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Abstract

Principal component analysis (PCA) is one of the most fundamental tools in
machine learning with broad use as a dimensionality reduction and denoising tool.
In the later setting, while PCA is known to be effective at subspace recovery and is
proven to aid clustering algorithms in some specific settings, its improvement of
noisy data is still not well quantified in general.
In this paper, we propose a novel metric called compression ratio to capture
the effect of PCA on high-dimensional noisy data. We show that, for data with
underlying community structure, PCA significantly reduces the distance of data
points belonging to the same community while reducing inter-community distance
relatively mildly. We explain this phenomenon through both theoretical proofs and
experiments on real-world data.
Building on this new metric, we design a straightforward algorithm that could be
used to detect outliers. Roughly speaking, we argue that points that have a lower
variance of compression ratio do not share a common signal with others (hence
could be considered outliers).
We provide theoretical justification for this simple outlier detection algorithm and
use simulations to demonstrate that our method is competitive with popular outlier
detection tools. Finally, we run experiments on real-world high-dimension noisy
data (single-cell RNA-seq) to show that removing points from these datasets via
our outlier detection method improves the accuracy of clustering algorithms. Our
method is very competitive with popular outlier detection tools in this task.

1 Introduction

Principal component analysis, commonly known as PCA, is one of the most fundamental tools in
machine learning. PCA is primarily used as a dimensionality reduction tool that transforms high-
dimensional data to lower dimensions for better visualization as well as a heuristic that reduces the
complexity of the algorithms that are to be run on the data. On the other hand, it is also known
to have certain denoising effects on high-dimensional data. This denoising phenomenon has been
observed in different domains, including biological data [KAH19, VKS17], speech data [Li18], signal
measurement data [ARS+04, KHK19], image data [MBSP12] among others. The denoising effect of
PCA has been extensively studied over the last decades [And58, HR03, Jac05, RVdBB96, Nad08,
Nad14, VN17, MZ23, MZ24].
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One of the most fundamental problems in unsupervised learning is the analysis of data in the
presence of community structures [CA16]. This includes clustering of such data [XT15], visualiza-
tion [TWT21], outlier detection [AM13], and others. The primary progress in understanding the
denoising effect of PCA has been solely in clustering, particularly in connection to the K-Means
algorithm [DH04, KK10, AS12], where PCA in combination with a K-Means based iterative algo-
rithm is shown to provide a good clustering of that dataset with mild assumptions with the underlying
community structure.

However, PCA seems to have a more “general” denoising effect in data, as it improves the performance
of various downstream algorithms, including clustering [VKS17] as well community structure
preserving graph embedding [HHAN+21] and this denoising effect is evident in many real-world
datasets.

1.1 Contributions

To this end, we propose a metric, called compression ratio, that quantifies PCA’s improvement
of high dimensional noisy data with underlying community structure in a geometric, and thus
algorithm-independent manner 2.

Compression ratio. Let u and v be two data points from a dataset and let Πt be the t-dimensional
PCA projection operator. Then the compression ratio between the two points is defined as the ratio
between their pre-PCA and post-PCA distance, which is

‖u− v‖
‖Πt(u)−Πt(v)‖

.

In a dataset with a community structure, we show the compression ratio for intra-community pairs
is higher than that of inter-community pairs even in settings where the pre-PCA inter-community
and intra-community distances are very similar. We demonstrate (through a random vector mixture
model) that this ratio gap reflects the denoising effect of PCA. As a consequence, PCA brings points
from the same community much closer, improving the performance of downstream algorithms such
as K-Means.

As a motivating byproduct, we show that this metric can be used to design an outlier detection method
that can detect points deviating from a community structure. Furthermore, we show that this method
can improve the accuracy of clustering algorithms in real-world high-dimensional datasets.

Outlier detection method. Our outlier detection is a simple process inspired by compression ratio.
Intuitively, any data point that belongs to an underlying community should have large compression
ratios with many points from the same community, whereas it will have a lower compression ratio w.r.t
inter-community points. On the other hand, outliers will have more similar compression ratios with
all the other points. This difference can be captured by the variance of the list of compression ratios
between one point and all of the other points, with outliers having a lower variance of compression.
Thus our algorithm simply removes points with low variance of compression.

We analyze this simple algorithm in an extension of the standard random vector mixture model.
We also compare our algorithm with popular algorithms such as the Local Outlier Factor (LOF)
method [BKNS00] and KNN-dist [RRS00] as well as more recent methods such as Isolation for-
est [LTZ08] and ECOD [LZH+22] through both simulations and experiments on real-world data. We
show that this simple algorithm is very competitive with those popular outlier detection tools.

Overall, we believe the effect of PCA on denoising becomes more significant if for each datapoint,
there are many data points with large compression ratio variance.

Real world experiments Finally, we test the relevance of compression ratio as a metric and
the outlier detection method in real-world data. We focus on single-cell data, as it is both high
dimensional (20, 000 − 40, 000 dimension) and noisy [KAH19], using datasets from a popular
benchmark database [DRS20] with ground truth community labels. We first show that the average
intra-community compression ratio is higher than the average inter-community compression ratio

2From hereon, we use the word community to refer to the underlying structure of the data, whereas clustering
of data refers to the outcome of a particular clustering algorithm on the dataset.
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in all of the datasets. We then show that removing outliers in these datasets via our variance of
compression technique improves the performance of clustering algorithms, such as PCA+K-Means,
where we again outperform standard outlier detection methods.

Organization of the paper In Section 2, we discuss our theoretical analysis. Concretely, we define
the random vector mixture model and provide bounds on the intra-community and inter-community
compression ratios. Next, we define our outlier detection metric and justify it in an extension of
our generative model. Section 3 contains the simulation results validating the compression ratio
metric and we also compare the performance of our outlier detection method with other methods.
Finally in Section 4 we demonstrate that PCA exhibits an average version of compression ratio in
real-world biological datasets [DRS20] and then test our outlier detection-based clustering accuracy
improvement idea discussed above.

1.2 Related Works

PCA and its effect on noisy data has been subject to a lot of investigation in the last 50 years. Before
2008, most of the work focused on the asymptotic setting, where the number of points (n) and/or
the dimension (d) are infinite (see [And58, RVdBB96, HR03, Jac05] and the references therein). In
the last two decades, several works have also considered the finite sample setting [Nad08, Nad14].
These works have primarily focused on the denoising aspect of PCA in different variants of Gaussian
noise. In a recent line of work [VN17] has studied the subspace recovery problem in the presence of
bounded and (nice) sub-Gaussian noise. However, there seems to be no direct way to convert these
results into a clustering setting. In comparison, we study PCA’s denoising effect on data in random
vector mixture model via the compression ratio metric, where the noise can be heavy sub-Gaussian.

PCA in clustering tasks With regards to PCA’s impact on data with community structure, the
primary work has been in connection to K-Means. Here, one of the first works [DH04] showed that
the outcome of PCA can be viewed as an approximation result to the K-Means outcome in clustering
data. In this direction, a lot of progress has been made in the last two decades.

A beautiful recent work [KK10] has shown that PCA followed by several iterations of K-Means along
with modifications can cluster data with reasonable parameters in the random vector mixture model
that we discuss here, which was then improved in [AS12]. Both of the works focused on the setting of
n� d (for example, [KK10] worked with n ≥ d8). More recently, tighter results have been obtained
in the context of the Gaussian-mixture model in [LZZ21] (still on the setting of n� d2).

In comparison, we study PCA’s relative compression in an algorithm-independent fashion, focusing on
its effect on the geometry of the data in the high-dimensional setting of n = Ω(d) with sub-Gaussian
noise. We are motivated to analyze this setting as single-cell datasets often have n < d.

2 Random vector model and relative compression of PCA

To theoretically study the relative compression of PCA, we use a high-dimensional mixture model,
similar to one in [KK10, AS12]. We call this a random vector mixture model. This can also be
interpreted as a signal-plus-noise model where the signal imposes a community structure on the
data. The dataset of interest is a set of n many d dimensional real vectors xi ∈ Rd, 1 ≤ i ≤ n,
which is together represented as the dataset X . We express X as a d× n matrix, with each column
representing a data point. The data points have an underlying hidden community structure that is
expressed as a partition of [n] := {1, . . . , n} into k many sets V1, . . . , Vk such that each i ∈ [n] lies
in any one Vj . We then have the following problem structure.

1. Each cluster Vj , 1 ≤ j ≤ k is associated with a ground truth center cj ∈ Rd.

2. Additionally, each cluster Vj is associated with a distribution D(j) such that D(j) is a
coordinate wise independent zero mean distribution. For ease of exposition, we define the
support of D(j) to be [−α, α]d for some α (which can also depend on n, d), but our methods
also directly apply to sub-Gaussian distributions where each coordinate has a constant
sub-Gaussian norm (resulting in O(

√
d) norm of any column vector). Then α would be

replaced with C ′ log n for some constant C ′ in our bounds.
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Then, the dataset X is set up as follows.
Definition 2.1 (Random vector mixture model). For each i ∈ [n], if i ∈ Vj , then xi = cj +ei where
ei ∼ D(j), i.e. ei is independently sampled from D(j). Here we abuse notation and denote both
i ∈ Vj as well as xi ∈ Vj .

With this setup, now we define the PCA projection operator and the compression ratio metric formally.

Definition 2.2 (The PCA operator Πk′

X ). Let X be a d × n matrix. Then the k′ dimensional PCA
projection operator is simply the projection operator onto the first k′ principal components of X .

Next we formally define the compression ratio metric.
Definition 2.3. For any pair (i, i′) we define the k′-PC compression of the pair of vectors in X as

∆X,k′(i, i
′) =

‖xi − xi′‖
‖Πk′

X(xi)−Πk′
X(xi′)‖

Before describing our results, we define certain parameters of the model.

1. The maximum variance of the entries, σ is defined as σ2 = max1≤j≤j,1≤`≤d Var[D(j)
` ]

2. The average variance of a column in a distribution D(j), noted as σj is defined as σ2
j =

1
d

∑
` V ar([D

(j)
` ]). Here, σj

√
d is the perturbation on the data points of Vj due to the noise.

In this direction, we first lower, and upper bound the (k−1)-PC intra-community and inter-community
compression ratios respectively, as a function of the maximum variance, average variances, spectral
structure of the noise and signal, and distance between the centers of the model, which can be found
in Theorem B.1.

Although our result applies to any set of centers, the spectral properties of the resultant matrix, and
their interactions make the result hard to interpret. To give more insight into our bounds, we instead
define a restricted (still natural) structure on the centers, which allows us to give a more interpretable
result in this case. For simplicity, we also work in the setting where d ≥ 10α

√
n log n.

Definition 2.4 (Spatially unique centers). We say a set of vectors C = {c1, . . . , ck} are γ-spatially
unique, if we have that

min
1≤j≤k

min
v∈Span(C\cj)

‖cj − v‖ ≥ γ

This implies that each center has a unique pattern that cannot be approximated by a combination of
the other centers. Here note that γ ≥ minj 6=j′ ‖cj − cj′‖. For example, such a property is expected if
the centers are mutually orthogonal. One can also think of them as vertices in a high-dimensional
regular polygon. Then, we give some sufficient conditions for the separation of intra-community and
inter-community compression ratios of PCA.

Theorem 2.5 (Separation of compression ratio). Let γ ≥ C max{σ
√
kd1/4, σ

√
k + α log n} for

some constant C. Furthermore, let i ∼ i′ denote that yi and yi′ belong to the same underlying
community. Then, the following holds.

1. The perturbation of the points due to noise can be much larger than the distance between
the community centers, i.e., the noise dominates the distance between the centers.

2. With probability 1−O(1/n), min(i,i′):i∼i′ ∆X,k−1(i, i′) ≥ 4 ·max(i,i′):i�i′ ∆X,k−1(i, i′)

This shows that the compression ratio of PCA provides a separation between intra-community and
inter-community pairs even in a setting where the noise highly dominates the distance between the
centers. One can find a more general theorem w.r.t spatially unique centers in Theorem C.4.

A natural question is whether post-PCA distance is a good metric for denoising due to PCA. In
this regard, we point out that the compression ratio has an added normalization property. For
example, consider the case where all pair-wise center distances are the same. In such a case, the
post-PCA distances are dependent on σj , so communities with larger variances have larger intra-
community distances. However, this gets normalized in the compression factor as per Equation (9) of
Theorem C.4, as the numerator also has a dependency on σj .

4
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Algorithm 1 Outlier detection via variance of compression ratio

Input: data X , PCA dimension k′, number of outliers o.
for i = 1 to n do
SC[i]← VAR∆X,k′(xi) {VAR∆X,k′ defined in Eq. 1}

end for
return o many indexes with lowest SC values.

2.1 Outlier detection with compression ratio

Now, we discuss the usefulness of compression ratio on outlier detection. We first describe the notion
of variance of compression ratio.
Definition 2.6 (Variance of compression ratio). Given a dataset X and a PCA dimension k′, variance
of compression ratio of a point u ∈ X is defined as

VAR∆X,k′(xi) = Var({∆X,k′(i, i
′)}i′ 6=i) (1)

where ∆X,k′(i, i
′) =

‖xi−xi′‖
‖Πk′

X (xi)−Πk′
X (xi′ )‖

is the compression ratio between points i and i′.

That is, it is simply the variance of the list of compression ratios of xi with all the other points xi′ .

Then, our intuition is that if data consists of many points from the high dimensional mixture model,
as well as several outlier points that don’t share a common signal (center), they have a lower variance
of compression ratio. We concretize this notion with the following simple detection algorithm 1.

Mixture-model with outliers Now let us consider an extension of the mixture model in Defini-
tion 2.1 to incorporate outliers.
Definition 2.7 (Mixture model with outliers). Let X be a d × n dataset with the partition
V1, . . . , Vk, V̂ , a set of k centers {cj}kj=1 and distributions {D(j)}kj=1 + 1 with the following genera-
tion method.

1. clean points: If i ∈ Vj , 1 ≤ j ≤ k, xi = cj + ei where ei is sampled from D(j).

2. outliers: If i ∈ V̂ , then we sample pi,1, . . . pi,k ∈ [0.5, 1]. Then ui =
∑
j αi,jcj +ei where

αi,j =
pi,j∑
j pi,j

and ei is sampled from D(k+1).

Let |V̂ | = no and n = no + nc. To keep the results simple, we make the average variance of each
distribution D(j) same, which is σ′.

Such a scenario can occur in many different settings. For example, consider single-cell datasets which
is a popular biological data type. Here each data point is a cell and the features (which are high, such as
20, 000) are specific gene expressions, A primary task here is to obtain cell sub-populations [THL+19,
VKS17, KAH19]. Although the gene expressions within sub-populations should have similarities,
they are perturbed by biological and technical noise, making high-dimensional mixture models a good
setup to study them. However, some cells may not belong to any particular sub-populations, but rather
be intermediate cells. Additionally, sometimes cells get merged during the biological experiment
that records the gene expressions, generating data points that behave like a random mixture of two or
more data points. Our model aims to model such scenarios.

In this setting, we get the following outlier detection result where the centers have spatially unique
centers.
Theorem 2.8 (Outlier detection via Algorithm 1). Let X be a d× n dataset with γ-spatially unique
k many centers where log n ≤ k ≤

√
d and n0 outliers in the setting of Definition 2.7. Let the

following conditions hold

1. ‖cj − cj′‖ = O(σ′
√
d) (the noise is significant)

2. γ ≥ 2C ′σ3/2/σ′ · k · d1/4 log n

5
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Then, for any n0 ≤ n/2, the first n0 points ranked by Algorithm 1 all belong to the outlier group (V̂ )
with probability 1− o(1).

We discuss the connection between our results and the role of spatially unique centers in Appendix C.
The proof of Theorems 2.5 and 2.8 can be found in Appendix C and C.2 respectively.

This gives us initial theoretical evidence that in the random-mixture model with outliers, our simple
outlier detection method can detect outliers when a non-negligible fraction of the points are outliers.
Next, we use simulations of our model to test the efficacy of our outlier detection method and its
impact on the community structure of data and compare them with some popular outlier detection
methods.

3 Simulations for outlier detection

In this section, we first describe different instantiations of the random-vector mixture model, observe
the intra-community and inter-community compression ratios in them, and then run simulations in
the outlier mode. All simulations and experiments were run on a 2020 M1 MacBook Pro with 16 GB
of memory within 1.5 hours of total running time.

Simulation setup For this setup, we set n = 3000, d = 1000, and k = 3, with each community
having the same number of points. For simplicity, we choose 3 equidistant centers, with ‖ci−cj‖ = c.
We set the noise distributions to be Bernoulli distributions with variance σ1, σ2, σ3 respectively. We
work in two primary settings, of equal and unequal noise.

i) Equal noise. Here we have σj = σ for all i. ii)Unequal noise. Here one of the communities has
variance 2σ, whereas all the other communities have variance σ.

Then, we test the algorithms for three values of σ in the following manner.

• Low noise: We choose σ : ‖cj − cj′‖ ≈ 3σ
√
d. This implies distance between the centers

dominates the perturbation due to noise.
• Significant noise: Here σ : ‖cj − cj′‖ ≈ σ

√
d. Here the noise norm and distance between

centers are of the same order.
• High noise: We have σ : ‖cj− cj′‖ ≈ 0.3σ

√
d. Here the noise heavily dominates the center

distances.

Let us look at the equal noise setting, i.e. the case where the variance of noise distributions for all
communities are the same. We observe that in the low-noise setting, all intra-community compression
ratios are higher than all inter-community compression ratios. As the noise increases, the gap between
them decreases, so that in the high-noise setting, there is now an overlap between intra-community
and inter-community compression ratios. We demonstrate this in Figure 1a. This further indicates that
compression ratio is indeed a useful metric even when the noise has a strong perturbation effect on the
data (even though there will be no clean separation between intra-community and inter-community
compression ratios once the noise is very high).

(a) Comparing intra and inter community compression ratios
in simulation

(b) AUROC of variance-based outlier removal

Figure 1: Simulation results for compression ratio and outlier detection
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3.1 Outlier detection

Now, we discuss the outlier detection, starting with the simulation setup in this case. We follow the
random-mixture-outlier model and add outlier points along with the clean points as follows.

We add no = nc/10 outliers following definition 2.7. That is, we randomly choose α1, . . . , α3 and
then a random mixture-center is chosen as

∑
j αjcj, and then we add a random noise vector from the

Bernoulli distribution of variance σ4.

Outlier detection algorithms for comparisons Outlier detection has been an active area of study
in unsupervised learning, providing several influential algorithms. In a recent, comprehensive
benchmarking of outlier detection algorithms, [HHH+22] compared the performance of several
unsupervised learning algorithms on different datasets. They found that for unsupervised outlier
detection methods, success was related to whether the underlying model of the data assumed by
the outlier detection method followed the dataset at hand. They found that for local outliers, the
popular Local Outlier Factor (LOF) method [BKNS00] performed the best statistically, whereas
for global outliers, KNN-dist (where the outlier score is simply the distance to the K-th nearest
neighbors) [RRS00] performed the best. Owing to their generally impressive performance, we use
them for comparison with our variance of compression method. Furthermore, we select a popular
method called Isolation forest [LTZ08] and also a very recent and popular outlier detection method
ECOD [LZH+22]. We also use PCA+method for each of the methods as benchmarks, as both outliers
and clean points are perturbed by zero-mean noise, and we now understand PCA can help mitigate
the effect of said noise, as discussed in Section 2.

Outlier detection results We compare the AUROC values of the 5 outlier methods of interest in
these settings. We record the results in Figure 2a and 2b for the equal and unequal noise settings
respectively.

(a) AUROC of outlier removal in equal noise setting (b) AUROC of outlier removal in unequal noise setting

Figure 2: Comparison of outlier removal in different noise settings

As we can see, our method results in the highest AUROC value, followed by PCA+KNN-dist. we
make two observations.

i) The performance gap between variance-of-compression and the next best method is higher in the
unequal noise setting.

ii)As the noise level increases, the gap between our method and PCA+K-NN dist increases.

These two points further highlight the compression ratio’s normalizing effect as well as effectiveness
in high noise settings.

Here we remark that in real-world data, while some points may indeed behave like outliers, they need
not all be the same kind of outlier. Thus, we would like to verify our method’s performance in the
presence of a different kind of outlier, which we concretize below.

Higher variance-based outliers We consider the case that some points may have significantly
higher noise perturbations than others. In this setting, we randomly select some points, and we
generate some points with c · σ coordinate-wise variance, where c = 8 for our experiments (recall
that the noise in the other points has a coordinate-wise σ variance). It is well known that if noise
is low-dimensional, then such outliers are well captured by LOF. We observe that while in the low
noise setting our performance is worse than the other methods, as the overall noise increases, the
performance of our method is more comparable to the other methods. We record the results in
Figure 1b.
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Dataset
Avg.

intercluster
compression

Avg.
intracluster

compression
Koh 2.539 7.468

Kumar 1.969 14.811
Simkumar4easy 3.577 15.808
Simkumar4hard 5.267 15.051
Simkumar8hard 4.349 9.370

Trapnell 6.373 9.857
Zheng4eq 2.399 6.639

Zheng4uneq 2.215 6.260
Zheng8eq 2.398 4.722

Table 1: Relative compression on RNA-seq
datasets

Dataset NMI of PCA + k-means
Koh 0.847

Kumar 0.924
Simkumar4easy 0.746
Simkumar4hard 0.237
Simkumar8hard 0.449

Trapnell 0.286
Zheng4eq 0.690

Zheng4uneq 0.691
Zheng8eq 0.554

Table 2: Average PCA+K-Means outcome
before data removal

This shows that our outlier detection method is adept at detecting different kinds of outliers, outper-
forming popular outlier detection tools in some settings, and being competitive to them in others. We
also observe that as the overall noise in the dataset increases, the performance of our method compared
to the other outlier detection tools improves. This further highlights the power of compression ratio
when especially dealing with noisy data. Having demonstrated the validity of our outlier detection
method in two different settings, across different noise levels, we now focus on real-world datasets.

4 Real world experiments

4.1 Datasets of interest

In this section, we provide experimental results to exhibit the validity of compression ratio as a metric
and the usefulness of our outlier detection method in improving the community structure of datasets.
We focus on single-cell RNA sequencing datasets. The dataset consists of n many data points, each
corresponding to a cell. The features are gene expressions, and for the cell, the expression of some
d ≥ 10, 000 genes are recorded. A fundamental problem here is to identify sub-populations of
interest. However, the problem is challenging as the biological process of recording gene expressions
is error-prone [THL+19], and gene expressions within the same population may also vary due to
internal randomness. Furthermore, experiments can cause cells to get merged during gene-expression
recording [XL21]. This makes single-cell RNA sequencing data a good testing ground for high
dimensional noisy data with outliers and underlying community structure.

In this direction, we consider the single-cell RNA sequencing datasets from a benchmark pa-
per [DRS20]. These datasets also have moderate to highly reliable ground truth labels, that help us
understand the usefulness of our metrics and our algorithm. These datasets vary in the number of
cells, genes, clusters, cells per cluster, and the "difficulty" of clustering. A summary of the datasets is
provided in Table 4 in Appendix E.1.

4.2 Average compression in the datasets

As discussed in Section 2 and described in Theorem 2.5, our primary result showed that the
intra-community compression ratios are higher than inter-community compression ratios in a
large range of parameters. Here we look at average statistics of compression ratio to provide
a first layer of evidence supporting this phenomenon in real-world data. We define the follow-
ing metric. For any community Vj , we define the average intra-community compression ratio as

intraX,k′(Vj) = E
i,i′∈Vj

[
‖xi−xi′‖

‖Πk′
X (xi−xi′ )‖

]
]

Similarly, the average inter-community compression ratio

is defined as interX,k′(Vj) = E
i∈Vj ,i′∈[n]\Vj

[
‖xi−xi′‖

‖Πk′
X (xi−xi′ )‖

]
. This gives an average measurement

of the compression ratio in the dataset. In this regard, we find that for each of the 9 datasets and
each of the communities in the dataset, the intra-community compression ratio is higher than the
inter-community compression ratio. We provide the results in the Appendix E.2. Here, for brevity we
present the average of intraX,k−1(Vj) and interX,k−1(Vj) for each dataset in Table 1.
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4.3 Improvement of clustering results via outlier detection

Next, we study the usefulness of our outlier detection method in these datasets. Unlike our simulations,
there is no ground-truth labeling for outliers. Rather, we assume that in each community (as defined
by the labels provided with the dataset), some points may behave more like an outlier, in that they
may be a mixture of different signals. These can also be points that have uncharacteristically high
noise compared to the rest of the data points. In such a case, these data points may muddle the
community structure in the datasets, and thus, removing them may improve the community structure
of the datasets. We capture this improvement by observing the change in the accuracy of clustering
algorithms when some outlier-like points are removed from the dataset. For our experiments, we
choose PCA+K-Means as our clustering algorithm, as it is known to be effective in single-cell
datasets [VKS17, KAH19].

Experimental setup For each of the datasets, we do the following. Let k be the number of
communities. We apply some c-dimensional PCA and then run a standard implementation of K-
Means with k-centers on the post-PCA data and record the NMI and purity score, which are popular
clustering accuracy metrics. This gives us a starting point. Then, for each dataset, we apply 9 outlier
detection methods. The algorithms are our variance-of-compression-ratio method, and the original
and PCA-added versions of LOF, KNN-dist, Isolation forest, and ECOD. We have two settings.

First, we set c = k− 1 (following our theory), and obtain the initial PCA+K-means results in Table 2.
Then, we remove 5% of the points according to the outlier score and then run PCA+K-Means on
the rest of the dataset and obtain the new NMI values. Next, we repeat the same experiments by
removing 10% of the points. Additionally, we also use c = 2k, and there, calculate the outcome only
for 10% points removal, primarily to reduce redundancy. This is to test the sensitivity of the methods
to the choice of PCA dimension.

Results As a comprehensive summary, we calculate the performance rank of the methods on all the
datasets in each of the settings. We record the results in Table 3. As can be observed, we obtained the
best rank in 5 out of 6 settings. The performance of each method for each dataset in the settings can
be found in Appendix E.

Average Rank

Algorithm
NMI,
dim = k - 1,
5% removal

NMI,
dim = k - 1,
10% Removal

Purity,
dim = k - 1,
5% Removal

Purity,
dim = k - 1,
10% Removal

NMI,
dim = 2k,
10% Removal

Purity,
dim = 2k,
10% Removal

Var. of Compression 2.333 2.333 3.444 2.111 2.889 2.556
LOF 4.222 5.0 5.667 5.444 5.333 6.556
PCA + LOF 3.556 4.0 4.556 4.222 4.222 5.667
KNN 5.0 4.333 3.111 3.556 3.778 3.444
PCA + KNN 4.556 4.556 3.778 3.778 4.667 4.333
Isolation Forest 4.667 6.0 4.333 5.111 5.667 5.222
PCA + Isolation Forest 4.222 4.333 2.444 3.111 4.444 2.667
ECOD 4.889 3.556 3.556 3.111 3.667 3.0
PCA + ECOD 6.333 5.111 4.111 4.667 4.556 4.222
Table 3: Average rank of improvement across all algorithms and experimental settings

Robustness to choice of dimension Finally, we note that the compression ratio is not overly
sensitive to the choice of PCA dimension, and if we use more dimensions than the number of
communities, we still get favorable results. For theoretical support, we show in Section E.4 of the
appendix that the compression ratios of most points change only mildly when k′ > k. In terms of
experiments, we verify it as follows. For k′ = 2k, we calculate the average intra-community and
inter-community compression ratios in Appendix E.4 and find them to be consistent with Table 1. As
in the case with PCA dimension=k−1, our methods have the best performance in terms of improving
clustering performance.

Limitations Finally, we note a few limitations with our outlier removal algorithm. First, the
algorithm is dependent on selecting a reasonable removal percentage. While we observed greater
NMI improvement with greater removal rates, it is important to understand what is a suitable choice
for different datasets. Another concern is that our outlier detection tool may not be optimal for
handling highly unbalanced communities, as a very small community will show a lower variance of
compression ratio. These remain interesting research directions. We note more future directions in
the Appendix F.
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A Organization of the appendix

In Sectiion B we obtain our first, generic proofs for compression ratio. Next, in Section C we interpret
our results through the lens of spatially unique centers, and also prove our variance of compression
result on outlier detection in this setting. Next in Section D we extend the results of Section B when
number of components is more than k + 1.

Section E contains continuation of experimental results from the main paper. We conclude with some
future directions in Section F.

B Primary theorem and proof

In this section, we describe our primary compression ratio related result in the random vector mixture
model. We first describe our result when the projection dimension is k − 1. We first define some
notations and useful results that we will use.

B.1 Preliminaries

We first define the SVD projection operator for a matrix X . Let the k′-dimensional SVD projection
operator for a matrix X be P k

′

X .

Next, for the dataset matrix X , we denote by Y its centered version. Then we have Πk′

X = P k
′

Y .

Then the compression ratio of the data pair (i, i′), defined as ‖xi−xi′‖
‖Πk′ (xi−xi′ )‖

is in fact ‖yi−yi′‖
‖Pk′

Y (yi−yi′ )‖
.

Then we have the following bound on the compression ratios in the random vector mixture model.
Theorem B.1 (Main result). Let X be a d × n dataset setup in the random vector mixture model
with k underlying communities, so that all centers cj and all column vectors xi ∈ X are in [−α, α]d.
Let Y be the corresponding centered dataset. Considering the following notations,

1. δk′(M) := sk′(M)− sk′+1(M) for any M ,

2. σ2 be the maximum variance of the random variables,

3. N := C0σ
√
d+ n for some constant C0

If σ2 ≥ C1
logn
n for some constant C1 then with probability 1−O(1/n) we have that the (k− 1)-PC

compression ratio, ∆X,k−1(i, i′) of all intra-cluster pairs (i, i′) is lower bounded as

∆X,k−1(i, i′) ≥√
2dσ2

j − 12α
√
d log n

2
√

2

(
σ
√
k + C1 · α ·

√
log n+

2N·
√
σ2
jd+12

√
d logn

δk−1(Y )

) (2)

Similarly, the compression ratio of all inter-cluster pairs (i,i’) is upper bounded by

∆X,k−1(i, i′) ≤ √
d(σ2

j + σ2
j′) + ‖cj − cj′‖2 + 12α

√
d log n

√
2

(
‖cj − cj′‖ − 2

(
σ
√
k + C1 · α ·

√
log n+

2N·
√
‖cj−cj′‖2+2dσ2+12

√
d logn

δk−1(Y )

)) (3)

with probability 1−O(1/n).

Here we make the following remark about the range of the datapoints.

B.2 Definitions and notations

We start with the definition of the norm operator ‖ · ‖, which we use in the following two contexts.
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1. If u is a d dimensional vector, then ‖u‖ denotes the `2 norm of u, which is
√∑d

i=1(ui)2.
Then ‖u− v‖ is the `2 distance between the two vectors.

2. If M is a d× n matrix M , ‖M‖ denotes the spectral norm of the matrix. That is,
‖M‖ = max

u,‖u‖≤1
{‖Mu‖}

We follow this by defining some more structures related to random matrices.

1. For any matrixM , we denote M̄ := E[M ]. Then by definition, X̄ is a d×nmatrix such that
if i ∈ Vj , the i-th column of X̄ is cj (as D(j) is a coordinate wise zero mean distribution),
the ground truth center of Vj . Thus, we denote by X̄ as the ground-truth or expectation
matrix of X . Similarly Ȳ is the center matrix of Y (recall that Y is the column centered
matrix of X). Furthermore let M̄i be the i-th column of M̄ . Then ‖ȳi − ȳi′‖ = ‖x̄i − x̄i′‖
for any (i, i′) pair. Thus we can call Ȳ as the ground truth matrix of Y .

2. Corresponding to any matrix M , we denote EM := M − E[M ].
3. Choice of subscripts: From hereon we use the subscript i to denote the columns of X and
Y . We use the subscript j for cluster identities and ` for rows of the matrices or the column
vectors.

With this a background, we give a short sketch of the proof.

Looking at the numerator and denominator separately: Proving the relative compressibility
result requires the following results in turn. Recall that the compression ratio is the ratio between
pre PCA and post PCA distances between pair of datapoints and we want to lower bound “intra-
community” compression ratio and upper bound “inter-community” compression ratio. This means
we need the following bounds to prove Theorem B.1.

1. For the intra-community pairs of vectors, prove a lower bound on the pre PCA distance and
upper bound on the post PCA distances.

2. For the inter-community pairs of vectors, prove an upper bound on the pre PCA distance
and a lower bound on the post PCA distance.

We first obtain the pre PCA distance bounds, which are straightforward to obtain using the fact that the
randomness in the vectors of X are coordinate wise independent, and that ‖yi − yi′‖ = ‖xi − xi′‖
for any (i, i′) pair.

B.3 Pre PCA distances

Lemma B.2. Let yi and yi′ be two vectors (datapoints) of Y with ground truth communi-

ties Vj and Vj′ respectively. If j = j′ then we have ‖yi − yi′‖ ≥
√

2dσ2
j − 12α

√
d log n

with probability 1 − O(n−3), otherwise if j 6= j′ then we have ‖yi − yi′‖ ≤√
d(σ2

j + σ2
j′) + ‖cj − cj′‖2 + 12α

√
d log n with probability 1−O(n−3).

Proof. We know that for any (i, i′) pair ‖yi − yi′‖ = ‖xi − xi′‖. Using this fact we prove the
bounds on the datapoints of X .

First we consider the case when xi and xi′ belong to the same community. Then ‖xi − xi′‖2 =∑d
`=1((xi)` − (xi′)`)

2. Here for each ` we define w` = (xi)` − (xi′)` = (cj)` + (ei)` − (cj)` −
(ei′)` = (ei)` − (ei′)`. Then E

[
w2
`

]
= E[((ei)`)

2] + E[((ei′)`)
2] = V ar((ei)`) + V ar((ei′)`).

We define σ2
l,i = V ar ((ei)`) (to use the more familiar row major representation). Recall that both ei

and ei′ are sampled from D(j) and σ2
j is the average of variance of the coordinates of the distribution

D(j). i.e., E
[∑

`w
2
`

]
=
∑d
`=1 σ

2
l,i + σ2

l,i′ = 2dσ2
j . Now recall that the random variable w` is in the

range [−2, 2] for any `. Then applying Hoeffding bound on this setup we get

Pr

[
d∑
`=1

w2
` ≤ 2dσ2

j − 12α
√
d log n

]
≤ n−3.
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Thus, if xi and xi′ belong to the same community then with probability 1 − O(n−3) we have

‖xi − xi′‖ ≥
√

2dσ2
j − 12α2

√
d log n.

Similarly, if xi and xi′ belong to different communities Vj and Vj′ , we have the random variable
w` = (xi)` − (xi′)` with mean (cj)` − (cj′)` (due to the difference in the centers ) and variance
σ2
l,i + σ2

l,j , where we define c`,j = (cj)`. Then E
[
w2
`

]
= σ2

l,i + σ2
l,j + (c`,j − c`,j′)2 and

E

[
d∑
`=1

w2
`

]
=

d∑
`=1

σ2
`,i + σ2

`,j + (c`,j − c`,j′)2 = d(σ2
j + σ2

j′) + ‖cj − cj′‖2

Applying Hoeffding bound we get

Pr

[
d∑
`=1

w2
` ≥ d(σ2

j + σ2
j′) + ‖cj − cj′‖2 + 12α

√
d log n

]
≤ n−3.

Thus if xi and xi′ belong to different communities then with probability 1− n−3 we have ‖xi −
xi′‖ ≤

√
d(σ2

j + σ2
j′) + ‖cj − cj′‖2 + 12α

√
d log n.

Now, we move into the analysis of post-PCA distances, which is the more technical part of the proof.

B.4 Post PCA distance

High-level idea. The idea behind the proof is simple.

In our setup, X̄ = E[X] is the ground truth matrix, such that if the i-th column of X belongs to Vj ,
then the i-th column of X̄ is cj. Thus, X̄ is rank k and thus ‖P k

X̄
(cj − cj′)‖ = ‖cj − cj′‖. This

implies Ȳ has rank k − 1 and ‖P k−1
Ȳ

(cj − cj′)‖ = ‖cj − cj′‖. The crux of the proof is to show
that P k−1

Ȳ
can be well approximated with P k−1

Y , even when Y and Ȳ differ significantly (due to the
noise).

To achieve this result we use tools from spectral analysis of random matrices, i.e. tools that study the
behavior of eigenvalue and eigenvectors of random matrices. Here we face two hurdles.

1. First we note that the matrix Y is rectangular and unsymmetric. The vast majority of
tools in spectral analysis of random matrix theory are focused on symmetric matrices.
To use this to our advantage we focus on a closely related symmetric matrix through the
following symmetrization trick, which is essential to the proof. We define the matrix Z as

Z :=

[
0 Y
Y T 0

]
. This is a d + n × d + n symmetric matrix. We show that P k−1

Y can be

analyzed through P k−1
Z and then approximate the second projection operator using P k−1

E[Z] ,
borrowing tools from classical random matrix theory. This gives us preliminary post PCA
distance bounds expressed using ‖Y − Ȳ ‖.

2. Then obtaining the exact bounds of Theorem B.1 require bounds on the spectral norm of
Y − Ȳ . There exists a rich literature on spectral norm of random symmetric matrices with
independent entries, but Y − Ȳ does not satisfy this either. This is because, since Y is
obtained by subtracting the column mean from each vector of X , the entries of Y , and
thus Y − Ȳ are not independent either. To this end, we first obtain the said properties for
X−E[X] borrowing tools from [Vu18] on our symmetrization trick, and then accommodate
for the effect of centering using results from [Han14] to complete our proof.

We now describe the symmetrization trick and its implications in detail.

B.4.1 A comparable symmetric case

We start by recalling the symmetric matrix corresponding to Y , Z =

[
0 Y
Y T 0

]
. As per our notations

we denote Z̄ = E[Z] and then we have Z̄ =

[
0 Ȳ
Ȳ T 0

]
. Furthermore we have EZ = Z − Z̄.
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Then the eigenvectors of Z and singular vectors of Y (and similarly Z̄ and Ȳ ) are related as follows.

Fact B.3. Let the left and right singular vectors of Y be l̂t, 1 ≤ t ≤ d and r̂t, 1 ≤ t ≤ n respectively.

Then the eigenvectors of Z are 1√
2

[
l̂t
r̂t

]
with eigenvalue λ̂t = st and 1√

2

[
l̂t
−r̂t

]
with eigenvalue

λ̂t = −st where 1 ≤ t ≤ min(d, n), The same follows for Ȳ and Z̄.

Here we also formally define P kM for symmetric matricesM as in this case we work with eigenvectors
corresponding to top eigenvalues, instead of top singular values (as in case of Y ), for clarity.

Remark B.4. For any matrixM , we have defined P k
′

X as the matrix whose rows are the top k′ singular
vectors of M .

However, when we discuss a symmetric matrix M ′, P k
′

M ′ is a matrix whose rows are the eigenvectors
corresponding to the top k′ eigenvalues of M ′.

This in turn gives us the following results connecting P k
′

Y and P k
′

Z .

Fact B.5. Let 0n be the n dimensional zero vector. Furthermore let v|0n :=

[
v
0n

]
for any vector v.

Then for any d-dimensional vector v we have ‖P k′Y v‖ =
√

2
∥∥P kZ(v|0n)

∥∥
This result allows us to work with the symmetric matrices Z and Z̄ instead of Y . Now we obtain the
results needed to approximate P k

′

Z with P k
′

Z̄
.

Difference in spectral projections of Z̄ and Z: Here we use the Davis-Kahan Theorem [DK70]
along with a result by Cape et. al. [CTP19] to obtain an upper bound between the norm of difference
of the leading eigenspaces of Z and Z̄ under some appropriate orthonormal rotation that we shall use
to obtain our results. The main reason behind using these tools is that the SVD projection matrix due
to Z̄ is well behaved.

Theorem B.6 (Davis-Kahan Theorem: [DK70]). Let D and D̂ be p× p symmetric matrices, with
eigenvalues λ1, . . . , λp and λ̂1, . . . , λ̂p respectively. DefineED = D̂−D and δk′ = λk′−λk′+1, 1 ≤
k < p. Let U = [u1 . . . ,uk′ ] and Û = [û1 . . . , ûk′ ] are matrices in Rp×k′ where ui and ûi are
eigenvectors of D and D̂ w.r.t to the i-th top eigenvalue. Then∥∥∥sin Θ

(
U, Û

)∥∥∥ ≤ 2‖ED‖
δk′

(4)

Theorem B.7 (Perturbation under Procrustes Transformation: [CTP19]). Let U and Û be two p× k′
matrices such that the columns of U (and similarly Û ) comprise of k′ many unit vectors that are
mutually orthogonal.

Then there exists a k′ × k′ orthonormal matrix WU such that∥∥∥sin Θ
(
U, Û

)∥∥∥ ≤ ‖U − ÛWU‖ ≤
√

2
∥∥∥sin Θ

(
U, Û

)∥∥∥
Combining them we get the following result.

Theorem B.8. Given the matrices Y and Ȳ and Z and Z̄ defined as described above, there exists an
orthonormal matrix WZ such that∥∥∥(P k

′

Z )T − (P k
′

Z̄ )T (WZ)T
∥∥∥ ≤ 2‖EZ‖

δk′(Y )

This in turn implies ∥∥∥P k′Z −WZP
k′

Z̄

∥∥∥ ≤ 2‖EZ‖
δk′(Y )

Next, we obtain a result on the projection of a random vector on a k′ dimensional subspace.
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B.4.2 Random Projection

Now, we derive a strong bound for ‖P kMe‖ where e ∈ Rd is a coordinate wise independent random
vector with mean 0d and M is any d× n a non-negative matrix. We essentially show that for any
‖P kMe‖ = O(

√
k) even though e = Ω(

√
d) with high probability. Here an important condition to be

satisfied is that M and e are independent.

Then the projection matrix P kM is a set of k-orthonormal unit vectors pt, 1 ≤ t ≤ k. Then the length
of a projected vector ‖P kMe‖ can be written down as∥∥P kMe

∥∥2
=

k∑
t=1

(
(pt)

Te
)2

Here one can do an entry-wise analysis of the terms
(
(pt)

Te
)2

but that forces a bound of the form
that

∥∥P kMe
∥∥ ≤ √k(σ+

√
16 log(nk)) with probability 1−O(n−3). Instead, we recall a result from

the Vu [VW15].
Lemma B.9 ([VW15]). There are constants C0, C1 such that the following happens. Let e be a
random vector in Rd such that its coordinates are independent random variables with 0 mean and
variance σ2. Assume furthermore that the coordinates are bounded by α in their absolute value. Let
H be a subspace of dimension k and let ΠH(e) be the length of the orthogonal projection of e onto
H . Then for any n we have

Pr
(

ΠH(e) ≥ σ
√
k + C1α

√
log n

)
≤ n−3

Now, let us consider the case where H is the subspace covered by the top k many orthonormal
eigenvectors of M , denoted as pt, 1 ≤ t ≤ k. Then the projection of e onto H can be written as∑k
t=1〈pt, e〉pt. Then we have (ΠH(e))

2
=
∑k
t=1〈pt, e〉2 =

∑k
t=1

(
(pt)

Te
)2

. This is exactly
‖P kM (e)‖2. Summarizing, we get the following result with respect to the matrix Z̄.

Corollary B.10. Let P k
′

Z̄
be as defined above. Let e be a d-dimensional random vector with each

entry having zero mean and variance at most σ2. Then with probability 1− n−3 we have,

‖P kZ̄(e)‖ ≤ σ
√
k + C1 · α ·

√
log n

We are now in a position to obtain our preliminary pots PCA distance bounds when the projection
dimension is k − 1.

B.4.3 Preliminary post PCA bounds

Preliminary intra-community bounds: We start by obtaining the post PCA distance ‖Πk−1
Y (yi−

yi′)‖ where both yi and yi′ belong to the same community Vj .
Lemma B.11. Let yi and yi′ be two columns of the data matrix Y belonging to the same community
Vj . Then for some constants C1 we have

‖P k−1
Y (yi − yi′)‖ ≤ 2

√
2
‖Z − Z̄‖ · ‖yi − yi′‖

δk−1(Y )
+ 2
√

2
(
σ
√
k + C1 · α ·

√
log n

)
(5)

with probability 1−O(n−3).

Proof. Initially we have ‖P k−1
Y (yi − yi′)‖ =

√
2‖P k−1

Z (yi|0n − yi′ |0n)‖. Here we use the facts
that the spectral projection operators due to Z and Z̄ are close up to some orthonormal rotation and
that Z̄ and yi−yi′ are independent. Furthermore yi−yi′ = cj+ei−cX−cj′−ei′ +cX = ei−ei′ ,
where cX is the centering vector which is a zero mean random vector.

Then we have for any k − 1 dimensional orthonormal matrix W ,

‖P k−1
Z (yi|0n − yi′ |0n)‖ ≤ ‖(P k−1

Z −WP k−1
Z̄

)(yi|0n − yi′ |0n)‖+ ‖WP k−1
Z̄

(yi|0n − yi′ |0n)‖

≤ ‖P k−1
Z −WP k−1

Z̄
‖ · ‖yi|0n − yi′ |0n‖+ ‖WP k−1

Z̄
(ei|0n − ei′ |0n)‖

≤ ‖P k−1
Z −WP k−1

Z̄
‖ · ‖yi|0n − yi′ |0n‖+ ‖WP k−1

Z̄
ei|0n‖+ ‖WP k−1

Z̄
ei′ |0n‖
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From Theorem B.8 we have that for a choice of W ‖P k−1
Z −WP k−1

Z̄
‖ ≤ 2‖Z−Z̄‖

δk−1(Z) = 2‖Z−Z̄‖
δk−1(Y ) .

Next, we can analyze ‖WP k−1
Z̄

ei|0n‖+ ‖WP k−1
Z̄

ei′ |0n‖ as Z̄ and the vectors are independent of
each other. Then applying Corollary B.10 with probability 1−O(n−3) we have ‖WP k−1

Z̄
ei|0n‖+

‖WP k−1
Z̄

ei′ |0n‖ ≤ 2σ
√
k − 1 + 2C1

√
log n. This completes the proof.

Preliminary inter-community bounds. Now, we move to the inter-community results. In this part
P k−1
Z̄

plays an important role. This is because as per our discussion ‖P k−1
Ȳ

(cj − cj′)‖ = ‖cj − cj′‖.
This implies

‖P k−1
Z̄

(Ȳi|0d − Ȳi′ |0d)‖ = ‖cj − cj′‖ (6)

Using this result we then prove the following inter-community post PCA bound.
Lemma B.12. Let yi,yi′ be two columns of the data matrix Y so that i ∈ Vj and i′ ∈ Vj′ , where
j 6= j′. Then for the constant C1 we have

‖P k−1
Y (yi − yi′)‖ ≥

√
2

(
‖cj − cj′‖ − 2

(
σ
√
k + C1 · α ·

√
log n

)
− 2‖Z − Z̄‖ · ‖yi − yi′‖

δk−1(Y )

)
(7)

with probability 1−O(n−3).

Proof. As before we have ‖P k−1
Y (yi−yi′)‖ =

√
2‖P k−1

Z (yi|0n−yi′ |0n)‖. Then we proceed with
a basic decomposition. We have for any k − 1 dimensional matrix W ,

‖P k−1
Z (yi|0n − yi′ |0n)‖

≥‖WP k−1
Z̄

(cj|0n − cj′ |0n)‖ − ‖WP k−1
Z̄

(ei|0n − ei′ |0n)‖ − ‖(P k−1
Z −WP k−1

Z̄
)(yi|0n − yi′ |0n)‖

Now, we have ‖WP k−1
Z̄

(cj|0n − cj′ |0n)‖ = ‖P k−1
Ȳ

(cj − cj′)‖ = ‖cj − cj′‖.

Next from Lemma B.11 we have ‖WP k−1
Z̄

(ei|0n − ei′ |0n)‖ ≤ 2
(
σ
√
k + C1

√
log n

)
with proba-

bility 1−O(n−3).

Finally from Lemma B.11 we know we can upper bound ‖(P k−1
Z −WP k−1

Z̄
)(yi|0n−yi′ |0n)‖ with

2‖Z−Z̄‖
δk−1(Y ) · ‖yi − yi′‖, which completes the proof.

At this point, we have obtained the pairwise post-PCA intra-community and inter-community distance
bounds in terms of ‖yi − yi′‖, ‖Z − Z̄‖, k, σ and δk−1(Y ). Here δk−1(Y ) is the spectral gap of
Y and we already have bounds on ‖yi − yi′‖. Next, we obtain bounds on ‖Z − Z̄‖ and then put
together the results obtained so far to prove Theorem B.1.

B.4.4 Spectral norm of the square marrix

First, we note down a result by Vu [Vu18] for upper bounds on the spectral norm of random matrices
with independent entries.
Theorem B.13 (Norm of random symmetric matrix [Vu18]). Let E be a n× n random symmetric
matrix where each entry in the upper diagonal is an independent random variable with 0 mean and σ
variance, then there is a constant C0 such that

Pr
[
‖E‖ ≥ C0σ

√
n
]
≤ n−3

where σ2 ≥ C1
logn
n .

However, since the entries of Y are not independent, the same follows with EZ . To bypass this issue

we define the matrix B :=

[
0 X
XT 0

]
and then B̄ := E[B] =

[
0 X̄
X̄T 0

]
Furthermore recall that EM = M − E[M ]. Then we have the following results.
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1. ‖EZ‖ is the largest eigenvalue of EZ , which is same as the largest singular value of EY ,
that we denote as s1(EY ).

2. ‖EB‖ is same as the largest singular value of EX , that we denote as s1(EX).

Furthermore we have from Theorem B.13 that ‖EB‖ ≤ C0σ
√
n with probability 1 − O(n−3).

Finally we connect s1(EY ) with s1(EX). To do so, note that EY is the centered matrix of EX . This
follows from the fact that EY = Y − Ȳ and EX = X − X̄ . Then we use the following result by
Hanoine [Han14].
Theorem B.14 ([Han14]). Let M be a rank m matrix and M̄ be the matrix obtained upon centering,
with singular values (in descending order) s1, . . . , sm and s̄1, . . . , s̄

′
m−1 respectively. Then for any

1 ≤ i < m we have si ≥ s′i ≥ si+1.

Using this result we get
‖EZ‖ = s1(EY ) ≤ s1(EX) ≤ ‖EB‖

Now, we bound ‖EB‖, i.e.
∥∥∥∥[ 0 EX

(EX)T 0

]∥∥∥∥. This is a (d+n)× (d+n) random symmetric matrix

with zero mean and maximum variance σ2. Then applying Theorem B.13 we get the following bound.
Lemma B.15. Recall that we define N = C0σ

√
d+ n. Then in the setting of Lemma B.11 we have

‖Z − Z̄‖ ≤ N with probability 1−O(n−3)

Against this backdrop we summarize our bounds to prove Theorem B.1.

B.5 Proof of Theorem B.1

From Lemma B.2 we have the lower bound on the intra-community distances and upper bound on
the inter-community distances. Similarly, we can also use the results to obtain lower bound for the
intra-community case. It is easy to see that if (i,i’) belong to the same community Vj then with

probability 1−O(n−3), ‖yi − yi‖ ≤
√

2dσ2
j + 12α

√
d log n.

Substituting this and the bound on ‖Z − Z̄‖ to Lemma B.11 we have with probability 1−O(n−3)

‖P k−1
Y (yi − yi′)‖ ≤ 2

√
2

σ√k + C1 · α ·
√

log n+
N ·

√
2dσ2

j + 12α
√
d log n

δk−1(Y )


Similarly for the inter-community with i ∈ Vj , i′ ∈ Vj′ from Lemma B.12 we have

‖P k−1
Y (yi−yi′)‖ ≥

√
2

‖cj − cj′‖ − 2
(
σ
√
k + C1 · α ·

√
log n

)
−
N ·

√
‖cj − cj′‖2 + d(σ2

j + σ2
j′) + 12α

√
d log n

δk−1(Y )


Finally, using the bounds of Lemma B.2 and applying a union bound on the total n2 pairs of datapoints
completes the proof of the theorem.

C Spatially unique centers and proof for the outlier detection theorem

The primary quantity that is hard to interpret in a dataset with an underlying community structure
is δk−1(Y ). Here we make some observations. First note that δk−1(Y ) = sk−1(Y ) − sk(Y ).
Now, sk−1(Y ) ≥ sk(X) and sk(Y ) ≤ Cσ

√
d+ n where the latter term comes from the fact

that sk(Y ) ≤ ‖EY ‖ ≤ ‖EX‖ ≤ Cσ
√
d+ n. This follows from a simple application of Weyl’s

inequality and the effect of centering on eigenvalues. For simplicity, we consider the case when
sk(X) ≥ 4Cσ

√
d+ n. We will come back to this and show that this assumption does make sense.

Then, we have δk−1(Y ) ≥ 0.66sk(X). Next note that sk(X) ≥ sk(E[X])− ‖E‖.
This then implies that given the aforementioned conditions, we have

δk−1 ≥ 0.25sk(E[X]) (8)
where E[X] is the center matrix, where each column is the center of the community the corresponding
point belongs to.
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Bounds on the singular values of the center matrix for γ-spatially unique centers Here, we
make a connection between sk(E[X]) and the notion of spatially unique centers.

Given a n1 × n2 matrix M , we define the minimum hyperplane distance, distM as

distM = min
j

min
v∈Span(M−j)

‖Mj − v‖

where Mj represents the j-th column of M and M−j denotes the set of all columns of M except the
j-th one.That is, it denotes the minimum distance between a data point and the span of the rest of the
data points.

We have the following classic result of matrix theory.

Lemma C.1 ([RV08]). For any n1 × n2 matrix M , the smallest singular value smin(M) is lower
bounded by 1√

n2
· distM.

Now, this result does not directly help us as E[X] has multiple identical columns (it is after all a
d × n rank k matrix) and we only get a lower bound of 0. However, we can do a simple two-step
analysis to get something nicer.

Consider the matrix Ĉ which contains k columns that are each copy of one of the centers of X . Then
from the definition of γ-spatially unique centers, we immediately have the following.
Fact C.2. If X comes from a setup with γ-spatially unique centers then sk(Ĉ) = smin(Ĉ) ≥ γ√

k
.

Next, let the size of the underlying communities in X . Then we know that E[C] has at least minj |Vj |
many copies of Ĉ in it (along with other columns corresponding to the larger communities). That
means that the singular values in E[X] is at least

√
minj |Vj | times the singular values in Ĉ. This

gives us the following result.

Lemma C.3. Let X be generated from γ-spatially unique centers and let the minimum size of
the underlying communities be Ω(n/k). Furthermore, assume sk(X) � ‖EX‖. Then we get
δk−1(Y ) ≥ C·γ

√
n

k for some constant C.

Proof. This simply comes from putting the bounds on Ĉ and multiplying them with
√

minj |Vj | and
then connecting it with Equation 8.

Now, to go back to the assumption of sk(X) ≥ 4Cσ
√
d+ n, consider that n = Ω(d) (this is where

will work from hereon), then the assumption holds as long as γ ≥ σk. Now, once we have this result,
we can then obtain our main Theorem C.4 in the setting of Spatially unique centers.

Theorem C.4 (Relative compression with spatially unique centers). Let X be a d × n dataset k
many γ-spatially unique centers where the size of the smallest community is Ω(n/k). Then there is a
constant C1 such that for all intra-community pairs in Vj , the compression ratio is upper-bounded as

∆X,k−1(i, i′) ≥ σj
√
d

C1

(
σ
√
k + α

√
log n+

2σ·σj ·k
√
d

γ

) (9)

Similarly for any i ∈ Vj and i′ ∈ Vj′ , the inter-community compression ratio is upper-bounded as

∆X,k−1(i, i′) ≤√
(σ2
j + σ2

j′)d
2 + ‖cj − cj′‖2

C1

(
‖cj − cj′‖ − 2σ

√
k − α

√
log n−

σ·
√
σ2
j +σ2

j′ ·k·
√
d

γ

) (10)

with probability 1−O(1/n).
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Proof. For simplicity of the statements we have made several assumptions, most of them to consider
the harder setting (heavy noise). That is, σ2

jd = Ω(maxj′ ‖cj − cj′‖). Furthermore, we assume
σ is sufficiently large so that σ2d ≥ 100α

√
d log n (this happens as long as α = o(d1/4)). This

implies that the pre-PCA intra and inter-community distances are Θ(2σj
√
d) and Θ

(√
σ2
j + σ2

j′

√
d
)

respectively.

Next, in the intra-community compression ratio bound we have the term

2N ·
√
σ2
jd+ 12

√
d log n

δk−1(Y )
=

2σ
√
d+ n ·

√
σ2
jd+ 12α

√
d log n

0.25γ
√
n/k

Here recall that we assume n = Ω(d) which implies 2σ
√
d+ n ≤ Cσ

√
n for large enough n.

Furthermore, 12α
√
d log n is dominated by σ2

jd. Combining we get

2σ
√
d+ n ·

√
σ2
jd+ 12α

√
d log n

0.25γ
√
n/k

=
Cσ
√
nσj
√
d · k

0.25γ
√
n

=
8Cσσj · k ·

√
d

γ

Similarly the bound

2σ
√
d+ n ·

√
‖cj − cj′‖2 + 2(σ2

j + σ2
j′)d+ 12α

√
d log n

δk−1(Y )

can be simplified to
C
√
σ2
j +σ2

j′k
√
d

γ

Combining these bounds directly gets us result.

Then, Theorem 2.5 is immediately implied, as follows.

C.1 Proof of Theorem 2.5

We know that γ ≥ C max{σ
√
kd1/4, σ

√
k+α log n}. Furthermore, we assume maxi,j ‖ci−cj‖ �

σ
√
d, which is the heavy noise setting. The other case follows the same way. Let C > 100C1.

Furthermore, note that ‖ci − cj‖ ≥ γ.

Then we have
2σ · σj · k

√
d

γ
≤ 0.01σj

√
kd1/4

Similarly, we have √
σ2
j + σ2

j′ · k ·
√
d

γ
≤ 0.01σ

√
kd1/4

Then, the denominator of the lower bound on the intra-community compression ratio is upper bounded
by 0.02σ

√
kd1/4, and the denominator of the lower bound on the inter-community compression ratio

is lower bounded by ‖ci − ‖cj‖ − 0.02σ
√
kd1/4 ≥ 0.98σ

√
kd1/4.

Then, the intra-community compression ratio is lower bounded by 10
√
k
√
d1/4 and the inter-

community compression ratio is upper bounded by 0.05
√
k
√
d1/4, obtaining the separation described

in the Theorem 2.5.

C.2 Proofs for variance of compression ratios

Having discussed the compression ratio bounds in the context of γ-spatially unique centers, we
continue with the theoretical support for our outlier detection method in the random-mixture-outlier
model. We recall the definition of this model for ease of exposition.
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Definition C.5 (Mixture model with outliers (revisited)). Let X be a d× n dataset with the partition
V1, . . . Vk, V̂ , a set of k centers {cj}kj=1 and distributions {D(j)}kj=1+1 with the following generation
method.

1. clean points: If i ∈ Vj , 1 ≤ j ≤ k, xi = cj + ei where ei is sampled from D(j).

2. outliers: If i ∈ V̂ , then we sample pi,1, . . . pi,k ∈ [0.5, 1]. Then ui =
∑
j αi,jcj +ei where

αi,j =
pi,j∑
j pi,j

and ei is sampled from D(k+1).

Let |V̂ | = no and n = no + nc. To keep the results simple, we make the average variance of each
distribution D(j) same, which is σ′.

The concept of Algorithm 1 is simple. If each cluster has a large number of points, then even if there
are a large number of outliers generated from the random-mixture-outlier model, the outliers will
have a lower variance of compression than all the clean points.

First, let us obtain a lower bound on the variance of the compression ratio of clean points under the
conditions of Theorem 2.8. We know that any clean point has high intra-community compression
ratios. This implies that the expectation of the compression ratio for this point is high. On the
other hand, the inter-compression ratio values are low. So just calculating the variance on the
inter-community points yields a large value.

For the sake of simplicity, we will define γ ≥ 2β
√
σkd1/4. Then if we can show that under the other

settings of Theorem 2.8, there is a separation in the variance of the compression ratios of the clean
points and the outliers whenever β ≥ C ′ σ

√
logn
σ′ , we prove the theorem.

Lemma C.6. Let there be nc clean points in the random-mixture-outlier setting where minj |Vj | =
Ω(n/k) and γ ≥ 2β

√
σkd1/4. Then the variance of all such points are lower bounded as C4 ·

nc−|Vj |
n · d

1/4

k ·
(
βσ′

σ −
σ
β·σ′

)
with probability 1−O(1/n).

Proof. Consider any point xi ∈ Vj . Then the inter-compression ratio of xi with any intra-community
point is lower bounded by 0.25σ′

√
d

σ
√
k+α
√

logn+2
√
σσ′d1/4/(β)

≥ 0.25βσ′

σ d1/4 with probability 1−O(1/n).

Then the average of the compression ratios for xi is lower bounded as 0.25σ′/σd1/4|Vj |
n ≥ C3βσ

′/σd1/4

k

On the other hand, probability 1 − O(1/n) we have that for any inter-community point, the com-

pression ratio is upper-bounded with 2σ
√
d

(γ−(2σ
√
k−α
√

logn−C2σ′d1/4)
≤ 2σ

√
d

βkσ′d1/4/C2
≤ 2C2σ/σ

′d1/4

β·k
.

Then, the variance of compression of xi is lower bounded by

C4 ·
n− |Vj |

n
·
(
d1/4

k
·
(
βσ′

σ
− σ

βσ′

))2

Now, we aim to upper-bound the variance of compression for outliers. Here we want to show that since
the underlying signal in any outlier is apart from the signal of any other point, they generally have a
lower compression ratio with any other point, which then implies a lower variance of compression
ratio.

First, we show that as long as there are not too many outliers, their underlying centers (which are
random mixtures of the community centers) will not be too close (which implies they will not have a
high compression ratio).

Lemma C.7 (Distance between signals of the outliers). Let there be no many outliers in the dataset
generated via the random-mixture model where k ≥ log n. Let the set of outliers be V̂ . Then, for
with probability 1−O(n), minu,v∈V̂ ‖u− v‖ ≥ γ

logn .
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Proof. Let |V̂ | = no. Then, for the underlying mixture-center any two points, denoted as u =∑
j α1,jcj and

∑
j α2,jcj we say they are ε-far if minj |α1,j − α2,j | ≥ ε.

Now, note that for any ε-far mixture-centers, we have ‖u− v‖ ≥ 0.5εγ.

Now, it is easy to see that the probability that there is a pair of mixed centers that is not ε-far is
n2

0 · (ε)k. Then, setting ε = 1/ log n and applying k ≥ log n gives that even for n0 = n/2, there all
pairs of mixture centers are 1/ log n-far with probability 1−O(1/n).

Then, we show that in such a case, the variance of compression for any outlier point is quite low even
when measured crudely.
Lemma C.8 (Variance of compression of outliers). Let there be a set of no many outliers so that
the underlying mixture-centers are pairwise 1/ log n-far Then under the condition of Lemma C.6,

we have that the variance of compression for any outlier is upper bounded by
(

4C2 logn(σ/σ′)d1/4

β·k

)2

with probability 1−O(1/n).

Proof. Consider any outlier ui ∈ V0. First, consider the compression ratio between ui and any v
that is clean. Where ui =

∑
j αjcj + ei′ and v = cj′ + ei.

Next, remember that as every αj ≥ 1/2k, we have maxj αj ≤ 0.5.

Then, from the definition of γ-spatially unique centers we have

‖
∑
j

αjcj − cj′‖ ≥ ‖
∑
j 6=j′

αjcj − (1− αj′)cj′‖ ≥ 0.5‖
∑
j 6=j′

αjcj − cj′‖ ≥ 0.5γ

Then, following the analysis of Lemma C.6, we can show that in all such cases, the compression ratio
is upper bounded by 4C2σ/σ

′d1/4

β·k .

On the other hand, consider any two outliers. Then their compression ratios are upper bounded by
4C2 lognσ/σ′d1/4

β·k (essentially replacing γ by γ/ log n in the center-distance calculation).

Then, we can upper bound the variance of compression for an outlier as

1

n

(
|V̂ |(4C2 log nσ/σ′d1/4

β · k
)2 + (n− |V̂ |)(4C2σ/σ

′d1/4

β · k
)2

)
≤
(

4C2 log n(σ/σ′)d1/4

β · k

)2

[applying k ≥ log n ]

Proof of Theorem 2.8 Lemma C.6 shows that in the setting of Theorem 2.8, the variance of

compression ratios for a clean point is lower bounded by C4 · n−|Vj |
n ·

(
d1/4

k ·
(
βσ′

σ −
σ
βσ′

))2

.

Next, Lemma C.8 shows that the variance of compression ratios for an outlier is upper-bounded

as
(

4C2 logn(σ/σ′)d1/4

β·k

)2

Both the aforementioned happen for all outlier and clean points with
probability 1−O(1/n).

Then, to show that with high probability, the variance of compression ratios of any clean point is
higher than the variance of compression ratios of any outlier is

C4 ·
n− |Vj |

n
·
(
d1/4

k
·
(
βσ′

σ
− σ

βσ′

))2

>

(
4C2 log n(σ/σ′)d1/4

β · k

)2

=⇒
√
d

k2
·

(
n− |V̂ |
n

· βσ
′

σ
− C5 log nσ

σ′β

)
> 0 [For some constant C5]

=⇒
√
d

k2
·
(

0.5βσ′

σ
− C5 log nσ

σ′β

)
> 0 [As n− |V̂ | ≥ 0.5n]

Then, as long as β ≥ 10C5σ/σ
′√log n, this equation is satisfied.
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D Projection with more principal components

Here we show some results in the case of k′ = k− 1 + c. The main challenge in theoretically proving
our bounds for k′ 6= k− 1 comes from Theorem B.8. A key ingredient towards proving Theorem B.1
is the following spectral gap. ∥∥∥(P k

′

Z )T − (P k
′

Z̄ )TW
∥∥∥ ≤ 2‖EZ‖

δk′(Y )

In general we work with the natural assumption δk−1(Y ) >> ‖EZ‖. However, in our model we
have sk(Y ) = O(‖EZ‖). This follows from Weyl’s inequality, which states that if Z = Z̄ + EZ
and (k′)-th singular value of B is 0, then (k − 1 + c)-th singular value of Z is upper bounded by
O(‖EZ‖) for any c > 0.

Thus δk′(Y ) = O(‖EZ‖) for any k′ ≥ k, and our previous results alone cannot prove relative
compressibility.

Here we bypass this issue to a loose but non-trivial extent. First we note that the inter-community
compression can only decrease if the the projection dimension increases. Thus we have that for any
k′ ≥ k, ∆X,k′(i, i

′) ≤ ∆X,k−1(i, i′).
Theorem D.1. Let us consider the random vector model as in Theorem B.1. Let Let k′ = k − 1 + c
and any 0 < f < 1. Then we have that with probability 1−O(1/n),

1. If (i, i′) is an inter-community pair, then ∆k′,X(i, i′) ≤ ∆k−1,X(i, i′)

2. If (i, i′) is an intra-community pair, then

∆k−1,Y (i, i′) ≥

√
‖cj − cj′‖2 + d(σ2

j + σ2
j′) + 12

√
d log n√∥∥P k−1

Y (yi − yi′)
∥∥2

+ 4C2
0σ

2(d+ n)c2f2

for all but c2/f4 pairs of points with probability 1−O(1/n).

Proof. The inter-community bound follows from definition and the numerator of the intra-community
bound follows from Lemma B.2. We now prove the denominator (post PCA distance bounds) for the
intra-community case.

Let us denote with P k1,k2Y the projection operator due to the k1-th to k2-th top singular vectors of Y .

Then for any vector u we have ‖Πk′

X(u)‖ =
√
‖Πk−1

X (u)‖2 + ‖P k,k′Y (u)‖2.

Then we are left with bounding ‖P k,k
′

Y (u)‖2 where u = yi − yi′ so that i ∈ Vj , i′ ∈ Vj′ . We aim to
show that if k′ − k is small then this value is small as well.

We first represent Y with its SVD decomposition. l` and r` represent the `-th left singular vector and
right singular vector of Y respectively. Then we have Y =

∑t
`=1 si(Y )l`(r`)

T where t = rank(Y ).
Then the projection of yi due to the `-th principal component of X is 〈l`,yi〉 = s`(Y )r`, i where
r`,i is the i-th entry of the `-th right singular vector. Then we have

≤ sk(Y )

√√√√ k′∑
`=k

(r`,i)2

Here recall that each r` is a n-dimensional vector with unit norm, i.e. ‖r`‖ = 1. Then for any
f < 1, the number of coordinates of r` that are larger than f is less than 1/f2. Thus considering
all the k ≤ ` ≤ k − 1 + c, the total number of entries that are larger than f is less than c/f2.
Then, for all but c/f2 many points yi we have ‖P k,k−1

Y (yi)‖ ≤ sk(Y ) · f · c. Here we substitute
sk(Y ) ≤ ‖EY ‖ ≤ C0σ

√
d+ n with probability 1−O(n−3).

This implies that with probability 1 − O(1/n) ‖P k,k−1
Y (yi − yi′)‖ ≤ 2C0σ

√
d+ ncf for all but

c2/f4 pairs of points. This concludes our proof.
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It should be noted that this is a much looser bound as compared to our (k−1)-PC compression metric,
especially in the paradigm where noise dominates the ground truth distances. As we discussed, the
main reason that Theorem B.1 does not directly work for k′ > k − 1 can be pinned down to the
following technical challenge.

D.0.1 Technical challenges in understanding PCA

The technical challenge is getting a better upper-bound on ‖(P k−1
Z − P k−1

Z̄
)(e)‖ than ‖P k−1

Z −
P k−1
Z̄
‖ · ‖e‖ for a random vector e. In fact, ‖(P k−1

Z −P k−1
Z̄

)e‖ equals |(P k−1
Z −P k−1

Z̄
)‖ · ‖e‖ only

if e/‖e‖ is a unit vector along which (P k−1
Z − P k−1

Z̄
) realizes its spectral norm, which is unlikely to

be the case for most noise e vectors, due to the inherent randomness in them. A better analysis of this
term will allow us to extend the result of Theorem B.1 beyond k′ = k − 1, which is what we observe
in reality. For real datasets, the compression factor does not change much if the PCA dimension
is changed by a small value. Furthermore, a tighter understanding of ‖(P k−1

Z − P k−1
Z̄

)e‖ will also
enable to us make progress towards proving optimality of perhaps the simplest spectral clustering
algorithm for the SBM problem, as conjectured by [Vu18]. There has indeed been some progress
very recently [MZ24, MZ23] in some very specific settings, i.e. SBM (stochastic block model).
Generalizing these results to the random vector mixture model is an outstanding open question.

E Experiments

E.1 Summary of datasets

First, we present a summary of the datasets.

Dataset #
of clusters

#
of cells

# of genes
(features)

Koh 9 531 48,981
Kumar 3 246 45,159

Simkumar4easy 4 500 43,606
Simkumar4hard 4 499 43,638
Simkumar8hard 8 499 43,601

Trapnell 3 222 41,111
Zheng4eq 4 3,994 15,568

Zheng4uneq 4 6,498 16,443
Zheng8eq 8 3,994 15,716

Table 4: Summary of data

E.2 Community-wise average compression ratios

In Section 4 we showed the average of community-wise average of intra and inter-community
compression ratios for the datasets in [DRS20] for PCA dimension=k − 1. Here we present the
results for each community of the datasets. We observe that even in the community-level metric,
the intra-community compression ratio is higher than the inter-community compression ratio for all
datasets.

E.3 NMI and purity index improvement for PCA-dim=k − 1

Now, we continue with providing more experimental results. First, we note down the NMI improve-
ment when 5% and 10% of the points are removed in the setting of PCA dimension= k − 1.

Next, we add the initial purity scores when running PCA( dimension=k−1)+K-means on the datasets
in Table 6.

Then the improvement in purity index due to 5% and 10% points removal are recorded in Figures 5
and 6.
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Figure 3: NMI improvement via removing 5% points

Figure 4: NMI improvement via removing 10% points

Figure 5: Purity score improvement via 5% outlier removal

Figure 6: Purity score improvement via 10% outlier removal
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Community wise average compression ratio
Koh (Inter) 2.417 2.530 2.714 2.523 2.649 2.948 2.352 2.696 2.018
Koh (Intra) 7.678 9.829 6.966 6.041 6.757 8.424 6.686 7.382 7.463
Kumar (Inter) 2.107 2.105 1.696 - - - - - -
Kumar (Intra) 15.969 13.577 14.889 - - - - - -
Simkumar4easy (Inter) 4.534 3.724 3.200 2.850 - - - - -
Simkumar4easy (Intra) 15.673 17.083 15.554 14.924 - - - - -
Simkumar4hard (Inter) 5.984 5.653 4.960 4.472 - - - - -
Simkumar4hard (Intra) 15.173 16.722 14.500 13.807 - - - - -
Simkumar8hard (Inter) 4.425 4.668 4.397 5.233 4.390 4.004 3.998 3.681 -
Simkumar8hard (Intra) 9.177 10.571 8.785 8.639 9.390 9.526 8.699 10.172 -
Trapnell (Inter) 4.491 7.401 7.228 - - - - - -
Trapnell (Intra) 9.202 10.248 10.122 - - - - - -
Zheng4eq (Inter) 2.117 1.762 2.828 2.889 - - - - -
Zheng4eq (Intra) 6.135 6.250 7.947 6.223 - - - - -
Zheng4uneq (Inter) 2.059 1.753 2.870 2.176 - - - - -
Zheng4uneq (Intra) 5.839 6.351 7.335 5.514 - - - - -
Zheng8eq (Inter) 1.981 2.922 1.655 1.936 2.567 2.594 2.802 2.726 -
Zheng8eq (Intra) 4.306 4.533 4.540 4.997 4.254 5.598 5.244 4.300 -

Table 5: Community-wise Inter and Intra-Community Compression Ratios

Dataset Purity of PCA + k-means
Koh 0.895

Kumar 0.983
Simkumar4easy 0.918
Simkumar4hard 0.563
Simkumar8hard 0.667

Trapnell 0.604
Zheng4eq 0.715

Zheng4uneq 0.873
Zheng8eq 0.568

Table 6: Purity index before data removal (PCA dim = k − 1)

E.4 Different PCA dimension choice

Finally, we show that our experiments on real-world data, both for average compression as well as
clustering accuracy improvement through outlier detection, are fairly stable to a change in the PCA
dimension. The average compression ratios can be found in Table 7. The NMI and purity index
baselines can be found in Tables 8 and 9 respectively.

Dataset
Avg.

intercluster
compression

Avg.
intracluster

compression
Koh 2.246 4.484

Kumar 1.742 5.576
Simkumar4easy 3.007 6.496
Simkumar4hard 4.161 6.461
Simkumar8hard 3.537 4.948

Trapnell 3.259 4.204
Zheng4eq 1.969 4.246

Zheng4uneq 1.893 4.081
Zheng8eq 2.139 3.491

Table 7: Relative compression on RNA-seq datasets when PCA dimension is 2k
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Dataset NMI of PCA + k-means
Koh 0.861

Kumar 0.924
Simkumar4easy 0.744
Simkumar4hard 0.235
Simkumar8hard 0.440

Trapnell 0.293
Zheng4eq 0.710

Zheng4uneq 0.724
Zheng8eq 0.560

Table 8: NMI before data removal (PCA dim
= 2k)

Dataset Purity of PCA + k-means
Koh 0.898

Kumar 0.984
Simkumar4easy 0.910
Simkumar4hard 0.561
Simkumar8hard 0.658

Trapnell 0.608
Zheng4eq 0.720

Zheng4uneq 0.878
Zheng8eq 0.574

Table 9: Purity score before data removal
(PCA dim = 2k)

Figure 7: NMI improvement via removing 10% points when PCA dimension is 2k

For brevity, we show the improvement in NMI and purity index for 10% point removal in Figures 7
and 8 respectively. As one can observe, our method continues to be the most consistent, being the
best method in most datasets. Indeed, in this case our performance is even comparatively better than
in the case of PCA-dimension=k − 1.

F Future directions

In this paper, we have quantified PCA’s denoising effect in high dimensional noisy data with underly-
ing community structure via the metric of compression ratio. As an application, we have designed an
outlier detection method that improves the community structure of datasets. We note two interesting
theoretical and algorithmic questions.

i) Providing a more tight bound on the compression ratio seems an exciting and hard direction.

Figure 8: Purity score improvement via removing 10% points when PCA dimension is 2k
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ii) Using compression ratio as a metric for clustering algorithms also seems an interesting direction,
especially for single-cell-RNA-seq datasets.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a novel quantification of PCA’s denoising effect in high dimen-
sional data with heavy noise. Then, we use this quantification to develop an outlier detection
method in this setting. We provide comprehensive theoretical, simulation, and real-world
experiment results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the last paragraph of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the proof of our theorems in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our experiments clearly in Section 4 and provide the full source
code used to generate the results in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data is publicly available and we include its source. The supplementary
material includes our simulation code, algorithms, and experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experimental details within Section 4 of the paper and additional
results within Appendix E for different experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for all the applicable experiments, mainly in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the computational environment and running time used to generate
the results in the first paragraph of Section 3.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and understood the guidelines
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer:[NA]
Justification:
Our work focuses on understanding structures of graphs that appear in real-world data, and
our application is focused on clustering of single-cell RNA sequencing datasets. As such,
we do not see any immediate negative societal impact of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see any immediate risk of misuse of our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets and cite them.

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide our codes in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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