exhibits 4 peaks!

There are, however, many crucial differences between the peaks for this neural network case and the
linear model case. First, the location of the peak does not seem to depend on the strength of the ridge
regularization. Second, the peak seems to directly correspond to the local minimums of the training

error. Hence, while we see peaks in the under-parameterized regime, the mechanisms that create
these peaks are likely to be different.

25524

https://doi.org/10.52202/079017-0803



0.08

@ Empirical 1.0
= Training Error
0.06 = Training Error 3rd Derivative
1
— 1 Jrsy

sy .
0.04 Minimum 0.6

+  Minimum of 3rd Derivative
1

T
e Empirical

— Training Error

—— Training Error 3rd Derivative

0.006 i
ey
0.8 w=1

0.004
Minimum

0.002
[&—0——0—o—o

/ 0.00 \— 0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 ) 6 8 10
€ =d/Nm c=d/N¢m M

0.000

—0.002

Figure 10: Figure showing the training error, the third derivative of the training error, and the location
of the peak of the generalization error for different values of u [(L) . = 1, (C) u = 2] for the data

scaling regime. (R) shows the location of the local minimum of the third derivative and ﬁ

C Training Error

As seen in the prior section, the peak occurs in the interior of the under-parameterized regime and not
on the border between the under-parameterized and over-parameterized regimes. We have also seen
that it does not necessarily occur whenever there is a peak in the norm of the estimator. The final
postulate for where the peak occurs is that it occurs when we first hit zero training error.

In this section, we explore the connection between the training error and the risk. Theorem [5]derives
a formula for the training error in the under-parameterized regime.

Theorem 5 (Training Error). Let T be as in Theorem([l| The training error for ¢ < 1 is given by

Ea,,. [ Xtrn — WOPt(Xtrn + Atrn)”%‘] =72 (Ut2rn (1—c-T1)+ U?rnTz) +o(1),
2 1 2 1 1+ p2c— /(T —c+pu2c)? + 422
wherelelL tetpe —1|+-+ tpte— VL —ct e+ cu,
2 \ V(@ —c+ p2c)? + 4p2e? 2 2¢
and
2
pct+c+1 1
Ty = (pPc+c—1— /(1 —c+ p2c)? + 4c2p?)? + 3
) = (1 VA p2c) ) N TR

Since we are studying the ridge regularized problem, it is impossible for the training error to be
exactly equal to 0. Hence, we may expect the peak to correspond to other features of the training error
curve. Given the analytical formula for the training error, we can compute the derivatives. We found
that the training error curve does not seem to signal the location of the peak in the generalization
error curve.

Since we are studying the ridge regularized problem, it is impossible for the training error to be
exactly equal to 0. Hence, we may expect the peak to correspond to other features of the training
error curve. For example, the peak could correspond to a local minimum of the training error, or it
could correspond to a point where the training error or its derivatives suddenly change. The first, a
local minimum, is easy to see from the plot of the training error, but the second can be more subtle as
we do not usually have access to the derivatives. However, since we have an analytical formula for
the training error, we can compute the derivatives.

Figure[T0|plots the location of the peak and the training error. Here, the figure shows that the training
error curve does not seem to signal the location of the peak in the generalization error curve. However,
it shows that for the data scaling regime, the peak roughly corresponds to a local minimum of the
third derivative of the training error. While the minimum of the third derivative is difficult to interpret,
as we can see from the third plot in Figure[T0] the minimum seems to closely track the location of the
peak.
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D Regularization Trade-off

It has been seen in prior work that the amount of noise added to the input data can be viewed as a
regularizer (24} 49]. In our setup, we have two different regularizers: the amount of noise added to
the data (since we are dealing with linear models, this is equivalent to the strength of the signal ,,,)
and the strength of the ridge regularizer . It is interesting to analyze the trade-off between the two
regularizers and the generalization error.
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Figure 11: The first two figures show the oy,.,, versus risk curve forc = 0.5,y = landc =2, u = 0.1
with d = 1000. The second two figures show the risk when training using the optimal o, for the
data scaling and parameter scaling regimes.

Optimal 04,.,, First, we fix p and determine the optimal o,.,. Figuredisplays the generalization
error versus o2, curve. The figure shows that the error is initially large but then decreases until the
optimal generalization error. The generalization error when using the optimal o, is also shown in
Figure@ Here, unlike [23]], picking the optimal value of oy,., does not mitigate double descent.

Proposition 1 (Optimal 7y,.,,). The optimal value of 7%, for c < 1 is given by

2 ord2e(p® +1)? —2T(cp® + e+ 1) +2(cp® — 2¢ + 1) 4+ Newt (0Pc® + 2 +1 - T)

Tirn Nise(e3(p2 +1)2 —=T(pu2c2 +c2 —1) —2c2 — 1)

Additionally, it is interesting to determine how the optimal value of oy,.,, depends on both w and c.
Figure shows that for small values of 1 € (0.1,0.5), as ¢ changes, there exists an (inverted) double
descent curve for the optimal value of oy,,,. However, for the data scaling regime, the minimum
of this double descent curve does not match the location for the peak of the generalization error.
Further, as the amount of ridge regularization increases, the optimal amount of noise regularization
decreases proportionally; optimal 02.,, a~ du?. Thus, for higher values of ridge regularization, it is
preferable to have higher-quality data.

Optimal Value of 1 We now explore the effect of fixing oy,, and then changing . Figure[13]
shows a U shaped curve for the generalization error versus (i, suggesting that there is an optimal
value of p, which should be used to minimize the generalization error. Next, we compute the optimal
value of y using grid search and plot it against c. Figure[T4]shows double descent for the optimal
value of p for small values of o4,.,,. Thus, for low SNR data, we see a double descent, but we do not
for high SNR data.

Finally, for a given value of 1 and ¢, we compute the optimal oy,.,. We then compute the generalization
error (when using the optimal o,.,) and plot the generalization error versus y curve. Figure
displays a very different trend from Figure [I3] Instead of having a U-shaped curve, we have a

800 —

- 30 — Risk poak 2.00 | — Risk peak
<700 — < Minimum Minimum
IS — =
= 600{
< - .5

N§500 - S
— 400 S
© S 2.0
8200 Ba1s

100 ©

0 1.0 ,_/
0 50 100 150 203 250 300 350 400 025 050 0.75 1.00 1.25 150 1.75 2.00 025 050 075 1.00 1.25 150 1.75 2.00
u c=d/Ngp c=d/Ntm

Figure 12: The first figure plots the optimal o2, /n versus u curve. The middle figure plots the
optimal o2, /n versus c in the data scaling regime for p = 0.5, and the last figure plots the optimal
o2, /n versus c in the parameter scaling regime for ;1 = 0.1.
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Figure 13: Figure showing the generalization error versus y for o2, = n and 0%, = Nys;.
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Figure 14: Figure for the optimal value of y verses for different values of o,
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Figure 15: Figure showing the generalization error versus y for the optimal 07, and 02, = Nyg.

monotonically decreasing generalization error curve. This suggests that we can improve generalization
by using higher-quality training while compensating for this by increasing the amount of ridge
regularization.

Interaction Between the Regularizers The optimal values of x4 and oy,., are jointly computed
using grid search for u € (0,100] and o4, /+/n € (0, 10]. Figure shows the results. Specifically,
o 18 at the highest possible value (so best quality data), and then the model regularizes purely
using the ridge regularizer. This results in a monotonically decreasing generalization error curve.
Thus, in the data scaling model, there is an implicit bias that favors one regularizer over the other.
Specifically, the model’s implicit bias is to use higher quality data while using ridge regularization to
regularize the model appropriately. It is surprising that the two regularizers are not balanced.
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Figure 16: Trade-off between the regularizers. The left column is the optimal o,.,,, the central column
is the optimal p, and the right column is the generalization error for these parameter restrictions.
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Figure 17: Trade-off between the regularizers. The left column is the optimal oy,.,,, the central column
is the optimal p, and the right column is the generalization error for these parameter restrictions

Next we look at the trade-off between oy,., and p for the parameter scaling regime. We again see,
Figure[T7] that the model implicitly prefers regularizing via ridge regularization and not via input
data noise regularizer.
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E Proofs

E.1 Linear Regression

We begin by noting,
BT = (ﬁopr + gﬂ”n) trn

Thus, we have,
181> = Tx(5 B)

= TI‘( othtTﬂXtTrn(Xjrn)TXtTﬂﬁopt) + Tr(ftml trn( trn)Tgtrn) + 2Tf( othtT‘nXtrnXJrn)Tftj;n'
Taking the expectation, with respect to &;,.,,, we see that the last term vanishes.
Letting X, = UxXx VX We see that using the rotational invariance of X, Ux, Vx are independent
and uniformly random. Thus, s := Bom Ux is a uniformly random unit vector.
Thus, we see,

min(d,n)
. 1
EXtrnvEtrn {Tr(ﬂothtTanrn(Xjrn)TXtTnﬁopt)} = Z E[S?} = min (1? C>

i=1
Similarly, we see,

min(d,n)

]EX”" Etrn [gtrn trn(XtTrn Tgtrn:| - Zz:: E |:0-Z(Xt7n) :|

Multiplying and dividing by d, normalizes the singular values squared of X4,.,, so that the limiting
distribution is the Marchenko Pastur distribution with shape c. Thus, we can estimate using Lemma 5
from Sonthalia and Nadakuditi [24] to get,

< (1) e<1
- 4o(l) e>1"
Finally, the cross-term has an expectation equal to zero. Thus,

9 I+ 1% <1
ol T=1, 00 oy

c c—1

EXtrn :Et'r'n [

Then we have,
T T
/6 /Bopt = ﬁotht'antTrn/@t)pt + ft'r'nXJ,«nﬁopt
The second term has an expectation equal to zero, and the first term is similar to before and has an

1
expectation equal to min <1, ) .
c

E.2 Proof for Output Noise Model

Theorem 4 (Under-parametrized Peak). For the above model, if k/n — s, and d/n — ¢, then the

TiC
m—c c <

expected risk is given by R = {;1 ( My (1 _ Lc]) (\|/3||2 . (BTz)2)> c>

c—m1 d [|z]]2d

Proof. We begin with ¢ < ;. Here, since AAT is invertible, we can see that
AT
BT = (BT [A zT] +¢€7 )[ ](AAT+|U||QZZ )

Let us focus on the term without the £. Using the Sherman Morrison formula and the orthogonality
of 3 and z, we see that

e Y e L
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Thus, we get that
AT v, 1 |AT T 2, T\ !
BT =BT+ | r| (AAT + [lo]22")
For this model, the uncentered covariance matrix is given by
m
E[z2T] = WlExNN(O%I)[l"Q?T] + mEla?22T] = 31] + moz2T.
Then, the expected excess risk for a solution B compared to 3 is

R = E[|872 — A7a|21X] = E [ 2|87 - 371 + mall (8 — B)7 271X ] -

¥

Taking the expectation over &, we get that the expected excess risk is given by

The first term is given by

E[|8 - B721X] = E U

r [AT T 2_ T\ 1
67| 7| (AAT + [lo]2227)

Tr (Lf;] (AAT + HU||QZZT)_2 4 Z,UT]) T ((AAT N ||U||ZZZT)_1)

Again, using the Sherman-Morrison formula, we get that

lvll?

T TN—1y _ V-1
Tr((AA" + ||v|lzz") ") = Tr((AAY) 15 [[ol22T (AAT) 12

Tr (27 (AAT)%2)

Suppose v is the limiting distribution of the empirical spectral distribution for the non-zero eigenvalues.
Then using the concentration results from [24], we see that the error can be expressed

[[v]”

Tr((AATY 1=
r((447) 1+ [[o][22T (AAT) 12

_ 1 [[v]l” 1
Tr (27 (AATY22) = d- By, H— Exw |5
(=1 ) A1+ |v]PEaey [3] A?

The second term of the expected risk is

2

AT -1
¢ L}ZT} (AAT + ||v||zzT) z

Again, if we take the expectation over £ and write as a trace, we get

(AAT)v||222T (AAT) 1 )= 2T(AATY 12
11 02T (AAT) 1z )™ = 14 0|27 (AAT) 12

Tr(z7 ((AAT)l -

Again, this can expressed as
By [5]
L+ [[]”Exvs [3]
Putting it all together, the expected excess risk is

1 Exwv [3] 1 [o]? [ ! }
_ - — Exwv |5
J T 0B, (3] d 1 ol PEan, ][R0

771E)\~u |:

If we then send n, k, d to infinity, while noting that ||v|| — oo, then we get then limiting risk

1
tEo, H _mec

T — C

A

For the d > n — k case, AAT is no longer invertible. Hence, we need to replace the inverse with
pseudoinverse. Hence, we have that

BT at] ) |

AT
oar] (a7 o)’

25530 https://doi.org/10.52202/079017-0803



We now expand the pseudoinverse using Theorem 1 from [47]. To write is succinctly, let M =
AAT P = (I - MM?),v=2"Pzand 7 = 2" M2 to get that

T 2T\t _ L TG T T TNt (14 [Jv]]*)7 T
(AA" + |v||*2z2" )" = (AA™) (AAT)T22"P + P22" (AA ))4_7” B Pzz" P
Y vty

Note that P is the projection onto the orthogonal complement of the range of A. Hence we see that
MP = MTP = 0. Thus, multiplying through, and setting terms to zero, we see that

1
(M + ||Jv|22T) (M + ||v]|222T)T = MMT — =M M 22" P + ||Jv||>22T MT
Y

1 1
— |22zt MT 22T P — ~||jv||222T Pz2zT M7
v Y
1 2
n (1+ ||;1|| T)zzTPzzTP
v

Using the fact that 27 Pz = v, 27 Mz = 7 and cancelling, we get
1
(M + |Jv]|222T) (M + ||v||?22T)T = MMT — —MMT22TP
Y

(+olPr) s

|v)|?22T MT22TP + z' P

1
o
1
=MM — MM TP
v
1 1 2
— Z|o|arsTP + (1 + (vl T)ZZTP
o
1 1
=MM — MM 22TP+ Z2.TP
Y v
1
= MM+ |(I-MM') =2"P
y
1
=MM' +=Pz."P
v

Thus, the first two terms in the error are
8 = BIP + mal| 7 — BT
Let us look at the second term first. Here we see that
BTz =T (MMT + }yPM’P) z=BT(MM'z + P2)
Thus, we see that
BTz —BT2=p8T2 - BT(MMT'z + Pz)

=TI~ MMz —BT(1 - MM")z
=0

For the first term, we first note that
. 1
pgr —pT =p" - p" (MMT + PzzTP>
gl
1
=pTpP— —pTpzTP
gl
To compute the norm, we expand and get

187 P + % Tr (87 P22" PPz PB) — % Tr (37 P22" PPB)
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Noting that P is a projection matrix, so PP = P and using 27 PZ = ~, we get that this term
simplifies to

187 P||” - %Tr (87 P22" PB)

Note that the subspace for P comes from a Gaussian random matrix. Hence is uniformly random.

Hence
B o7 PI] = (1- 235 ) 18l = (1= 22) P

E [,1yTr (BTPZZTPﬁ)] _ (1 _ 7%) (BT 2)?

=112

Similarly,

For the next two terms, we need to first simplify

AT T 2_.T
L] AT sty

Substituting in our formulas and noticing that
ATP=0and ATM' = AT
we get that

At — %ATZZTP —-0+0

2
v MT — %T’UZTP —vzT Mt + 71“')1"'%7) vzl P

[ At — LAt Tp
1 T 1 T 1 T
—5TVZ P+ STUZ P+ Tolzs V? P

At — %ATzZTP

AT
{} (AAT + [jo]?22T)t =

a \IUﬁQ"/UZTP
Then we have that
AT ? AT ?
B |6 | 2] aar gty || = | 2] canm + oty

At — %ATzzTP T

1 T
o7 v2 P

At — %ATzzTP

1 T
T V2 P

=Tr

1 1 1 2
=Tr (MY — =mtz2TP— P22t M + MPZZTP
v ot [[v][2y2

1 1 1+ [Jo|?
= Tr (MT) = Tr (MTzZTP> ~ Ty (PZZTMT) +Tr <|+||||;}H27PZZTP>
2 Y o2y

Using the cycling invariance of the trace and the fact that M TP = 0, we get that

|

The last equality is obtained using cyclic invariance, the fact that P2 = P, and v = 27 Pz. Using
Lemma 6 for p = n — k and ¢ = d, we get that asymptotically,

’ L+ |Jvf?r

= Tr (M") +
P+ ey

r [AT T 2__T\t
€| 27| (AAT 4 ol

2
m ™
—Tr(MT)y = ——.
d r(M7) c—m
Note that we similarly get that asymptotically,
T 1 w3
—T == 0.
d" " de-m
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Thus,

Finally, for the last term, we have that

Atz — ,YATZZTPZ
HUﬁQ vz Pz

AT
{ ] (AAT + Hv||2zz ) z =
vzl

Thus,

. U ] - [T

Note that ||v||? =~ k and hence this term is aympotitcally zero. Putting it all together, we get the
needed result. O

r [ AT T 2_ T\t
€| 27| (AAT + olP2eT) T

E.3 Proofs for Theorem[I]

The proof structure closely follows that of [24].

E.3.1 Step 1: Decompose the error into bias and variance terms.

First, we decompose the error. Since we are not in the supervised learning setup, we do not have
standard definitions of bias/variance. However, we will call the following terms the bias/variance of
the model. First, we recall the following from [24]].

Lemma 1 (Sonthalia and Nadakuditi [24])). If A;s; has mean 0 entries and Ay is independent of
Xist and W, then

Ea,.. 1 Xest = WYist||F] = Ea,, [ Xest — WXt 7] + B, [IW Aesel| 7] -

Bias Variance

3

E.3.2 Step 2: Formula for W,

Here, we compute the exphclt formula for W,,; in Problem I Let Atm = [Ayn pl ] X trn =
[X¢rn 0], and Yirn = Xtrn + Agrn. Then solving arg miny, || Xern — WthHF + i HWHF is
equivalent to solving arg miny, ||Xt,.n V[/Yt,n”2 Thus, Wo, = arg mingy, ||Xt,.n WYt7n||F =
)A(tmf/t:n. Expanding this out, we get the following formula for . Let @ be the left singular
vector and ¥y, be the right singular vectors of X +rn- Note that the left singular does not change
after ridge regularization, so @ = u. Let h = oL Al k = Aimu § = (I — ApnAl )u,

t - UfT’W(I AtrnAtTn)7 :Y =1+ Utrn@z;n‘[lzrnu’ T = UtrnHtH HkH2 + :)/2'
Proposition 2. If§ # 0 and Ay, has full rank then

Wo o o't'rAnﬁ/uiL + U?mJ“H kTAT
T T

pt — trn*

Proof. Here we know that u is arbitrary. We have that fltm has full rank. Thus, the rank of Atm is

d, and the range of fltm is the whole space. Thus, u lives in the range of Atm. In this case, we want
Theorem 3 from [47]]. We define

2 ]% 2 R 7
p= _Om“i\T — ok and (jT _Crt”%””

ETAl  —h.

trn
Then we have,

R R - o o
(Aprn + Jtrnuvg;n)T = Alm i;"" EET Al ;qu'

trn

Note that, by our assumptions, we have f = 9y (I — A, Ayn), and (I — Af Ay,) is a projection
matrix, thus
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T AT
Utrnt - trn(I AtrnAtTn) vtrn

= Utrn(l AtrnAtTﬂ) (I AtrnAfT”) vfrn

To compute W = Xtm(Xtm + Apn)t = o4nudl, (Aprn + otrnudl, ), using 4 — 1 =
Jtmv;";nAImu = Utmhu we multiply this through.

O—trnt”TkTAT ’?AAT)

T (i AT it
O trn U0 (Atrn + Jtrnuvtrn)Jr = Utrnu“tm(Atrn trn ;pq

9 R
A t
_ UtrnUh+ O'trnA|| || k‘T :]T
Y

trn

2 2 .12
o . Oionllk ~\
t?vuvg‘n ( trn’AL ” t‘l Utrnk> qT

o-t2rn||£||2u]%TAT +
~ trn

N 3 k21712
= O¢rnuh + Mun

Jtrn’)’( ]-)UA

+ qT.
T

Then we have,

ThonllFIZI o _ B IRIPUER  (_ounnll® i 3
S S ’AY trn

R L L L L
7:;}/ trn 7/;

and

O'trnﬁ’(jy - 1)un _ Utrn’?(?y - 1>u (_ UtrnAHI?” kTAIrn _ ]Al)
T Y

_OelflPG 1) 7 g ownd( D) o
7'L L 7,; .

Substituting back in and collecting like terms, we get,

L S TG e 1)) it
7

~T A ~T
OtrnUUqpp, (Atrn + Utrnuvtrn)T = Otrn (1 -

7
o (IR Rl RPIEE PG =D e g
trn 2 71,3/ S trn-

We can then simplify the constants as follows.

0 L O T VN et 9 . [ et G
7 7 7 7
and
. N . A 2 (a2 2 NLI2IFN2 22 4 4 R
[P R BPEE JPG = 1) M (7 = b IEIPIE” = 5% +3) e
ol T T T4 7
This gives us the result. O
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E.3.3 Step 3: Decompose the terms into a sum of various trace terms.

For the bias and variance terms, we have the following two Lemmas.
Lemma 2. If W, is the solution to Equationm then

¥
tht - Wothtst = ;tht

Proof. To see this, note that we have n + M > M.

9 ~
OtrnY 3 JtrnHt” i T AT T
Xist — Wopt Xtst = Xist — 7 uhuvgg, — 7 uk” Apy uvpgy
- X, — trn7 AT AT T O-tQTnHtAH kTAT T
— Aist B VtrnAtrnWtst B trnUVtst-

Note that § = 1 + o4, 0L, Al u. Thus, we have that o405, Al u =4 — 1. Substituting this

trn
into the second term, we get,

45 =1 o2 |t
tht — Wothtst = tht — %U’Ugt - ”‘%HH kTAT uvg;t.

trn

For the third term, since k = A u, kT Al u = kTk = ||k||2. Substituting this into the expression,
we get that

Y7 -1 2 EN2 K2

STGRR Y S M L G

S tst S tst-

tht - Wothtst = tht -

: — T
Since X5 = uv;y,, we get,

S(A — 1 UQM f 2 ];, 2
Xyut — W X = Xont <1_ SCR B LAY

T T

Simplify the constants using 7 = o2, ||£]|2[|k[|2 + 42, we get,

T +4—4% = o lEPIAI?
,f_

SN

O

Lemma 3 (Sonthalia and Nadakuditi [24]). If the entries of Ass: are independent with mean 0, and
variance 1/d, then we have that E 4, [[|[Wopt Avst||?] = 222t [ Wope||

Lemma 4. If4 # 0 and Ay, has full rank, then we have that

¢ 2 allEl?
HWOPtHF — Utrn’Y TI‘(hTh)—i-QUtTnH || ’YT (th,TAT ) Utrri! ” TI‘(( )TkkTAITn)
T
P
Proof. We have
||W0pt||2F = Tr(WoptWOpt)
Y 3 2 £ LINP g Y 3 ) tA 2 s
Tr((atA Y s . Zoealll AIM) <otA Y s . Tl o AL”)
T T T T

2 22 R R
_ O—trAnfy Tr(hTuTuh) 2 trn” H 7 TI‘(hTUT’UJkTAITn)
72 72

_’_O—trnHtH Tr((AT )Tku UkTAIrn)

7-2
Itll2

4 7114
O )/ o o t
tTn Tr (hTh) 2 t7n| trnH ||

T re(ATRT AL, + TPl (AL, TRETALL).
T

Where the last inequality is true due to the fact that ||u|* = 1. O
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E.3.4 Step 4: Estimate With Random Matrix Theory

Lemma 5. Let A be ap x q matrix and let A = [A  pI] € RPXUH_ Suppose A = ULV be the

singular value decomposition of A. If A=USVT is the singular value decomposition of A, then
U=Uandifp<q

01(A)? + p? 0 0
2 2
3= / o2 A +u ! € RP¥P,
0 0 op(A)?2 + p?
and
% Vl:pizE c RITPXP
w1t

Here V., are the first p columns of V.

Proof. Since p < ¢, we have that U € RP*P, 3 € RP*P are invertible. Here also consider the form
of the SVD in which VT € RP*4.

We start by nothing that U207 = AAT = AAT 4 21 = U(22 4 p21,)UT. Thus, we immediately
see that o;(A)? = 0;(A)? 4 p2 and that U = U.
Finally, we see,
VI=3"'UTA = [5'svl s tUT]

O
Lemma 6. Let A be ap x q matrix and let A = [A  pI] € RP*4HP, Syppose A = USVT be the
singular value decomposition of A. If A = UXVT is the singular value decomposition of A, then
U=Uandifp>q
o1 (A2 + 12 0 0 e 0

0 v oa(A)? 4 p? 0

™M
|
o
o
)
)
Sm
)
_|_
=
%)
o

€ RP*P,
o
: -0
i 0 0 e 0 0 p
Here we will denote the upper left ¢ x q block by C. Further,
R T -1
S L P

Proof. Since p > ¢, we have that U € RP*? and we have that ¥ € RP*9, Here VT € R9*9 is
invertible.

We start with nothing,
2T A AT T 2 DX 0 2 T
US207 = AAT = AAT 4 21 =U ([T 7 | 4p2L ) UT
q—p
Thus, we immediately see that fori = 1,...,p o;(A)? = 0;(A)2 4+ g2 andfori = p+1,...,q, we
have that 0;(A)? = p? and that U = U.

Then, we see, . ) ) A A
VI=3"0"A=[2'2vT un-UT].

Note that 3 has 0 for the last p — q entries. Thus,

C_lzl:q,l:qV:|

q9—p.q

DIED J] v [
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Similarly, due to the structure of 2, we see,
A _ 1
MZ 1UT = [:U’C lUiZ:q /”L;U(?Jrl:p]'
O
Lemma 7. Suppose A is an p by q matrix such that p < q, the entries of A are independent and have

mean 0, variance 1/p, and bounded fourth moment. Let ¢ = p/q. Let A = [A  pl] € RPXITP, Let

W, = AAT and let Wy = AT A Suppose X\, is a random non-zero eigenvalue from the largest p
eigenvalues of Wy, and A, is a random non-zero eigenvalue of W. Then

2¢c—c)? 2¢2—1—p2c+e
1. E[i} :E{i} = VUEEem P Bt miete | (1),

Ap Aq 2u2c
) E [L} _F [L} _ 124 e—2e41 4+ L (1 _ l) + 0(1)
. AZ A2 2H4C\/4M202+(1*C+N20)2 2ut c :

Proof. First, we note that the non-zero eigenvalues of W, and W, are the same. Hence we focus on
W,. Wy, is nearly a Wishart matrix but is not normalized by the correct value. However, cWV,, does
have the correct normalization.

Due to the assumptions on A, we have that the eigenvalues of cAA” converge to the Marchenko-
Pastur. Hence since the eigenvalues of ¢V, are

(eAy)i = coi(A)? + en?,

we can estimate them by estimating co;(A)? with the Marchenko-Pastur [44, 50-53]. In particular,
we want the expectation of the inverse. We need to use the Stieljes transform. We know that if m.(z)
is the Stieljes transform for the Marchenko-Pastur with shape parameter c, then if A is sampled from
the Marchenko-Pastur distribution, then

mc(z):IE,\[ L ]

A—z

Thus, we have that the expected inverse of the eigenvalue can be approximated m(—cu?). We know
that the Steiljes transform:

l—z—c—/(1—2—0)2—4dcz
—2zc ’

me(z) =

Thus, we have,

N R Iy e B
cAp 2u2c?

Canceling 1/c¢ from both sides, we get,

E[l] VI +p2e—e)2 +4p2c2 —1—ple+e

Ap - 2u2c

Then for the estimate of E [1/A2], we need to compute the derivative of the m.(z) and evaluate it at

—cpi?. Hence, we see,

(c—z+/4dcz+(1—c—2)2—1)(c+z++/—dez+(1—c—2)2-1)
4e22\/—dez + (1 —c— 2)? '

me(z) =
Thus,

B | | = i)

232
c)\p

(e pre+ Va2 + (1 —c+ p2e)? — 1)(c — pPe+ /Ap2® + (1 — ¢+ p2c)? — 1)
4pred /42 + (1 — ¢ + pe)?
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Canceling the 1/ ¢ from both sides, we get,

E {1} (e pPe+ 4R + (1 —c+ pPe)? — 1)(c — pe+ /A2 + (1 — ¢+ p2c)? — 1)
A2 dpter/4pu2c + (1 — ¢ + p2c)? .

Multiplying out and simplifying

1 2?4+ 4 pPfe—2c+1 1 1

= +
2uter/42c2 + (1 —c+ p2e)2  2pt

Cc

O

Lemma 8. Suppose A is an p by q matrix such that p > q, the entries of A are independent and have
mean 0, variance 1/p, and bounded fourth moment. Let ¢ = p/q. Let A = [A  pl] € RPX4TP, Let
W, = AAT and let Wy = AT A. Suppose Ap is a random non-zero eigenvalue of Wy, and A\, is a
random eigenvalue from the largest q eigenvalues of W,. Then

2
1 B[] -] - e

Ap 242

1 _ 1 _ 1—2c+c?+p’etp?c? 1
2B [73} =k {7?7] B 2u4\/4u2c+(ﬁ1+ciuzc)2 (1= g +o(l).

Proof. First, we note that the non-zero eigenvalues of W), and W, are the same. Hence we focus on
Wp. Due to the assumptions on A, we have that the eigenvalues of AT A converge to the Marchenko-
Pastur with shape ¢~ !. Hence if ), is one of the first ¢ eigenvalues of W, we see,

VA +p?—1/c)? +4p2fc—1—p® +1/c

2u?/c '
Then for the estimate of E [1 / )\2] , we need to compute the derivative of the m -1 (z) and evaluate it
at — uz. Hence, we see,

E {1} _ et p?+ VA2 e+ (1 =1/c+p?)? 1) e — @2 + VAp?fe+ (1= 1/c+ p?)? — 1)
2 WA e/ e+ (L= 1/c T 122
(1+pPe+cey/4p2fe+ (1 —1/c+p2)2 =) (1 — pPe+cy/4u2fe+ (1 — 1/c+ p2)? —¢)
dpten/4ptfe+ (1 —1/c+ p?)?
(1+ p2c+ /Ap2e+ (=1 +c+ p2c)? — o)(1 — pPe+ /Ap2e + (=1 + ¢+ p2c)? — ¢)
4pt/Ap2e + (=1 + c + pc)?

E [;p] = me-1 (i) =

This can be further simplified to

1—2c+c? + plc+ p2c?
2uty/4puZc + (=1 + ¢ + pc)?

+(1-0c¢)=—

We will also need to estimate some other terms.

Lemma 9. Suppose A is an p by q matrix such that the entries of A are independent and have mean
0, variance 1/p, and bounded fourth moment. Let A = [A  pul] € RP*9TP, Let W, = AAT and let

W, = AT A. Suppose \p, Aq are random non-zero eigenvalues of W,,, W, from the largest min(p, q)
eigenvalues of W,,, W,. Then

—_ 267 — C C c
L Ifp>qE [Ap/\puz} . (% 4 Lhw v (=1+ctp? )2+4u2> Foll),

2c

— 1.2 C— —C L= C Ce L
2. Ifp<qE [/\q Hz} 1 14u2e—y/(I—ctpu2c)2+4c2p? +o(1).

Ag 2 2c
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2 2
> B[R] = Ltetple 1 1).
3 fp >q /\% c 2\/(*1+C+H2C)2+4P«2C 2 + O( )

_ 1+c+u2c 1
= — 5 +o(l).
) o eremy iz 2ol

No—p?
4. pr<q,E[ "Xé”

Proof. Notice that if ) is an eigenvalue of A (so unshifted).

2 2
A —1- " and A = LI a
TR W A P S LA Wy A P ST
Then use Lemmas|[7} and [§]to finish the proof. O

Bounding the Variance.

Lemma 10. Let n,, be a uniform measure on n numbers a1, ..., a, such that n™* — n weakly in
probability. Then for any bounded continuous function f

n—1
= F(a0) = ()]
=1

Proof. Using weak convergence

U3 () = Eamglf @]
i=1
Then using the boundedness of f, we get,
12 1< 1
- ;f(ai) - ﬁ;f(ai) =~ flan) = 0.
O
Lemma 11. Let n,, be a uniform measure on n numbers aq, ..., a, such that n, — n weakly in

probability. Let s be a uniformly random unit vector in R™ independent of n,. Suppose n/m — ¢ €
(0, 1]. Then for any bounded function f,

mh}%wﬂawwww]

i=1

and

E, (Zsff(aﬁ) —E; Zs?f(ai)] — 0.

Proof. The first limit comes directly from weak convergence.

For the second, notice,
n 2 n n n
<§jﬁfmn> = sif(a)®+)_sisifla)f(a) = sif(a)®+)_sif(a) Y57/ (a).
i=1 i=1 i#j i=1 i=1 j#i
Taking the expectation with respect to s we get,

- ’ 1 n 1 n

=1 =1 VE)

Then using Lemma@] for any fixed ¢, we have,

LS Flag) > (B @)].
i
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Thus, as n — oo, we have,

n 2
E, (Z Slzf(ai)> — CZ]E:cwn[f(x)]Q-

Then since )
B, [ S?f(ai)] = By f(2)]%.
i=1

Thus, the variance goes to zero. O

The interpretation of the above Lemma is that the variance of the sum decays to zero as m — oco.

Lemma 12. Suppose A is an p by q matrix such that the entries of A are independent and have
mean 0, variance 1/p, and bounded fourth moment. Let A = [A  pl] € RP*I1P, Let x € RP and
§ € RPT9 be unit norm vectors such that §* = [y*  0,]. Then

T — "’ ce—1— 2 >
1. Ifp < q, then E[Tr(zT (AAT)T] = VIZeH2 thBmlmpwmeve | )

2u2c

2. Ifp > q, then B[Tr(2T (AAT)tz) = ¥ (Sltetutefiddpforlopcte | o(1).

2u2c

~ AT ANt~ c 2c
3. 1Ifp < g then E[Tr(g" (AT A)1g] = ¢ (2\/(110:#4;5)2+452u2 - %) +o(1).

LT AT AN A ctnle
4. If p > q, then E[Tr(yT(ATA)Ty] =c¢ (2\/(—1}:;+ZZC)2+4#2C - %) +o(1).

The variance of each above is o(1).
Proof. Let us start with p < q.
Let A= USVT, where 3 is p x p. Then we see,
(AATYt = U207,

Where U is uniformly random. Thus similar to [24]], we can use Lemmato get,

\/(1+u26—c)2+4u202—1—u2c+c+

E[Tr(zT (AAT) 2] = o2c

o(1).

On the other hand, for p > ¢, we have that only the first ¢ eigenvalues have the expectation in Lemma
The other p — q are equal to ﬁ Thus, we see,

E[Tr(a” (AAT)1a] = 1 (“4“2” Clitc+pig’—copletl 0<1>> (-0 5

c 22 c) pu?

VAPt (1 + e+ pe)? + e —pPfe—1
= d _

2cp
Again let us first consider the case when p < q. Then we have,
Vl;pZi_ 1
pUy =t
Since ¢ has zeros in the last p coordinates, we see,
JTATA) T =y Vi, B2 SV Ly,
Thus, we can use Lemmal| to estimate this as,

1 2 1
¢ tetpe —— ] +o0(1).
2v/ (1 —c+cp?)? +4c2p2 2

(ATAYT = P$-20T = [ } £ [SInVT a0
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The extra factor of ¢ comes from the sum of p coordinates of a uniformly unit vector in ¢ dimensional
space. And for p > ¢, we have that the estimate is

1L+ c+ pe 1
¢ <2\/(1 +u?—1/c)2+4u?/c - 2) ol

For the variance term, use Lemma@ For three of the cases, the limiting distribution is the Marchenko-
Pastur distribution. For the other case, the limiting measure is a mixture of the Marchenko-Pastur and
a dirac delta at 1/p2. O

The rest of the lemmas in this section are used to compute the mean and variance of the various terms
that appear in the formula of W,;.

Lemma 13. We have that

I+ctp’c 1
ti —5)+o0o(l) ec<1
Eg, {HBIP} = 2y/(1—ctp2e)?+4p%c2 2) .
Lrn 2
Itctp’e —2)+0(1) e>1

2¢/(—1+ctn2e)2+4p2c

and that V(||h|?) = o(1).

Proof. Here we see that

Thus, using the Lemma [I2] we get that if ¢ < 1
. 1 2 1
E[|4]]%) = ¢ et ) o)
2¢/(1 — c+ p2c)? + 4p2c 2
andif ¢ > 1
. 1 2 1
[ = c L) o).
2¢/(=1+c+ p2c)? +4p2c 2
O
Lemma 14. We have
\/(lfc+u20)2+4p262717u2c+c
Ea.. [JF] = e
- T VOt tapte—1—pPete
et ineIiiete L o(1) e> 1
and that V(||k||2) = o(1).
Proof. Since k = Aimu, we have that
Ik)? = Tr(u" (Awn AL ).
According to the Lemma([I2] if ¢ < 1
- (1 —c+ p2c)2 +4p2c2 — 1 — p2c+c
(i) = ¥ 7o +o(1)
andifc > 1
- (=1 +c+p2e)2 +4p2c—1—p’c+ec
E[||k]%) = v o +o(1).
O

Lemma 15. We have that

1—c—p2c+ \/(1—c+uzc)2+4c2u2) +o(1) c<1
1—c—pPc+ \/(f1+c+,u26)2+4u2c) +o(1) e>1

o(1)

Ea,,., [IHI°] =

Nl= N

and we have that V(||f||2)
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Proof. Here we see that { = Vg (I — Al Atm). Thus, we see that

trn

HEH2 = ||Utm||2 - ﬁg;nAImAtrnﬁtm =1- ﬁtz;nAIrnAtmﬁtrn-

If V € RP+axP+d_ we have that

AT
Atrn

N . 0] =~
AtTn =V l:é) 0q:| VT.

Then if p < g using Lemma[6]and the fact that the last p coordinates of ¥y, are 0, we see that
o Al

A, b T S—257,T
trn trnAtrnUtrn = Utrnvl;pZE EVl;pvtrn-

Then using Lemma 9] to estimate the middle diagonal matrix, we get that

. 1 1+ p2c— /(1 + p2c— o) + 4c2u?
]E[|t||2]1c<+ +pice \/( +ptc C) + CP’)

2 2c
1
=5 (1 —c—ple+ /(1 —c+ p2c)? +4c2u2> +o(1).

Similarly for ¢ > 1, we have that

. 1 c+pPe—c/(1+pu2—1/c)2+4u?/c
Bl = 1 - ( 3+ eV U R VP v bEe) )
2 2
1
=3 (1 —c—pPet+ /(=1 + ¢+ p2e)? +4u2c> +o(1).
The variance of A],, Ay, is also o(1) using Lemma O

Lemma 16. We have thatE ,,, [4] = 1 and V(v) = O(c2.,,/d).

Proof. Noting that A=USVT, we have that

min(n,d)
=1+ 0t Al u=1+40un Y oi(A)ab;.
i=1
Here a” = 97,V and b = U"w. U is a uniformly random rotation matrix that is independent of 3.

and V. Thus, taking the expectation with respect to Ay.,,, we get that the expectation is equal to zero.

For the variance, let us first consider the case when ¢ < 1. For this case, we have that

> Vl.dZi_l
V= P .
[ e

Thus, letting a” = vl V1.4, we get that

d
X ai(A)
=1+ ——————a;b;.
! 2 o2(A) + 12

Squaring and taking the expectation, we see that

o? [ A | o?
E 2 =1 trnE o trn )
[’Y] + n A lc_<)\+ﬂ2)2_+0( n
Similarly for ¢ > 1, we have that
o? [ A | o?
E 2 -1 trn E N trn .
[PY] + d A He _(>\+N2)2_ +0< d
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Lemma 17. We have that

202+02+ 2c—2c-i-1 1 1
At \TLLT At 2u4i\/4u2c2ﬁ(1—c+u26)2 e (1=2) o) e<1
E [Tr((Atr”) Kk Alpn)| = Elp] = 1—-2c+c?+pletpuc? (1 — l) - o(l) e¢>1
2pter/dp et (—1tctu2c)? 2u*

C

and that V(p) = o(1).

Proof. Here we have that

p=Tr(k" (AT

trn

Atm)Tl%) = TT(UT(Atrnsz;n)T (AtrnAg;n)Tu)
‘We first notice that

(AtrnAT )T(AtrnAg;n)T = UTEPU.

trn

Thus using Lemmas|[7]and [8] we see that if ¢ < 1
o pEE+ A+ pPfe—2c+ 1 N 1 < 1>
2uder/4p2c? + (1 — c+ p2c)2 - 2pt

E[p]

andifc > 1

1 1—2c+ 2+ p2e+ p?c? 1 1\ 1
E[p]:, 1 3 5 2+(1—C)274 + 1— - 3
e\ 2ut\/Ap2e + (=1 + ¢ + p2c) 1% c) u

1 —2c+ A+ pPe4 pP? (1 1) 1
2ute/Ap2c + (=1 + ¢ + p2c)? c) 2ut’
The variance being o(1) comes from Lemma|T1]again. O

Lemma 18. We have that o
En,,, |Tr(hTkTAL,)] =0

and the variance is o(1).
Proof. Letting A = ULV, we get that
Te(hTkTAT) = uTUS3VTHL .

Then again since U is uniformly random and independent of S and V, the expectation is equal to
zero. The variance is computed similarly to Lemma|[T6] O

E.3.5 Step 5: Putting it together

Lemma 19. We have that

E{ T } 021‘ +1 1+,U2C+C—\/(1—C+M20)2+4ﬂ202)—l—O(l) c<1
Pl |+ (1ot o (T ok 1207 T 40%c) +o(1) e>1

Oirn o’f
and that V(7 /o2.,) = o(1).
Proof. Using the fact that all of the quantities concentrate, we can use the previous estimates.

Specifically, we use that
|E[XY] - E[X]E[Y]| < VV[X]V[Y].
Thus, since our variances decay, we can use the product of the expectations. Further,
IVIXY]| = [VIX]V[Y] + E[X]*V[Y] + E[Y]*V[X] — 2E[X]E[Y]Cov(X,Y) + Cov(X? Y?) — Cov(X,Y)?|
< |VIX]V[Y] + E[X]?V[Y] + E[Y?V[X]| + 2|E[X]E[Y]|/V[X]V[Y] + |[V[X]V[Y]| + |/ V[X2]V[Y2]|.

Thus, since the variances individually go to 0, we see that the variance of the product also goes to 0.
Then using Lemma [I5]and[T4] we have that if ¢ < 1

R A 1
E[Ii21RI12] = 5 (1 + 12+ e = VT = et w2 + 452 + o(1)
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and V(||]|2]|k]|2) = o(1). Then since
[VIX + Y]] < [V[X]+ V[Y]| + 2/ V[X]V[Y]

we have that using Lemma|[T6] that if ¢ < 1

11
E L;} :tT+5 (1—|—u26+c—\/(1—c+u20)2+4u202) + o(1)

and that that variance is o(1). If ¢ > 1

T 1 1
E[z} =5 13 (1+M20+c—\/(—1+C+u20)2+4u20> +o(1).

Jtrn trn 2
O
Lemma 20. We have that
c(l40,,5) pPetetl 1
—1])4+0(1) e<1
1 ~ ~ 2 (1—c+p2c)?2+4p3c?
B | WP+ = °, SVOwm

trn Ttrn crc _

2 \/(_1+C+#20)2+4#20 + 0(1) c>1

and that the variance is o(1).

Proof. Similar to Lemma[T9] we can multiply the expectations since the variances are small. For
¢ < 1, simplifying, we get that

1 . c(1+0,2) ple+c+1
B | 17 + 11| = S5 reterl )
trn V(1 —c+ p2e)? + 4p2c

and if ¢ > 1, we get that

Ean., | (b2 + i) tp| = C0E Tern) petetl “1) 1o
" Lot 2 V(=1 + e+ p2e)? 4 dpPe

and the variance decays since the variances decay individually. O

Lemma 21. We have that

c(l+0,.2) pPetetl _
2 J?Tn 2 \/(1—c+u20)2+4M202 1) T 0(1) c<l
EAtrn [”WOPt”F] = D) Y 5
T c(l40,.%) pletce+1 _ + 0(1) c>1
2 \/(—1+C+H2(J)2+4/L26
and that V(||Wut||%) = o(1).
Proof. Follows immediately from Lemmas [4] [17] [18] and 20] O

Theorem 1 (Generalization Error Formula). Suppose the training data X, and test data X;s;
satisfy Assumption [3| and the noise Ayyp, Arst satisfy Assumption[d} Let p be the regularization
parameter. Then for the under-parameterized regime (i.e., ¢ < 1) for the solution Wy to Problemm
the generalization error or risk given by Equation[2]is given by

R(C ) — Cat27'7L(U7€27'7L + 1)) I4+c+ /’LQC _7_—2 CUtZT'n(O-tQTn + 1)) +T—2@+O (1>
7 2dr? V(1= c+ p2e)? + 4pc? 2d Nt d)’
where
2|87 ull

T 24 02, (1 +c+ p2c — /(1 — c + p2c) + 4p2c?)

~2 22 4
Proof. Rewriting :—2 as 12/ Zf[" , we can the concentration from Lemmas and Then using
trn

Lemma 21| we get the needed result.
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Theorem 6. For the over-parameterized case, we have that the generalization error is given by

R(C, ’u) — 7_72 O—tzst 4 CO—tQTn(O-?rn + 1)) 1 +ct IU‘QC -1 +o0 (1> ,
Nist 2d V(=1+c+ p2e)? + 4p2e d

2
24 02, (1 +c+ p2c — /(=1 + ¢+ p2c) + 4p2c)

where 771 =

Proof. Rewrltmg as L we can the concentration from Lemmas and l Then using
Lemma 2T we get the needed 'resull.

E.4 Proof of Theorem 2|

Theorem 2 (Under-Parameterized Peak). Let 1 € R, 02.,, = n = d/cand o2, = nist, and d is
sufficiently large, so that the error term o(1/d) is small, then the risk R(c) from Theoreml[l} as a
1

function of ¢, has a local maximum in the under-parameterized regime at c = Thaz

Proof. First, we compute the derivative of the risk. We do so using SymPy and get the following
expression.

4c <4cu2 + (1?=1) (ep? —c+1) = (p? +1) \/402u2 + (cp2 —c+ 1)2)

2
d (4c2u2 + (cp?2 —c+ 1)2) (c,u2 +c— \/4c2,u2 +(ep?—c+1)° + 1)
2¢ ((u2 +1) (402u2 + (ep? —c+ 1)2) — (dep® + (12 = 1) (ep® —c+1)) (ep® +c+ 1))

s 2
’ (cu2+c— \/402u2+(cu2—c+1)2+1>

+

d (4c2u2 + (cp?2 —c+ 1)2)

3 6
2 ((402,u2 + (ep? —c+ 1)2) (ch +c— \/402M2 +(ep? —c+1)° + 1)
+

7

7 7
M (402,u2 + (cpu? —c+ 1)2) ’ (c;ﬂ +c— \/402u2 + (e —c+ 1)+ 1)

We can then compute the limit as ¢ — 07. Again using SymPy we see that

0 2 2 1
cl_l)r(r)1+ a—R(c,u 1O =dfc) = 7> 0.

Let
T(c,p) = Au* 4+ 22 4+ ¢ 4+ 2cu® — 2c + 1
To find the critical point, we shall write the derivative as one fraction of the form
cu? +c—1)P(c, pu,d,T)
Q(c, p,d,T)

OcR(c,u) = —2 (

Here we see that
Ple,pu,d,T) = Put + 220 + 2 4+ 2cp® +1— (cu+ e+ VT

and
Q(c, p,d, T) = d(cp® 4+ c+ 1 — VT)*173/?

We can see that the numerator is zero at ¢ = (1 + u?)~L. To evaluate the denominator at this point,
we first get that

T((1+ )t ) = <4
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Thus, we see that the denominator is

2 3/2
dfa- 2 (4“2 >/
V2 +1 p?+1

Since T'((1 + p?)~*, u? < 4, we have that

2
D P L)

v+l

Hence the denominator is non-zero. Thus, we see that ¢ = (1 + p2) ™! is a critical point.

Next we want to show that this point is a local maximum. To do so, we compute the second derivative
and evaluate at ¢ = (1 + pu2) 1. Using SymPy, we get that the value of the second derivative at this
point is

(W + D' (4® 4 3p — 4 +1 - /1)

8d - p3 - (u2 — py/p2 +1+1)3
To see that it is a maximum, we need to show that the above is negative. We begin by showing that the

denominator is positive. Since 8du* > 0, we only need to look at the second term. Using arithmetic
mean and geometric mean inequality, we see that

2 2
+p+1 1
u\/u2+1=\/u2(u2+1)§%=M2+§<u2+1

Hence the denominator is positive. To show that the numerator is negative, we have the following

)\/,u2+1
1

i+ 3 — AP+ 1 — V21 <0 = 42 +3 < (4u® +1
1
— 16p* + 9+ 24p% < (16p* + 1+ 8u?) - <Hu2)
1
— 16p> +8< E(16u4+8u2+1)
1
— 0<—
u

Where we are allowed to square both sides because both quantities are non-negative. Thus, we see
get the needed result. O

E.5 Proof of Theorem[3|

Theorem 3 (|Wo,¢ || Peak). If 015t = \/Must, Otrn = /1 and puis such that p(p) < 0, then for
fixed n that is sufficiently large enough, we have that E [||Wop|| ] versus ¢ = d/n curve has a local
maximum in the under-parameterized regime at ¢ = (u? + 1)~ 1.

Proof. Here we note that the expression for the norm of W, is given by Lemma@ We follow the
same proof structure as Theorem [2] Differentiating with respect to ¢, we see that the numerator is if
the form

(c? +c—1)P(c,u, T)
When the denominator is
(e +c+1—/(T)T7/?
Where is as is in the proof of Theorem Again at when ¢ = 1/(u? +1). We see that the denominator
is positive because v/T' < 2. Hence again, we have a critical point ¢ = (1+p2)~t. O

E.6 Proof of Theorem 3

Theorem 5 (Training Error). Let T be as in Theorem([l| The training error for ¢ < 1 is given by
IEAt,rn[HXtT" - opt(Xtrn + Atrn)H%‘] = 772 (O't2rn (1 —C- Tl) + 0-211"71,T2) + 0(1)7
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2 1 2 1 1 2. _ 1— 26)2 4+ 40242
WhereTl:% +c:_/éc 22_1 +7+ +ILLC \/( C+MC) + Cu)
V({1 —c+ p2e)? + 4p2c 2 2¢

and
2
pct+e+1 1
Ty = (pPc+c—1— /(1 —c+ p2c)? + 4c2p?)? + -
b = (p VA p2c) ) N (e

Proof. Note that we have:

1
EA”" = EEA”" “|Xtrn - Wopt (Xtrn + Atrn))”%]

||Xtrn - Woptyvtrn”%‘
n

1 1
= EE[HXtm - WOthtrn||2] + gE[HWOPtAtMHQ]

2
+ —-E [TI‘((XtTn — Wothtrn)TWoptAtrn)} .

n

First, by Lemma we have Xy, — Wope Xypp = %Xtm. Then, E[|| Xtrn — Wope Xern|!] =
Z—EE[HX””H?] = % Then, let us look at the E 4, [[|Wopt Atrn || %] term.

EAtrn HlWOPtAtrn || %“] = E[Tr(Atj;n Wg;at WomAtrn )]

i iALTuTuiLAtrn)}

O—QT"I'L;?2
= 2 L E[Tr(A],

3 A2 A XAl
n WE[ﬁ(AgnhTuTukTAzmAtm)]
=2
Tl
72
o2 A2 > 7
= Zirn B Te(hAgn AL, A7)

t
7 ™

E[Tr(A7, (A]

+ trn)T]%uTUiLAtrn)]

+ E[TI‘(A?;H (Alrn)Tl%uTu]%TAITTLAtTN)]

[Te(k" AL,

Apn AT BT

o Alt]
+ trn?;H || E I
el

72

E[Tr(hAyn AL, (Al

+ trn)TlAﬂ)]

4 17|14 o
+ UtrnH ” E[Tr(kTAT

7A_2 trn

2 22
Ttrn”Y T A
= ;7; E[Tr(vtv"nAIrn

3 An7)12 .
+ WE[Tr(uT(AIm

At?”" Ag;n (A;frrn)T‘];)]

)TAIrnAtTnAZ;n

(Aln) " 00n)]

7112

trn

7E[TI‘(UT (Azrn)TAT At?”nAZ;n (Azrn)TAIrnu)]
#

trn

UtQTn’AYz AT At T (At \NTAT
= TE[Tr(U A At?”ﬂAtrn(Atrn) Utrn)]

trn‘ttrn

4 7114
+ %E[T‘I(UT(AITn)TAIrnAtTnAZ;n(AITTL)TAT u)]

trn
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Then, we look at the Tr(( Xy — Wopt Xirn) T Wopt Agrrn) term. By Lemma we have Xipn —
WothtTn = %Xtrn- Then,

trn

SRS

) rnA 7 t2
Tr(XE, Wopt Aprn) = ZT (Xz;n <"t% T uh + ””TH ” kTAIM) Atm)

_ o ( tmuhAtm>

7_2
i
i ”triﬂ Tr (XﬁnukTAImAtm>

O—trn’y
- Tr UtrnvtrnvtrnAtrnAtrn

N i 2
4 LTI 3y (T (A

£2 trn

)TAIrnAtrn)

2 22
Tirn”Y
trn
= #2 Tr (Utrn AtrnAtrnUtrn)

ad Al .
+ trnAi”H ( (AI'I’WL)TAIT‘TLAtTn’UtTn)

~2
2 K2
ag. Yy ~
_ Jtrn ~T +
R Tr (vtrnAtrnAtrnUtrn> .

In conclusion, we have the training error:

2 42
+ Jt”}; E[Tr(5f.,, A

[ Xtrn — Wopt Yern||7 Yoi,
EAtrn - nop e = n%tgn nt trnAt’l“nAt’I;n(AI’r‘n)Tvg;n)]
Ut7n||t||4 T it \T At it N\T At
+ ) [ r(u (AT ) AtTnAtT’Vl trn(AtTn) Atrn )]

nrt

+ 20”’”7 E |:TI'< trn tTnAtTnUt7n):| .

Now we estimate the above terms using random matrix theory. Here we focus on the ¢ < 1 case. For
¢ < 1, we note that

Al Ay AT (Al

trn

T =vs-iesTs-tyT,

trn

Thus, forc < 1

T 2 Uz
vtrnAtrnAtTn Atrn( trn Utrn E
+ (0:(A)% + p?)?

where o’ = vl V3.4. Taking the expectation, and using Lemma|§| we get that
EAtrn {vtrnAtrnAtrnAz;n(A:frrn)TﬁtTn} =
1 1+ pPc— /(1 —c+ p2e)? +4c?u? 1+c+ p’e 1
C<+ e — /I p2c) p +u2< p o).

2 2¢c 2y/(1—c+cp?)? +4c2p2 2
Using Lemma we see that the variance is o(1). Similarly, we have that

(AL, AL, Apn AL (Al )T AL, =US20xT5207,

trn

Thus, again, using a similar argument, we see that

1+c+ p’e 1
At?nAg;n(ALn)TAT = -5+ 0(1)

T14]L —
: trn't )} 2/ (1 —c+cpu?)? +4c2u? 2

trn

E,, [Tr( T (Al

trn

and again using Lemma T1] the variance is o(1). Finally,

Al Ay = VETIDVL

trn

25548 https://doi.org/10.52202/079017-0803



Thus,
d

oi(4)

(UtrnAtrnAtrnvtTn = Z (l,? 0. (A2 +

Thus, using Lemma(9] we get that

1 14+ p2c— /(1 —c+ p?c)? + 4c2p?
EA{TTL [Tr(vtTnAtrnAtTnvtr7z:| = 5 + H \/( 2c M ) 12

o(1)

and using Lemma the variance is o(1). Then, similar to the proof of Theorem (I} we can simplify
the above expression to get the final result. O

E.7 Proof of Proposition I]

Proposition 1 (Optimal 7y,.,,). The optimal value of o2, for c < 1 is given by

02— oigd[2e(p? + 1) = 2T (cp® + ¢+ 1) + 2(cp?® — 2¢ + 1)] + Nese (2 + 2 +1-1T)
brn Nege(B(u2+1)2 =T (u2c?2+c¢2—1) —2c2 - 1) '

Proof. Leto := 2., and

2

_ Ots 1 A .
F =72 (S 4 Ll + 0?0l )

Notice that only 7 is a function of o, ||2||2, ||£||2, and ||k||2 are all functions of 1. Then

oF DY I . _3 01 (0}, 1 - .

o — L3 + 201ip) 25T (2 2 (i3 + o?lile)
_ 721 A2 4 201212 0) — 2731121121112 Tist 1 Ak 21714
= LRI+ 202p) — 2r IR (S + Lo AIE + o?l13p)

_ o2, 1 - .
= 772 (1A + 201710) — 20~ IFBIEIE ( S22+ LA + o21lEp)) ).

The optimal o* satisfies g—F |o=o+ = 0. Thus, we can solve the equation

- — o, 1 - R
T2=0 or (||h||2+20||tHzp)—2T 1|t||2|k|lz< A d(0||h§+02t||§p)>-

~ ~ 2
Let a := [[£[[5]|k[|3, 0 := d5f=. Then

1
[l

Notice that ¢ < 0 implies o¢,., is an imaginary number, something we don’t want. Thus, we look at
the other expression.

_2:0 — 0 = —

- o7 1 - R
(1513 + 20El130) — 27 1|t||2k||2< A d(0||h§+02|t||§,0)>

&\H &\H

o 1 AR
(1l + 201l30) — 2" (5 + Lol + o20il30) ) o = 3113
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Then multiplying through by d and 7
0= (14 ao)(||All3 + 20|E]3p) — 208 + o||]13 + o®[|£]130) [r =1+ ao]
= |23 + 2l1E13p0 + allhll3e + 20/[]300° — 208 — 2al|hll50 — 20][]3p0”
= |23 + 2l1E3p0 + allhl30 — 206 — 20| /A 30
Then solving for o, we get that

200 — |Al*_ 2d||El13]|ElI307. — [1AlI* Nese

2|tll*p — allnl® Nese(2lEll30 — IEIZIEI31R13)

Then we use the random matrix theory lemmas to estimate this quantity. O
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F Proof of low-rank case

Similar to the proof in [37]], we conducted the low rank case.

We begin by defining some notation. Let Xtm =USyn VL Here Uisd x r withUTU = I, T4,

trn-
isr x r,and Vi is 7 X (d + N). All of the following matrices are full rank.

Xirp and Xy is d % (d + N) with rank r. Xy, = [Xgpn 0]

Xt,.n = UXV, by the singular value decomposition. Let tht =UL.
Uisd x rwithUTU = I,. VT isisr x (d + N).

Yirn 18 7 X 7, with rank r.

Appn = [Atpn 1]

A is d x (N + d) with rank d.

S kD =

Al Apn is (N +d) x (N + d).
Hisr x (N + d), with rank r.
9. Kis (N +d) x r, with rank r.

10. Zisr x r, with rank r.

* N

11. Hyisr x r, with rank 7.
12. Atm = ntrnUf]VT.

13. Uisd x d unitary.

14. Sisd x d.

For rank r data and r < N, with ¢ = %, the following is true.

1. We denote the minimum norm linear denoiser W, by just W in this subsection. It is given
by
Wopt = —US 4 HTUKT AL+ US4, HT ZT(QQT) P H

trn
2. The test error when X;,; = UL is given by

1 _ 1w 025
E/hr,.n [NttUZthl IZT(QQT) 1Ztr}’LL||%‘ + L t||W0pt|%«“:| )

d
where Q = VT (I — Al Ay). H=VI Al 1K =—Al USyn, Z=1+VE Al USin,
Hy = KTK + ZT(QQ") ' Z.
For ¢ < 1, we have that if d < N then
_ _ 1+ p2c—ce)2 +4u2c2 — 1 — p?c+c
E[Etr'anTKZtr'ln] = <\/( a ) 2 2’” a +0(1) Ir
u2c
and if d > N then
12 1 2002 1 — 12
B[S KTKY; 1] = <\/ e ( rern ‘) p C+C+o(l)> I.
2ucce
When d < N then
22, 2 2
_ A A _ +c*+pc—2c+1 1 1
E[n; L KTAl (Al YTy 11— H° L+ — (1-2)1 +o(1),
[ trn t'rn( tvn) tTn] 2M4C\/4N202+(1_C+M20)2 2’“4 c ( )
if d > N then
- ~ 1—2 2 2 2.2 1 1
B[Sy K AL, (AL, )KL = e T (1 )L +o(1).
2cpty/4p2c + (=1 + ¢ + p2c)? c 2
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‘We have that

E[QQT] = ¢ (i Lo it — WC) +o(1).
and
E[(QQT) Y] = 2 +o(1).

4 p2ete— (1t e+ p2o)? + dple
When d < N we have that

2 1
Leerite 1) oo
2v/(1—c+ p2e)? +4c2p2 2

E[HH"] = ¢ (

and when d > N, we have

1 2 1
E[HH"] = c tetue — 2 ) 1+ o(1).
2/ (=1 +c+ p2c)? + 4p2c 2

When d < N, we have

2.2 2 2 -9 1 1 1
E[[[W|2] = w2c? + ¢ + pfc— 2c+ n 4(1_>
2ute/4p2c? + (1 —c+ p2c)2  2p

-2
1 2c—¢)2 +4p2c2 — 1 — plc+ec 2 _
- V(1 + p2c—c) 2u Iz I+ __ 5
2pse L+ p2c+c— /(=1 +c+ p2c)? + 4p2c
2 2
4 2 14+ c+ pc 1 Tr(2)
c _z
1+ p2c+c— /(=1 +c+ p2c)? + 4p2e 2¢/(1 —c+ p2c)? + 422 2
-2
Te \/(1+p2cfc)2+4,u202flfpchrcI 2 52
2pc "4 et e — /(1 + e+ p2e)? + e

+ o(1),

when d > N this is estimated by

1—2c+c®+ plc+ p2c? 1.1
BW3] = (o ' a-h L
2cp \/4u c+ (=14 c+ p3c) ¢’ 2u
-2
2 — 202 — 1 — 12 9
Tr VApEe + (=14 c+ p2c) uc+cIr+ 52
2u2¢ 1+ p2c+c— \/(*1+C+M20)2+4N20
2 ’ 1 2 1
+ ¢ +c+psc D nzy
L+ p2c+c— /(=1 +c+ p2c)? + 4p2c 2¢/(—1+c+ p2c)2 +4p2c 2
—2
2 — 202 — 1 — 12 9
Tr VAp2e+ (=1 + ¢+ p2c) ,uc-i—cIT+ 52
2pPc 1+ p2c+c— /(=1 +c+ p2c)? + 4p2e

+o(1).
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When d < N the test error R(W, X;5;) for W = W, is given by

1 Tr((\/4u20—|—(—1—|—c+u26)2—1—u20+c

R(W, Xist) =
tst

I,
2u2ce
. 2
1+ p2c+c— /(=14 c+ p2c)? + 4u2c
2

Tr
1+ p2c+c— /(=1 +c+ p2c)? + 4p2e

+Ut25t M202+02+M20_26+1 +L (1 1)
d \2ute\/4p2c2 + (1 —c+ p2c)2  2u* ¢

-2 72)

-2

—2
Te V(I + p2e—c)? + 42/L262 —1—p2c+ CIT N 2 s-2
2pce L+ p2c+c— /(=1 +c+ p2c)? + 4uc
2 2 2
Tist 2 . 1+c+p“c _1 TI"(EiQ)
d \1+p2c+c— /(=1 +c+ pu2c)? +4u2c 2y/(1 —c+p2c)2 +4c2p2 2
—2
- \/(1+M20_C)2+42M202_1_M26+CIT+ 2 -
2pce L+ p2c+c— /(=1 +c+ p2c)? + 4uc
+o(1),

when d > N this is estimated by

1 ((\/4u26+(—1+c+u26)2—1—u20+c

RW, Xist) = T I,
(W, Xect) Nt 2pPc
+ 2 -2 72)
1+ p2c+c— /(=14 c+ p2c)? + 4u2c
2
Tr(X2)
1+ p2c+c— /(=1 +c+ p2e)? + 4p2e
ol 1—2c+c+ p2c+ p?c? 1_1)i
d \ 2cut\/Ap2c + (=1 + ¢ + p2c)? c’2ut
-2
et (1 207 —1— 2 2
Te VAap2Ze + ( —|—c—|—5 c) MC+CL~+ 52
2pse L4 p2c+c— /(=1 +c+ p2c)? + 4u2c
2 2 2
Otst 2 ¢ Ltet+pe i Tr(X7?)
d \1+p2c+c— /(=1 +c+ pu2c)? +4u%c 2¢/(=1+c+ p2c)2 +4p2c 2
—2
102 1 202 1 — 12 9
T VApRe + ( JFCJFéiC) MC+CIT+ -2
2p2e L+ p2c+c— /(=1 +c+ p2c)? + 4p2c
+o(1).

G Experiments

All experiments were conducted using Pytorch and run on Google Colab using an A100 GPU. For
each empirical data point, we did at least 100 trials. The maximum number of trials for any experiment
was 20000 trials.

For each configuration of the parameters, Ny, Ntst, d, Otrp, Otst, and p. For each trial, we sampled
U, Vgpp, Vgse Uniformly at random from the appropriate dimensional sphere. We also sampled new
training and test noise for each trial.
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For the data scaling regime, we kept d = 1000 and for the parameter scaling regime, we kept
Ny, = 1000. For all experiments, NVys; = 1000.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the abstract and introduction reference the main two Theorems (Theorem
[ and Theorem [2). Additionally, both put them in the context of prior work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We believe the main purpose of the paper is to show that a certain phenomenon
exists and are very careful with our assumptions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All statements have corresponding detailed proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have very few experiments. However, for each one we have a section in
the appendix with the needed details and have provided code as part of the supplementary
material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code as part of the submission. All data used is synthetic or
already open source.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have very few experiments. However, for each one we have a section in
the appendix with the needed details and have provided code as part of the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper is a theory paper about mean behavior under a variety of concentra-
tion results.

Guidelines:
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dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
« It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Google Collab with an A100 was used.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines: The paper conforms with the code of ethics.

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work that helps build an understanding of existing phe-
nomena.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theoretical work
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit pytorch.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This is a theoretical work
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This is a theoretical work
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is a theoretical work
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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