Better by Default: Strong Pre-Tuned MLPs and
Boosted Trees on Tabular Data

David Holzmiiller* Léo Grinsztajn
SIERRA Team, Inria Paris SODA Team, Inria Saclay
Ecole Normale Superieure

PSL University

Ingo Steinwart
University of Stuttgart
Faculty of Mathematics and Physics
Institute for Stochastics and Applications

Abstract

For classification and regression on tabular data, the dominance of gradient-boosted
decision trees (GBDTs) has recently been challenged by often much slower deep
learning methods with extensive hyperparameter tuning. We address this dis-
crepancy by introducing (a) RealMLP, an improved multilayer perceptron (MLP),
and (b) strong meta-tuned default parameters for GBDTs and RealMLP. We tune
RealMLP and the default parameters on a meta-train benchmark with 118 datasets
and compare them to hyperparameter-optimized versions on a disjoint meta-test
benchmark with 90 datasets, as well as the GBDT-friendly benchmark by Grin-
sztajn et al. (2022). Our benchmark results on medium-to-large tabular datasets
(1K-500K samples) show that RealMLP offers a favorable time-accuracy tradeoff
compared to other neural baselines and is competitive with GBDTs in terms of
benchmark scores. Moreover, a combination of RealMLP and GBDT's with im-
proved default parameters can achieve excellent results without hyperparameter
tuning. Finally, we demonstrate that some of RealMLP’s improvements can also
considerably improve the performance of TabR with default parameters.

1 Introduction

Perhaps the most common type of data in practical machine learning (ML) is tabular data, char-
acterized by a fixed number of features (columns) that can take different types such as numerical
or categorical, as well as a lack of the spatiotemporal structure found in image or text data. The
moderate dimension and lack of symmetries make tabular data accessible to a wide variety of machine
learning methods. Although tabular data is very diverse and no method is dominant on all datasets,
gradient-boosted decision trees (GBDTs) exhibit excellent results on benchmarks [[18}, 1431 58] |69]],
although their superiority has been challenged by a variety of deep learning methods [3].

While many architectures for neural networks (NNs) have been proposed [3], variants of the simple
multilayer perceptron (MLP) have repeatedly been shown to be good baselines for tabular NNs
[15L 16} 30, 154]. Moreover, in terms of training time, MLPs are often slower than GBDTs but still
considerably faster than many other architectures [[18} 43]]. Therefore, we study how MLPs can be
improved in terms of architecture, training, preprocessing, hyperparameters, and initialization. We
also demonstrate that at least some of these improvements can successfully improve TabR [[17]].

*Work done partially while still at University of Stuttgart.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

26577 https://doi.org/10.52202/079017-0837

Even with fast and accurate NN, the cost of extensive hyperparameter optimization can be problem-
atic and hinder the adoption of new methods. To address this issue, we investigate the potential of
better dataset-independent default parameters for MLPs and GBDTs. Specifically, we compare the
library defaults (D) to our tuned defaults (TD) and (dataset-dependent) hyperparameter optimization
(HPO). Unlike McElfresh et al. [43], who argue in favor HPO on GBDTs over trying NNs, our
results show a better time-accuracy trade-off for trying different (tuned) default models, as is done by
modern AutoML systems [[10} [11]].

1.1 Contribution

The problem of finding better default parameters can be seen as a meta-learning problem [[64]. We
employ a meta-train benchmark consisting of 118 datasets on which the default hyperparameters are
optimized, and a disjoint meta-test benchmark consisting of 90 datasets on which they are evaluated.
We consider separate default parameters for classification, optimized for classification error, and for
regression, optimized for RMSE. Our benchmarks do not contain missing numerical values, and we
restrict ourselves to sizes between 1K and 500K samples, cf.

In we introduce RealMLP, which improves on standard MLPs through a bag of tricks
and better default parameters, tuned entirely on the meta-train benchmark. We introduce many
novel or nonstandard components, such as preprocessing using robust scaling and smooth clipping,
a new numerical embedding variant, a diagonal weight layer, new schedules, different initialization
methods, etc. Our benchmark results demonstrate that it often outperforms other comparably fast
NN from the literature and can be competitive with GBDTs. To demonstrate that our bag of tricks is
useful for other models, we introduce RealTabR-D, a version of TabR [17] including some of our
tricks that, despite less extensive tuning, achieves excellent benchmark results.

In we provide new default parameters, tuned on the meta-train benchmark, for XGBoost
[9], LightGBM [31], and CatBoost [51]]. While they cannot match HPO on average, they outperform
the library defaults on the meta-test benchmark.

In we evaluate these and other models on the meta-test benchmark and the benchmark by
Grinsztajn et al. [18]]. We also investigate several possibilities for algorithm selection and ensembling,
demonstrating that algorithm selection over default methods provides a better time-performance
tradeoff than HPO, thanks to our new improved default parameters and MLP.

The code for our benchmarks, including scikit-learn interfaces for the models, is available at
https://github.com/dholzmueller/pytabkit
Our code and data are archived at https://doi.org/10.18419/darus-4555,

1.2 Related Work

Neural networks Borisov et al. [3]] review deep learning on tabular data and identify three main
classes of methods: Data transformation methods, specialized architectures, and regularization
models. In particular, recent research has mainly focused on specialized architectures based on
attention [11 [7, [15, [27]], including attention between datapoints [[17,137,153} 156, 160]. However, these
methods are usually significantly slower than MLPs or even GBDTs [17, [18}, 43]]. Our research
instead expands on improvements to MLPs for tabular data such as the SELU activation function
[35], bias initialization methods [61], regularization methods [30], categorical embedding layers [19],
and numerical embedding layers [16].

Benchmarks Shwartz-Ziv and Armon [58]] benchmarked three deep learning methods and noticed
that they performed better on the datasets from their own papers than on other datasets. We address
this issue by using more datasets and evaluating our methods on datasets that they were not tuned on.
Grinsztajn et al. [18], McElfresh et al. [43]], and Ye et al. [69] propose larger benchmarks and find
that GBDTs still outperform deep learning methods on average, analyzing why and when this is the
case. Kohli et al. [[36] also emphasize the need for large benchmarks. We evaluate our methods on
the benchmark by Grinsztajn et al. [[18]] as well as datasets from the AutoML benchmark [13]] and the
OpenML-CTR23 regression benchmark [12].

Better defaults Probst et al. [50] study the tunability of ML methods, i.e., the difference in
benchmark scores between the best fixed hyperparameters and tuned hyperparameters. While their

https://doi.org/10.52202/079017-0837 26578

https://github.com/dholzmueller/pytabkit
https://doi.org/10.18419/darus-4555

Table 1: Characteristics of the meta-train and meta-test sets.

train test Grinsztajn train test Grinsztajn
B B B B B B J

class class class reg reg reg
#datasets 71 48 18 47 42 28

#dataset groups 46 48 18 26 42 28

min #samples 1847 1000 3434 3338 1030 4052

max #samples 45222 500000 500000 48204 500000 500000

max #classes 26 355 2 0 0 0

max #features 561 10000 419 520 4991 359

max #categories 41 7019 14 38 359 20

approach involves finding better defaults, they do not evaluate them on a separate meta-test benchmark,
only consider classification, and do not provide defaults for LightGBM, CatBoost, and NNs.

Meta-learning The problem of finding the best fixed hyperparameters is a meta-learning problem
[4,164]. Although we do not introduce or employ a fully automated method to find good defaults,
we use a meta-learning benchmark setup to properly evaluate them. Wistuba et al. [66] and Pfisterer
et al. [49] learn portfolios of configurations and van Rijn et al. [63]] learn symbolic defaults, but
neither of these papers considers GBDTs or NNs. Salinas and Erickson [55]] learn large portfolios of
configurations on an extensive benchmark, without studying the best defaults for individual model
families. Such portfolios are successfully applied in modern AutoML methods [[10, [11]]. At the other
end of the meta-learning spectrum, TabPFN [23]] meta-learns a (tuning-free) learning method on
small synthetic datasets. Unlike TabPFN, we only meta-learn hyperparameters and can therefore
use fewer but larger and more realistic meta-train datasets, resulting in methods that scale to larger
datasets.

2 Methodology

To evaluate a fixed hyperparameter configuration , we need a collection B*"" of benchmark
datasets and a scoring function that computes a benchmark score S(B%#") by aggregating the
errors attained by the method with hyperparameters H on each dataset. However, when optimizing
H on B we might overfit to the benchmark and therefore ideally need a second benchmark Btest
to get an unbiased score for . We refer to Bt"2" Bt a5 meta-train and meta-test benchmarks and

T : : : : train pRtrain Rtest test
subdivide them into classification and regression benchmarks Bj7d, Breg™, Bfags, and Bigg'. We

also use the Grinsztajn et al. [18] benchmark BS*i»s7tain which allows us to run more expensive
baselines, since it limits training set sizes to 10K samples and contains fewer datasets due to more
strict dataset inclusion criteria. Since B'#™ contains groups of datasets that are variants of the
same dataset, for example by using different columns as targets, we use weighting factors inversely
proportional to the group size.

shows some characteristics of the considered benchmarks. The meta-test benchmark includes
datasets that are more extreme in several dimensions, allowing us to test whether our default parame-
ters generalize “out of distribution”. For all datasets, we remove rows with missing numerical values
and encode missing categorical values as a separate category.

2.1 Benchmark Data Selection

The meta-train set consists of medium-sized datasets from the UCI Repository [32]], adapted from
Steinwart [61]]. The meta-test set consists of the datasets from the AutoML Benchmark [[13] as well
as the OpenML-CTR23 regression benchmark [12] with a few modifications: we subsample some
large datasets and remove datasets that are already contained in the meta-train set, are too small, or
have categories with too large cardinality. More details on the datasets and preprocessing can be

found in[Appendix C.3

26579 https://doi.org/10.52202/079017-0837

2.2 Aggregate Benchmark Score

To optimize the default parameters, we need to define a single benchmark score. To this end, we
evaluate a method on N5t = 10 random training-validation-test splits (60%-20%-20%) on each
dataset. As metrics on individual dataset splits, we use classification error (100% — accuracy) or
1-AUROC (one-vs-rest) for classification and

RMSE
nRMSE = =+/1— R?

standard deviation of targets

for regression. There are various options to aggregate these errors into a single score. Some, such as
average rank or mean normalized error, depend on which other methods are included in the evaluation,
hindering an independent optimization. We would like to use the geometric mean error because
arguably, an error reduction from 0.02 to 0.01 is more valuable than an error reduction from 0.42 to
0.41. However, since the geometric mean error is too sensitive to cases with zero error (especially for
classification error), we instead use a shifted geometric mean error, where a small value € := 0.01 is
added to the errors err;; before taking the geometric mean:

Ndaatasets Neplits
w;

log(err;; + €
Nsplits ; g(!)

SGM, = exp
i=1

Here, we use weights w; = 1/Ngatasets On the meta-test set and Grinsztajn et al. [18] benchmark.
On the meta-train set, we make the w; dependent on the number of related datasets, cf.[Appendix C.3

In[Appendix B.10] we present results for other aggregation strategies.

3 Improving Neural Networks

The following section presents RealMLP-TD, our improved MLP with tuned defaults, which was
designed based on experiments on the meta-train benchmark. A simplified version called RealMLP-
TD-S is also described. To demonstrate that our improvements can be useful for other architectures,
we introduce RealTabR-D, a version of TabR that includes some of our improvements but has not
been tuned as extensively as RealMLP-TD.

Data preprocessing In the first step of RealMLP, we apply one-hot encoding to categorical columns
with at most eight distinct values (not counting missing values). Binary categories are encoded to a
single feature with values {—1, 1}. Missing values in categorical columns are encoded to zero. After
that, all numerical columns, including the one-hot encoded ones, are preprocessed independently as
follows: Let x1, ..., € R be the values in column ¢, and let g, be the p-quantile of (x1, ..., z,)
for p € [0, 1]. Then,

x

Lj,processed = f(sj : (xj - QI/2))a f(x) = \/ia
TGP
- s i qzja # quya

113/24*111/4
5= 7=a s if sy = qyaand 1 # qo
0 , otherwise.

In scikit-learn [48]], this corresponds to applying a RobustScaler (first case) or MinMaxScaler
(second case), and then the function f, which smoothly clips its input to the range (—3, 3). Smooth
clipping functions like f have been used by, e.g., Holzmiiller et al. [24] and Hafner et al. [20].
Intuitively, when features have large outliers, smooth clipping prevents the outliers from affecting the
result too strongly, while robust scaling prevents the outliers from affecting the inlier scaling.

NN architecture Our architecture, visualized in[Figure 1| (a), is a multilayer perceptron (MLP) with
three hidden layers containing 256 neurons each, except for the following additions and modifications:

* RealMLP-TD employs categorical embedding layers [[19] to embed the remaining categorical
features with cardinality > 8.

* For numerical features, excluding the one-hot encoded ones, we introduce PBLD (periodic
bias linear DenseNet) embeddings, which concatenate the original value to the PL embed-
dings proposed by Gorishniy et al. [16] and use a different periodic embedding with biases,

https://doi.org/10.52202/079017-0837 26580

[One-hot tncoding]

1

meta-train-class meta-train-reg

Robust scale 2 Vanilla MLP
é + B
Smooth_clip sl One-hot for small cat. u -
& .
No early stopping B -
4 Last best epoch -I- -
N k51
[Num./cat. embeddlngs] §. coslog, Ir sched I— I
i g Adam s> 0.95 + 1
[Learnable scahng] =

Label smoothing (class.) .‘
[L Output clipping (reg.) I

B NT parametrization -I—
Act. fn. SELU / Mish

3x [Parametric activation]

Parametric act. fn.

]
i 1
Num. embeddings: PL I—
.I_
3

——

Architecture

7
Linear - ,!
= Dropout p = 0.15 7y
=} za
. . I
(a) Preprocessing and NN architecture 5) 7
S| Weight decay wd = 0.02 B A
for RealMLP-TD. Ei] 1
5 . Ik
,§_ Bias init: he+5 -I- E
=
1.00 on E L. I‘ I—
0.75 ﬂat cos = RealMLP - —
g 0.50 o
0.25 3 New | I | I I I
0.00 - = Unusual 0 10 20 0 10 20
Benchmark score improvement (%) vs. vanilla
(b) The coslog, and flat_cos schedules. (c) From a vanilla MLP to RealMLP-TD.

Figure 1: Components of RealMLP-TD. Part (c) shows the result of adding one component in
each step, where the best default learning rate is found separately for each step. The vanilla MLP
uses categorical embeddings, a quantile transform to preprocess numerical features, default PyTorch
initialization, ReLU activation, early stopping, and is optimized with Adam with default parameters.

For more details, see endix A.4l The error bars are approximate 95% confidence intervals for the
limit #splits — oo, see|[Appendix C.

inspired by Huang et al. [26]] and Rahimi and Recht [52]], respectively. PBLD embeddings
apply separate small two-layer MLPs to each feature x; as

(xz, WD cos(2rw 0z, + b0 4 b Z)) € R%.

1,)b(1) Rlﬁ b(2 1)

For efficiency reasons, we use 4-dimensional embeddings with w . , b, omb

R3. W30 < R3x16
) emb

» To encourage (soft) feature selection, we introduce a scaling layer before the first linear
layer, which is simply a matrix-vector product with a diagonal weight matrix. In other
words, it computes Z; out = S; * L4 in, With a learnable scaling factor s; for each feature 3.
We found it beneficial to use a larger learning rate for this layer.

* Our linear layers use the neural tangent parametrization (NTP) as proposed by Jacot et al.
[28], i.e., they compute z(-H1) = dl_l/2W(l):1:(l) + b where d; is the dimension of the
layer input (). The motivation behind the use of the NTP here is that it effectively modifies
the learning rate for the weight matrices depending on the input dimension d;, hopefully
preventing too large steps whenever the number of columns is large. We did not observe
improvements when using the Adam version of the maximal update parametrization [68]].

26581 https://doi.org/10.52202/079017-0837

* RealMLP-TD uses parametric activation functions inspired by PReLU [21]]. In general, for
an activation function o, we define a parametric version with separate learnable «; for each
neuron ¢:

Oa; (IIIl) = (]. — ai):ri + aia(mi) .

When «o; = 1, this recovers o, and when «; = 0, the activation function is linear. As
activation functions, we use SELU [35] for classification and Mish [45] for regression.

* We use dropout after each activation function. We do not use the Alpha-dropout variant
originally proposed for SELU [35], as we were not able to obtain good results with it.

* For regression, at test time, the MLP outputs are clipped to the observed range during
training. (We observed that this is mainly helpful for suboptimal hyperparameters.)

Initialization The parameters s; of the scaling layer are initialized to 1, making it an identity
function at initialization. Similarly, the parameters «; of the parametric activation functions are
initialized to 1, recovering the standard activation functions at initialization. We initialize weights
and biases in a data-dependent fashion during a forward pass on the (possibly subsampled) training
set. We rescale rows of standard-normal-initialized weight matrices to scale the variance of the output
pre-activations over the dataset to one. For the biases, we use the data-dependent he+5 initialization
method [called hull+5 in|61]].

Training Like Gorishniy et al. [15], we use the AdamW optimizer [34}40]. We set its momentum
hyperparameters to 5; = 0.9 and S2 = 0.95 instead of the default 3 = 0.999. The idea to use a
smaller value for 35 is adopted from the fastai tabular MLP [25]]. RealMLP is optimized for 256
epochs with a batch size of 256. As a loss function for classification, we use softmax + cross-entropy
with label smoothing [62]] with parameter € = 0.1. For regression, we use the MSE loss and affinely
transform the targets to have zero mean and unit variance on the training and validation set.

Hyperparameters We allow parameter-specific scheduled hyperparameters computed in each
iteration using a base value, optional parameter-specific factors, and a schedule, as

iteration)

base_value - param_factor - schedule [———
#iterations

allowing us, for example, to use a high learning rate factor for scaling layer parameters. Because
we do not tune the number of epochs separately on each dataset, we use a multi-cycle learning
rate schedule, providing multiple valleys that are usually preferable for stopping the training, while
allowing high learning rates in between. Our schedule is similar to Loshchilov and Hutter [39] and
Smith [59], but with a simpler analytical expression:

coslog, (t) == %(1 — cos(2mlog, (1 + (28 — 1)t))) .

We set k = 4 to obtain four cycles as shown in[Figure 1] (b). To allow stopping at different levels of
regularization, we schedule dropout and weight decay using the following schedule, cf. O

1
flat_cos(t) == 5(1 + cos(m(max{1,2t} — 1))).
The detailed hyperparameters can be found in

Best-epoch selection Due to the multi-cycle learning rate schedule, we do not perform classical
early stopping. Instead, we always train for the full 256 epochs and then revert the model to the epoch
with the lowest validation error, which in this paper is based on classification error, or RMSE for
regression. In case of a tie, we found it beneficial to use the last of the tied best epochs.

RealMLP-TD-S Since certain aspects of RealMLP-TD are somewhat complex to implement,
we introduce a simplified (and faster) variant called RealMLP-TD-S in Among the
simplifications are: omitting embedding layers, using non-parametric activations, using a simpler
initialization method, and omitting dropout and weight decay.

%inspired by a similar schedule in https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer

https://doi.org/10.52202/079017-0837 26582

https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

RealTabR-D For RealTabR-D, we adapt TabR-S-D by using our numerical preprocessing, setting
Adam’s (5 to 0.95, using our scaling layer with a modification to amplify the effective learning rate
by a factor of 96, adding PBLD embeddings for numerical features, and adding label smoothing for

classification. More details can be found in

4 Gradient-Boosted Decision Trees

To find better default hyperparameters for GBDTs, we employ a semi-automatic approach: We use
hyperparameter optimization libraries like hyperopt [2] and SMAC3 [38]] to explore a reasonably
large hyperparameter space, evaluating the benchmark score of each configuration on the meta-train
benchmarks, and then perform some small manual adjustments like rounding the best obtained
hyperparameters. To balance efficiency and accuracy, we fix the number of estimators to 1000 and
use the hist method for XGBoost. We only consider the libraries’ default tree-building strategies
since it is one of their main differences. The tuned defaults (TD) for LightGBM (LGBM), XGBoost

(XGB), and CatBoost can be found in [C.2] and|[C.3] respectively.

While some of the obtained hyperparameter values might be sensitive to the tuning and benchmark
setup, we observe some general trends. First, row subsampling is used in all tuned defaults, while
column subsampling is rarely applied. Second, trees are generally allowed to be deeper for regression
than for classification. Third, the Bernoulli bootstrap in CatBoost is competitive with the Bayesian
bootstrap while also being faster.

5 Experiments

In the following, we evaluate different methods with library defaults (D), tuned defaults (TD), and
hyperparameter optimization (HPO). Recall that TD uses fixed parameters optimized on the meta-train
benchmarks, while HPO tunes hyperparameters on each dataset split independently. All methods
except random forests select the best iteration/epoch on the validation set of the respective dataset
split based on accuracy / RMSE. All NN-based regression methods standardize the labels for training.

5.1 Methods

We provide methods in the following variants:

* D: Default parameters, taken from the original library if possible (Appendix C.1J.
* TD: Tuned default parameters from |Section 3|and |Section 4]

* HPO: Hyperparameters optimized separately for every train-test split on every dataset, using

50 steps of random search. Search spaces are specified in and are usually
adapted from original or popular papers.

As tree-based methods, we use XGBoost (XGB), LightGBM (LGBM), and CatBoost from the
respective libraries, as well as random forest (RF) from scikit-learn. The variant XGB-PBB-D uses
meta-learned default parameters from Probst et al. [50]]. For neural methods, we compare to MLP,
ResNet, and FT-Transformer (FTT) from Gorishniy et al. [[15], MLP-PLR from Gorishniy et al.
[L6], as well as TabR and TabR-S (without numerical embeddings) from Gorishniy et al. [17]. We
compare these methods to RealMLP and RealTabR from[Section 3] In addition, we investigate Best,
which on each dataset split selects the method with the best validation score out of XGB, LGBM,
CatBoost, and MLP-PLR (for Best-D) or RealMLP (for Best-TD and Best-HPO). Ensemble builds a
weighted ensemble out of the same methods as Best, using the method of Caruana et al. [5] with 40
greedy selection steps as in Salinas and Erickson [S5].

We do not run FTT, RF-HPO, and TabR-HPO on all benchmarks since some benchmarks (especially
meta-test) are more expensive to run and these methods may run into out-of-memory errors.

5.2 Results

Figure 2| shows the results of the aforementioned methods on all benchmarks, along with their
runtimes on a CPU. Note that XGB results on some (mainly meta-test) datasets are affected by a bug

in handling rare categories, see|Appendix B

26583 https://doi.org/10.52202/079017-0837

0.0650
4
(<]
=
& 0.0625
c
o
®
9 0.0600
‘@
17}
S
S 0.0575
ks
C
8 00550
IS 0.055
°
20.0525
o
(5
o
8 0.0500
Y‘E
(2]
0.0475
0 0.140
4
o
5
2013
k]
®
£0.130
=
[7]
(7]
©
G 0.125
ks
c
8 0.120
€
k3
B 0.115
S
o
S
20110
2
:’E
0 0.105
0200
=
O
c
20105
w0
2
‘@
(7]
5 0.190
3]
ks
C
S 185
2018
k)
©
£ 0.180
(5]
(o)}
el
2
0175
»

efficiency reasons), see

https://doi.org/10.52202/079017-0837

Meta-train classification benchmark

'
T
RF-D‘

ResNet-D
9

MLP-HPQ,
FTT-0

i
H
H
:
i
i MLP-Dy
i
i
i
H
i ResNet-HPO

MLP-PLR-D
CatBoost-

XGB-HPO
BB_D@abR'S'D ’*MLP—PLR—HPC#

SIMLP-TD-S,
Bestg, | LGBMHPO |
"""" Ergemble-D €atBoost-HPO

|

RealTabR-D

LGBM-TD
XGB-TD!
CatBoost-TD
ReaIMLP-TD*': 1

H RealMLP-HPO,

Besl-T% Best-HPot
Ensemble-TD Ensemble-HPO ™"
107! 100 10! 10%
Average training time (CPU) per 1K samples [s]

Meta-test classification benchmark

ResNet-D,

XGBDA N\ M+P$D
1LP-HPO,
’ TabR-S.0Y *ResNet—HPO
D BJ. %(GB-HPO
Y ,

ML‘P—PLRH’lﬁ’O
&£

CatBoost-TD *
RealMLP-TD-S ’GBM-HPO| qCatBoost-HPO

Best-Dp
Ensemb\e-D:__

RealMLP-TD¥}

AReaITabR-D

RealMLP-HPO,

BestTD_____F Best:HPO,
Ensemble-TD t__

Ensemble-HPO!

107! 10° 10 10°
Average training time (CPU) per 1K samples [s]

Grinsztajn et al. (2022) classification benchmark

MLP-D,

ResNet»D+ MLP—HPO*

' ResNet-HPO
g ¥
|
: RealMLP—TD—S*
XGB-
______ + BF-HPO-—— 1o 1y
LGBMY 1 I,
RealMLP-T ¢ MLP—PLRVHPO{
-Dj Taor-sD) FITHPQ

“‘RealMLP-HPO

LGBM-TD

CatBoost-TD RealTabRT® ¥GBM-HPO
Ensemble-D @Ml CatBoosttHPO

Best-Tj Best-HP®

EnSemb|e_TD+"'Ens'emblefHF’O*

TabR—HPO*"'

1074 10" 10 107 10°
Average training time (CPU) per 1K samples [s]

D =defaults TD = tuned defaults

10!

0.32

o
@

0.26

0.24

Shifted geometric mean of nRMSEs

o
N1

0.20

0.48

0.46

.
<)

0.40

0.38

Shifted geometric mean of nRMSEs

0.36

0.34

0.36

15
&

0.31

Shifted geometric mean of nRMSEs

0.30

0.29

HPO

Meta-train regression benchmark

'
E ResNet-D
{ CatBoost-D

MLP-D,
®

ResNet-H POx
XGB-HPO,
o *
P-PLR-D'
CatBoost-TD

*CatBoost-HPO
MLP-HPO'

KaemHpo ¢rp

=nsemble-D
\i MLPVPLRVHPO*
1 TabR-S-D,
: []

i
ReaIMLP-TD*:

1 | 1
1 RealMLP- HPO*

Ensemble-TD M_ . @_
Best-TD RedITabR-D

d
Best-HP*O
Ensemble-HPO® ™~

107!
Average training time (CPU) per 1K samples [s]

Meta-test regression benchmark

10° 10! 10%

MLP-D

? ?iesNet—D
lGBM-TD
1
i PLR’D+ ResNet—HPO*
---XGBHPOY | GBM-HPO 4
) TacRfS-0P wife-HPO
Best- CatBoost-HPO
Ensemble-D; '
RealMLP-TD-SH¥ |
RealMLP-TDY} RealTabR-D
H MLE¥PLR-HPO
Best-TD® o _.
Ensemble-Th RealliLP-HPO
Best-HPO'

Ensemble-HPOT~

10°

107!
Average training time (CPU) per 1K samples [s]

Grinsztajn et al. (2022) regression benchmark

MLP7D+

10t 10?

ResNet-D

L4

*ResNet—HPO

MLPPLR—D#I’abR-S-[* *ALP-HPO
X B—DFF-D 7 ’L %TT_D
XGB!HFD
XGB-TD * RF-HPO .
RiBoost-D | | FI-HPO
deaMLpTD-s CatBoost-HPO
- estD MLP-PLR-HPO
LGBM-TD 'Best-D R‘%.a'."’"-FgTD
LGBM;HRO
Ensemble.D . @M BealTabR-D TabR-HPQ,
Best-TD T £y
RealMLP-HPO
Ensemble—TD+ """ Besl-‘H‘P@I
‘E-
107! 10° 10! 102 108 10*

Average training time (CPU) per 1K samples [s]

= hyperparameter optimization

Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

26584

Figure 2: Benchmark scores on all benchmarks vs. average training time. The y-axis shows
the shifted geometric mean (SGM,) classification error (left) or nRMSE (right) as explained in
The x-axis shows average training times per 1000 samples (measured on Bt for

Appendix C.7| The error bars are approximate 95% confidence intervals for
the limit #splits — oo, s Note that XGB results on some (mainly meta-test) datasets
are affected by a bug in handling rare categories, see[Appendix B}

Meta-test classification benchmark Grinsztajn et al. (2022) classification benchmark

0.125

).065
Best-TD LGBM-HPO Best-HPO

\ \
'
= . . DE RealMLP-TD-S
| z

§ H § ‘i MLP-D

& 0.080 FEN o ; X MLPVHPO*

E | E 0.120 i ResNel—Dr

c 1 c : .)

S 1 S XGB-RY MLP-PLR-D #E‘ea‘MLP'TD ResNet-HPO

. i

80075 \ I 8

= RF-Q) = LGBM-T RealMLP-TD-S 2 . lcav® ! MLP-PLR-HPO,

I i i, N To115 \ % %

5 ! e e,'+ 5 RF-HPO feamLP-HPO

€ 0.070 ! VILP-D c CatBooshD v

S f [LGBM-TD\gl/XGB-BBB-D

g g CatBoost-TD WgssrD@p--. FCBHPO

¥ WIEPLR- 1 1 B f
5 XGB-D MLP:PLR A" T4bR-S.D MLP-HPO & 0110 RealTabR-D TabRiSB) h * ,
= ReaMlp-TOF T Resetlheq = CatBoost PO -~ :
i
£ H , MLP-PLR-HRQ) g i
g CatBoost-TD l’____*. RealTabR-D * o i
0.105 ;

B CatBpAgt-D : o ‘&GB-HPO ° i

£ 0.060 XGB-PBB-D; ‘* * 2 i

& Host.D ’--»+|;gB|\é|=HPoH*PROeaIML-P.-HPO & :

atBoost- *-- -

Best-TD Best-HPO 0100 TabR.Hpok

0.055

107! 100 10! 102 107! 10" 10! 10 103
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

Figure 3: Benchmark scores vs. average training time for AUC. Methods labeled “no LS” deac-
tivate label smoothing. Stopping and best-epoch selection are performed on accuracy, while HPO
is performed on AUC. See [Figure B.3]for stopping on cross-entropy. The y-axis shows the shifted
geometric mean (SGM.) 1 — AUC as explained in[Section 2.2 The z-axis shows average training
times per 1000 samples (measured on B'"#" for efficiency reasons), see The error
bars are approximate 95% confidence intervals for the limit #splits — oo, see

How good are tuned defaults on new datasets? To answer this question, we compare the relative
gaps between TD and HPO benchmark scores on the meta-test benchmarks to those on the meta-train
benchmarks. The gap between RealMLP-HPO and RealMLP-TD is not much larger on the meta-test
benchmarks, indicating that the tuned defaults transfer very well to the meta-test benchmark. For
GBDTs, tuned defaults are competitive with HPO on the meta-train set, but not as good on the
meta-test set. Still, they are considerably better than the untuned defaults on the meta-test set. Note
that we did not limit the TD parameters to the literature search spaces for the HPO models (cf.
[Appendix C.2)); for example, XGB-TD uses a smaller value of min_child_weight for classification
and CatBoost-TD uses deeper trees and Bernoulli boosting. The XGBoost defaults XGB-PBB-D
from Probst et al. [50] outperform XGB-TD on BS5t | perhaps because their benchmark is more

clas

similar to BY5t or because XGB-PBB-D uses more estimators (4168) and deeper trees.

RealMLP and RealTabR perform strongly among NNs. On most benchmarks, ReaIMLP-TD and
RealTabR-D bring considerable improvements over MLP-PLR-D and TabR-S-D, at slightly larger
runtimes, respectively. Similarly, ReaIMLP-HPO improves the results of MLP-PLR-HPO. TabR and
FTT are notably slower than MLP-based methods on CPUs, while the difference is less pronounced
on GPUs (Figure C.2). While RealMLP-TD beats TabR-S-D on many benchmarks, RealTabR-D
performs even better on four out of six benchmarks, especially all regression benchmarks. On the
Grinsztajn et al. [[18]] benchmark where we can afford to run more baselines, TabR-HPO performs
best according to many aggregation metrics. It performs especially well on the electricity dataset,
where MLPs struggle to learn high-frequency patterns [[18]].

RealMLP and RealTabR are competitive with tree-based models. On the meta-train and meta-
test benchmarks, RealMLP and RealTabR perform better than GBDTs in terms of shifted geometric
mean error, while also being comparable or slightly better in terms of other aggregations like mean
normalized error or win-rates (Appendix B.12). On the Grinsztajn et al. [18]
benchmark, RealMLP performs worse than CatBoost for classification and comparably for regression,
while RealTabR-D performs comparably to CatBoost-TD for classification and better for regression.

Among GBDTs, CatBoost defaults are better and slower. Several papers have found CatBoost
to perform favorably among GBDTs while being more computationally expensive to train [8}, 133 43|
51, 169]]. We observe the same for our tuned defaults on most benchmarks.

26585 https://doi.org/10.52202/079017-0837

Simply trying all default algorithms is faster and very often better than (naive) single-algorithm
HPO. When comparing Best-TD to 50-step HPO on RealMLP or GBDTs, we notice that Best-TD is
faster on average, while also being competitive with the best of the HPO models. In comparison, Best-
D is often outperformed by RealMLP-HPO. We also note that ensemble selection [3]] usually gives
0-3% improvement on the benchmark score compared to selecting the best model, and can potentially
be further improved [6]. Unlike McElfresh et al. [43]], who argue in favor of CatBoost-HPO over
trying NN, our results favor model portfolios as used in modern AutoML systems [[10]].

Analyzing NN improvements (c) shows how adding the proposed RealMLP components
to a simple MLP improves the meta-train benchmark performance. However, these results depend
on the order in which components are added, which is addressed by a separate ablation study in
For example, the large weight decay value makes RealMLP-TD sensitive to changes
in some other hyperparameters like 3>. We also show in that our architectural
improvements alone are beneficial when applied to MLP-D directly, although non-architectural
aspects are at least as important. In particular, our numerical preprocessing is easy to adopt and often
beneficial for other NNs as well (Appendix B.7). The scaling layer and PBLD embeddings are easy to
use and turned out to be effective within RealTabR-D as well. If affordable, larger stopping patiences
and the use of (cyclic) learning rate schedules can be useful, while label smoothing is influential but
can be detrimental for metrics like AUROC (Figure 3| [Appendix B.5).

Dependence on benchmark choices We observe that choices in benchmark design can affect the
interpretation of the results. The use of different aggregation metrics than the shifted geometric
mean reduces the advantage of TD methods (Appendix B.10). For classification, using AUROC
instead of classification error (Figure 3| [Appendix B.5)) favors GBDTs. Different dataset selection
and preprocessing criteria on different benchmarks lead to large differences between benchmarks in

the average errors, as indicated by the y-axis scaling in

Further insights In[Appendix B] we present additional experimental results. We compare bagging
and refitting for RealMLP-TD and LGBM-TD, finding that refitting multiple models is often better
on average. We demonstrate that GBDTSs benefit from high early stopping patiences for classification,
especially when using accuracy as the stopping metric. When considering AUROC as a stopping

metric, we show that stopping on cross-entropy is preferable to accuracy (Appendix B.3).

Limitations While our benchmarks cover medium-to-large tabular datasets in standard settings, it is
unclear to which extent the obtained defaults can generalize to very small datasets, distribution shifts,
datasets with missing numerical values, and other metrics such as log-loss. Additionally, runtimes
and the resulting tradeoffs may change with different parallelization, hardware, or (time-aware) HPO
algorithms. For computational reasons, we only use a single training-validation split per train-test split.
This means that HPO can overfit the validation set more easily than in a cross-validation setup. While
we extensively benchmark different NN models from the literature, we do not attempt to equalize
non-architectural aspects, and our work should therefore not be seen as a comparison of architectures.
We compared to TabR-S-D as a recent promising method with good default parameters [17, 69].
However, due to a surge of recently published deep tabular models [e.g.,[7} 8] 29} 33| 41,157, 167]), it is
unclear what the current “best” deep tabular model is. In particular, ExcelFormer [7] also promises
strong-performing default parameters. For GBDTs, due to the cost of running the benchmarks, our
limits on the depth and number of trees are on the lower side of the literature.

6 Conclusion

In this paper, we studied the potential of improved default parameters for GBDTs and an improved
MLP, evaluated on a large separate meta-test benchmark as well as the benchmark by Grinsztajn et al.
[18], and investigated the time-accuracy tradeoffs of various algorithm selection and ensembling
scenarios. Our improved MLP mostly outperforms other NNs from the literature with moderate
runtime and is competitive with GBDTs in terms of benchmark scores. Since many of the proposed
improvements to NNs are orthogonal to the improvements in other papers, they offer exciting
opportunities for combinations, as we demonstrated with our RealTabR variant. While the “NNs vs
GBDTs” debate remains interesting, our results demonstrate that with good default parameters, it is
worth trying both algorithm families even with a moderate training time budget.

https://doi.org/10.52202/079017-0837 26586

Acknowledgments and Disclosure of Funding

We thank Gaél Varoquaux, Frank Sehnke, Katharina Strecker, Ravid Shwartz-Ziv, Lennart Purucker,
and Francis Bach for helpful discussions. We thank Katharina Strecker for help with code refactoring.

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2075 — 390740016. The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for supporting David Holzmiiller. LG
acknowledges support in part by the French Agence Nationale de 1a Recherche under Grant ANR-20-
CHIA-0026 (Learnl). Part of this work was performed on the computational resource bwUniCluster
funded by the Ministry of Science, Research and the Arts Baden-Wiirttemberg and the Universities
of the State of Baden-Wiirttemberg, Germany, within the framework program bwHPC. Part of this
work was performed using HPC resources from GENCI-IDRIS (Grant 2023-AD011012804R1 and
2024-AD011012804R2).

Contribution statement DH and IS conceived the project. DH implemented and experimentally
validated the newly proposed methods and wrote the initial paper draft. DH and LG contributed to
benchmarking, plotting, and implementing baseline methods. LG and IS helped revise the draft. IS
supervised the project and contributed dataset downloading code.

References

[1] Sercan O. Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. In AAAT
Conference on Artificial Intelligence, 2021.

[2] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. In International
Conference on Machine Learning, 2013.

[3] Vadim Borisov, Tobias Leemann, Kathrin SeBler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[4] Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:
Applications to Data Mining. Springer Science & Business Media, 2008.

[5] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In International Conference on Machine Learning, 2004.

[6] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the most out of ensemble
selection. In International Conference on Data Mining, pages 828-833. IEEE, 2006.

[7] Jintai Chen, Jiahuan Yan, Qiyuan Chen, Danny Z. Chen, Jian Wu, and Jimeng Sun. Can a Deep
Learning Model be a Sure Bet for Tabular Prediction? In Conference on Knowledge Discovery
and Data Mining. ACM, August 2024.

[8] Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang.
Trompt: Towards a better deep neural network for tabular data. In International Conference on
Machine Learning, 2023.

[9] Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In International
Conference on Knowledge Discovery and Data Mining, 2016.

[10] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. AutoGluon-Tabular: Robust and accurate AutoML for structured data. In 7th
ICML Workshop on Automated Machine Learning, 2020.

[11] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter.
Auto-sklearn 2.0: Hands-free automl via meta-learning. The Journal of Machine Learning
Research, 23(261), 2022.

[12] Sebastian Felix Fischer, Matthias Feurer, and Bernd Bischl. OpenML-CTR23-A curated tabular
regression benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.

26587 https://doi.org/10.52202/079017-0837

[13] Pieter Gijsbers, Marcos LP Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
Bernd Bischl, and Joaquin Vanschoren. AMLB: an AutoML benchmark. Journal of Ma-
chine Learning Research, 25(101):1-65, 2024. URL https://www. jmlr.org/papers/v25/
22-0493.html.

[14] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359-378, 2007.

[15] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Neural Information Processing Systems, 2021.

[16] Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Neural Information Processing Systems, 2022.

[17] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and
Artem Babenko. TabR: Tabular deep learning meets nearest neighbors. In International
Conference on Learning Representations, 2024.

[18] Léo Grinsztajn, Edouard Oyallon, and Gagl Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? Neural Information Processing Systems,
2022.

[19] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv:1604.06737,
2016.

[20] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv:2301.04104,2023.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In IEEE International Conference
on Computer Vision, pages 1026-1034, 2015.

[22] Steffen Herbold. Autorank: A Python package for automated ranking of classifiers. Journal
of Open Source Software, 5(48):2173, 2020. doi: 10.21105/joss.02173. URL https://doil
org/10.21105/joss.02173. Publisher: The Open Journal.

[23] Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. TabPFN: A
transformer that solves small tabular classification problems in a second. In International
Conference on Learning Representations, 2022.

[24] David Holzmiiller, Viktor Zaverkin, Johannes Kistner, and Ingo Steinwart. A framework and
benchmark for deep batch active learning for regression. Journal of Machine Learning Research,
24(164), 2023.

[25] Jeremy Howard and Sylvain Gugger. Fastai: A layered API for deep learning. Information, 11
(2):108, 2020.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In Computer Vision and Pattern Recognition, pages 4700—
4708, 2017.

[27] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. TabTransformer: Tabular data
modeling using contextual embeddings. arXiv:2012.06678, 2020.

[28] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Neural Information Processing Systems, 2018.

[29] Manu Joseph and Harsh Raj. GANDALF: Gated Adaptive Network for Deep Automated
Learning of Features. arXiv:2207.08548, 2024.

[30] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel
on tabular datasets. In Neural Information Processing Systems, 2021.

https://doi.org/10.52202/079017-0837 26588

https://www.jmlr.org/papers/v25/22-0493.html
https://www.jmlr.org/papers/v25/22-0493.html
https://doi.org/10.21105/joss.02173
https://doi.org/10.21105/joss.02173

[31] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Neural
Information Processing Systems, 2017.

[32] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Machine Learning Reposi-
tory. URL https://archive.ics.uci.edu,

[33] Myung Jun Kim, Léo Grinsztajn, and Gaél Varoquaux. CARTE: pretraining and transfer for
tabular learning. In International Conference on Machine Learning, 2024.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[35] Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Neural Information Processing Systems, 2017.

[36] Ravin Kohli, Matthias Feurer, Katharina Eggensperger, Bernd Bischl, and Frank Hutter. Towards
Quantifying the Effect of Datasets for Benchmarking: A Look at Tabular Machine Learning. In
ICLR 2024 Data-centric Machine Learning Research Workshop, 2024.

[37] Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Thomas Rainforth, and Yarin Gal.
Self-attention between datapoints: Going beyond individual input-output pairs in deep learning.
In Neural Information Processing Systems, 2021.

[38] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile Bayesian
optimization package for hyperparameter optimization. Journal of Machine Learning Research,
23(54), 2022.

[39] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[40] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[41] Sascha Marton, Stefan Liidtke, Christian Bartelt, and Heiner Stuckenschmidt. GRANDE:
Gradient-based decision tree ensembles for tabular data. In International Conference on
Learning Representations, 2024.

[42] Calvin McCarter. The kernel density integral transformation. Transactions on Machine Learning
Research, 2023.

[43] Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakr-
ishnan, Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on
tabular data? In Neural Information Processing Systems, 2023.

[44] Dmytro Mishkin and Jiri Matas. All you need is a good init. In International Conference on
Learning Representations, 2016.

[45] Diganta Misra. Mish: A self regularized non-monotonic activation function. In British Machine
Vision Conference, 2020.

[46] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, and Michael I. Jordan. Ray: A distributed
framework for emerging Al applications. In USENIX Symposium on Operating Systems Design
and Implementation, 2018.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. PyTorch: An imperative
style, high-performance deep learning library. Neural Information Processing Systems, 32,
2019.

[48] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, and Vincent Dubourg. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2011.

26589 https://doi.org/10.52202/079017-0837

https://archive.ics.uci.edu

[49] Florian Pfisterer, Jan N. Van Rijn, Philipp Probst, Andreas C. Miiller, and Bernd Bischl. Learning
multiple defaults for machine learning algorithms. In Genetic and Evolutionary Computation
Conference, July 2021.

[50] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance of hyper-
parameters of machine learning algorithms. Journal of Machine Learning Research, 20(53),
2019.

[51] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. CatBoost: Unbiased boosting with categorical features. In Neural Information
Processing Systems, 2018.

[52] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems, 2007.

[53] Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas
Gruber, Markus Holzleitner, Thomas Adler, David Kreil, and Michael K. Kopp. Hopfield
networks is all you need. In International Conference on Learning Representations, 2020.

[54] Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. TabReD: Analyzing
Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks. arXiv:2406.19380, 2024.

[55] David Salinas and Nick Erickson. TabRepo: A large scale repository of tabular model evalua-
tions and its AutoML applications. In AutoML Conference, 2024.

[56] Bernhard Schifl, Lukas Gruber, Angela Bitto-Nemling, and Sepp Hochreiter. Modern Hopfield
networks as memory for iterative learning on tabular data. In NeurIPS Workshop on Associative
Memory & Hopfield Networks in 2023, 2023.

[57] Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and
Ameet Talwalkar. Cross-modal fine-tuning: Align then refine. In International Conference on
Machine Learning, 2023.

[58] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need.
Information Fusion, 81:84-90, 2022.

[59] Leslie N. Smith. Cyclical learning rates for training neural networks. In Winter Conference on
Applications of Computer Vision, 2017.

[60] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein.
SAINT: Improved neural networks for tabular data via row attention and contrastive pre-training.
In NeurIPS 2022 Table Representation Learning Workshop, 2022.

[61] Ingo Steinwart. A sober look at neural network initializations. arXiv:1903.11482,2019.

[62] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Computer Vision and Pattern Recognition,
2016.

[63] Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd Bischl, and Joaquin
Vanschoren. Meta learning for defaults: Symbolic defaults. In NeurIPS 2018 Workshop on
Meta-Learning, 2018.

[64] Joaquin Vanschoren. Meta-learning: A survey. arXiv:1810.03548, 2018.

[65] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49-60, 2014.
Publisher: ACM New York, NY, USA.

[66] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter

optimization initializations. In International Conference on Data Science and Advanced
Analytics, pages 1-10, 2015.

https://doi.org/10.52202/079017-0837 26590

[67] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. BiSHop: Bi-directional cellular learning for tabular data with generalized
sparse modern Hopfield model. In International Conference on Machine Learning, 2024.

[68] Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In Neural Information Processing Systems, 2021.

[69] Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at
deep learning on tabular data. arXiv:2407.00956, 2024.

26591 https://doi.org/10.52202/079017-0837

Appendices

Appendix Contents.

IB.2 MLP Preprocessing|

IB.3 Bagging, Refitting, and Ensembling|,,

IB.4 Early stopping for GBD'Ts| 0 0.

B.5 Results for AUROC]

IB.6 Results Without Missing-Value Datasets|

IB.7 Comparing Preprocessing Methods for NNs|

IB.8 Results for Varying Architecture| L.

IB.9 Comparing HPO Methods|

|C.1 Default Configurations|

|IC.2 Hyperparameter Optimization],

|C.3 Dataset Selection and Preprocessing|

|C.4 Comparison with Standard Grinsztajn et al. [18] Benchmark|

|IC.5 Closer-to-original Version of the Grinsztajn et al. [[L18] Benchmark|

[E Broader Impact|

https://doi.org/10.52202/079017-0837

26592

17
17
17
17
19
20

20
20
21
22
23
24
25
25
26
28
28
28
28

40
40
40
48
54
54
57
57
57
57

58

76

A Further Details on Neural Networks
The detailed hyperparameter settings for RealMLP-TD and RealMLP-TD-S are listed in

A.1 RealMLP-TD Details

Architecture To make the binary and multi-class cases more similar, we use two output neurons in
the binary case, using the same loss function as in the multi-class case.

Initialization We initialize categorical embedding parameters from A(0,1). We initialize the

components of wirln’é) from N(0,0.1%) and of bé;’g) from U[—m, 7]. The other numerical embedding

parameters are initialized according to PyTorch’s default initialization, that is, from the uniform
distribution /[—1/+/16, 1/1/16]. For weights and biases of the linear layers, we use a data-dependent
initialization. The initialization is performed on the fly during a first forward pass of the network on
the training set (which can be subsampled adaptively not to use more than 1 GB of RAM). We realize
this by providing fit_transform() methods similar to a pipeline in scikit-learn. For the weight

matrices, we use a custom two-step procedure: First, we initialize all entries from A/(0, 1). Then, we
@
J
dataset (i.e. when considering the sample index j € {1,...,n} as a uniformly distributed random
variable). This is somewhat similar to the LSUYV initialization method [44]. For the biases, we use
the data-dependent he+5 initialization method [called hull+5 in|61]].

rescale each row of the weight matrix such that the outputs \/%TZW(Z):L' have variance 1 over the

Training We implement weight decay as in PyTorch using 6 <— 6 — Ir - wd - 8, which includes the
learning rate unlike the original version [40].

A.2 RealMLP-TD-S Details

For RealMLP-TD-S, we make the following changes compared to RealMLP-TD:

* We apply one-hot encoding to all categorical variables and do not apply categorical embed-
dings.

We do not apply numerical embeddings.

We use the standard non-parametric versions of the SELU and Mish activation functions.
We do not use dropout and weight decay.

We use simpler weight and bias initializations: We initialize weights and biases from
N (0, 1), except in the last layer, where we initialize them to zero.

* We do not clip the outputs, even in the regression case.

* We apply a different base learning rate in the regression case.

A.3 RealTabR-D Details

To obtain RealTabR-D, we modify TabR-S-D in the following ways:

* We replace the standard numerical preprocessing (a modified quantile transform) with our
robust scaling and smooth clipping.

e We set Adam’s 35 to 0.95 instead of 0.999.

* We use our scaling layer, but modify it to obtain a higher effective learning rate. We do this
by modifying the forward pass to

Tiout = 7 " Si* Lijin »

while initializing s; to 1/~. This will multiply the gradients of s; by -, which will be ignored
by Adam’s normalization (when neglecting Adam’s € parameter). It will also multiply the
optimizer updates by +, leading to approximately the same effect as multiplying the learning
rate by . However, a difference is that multiplying the learning rate by v will also lead to
stronger weight decay updates in PyTorch’s AdamW implementation, while the introduction
of v does not increase the relative magnitude of weight decay updates. We chose the version
with « for simplicity of implementation. While RealMLP-TD uses a learning rate factor of
6 for the scaling layer, it uses a higher base learning rate due to the use of the neural tangent
parametrization. For all layers except the first one, which have width 256, the neural tangent

26593 https://doi.org/10.52202/079017-0837

Table A.1: Overview of hyperparameters for RealMLP-TD and RealMLP-TD-S.

RealMLP-TD RealMLP-TD-S
Hyperparameter classification regression classification regression
Num. embedding type PBLD PBLD None None
Num. embedding periodic init std. 0.1 0.1 — —
Num. embedding hidden dimension 16 16 —
Num. embedding dimension 4 4 — —
Max one-hot size (without missing) 8 8 00 00
Num. preprocessing robust scale + smooth clip
Categorical embedding dimension 8 8 — —
Categorical embedding initialization N(0,1) N(0,1) — —
Use scaling layer yes
Scaling layer initialization 1.0 (constant)
Number of linear layers 4
Hidden layer sizes [256, 256, 256]
Activation function SELU Mish SELU Mish
Use parametric activation function yes yes no no
Parametric activation function initialization 1.0 1.0 — —
Linear layer parametrization NTP
Last linear layer weight initialization data-driven data-driven Zero zero
Other linear layer weight initialization data-driven data-driven std normal std normal
Last linear layer bias initialization he+5 he+5 Zero zero
Other linear layer bias initialization he+5 he+5 std normal std normal
Optimizer AdamW
Batch size 256
Number of epochs 256
Adam (1 0.9
Adam (2 0.95
Adam € le-8
Learning rate (base value) 0.04 0.2 0.04 0.07
Learning rate schedule coslog,
Learning rate (num. emb. factor) 0.1 0.1 — —
Learning rate (scaling layer factor) 6
Learning rate (bias factor) 0.1
Learning rate (param. act. factor) 0.1 0.1 — —
Dropout probability (base value) 0.15 0.15 0.0 0.0
Dropout schedule flat_cos flat_cos — —
Weight decay (base value) 0.02 0.02 0.0 0.0
Weight decay schedule flat_cos flat_cos — —
Weight decay (bias factor) 0.0 0.0 — —
Loss function cross-entropy MSE Cross-entropy MSE
Label smoothing ¢ 0.1 — 0.1 —
Standardize targets during training — yes — yes
Output min-max clipping — yes — no
Best epoch selection metric class. error MSE class. error MSE

Best epoch selection method

last best validation error

parametrization in RealMLP-TD uses a factor similar to -y, which is set to 1/16 = 1/+/256.
Hence, RealMLP-TD without NTP should use a base learning rate for these layers that is
smaller by a factor of 1/16, and therefore use a learning rate factor of 6 - 16 = 96 for the
scaling layer. Consequently, we set v := 96 for RealTabR-D without further tuning, noting
that it performed significantly better than v = 6 on the meta-train benchmarks.

* We use our PBLD embeddings for numerical features before the scaling layer, instead of
no numerical embeddings in TabR-S-D. In order to make every experiment run on a GPU
with 24GB RAM, we decrease the dimension of the hidden embedding layer from 16 to 8§,
although using 16 would have performed slightly better in our experiments on the meta-train
benchmarks.

* For classification, we use label smoothing with parameter € = 0.1.

https://doi.org/10.52202/079017-0837 26594

Since we adapted hyperparameters like learning rate and weight decay from TabR-S-D without
meta-learning them, we refer to the resulting method as RealTabR-D and not RealTabR-TD. We did
not include other tricks from RealMLP-TD for various reasons:

* Brief experiments with NTP and the Mish activation deteriorated the performance.

* Parametric activations and increased stopping patience showed small improvements but
were excluded due to a larger runtime.

* Other tricks were not tried due to limited time of experimentation, expected increases in the
already somewhat large runtime, and/or implementation complexity.

A.4 Details on Cumulative Ablation

Here, we provide more details on the vanilla MLP and the ablation steps from
(c). For each step, we choose the best default learning rate out of a learning rate grid,
using {0.0004,0.0007,0.001,0.0015,0.0025,0.004, 0.007,0.01,0.015} for NNs using standard
parametrization and {0.01,0.02,0.03,0.04,0.07,0.1,0.2,0.3,0.4} for NNs using neural tangent
parametrization.

* Vanilla MLP: We use three hidden layers with 256 hidden neurons in each layer, just
like RealMLP-TD, and the ReLU activation function. Each linear layer uses stan-
dard parametrization and the PyTorch default initialization, which is uniform from
[—1/+/fan_in, 1/+/fan_in] for both weights and biases, where fan_in is the input dimen-
sion. Categorical features are embedded using embedding layers, using eight-dimensional
embeddings for each feature. Numerical features are transformed using a scikit-learn
QuantileTransformer to approximately normal-distributed features. Optimization is
performed using Adam with constant learning rate and default parameters 5; = 0.9, f2 =
0.999, ¢ = 10~8 for at most 256 epochs with batch size 256, with constant learning rate.
If the best validation error (classification error or RMSE) does not improve for 40 epochs,
training is stopped. In each case, the model is reverted to the parameters of the epoch with
the best validation score, using the first best epoch in case of a tie.

* Robust scale + smooth clip: We replace the QuantileTransformer with robust scaling
and smooth clipping.

* One-hot for small cat.: As in ReaIMLP-TD, we use one-hot encoding for categories with at

most eight values, not counting missing values.

No early stopping: We always train the full 256 epochs.

Last best epoch: In case of a tie, we use the last of the best epochs.

coslog, Ir sched: We use the coslog, learning rate schedule instead of a constant one.

Adam [y = 0.95: We set 85 = 0.95.

Label smoothing (class.): We enable label smoothing with € = 0.1 in the classification case.

Output clipping (reg.): For regression, outputs are clipped to the min-max range observed

during training.

e NT parametrization: We use the neural tangent parametrization for linear layers, setting the
bias learning rate factor to 0.1.

e Act. fn. SELU / Mish: We change the activation function from ReLU to SELU (classification)
or Mish (regression).

» Parametric act. fn.: We use parametric versions of the activation functions, with a learning
rate factor of 0.1 for the parameters.

* Scaling layer: We use a scaling layer with a learning rate factor of 6 before the first linear

layer.

Num. embeddings: PL: We apply the PL. embeddings [[16] to numerical features.

Num. embeddings: PBLD: We apply our PBLD embeddings instead.

Dropout p = 0.15: We apply dropout with probability 0.15.

Dropout sched: flat_cos: We apply the flat_cos schedule to the dropout probability.

Weight decay wd = 0.02: We apply weight decay (as in AdamW, PyTorch version) with

value 0.02.

* wd sched: flat_cos: We apply the flat_cos schedule to weight decay.

* Bias init: he+5: We apply the he+5 bias initialization method from Steinwart [[61] (originally
called hull+5).

* Weight init: data-driven: We apply our data-driven weight initialization method.

26595 https://doi.org/10.52202/079017-0837

A.5 Discussion

Here, we discuss some of the design decisions behind RealMLP-TD and possible trade-offs. First, our
implementation allows us to train RealMLP-TD in a vectorized fashion on multiple train-validation-
test splits at the same time. On the one hand, this can lead to speedups on GPUs when training
multiple models in parallel, including on the benchmarks. On the other hand, it can hinder the
implementation of certain methods like patience-based early stopping or loss-based learning rate
schedules. While our ablations in[Appendix B.I|show the advantage of our multi-cycle schedule over
decreasing learning rate schedules, the latter ones could potentially enable a faster average training
time through low-patience early stopping. An interesting follow-up question could be whether the
multi-cycle schedule still works well with larger-patience early stopping.

Regarding categorical embeddings, our meta-train benchmark does not contain many high-cardinality
categorical variables, and we were not able to conclude whether categorical embeddings are helpful
or harmful compared to one-hot encoding (see[Appendix B.T)). Our motivation to include categorical
embeddings stems from Guo and Berkhahn [19] as well as their potential to be more efficient for
high-cardinality categorical variables. However, in practice, we find pure one-hot encoding to be
faster on most datasets. Regarding the embedding size, we found that 4 already gave good results for
numerical embeddings and decided to use 8 for categorical variables.

Additionally, other speed-accuracy tradeoffs are possible. Especially for regression, we observed that
more epochs and larger hidden layers can be helpful. When faster networks are desired, the omission
of numerical and categorical embedding layers as well as parametric activations from RealMLP-TD
can be helpful, while the other omissions in RealMLP-TD-S do not considerably affect the training
time. Of course, using larger batch sizes can also be helpful for larger datasets.

One caveat for classification is that cross-entropy with label smoothing is not a proper scoring
rule, that is, in the infinite-sample limit, it is not minimized by the true probabilities P(y|x) [14].
Hence, label smoothing might not be suitable when other classification error metrics are used, as

demonstrated in[Appendix B.5|for AUROC.

B More Experiments

In this section, we present more experimental results. Note that XGBoost results are affected by a
bug where, if a categorical value is not present in the training or validation set, it could cause adjacent
categorical values to be encoded differently during training, validation, and evaluation. This affects
the results mainly on the meta-test benchmarks, where the SGM scores for XGB-TD and XGB-D are
around 2% lower after fixing the bug. These differences are not large enough to affect our qualitative
conclusions. Due to the large computational cost, we did not rerun XGB-HPO and XGB-PBB-D
after fixing the bug, and we provide the old XGB-TD and XGB-D results for a fair comparison to
XGB-HPO and XGB-PBB-D.

B.1 MLP Ablations

To assess the importance of different improvements in RealMLP-TD, we perform an ablation study.
We perform the ablation study only on the meta-train benchmarks, first because they are considerably
faster to run, and second because we tune the default parameters only on the meta-train benchmarks.
Since the hyperparameters of RealMLP-TD have been tuned on the meta-train benchmarks, the
ablation scores are not unbiased but represent some of the considerations that have been made when
tuning the defaults. For each ablation, we multiply the default learning rate by learning rate factors
from the grid {0.1,0.15,0.25,0.35,0.5,0.7,1.0, 1.4, 2.0, 3.0,4.0} and pick the best one.
shows the results of the ablation study in terms of the relative increase of the benchmark score for
each ablation.

In general, we observe that ablations often lead to much larger changes for regression than for
classification. Perhaps this is because nRMSE is more sensitive to outliers compared to classification
error. Another factor could be that the classification benchmark contains more datasets than the
regression benchmark. For the specific ablations, we observe a few things:

* For the numerical embeddings, we see that PBLD outperforms PL, PLR, and no numerical
embeddings. Contrary to Gorishniy et al. [[L6], PL embeddings perform better than PLR

https://doi.org/10.52202/079017-0837 26596

embeddings in our setting. While the configurations with PLR and no numerical embeddings
appear extremely bad for regression, we observed that they can perform more benignly with
lower weight decay values.

* Using the Adam default value of 8, = 0.999 instead of our default 52 = 0.95 leads to
considerably worse performance, especially for regression. As for numerical embeddings,
we observed that the difference is less pronounced at lower weight decay values.

» Using a cosine decay learning rate schedule instead of our multi-cycle schedule leads to
small deteriorations. A constant learning rate schedule performs even worse, especially for
regression.

* Not employing label smoothing for classification is detrimental by around 1.8%.

* The learnable scaling layer yields improvements around 1.2% on both benchmarks.

* The use of parametric activations results in a considerable 4.8% improvement for re-
gression but is insignificant for classification. We observed that parametric activations can
sometimes alleviate optimization difficulties with weight decay.

* The differences between activation functions are rather small. For classification, Mish
is competitive with SELU in this ablation but we found it to be worse in some other
hyperparameter settings, so we keep SELU as the default. For regression, Mish performs
best.

 For dropout and weight decay, we observe that they yield comparable but not always
significant benefits for classification and regression. Scheduling dropout and weight decay
parameters with the flat_cos schedule is helpful for regression, but not for classification in
this setting.

* When comparing the standard parametrization (SP) to the neural tangent parametrization
(NTP), we disable weight decay for a fair comparison. Moreover, for SP, we set the learning
rate factors for weight and bias layers to 1/16 = 1/1/256. This is because, for the weights
in NTP, the effective updates by Adam are damped by this factor in all hidden layers except
the first one. Compared to NTP without weight decay, SP without weight decay performs
insignificantly worse on both benchmarks. It is unclear to us why the parametrization, which
has a considerable influence on how the effective learning speed of the first linear layer
scales with the number of features, is apparently of little importance.

* When comparing the data-dependent initialization of RealMLP-TD to a vanilla initialization
with standard normal weights and zero biases, we see that the data-dependent initialization
gains around 1% on both benchmarks.

* For selecting the best epoch, we consider selecting the first best epoch instead of the last
best epoch in case of a tie. This is only relevant for classification metrics like classification
error, where ties are somewhat likely to occur, especially on small and “easy” datasets. We
observe a non-significant 0.4% deterioration in the benchmark score.

* We do not observe a significant difference when using one-hot encoding for all categorical
variables, since our benchmarks contain only very few datasets with large-cardinality
categorical variables.

B.2 MLP Preprocessing

In we compare different preprocessing methods for numerical features. Since we want
to compare these methods in a relatively conventional setting, we apply them to RealMLP-TD-S
(without numerical embeddings) and before one-hot encoding. We compare the following methods:

* Robust scaling and smooth clipping, our method used in RealMLP-TD and RealMLP-TD-S
and described in[Section 3l

* Robust scaling without smooth clipping.

» Standardization, i.e. subtracting the mean and dividing by the standard deviation. If the
standard deviation of a feature is zero, we set the feature to zero.

 Standardization followed by smooth clipping.

* The quantile transformation from scikit-learn [48]] with normal output distribution, which is
popular in recent works [16H18] 143]].

* A variant of the quantile transform, which we call the RTDL version, used by Gorishniy
et al. [15] and Gorishniy et al. [17]. This version uses a dataset-size-dependent number of
quantiles and adds some noise before fitting the transformation. It also uses a normal output
distribution.

26597 https://doi.org/10.52202/079017-0837

Table B.1: Ablation experiments for RealMLP-TD. We re-tune the learning rate (picking the one
with the best SGM. benchmark score) for each ablation separately. For each ablation, we specify the
increase in the benchmark score (SGM,) relative to RealMLP-TD, with approximate 95% confidence
intervals (Appendix C.6), and the best learning rate factor found. In the cases where values are
missing, the corresponding option is already the default.

meta-train-class meta-train-reg
Ablation Error increase in % best Ir factor ~ Error increase in % best Ir factor

MLP-TD (without ablation) 0.0 [0.0, 0.0] 1.0 0.0 [0.0, 0.0] 1.0

Num. embeddings: PL 0.7 [-0.0, 1.4] 1.0 0.5 [-0.5, 1.6] 1.0

Num. embeddings: PLR 4.22.8,5.7] 1.0 19.0 [13.7, 24.5] 0.25

Num. embeddings: None 2.3[1.7,2.9] 1.0 20.6 [19.4,21.8] 0.25

Adam S5 = 0.999 instead of B2 = 0.95 2.0[1.6,2.4] 2.0 22.8[21.3,24.4] 0.35

Learning rate schedule = cosine decay 1.1 [0.6, 1.5] 1.0 0.4 [-0.5,1.2] 3.0

Learning rate schedule = constant 1.810.9,2.8] 0.25 13.5[11.9, 15.0] 0.15
No label smoothing 1.8 [1.2, 2.5] 4.0

No learnable scaling 1.410.7, 2.1] 2.0 1.0 [-0.0, 2.0] 2.0

Non-parametric activation 0.5[-0.2, 1.2] 3.0 4.8[34,6.2] 0.35
Activation=Mish -0.0 [-0.6, 0.6] 3.0

Activation=ReLU 0.5[-0.1, 1.2] 2.0 0.7 [-0.1, 1.6] 1.0

Activation=SELU 2.3[1.2,3.6] 1.0

No dropout 0.8[0.2, 1.3] 3.0 0.8 [-0.5,2.1] 1.4

Dropout prob. 0.15 (constant) -0.1[-1.0,0.8] 1.4 3.6(3.0,4.2] 1.0

No weight decay 0.8 [-0.2, 1.8] 0.5 0.9 [-0.1, 1.9] 0.5

Weight decay = 0.02 (constant) -0.3[-0.7,0.1] 3.0 3.1[1.7,4.4] 1.4

Standard param + no weight decay 1.1[0.2,2.1] 0.5 1.3 0.7, 1.8] 0.7

No data-dependent init 0.9 (0.1, 1.8] 3.0 1.210.2,2.2] 14

First best epoch instead of last best 0.4 [-0.1, 1.0] 4.0 0.0 [-0.0, 0.0] 1.0

Only one-hot encoding -0.0 [-0.1, 0.0] 1.0 0.0 [-0.0, 0.0] 1.0

* The recent kernel density integral transform [42] with normal output distribution, which in-
terpolates between the quantile transformation and min-max scaling, with default parameter
a=1.

shows that on the meta-train benchmark, robust scaling and smooth clipping performs best
for both classification and regression.

B.3 Bagging, Refitting, and Ensembling

In our benchmark, for each training-test split, we only train one model on one training-validation split
for efficiency reasons. However, ensembling and cross-validation techniques usually allow additional
improvements to models. Here, we study multiple variants for ReaIMLP-TD and LGBM-TD. Let
D be the available data for training and validation, split into five equal-size subsets D1, ..., Ds.
(When | D] is not divisible by five, D; U ... U Dy C D since we need equal-size validation sets for
vectorized NNs.) Let fp (X)) be the predictions on inputs X of the model trained on training set D
aftert € {1,...,T} epochs (for NNs) or iterations (for LGBM). For classification, we consider the
class probabilities as predictions. Let Lp: (fp ;) be the loss of fp ; on dataset D’. Then, we compare
the test errors of an ensemble of M = 1 or M = 5 models, trained using bagging or refitting, with
individual or joint stopping (best-epoch selection), which is formally given as follows:

M
1
ypred = M z_; fﬁ“tr (Xtest)7 (M mOdelS)

https://doi.org/10.52202/079017-0837 26598

Table B.2: Effects of different preprocessing methods for numerical features for RealMLP-TD-S.
We report the relative increase in the shifted geometric mean benchmark scores compared to the
standard method used in RealMLP-TD and RealMLP-TD-S, which is robust scaling and smooth
clipping. We also report approximate 95% confidence intervals. To have a more common setting, we
do not apply the preprocessing methods to one-hot encoded categorical features. In each column, the
best score is highlighted in bold, and errors whose confidence interval contains the best score are
underlined.

Error increase relative to robust scale + smooth clip in %

Method meta-train-class meta-train-reg

Robust scale + smooth clip 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Robust scale 0.5[-0.4,1.4] 9.5 [4.4,14.8]

Standardize + smooth clip 1.6 [0.9, 2.2] 1.2 [0.6, 1.8]
Standardize 2.1[1.2,3.0] 8.8 [3.9, 13.9]

Quantile transform (output dist. = normal) 2.3[1.5,3.2] 6.3[5.5,7.0]
Quantile transform (RTDL version) 2.6 [1.5,3.7] 2.6[0.4,4.8]
KDI transform (o = 1, output dist. = normal) 4.9 [3.8, 6.0] 4.412.6,6.2]

Table B.3: Improvements for LGBM-TD by bagging or (ensembled) refitting. We perform 5-fold
cross-validation, stratified for classification, and 5-fold refitting. We compare compare bagging vs.
refitting, one model vs. five models, and individual stopping vs. joint stopping. The table shows
the relative reduction in shifted geometric mean benchmark scores, including approximated 95%
confidence intervals (Appendix C.6). In each column, the best score is highlighted in bold, and errors
whose confidence interval contains the best score are underlined.

Error reduction relative to 1 fold in %

Method meta-train-class meta-test-class meta-train-reg meta-test-reg

LGBM-TD (bagging, 1 model, indiv. stopping) -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0]
LGBM-TD (bagging, 1 model, joint stopping) -0.2[-0.4,0.1] -0.7 [-1.3,-0.2] 0.0 [-0.0, 0.0] 0.3 [-0.2,0.8]
LGBM-TD (bagging, 5 models, indiv. stopping) 3.41[3.0,3.7] 4.1[3.6,4.5] 5.3[4.5,6.0] 4.0[3.6,4.5]
LGBM-TD (bagging, 5 models, joint stopping) 3.2[2.8,3.5] 3.3[2.9,3.6] 5.2[4.5,5.9] 4.1[3.7,4.5]
LGBM-TD (refitting, 1 model, indiv. stopping) 4.8[4.1,5.5] 1.4 [-0.9, 3.6] 3.8[2.0,5.5] 4.0(3.3,4.8]
LGBM-TD (refitting, 1 model, joint stopping) 5.01[4.5,5.5] 4.31[4.1,4.6] 3.7[2.1,5.3] 4.1[3.2,4.9]
LGBM-TD (refitting, 5 models, indiv. stopping) 5.6[52,6.1] 6.0 [5.3,6.7] 5.2[3.6,6.7] 5.5[4.7,6.4]
LGBM-TD (refitting, 5 models, joint stopping) 5.415.0,5.9] 5.915.6,6.1] 5.2[3.6,6.7] 5.5[4.6,6.3]

A . [P\ Di (bagging)
D (refitting),

oo argminge 7y LDr/i(f’D\Diyt) (indiv. stopping)
© 7 \argming iy Y0, Lo, (fovp,.) - (joint stopping).

Here, each model is trained with a different random seed. For LGBM, since we use an early stopping
patience of 300 for each of the individual models, the argmin in the definition of ¢] can only go up
to the minimum stopping iteration 7" across the considered models.

The results of our experiments can be found in for LGBM-TD and in for

RealMLP-TD. As expected, five models are considerably better than one. We find that refitting is
mostly better than bagging, although a disadvantage of refitted models is that no validation scores are
available, and it is unclear how HPO would affect this comparison. Comparing individual stopping to
joint stopping, we find that individual stopping has a slight advantage in five-model bagging, while
joint stopping performs better for single-model refitting. In the other two scenarios, joint stopping
appears slightly better for RealMLP-TD and slightly worse for LGBM-TD. We also observe that the
benefit of using five models instead of one appears to be larger for ReaIMLP-TD than for LGBM-TD.

B.4 Early stopping for GBDTs

In[Figure B.T|and [Figure B.2] we study the influence of different early stopping patiences and metrics
on the resulting benchmark performance of XGB-TD, LGBM-TD, and CatBoost-TD. While the
regression results only deteriorate slightly for low patiences of 10 or 20 iterations, classification
results are much more hurt by low patiences. In the classification setting, we evaluate the use of

26599 https://doi.org/10.52202/079017-0837

Table B.4: Improvements for RealMLP-TD by bagging or (ensembled) refitting. We perform
5-fold cross-validation, stratified for classification, and 5-fold refitting. We compare bagging vs.
refitting, one model vs. five models, and individual stopping vs. joint stopping. The table shows
the relative reduction in shifted geometric mean benchmark scores, including approximated 95%
confidence intervals (Appendix C.6). In each column, the best score is highlighted in bold, and errors
whose confidence interval contains the best score are underlined.

Error reduction relative to 1 fold in %

Method meta-train-class meta-test-class meta-train-reg meta-test-reg
RealMLP-TD (bagging, 1 model, indiv. stopping) -0.0 [-0.0, -0.0] -0.0[-0.0,-0.0] -0.0[-0.0,-0.0] -0.0[-0.0, -0.0]
RealMLP-TD (bagging, 1 model, joint stopping) 1.6 [0.9, 2.4] 0.7 [0.0, 1.4] 0.6 [0.1, 1.0] -0.1[-1.0,0.7]
RealMLP-TD (bagging, 5 models, indiv. stopping) 6.7 [6.1,7.3] 7.716.9, 8.6] 6.7[6.2,7.2] 5.1[4.0,6.2]
RealMLP-TD (bagging, 5 models, joint stopping) 6.7[6.1,7.4] 7.3[6.2,8.3] 6.7[6.2,7.2] 4.8[3.7,5.8]
RealMLP-TD (refitting, 1 model, indiv. stopping) 2.8[1.7,3.9] 3.2[1.8,4.6] 2.8[1.7,3.8] 1.3 [-0.5, 3.0]
RealMLP-TD (refitting, 1 model, joint stopping) 5.31[4.5,6.1] 4.7[3.9,54] 4.5[3.5,5.6] 2.610.9,4.2]
RealMLP-TD (refitting, 5 models, indiv. stopping) 7.6 6.6, 8.5] 8.8(7.9,9.6] 8.5(7.9,9.1] 5.3103.9,6.7]
RealMLP-TD (refitting, 5 models, joint stopping) 8.2[7.5,8.9] 8.6[7.9,9.3] 8.7 [8.0,9.4] 5.714.5,6.9]
XGB-TD LGBM-TD CatBoost-TD
14 o E E
12 E E
& 10 E E
g
o 8 T T
3
E T I]
[P J o]
[™ I N SN AP, e e/ E———— [- T .__X'--_. e e e ——
_o - .]

T T T — T T —T T — T
10 20 50 100 300 1000 10 20 50 100 300 1000 10 20 50 100 300 1000

Stopping patience Stopping patience Stopping patience
=8— stopped on classification error stopped on Brier loss ~ =®= stopped on cross-entropy loss

Figure B.1: Effect of stopping patiences and metrics on the performance of GBDTs on
Birain, We run the XGB-TD, LGBM-TD, and CatBoost-TD with different early stopping patiences
(early_stopping_rounds). We compare three different metrics used for stopping and best-epoch
selection: classification error, Brier loss, and cross-entropy loss. The y-axis reports the relative

increase in the benchmark score relative to stopping on classification error with patience 1000 (i.e.,
never stopping early). The shaded areas are approximate 95% confidence intervals, cf.

different losses for early stopping and for best-epoch selection: classification error, Brier score, and
cross-entropy loss. In each case, cross-entropy loss is used as the training loss, and classification
error is used for evaluating the models on the test sets in the computation of the benchmark score.
We observe that models stopped on classification error strongly deteriorate at low patiences (< 100),
while our default patience of 300 achieves close-to-optimal results. Models stopped on cross-entropy
loss deteriorate much less at low patiences, but achieve roughly 2% worse benchmark score at high
patiences. Stopping on Brier loss achieves very good high-patience performance and is still only
slightly more sensitive to the patience than stopping on cross-entropy loss. An interesting follow-up
question would be if HPO can attenuate the differences between different settings.

B.5 Results for AUROC

For classification, there are many different metrics to capture model performance. In the main paper,
we use classification error to evaluate models. All TD configurations were tuned for classification
error, early stopping and best-epoch selection were performed for classification error, and HPO was
performed for classification error. Here, we evaluate models on the area under the ROC curve, also
known as AUROC, AUC ROC, or AUC. For the multi-class case, we use the one-vs-rest formulation
of AUC, which is faster to evaluate than one-vs-one. Higher AUC values are better and the optimal
value is 1. Since we are interested in the shifted geometric mean error, we use 1 — AUC instead.

https://doi.org/10.52202/079017-0837 26600

XGB-TD LGBM-TD CatBoost-TD

Error increase in %

10 20 50 100 300 1000 10 20 50 100 300 1000 10 20 50 100 300 1000
Stopping patience Stopping patience Stopping patience

—8— stopped on RMSE

Figure B.2: Effect of stopping patiences on the performance of GBDTs on Bﬁggin. We run
the TD configurations of XGB, LGBM, and CatBoost with different early stopping patiences
(early_stopping_rounds). As in the remainder of the paper, we use RMSE for early stopping
and best-epoch selection. The y-axis reports the relative increase in the benchmark score relative to
stopping on classification error with patience 1000 (i.e., never stopping early). The shaded areas are

approximate 95% confidence intervals, cf.

We compare two settings:

(1) A variant of the original setting where early stopping and the selection of the best
epoch/iteration is based on accuracy but HPO is performed on 1 — AUC. (Thanks to
using random search, we do not have to re-run the HPO for this.)

(2) A setting where we use the cross-entropy loss for stopping and selecting the best
epoch/iteration. While it would be possible to stop on AUC directly, this can be sig-
nificantly slower since AUC is slower to evaluate. We do not perform HPO in this setting
since it is expensive to run.

In both settings, we also evaluate RealMLP without label smoothing (no Is). shows the
results optimized for accuracy and shows the results optimized for cross-entropy. We
make a few observations:

* Stopping for cross-entropy generally performs better than stopping for classification error.

e Label smoothing harms RealMLP for AUC, perhaps because the stopping metric does not
use label smoothing, or because it encourages near-constant logits in areas where the model
is relatively certain.

* Tuned defaults are mostly still better than the library defaults, except for XGBoost on Bf=t .

* RealMLP without label smoothing is still competitive with GBDTs on the meta-test bench-
mark but does not perform better than GBDTs unlike what we observed for classification
error.

B.6 Results Without Missing-Value Datasets

To assess whether the results are influenced by our choices in missing value handling and exclusion,
[Figure B.4|presents results on all meta-test datasets that originally did not contain missing values. Only
six meta-test datasets originally contain missing values: Three from B5t (kick, okcupid-stem, and

porto-seguro) and three from Bﬁggt (fps_benchmark, house_prices_nominal, SAT11-HAND-runtime-
regression). While RealMLP deteriorates slightly, especially due to the exclusion of fps_benchmark,

qualitative takeaways remain similar.

B.7 Comparing Preprocessing Methods for NNs

In the other sections of this paper, we run each NN using the preprocessing from the respective
paper that introduced it. Specifically, we use robust scaling and smooth clipping for RealMLP and
the RTDL version of the quantile transform for the other papers (see also [Appendix B.2). Here,

26601 https://doi.org/10.52202/079017-0837

Meta-train classification benchmark Meta-test classification benchmark Grinsztajn et al. (2022) classification benchmark
0.1250

0.036 0.085

% MLP-DL A = = | MLP- L+
8 e gesher? H LGam-Oft 8o !
& 0.035 1 @ - |
RealMLP-TD:S
2 2 2 : AIMLPLTD-
@ MLP-PLR-D} & 00 2 ! RealMLP-TD-S
S00m 3 o120 | ResNet-Dj
S ¥° S S ‘
0.075 Y

F o LoBMH Real MLP—TE* L g Fonm X
- - - P
5 FabR-S-D 5 5 MLP-PLI
2] W 2 ° - CatBoost-0f RealMLP-TD
o0 XGB alTabR-D S oo renben §FMPTOS s 2 SN 1
Q0032 XCBRY N\ ______ @ 0.07 esotD ¢ gy 2 .1150 [FiID
E obst- £ UT | } T
o X "% 2 XGB! * $mmw D 2 -
B 0.031 i/ T > TabR-5-0) @ h
£ £ 0.065 MF-PLA + £ 0.1125 i
s LGBM-TOJI------- (GB.PBE-D S ! 15 Best
24,03 CatBoost-TD Best-D : > i o> - est-

i crsnh o d TEE .
° H s A pGB-PREN ealTabR ° ;
£ ! 2 CalBoos(-TD# —————— 9 Bonw atBoost-TD GE-PBB- i
£ 1 £ om0 HeetD 5 k = + §abR-5-D

0.020 : Best- DW=

Beswm+ ””””””””” [* ,,,,,,,,,, REaITAbR-D T
Best-Tl 0.1075

0.055
107! 100 10 10 0! 10" 10! ! 10° 10! 10?
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

Figure B.3: Benchmark scores on classification benchmarks vs. average training time for AUC,
optimized for cross-entropy. BestModel-TD uses RealMLP-TD without label smoothing. The
y-axis shows the shifted geometric mean (SGM.) 1 — AUC as explained in[Section 2.2] The z-axis
shows average training times per 1000 samples (measured on B for efficiency reasons), see

Appendix C.7] The error bars are approximate 95% confidence intervals for the limit #splits — oo,

Byt without missing value datasets By without missing value datasets
0.50
\
H
] RF-D
§ 04 + 0.48
3 :L SEMD o MLP-D
5 ' 8 Y
= i ResNet-D 4 s ResNet-D
o XGB-Di ML o 040 ¢
E013 - A d <
[N 1
o ResNet-HPO,
g (CatBoost-D MLP-HPO, = MLP-PLR-D
i] % Resjletvpo | & 044 MLP-HPO
5 1/ TabR-S-OY _ ¥ I rabRsy
! e SR ¢
o9 o = P
0.12 : % 5 . o} .
E CatBoost-TD V\/IL*P—PLR—HIPO IS 0.42 [Best 1 (YCatBoosl HPO
= RealMLP-TD-S liGBM-HPQ qCatBodst-HPO 3 eal -1D- Enserqble—D
2 Best-D, 2 RealMLP-TDY |
. 0.40 {
g Ensemble-Dg | éealTabR-D % RedITabR-D §LPPLRYPO
5 01 RealMLP-TDW n Best-TDJ ____RealMLP-HPO,
£ RealMLP-HPQ, N Ensemble-TD
= BestTD _____. B@?&-ﬂ&@t 058 BestHPO
Ensemble-TD .
Ensemble-HPOT ™ Ensemble-HPO!
0 0.36
107! 10° 10! 10 107! 10° 10! 102
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

Figure B.4: Benchmark scores on B~ and B;5' without missing value datasets vs. average

training time. The y-axis shows the shifted geometric mean (SGM.) classification error (left) or
nRMSE (right) as explained in[Section 2.2} The z-axis shows average training times per 1000 samples

(measured on B for efficiency reasons), see|[Appendix C.7| The error bars are approximate 95%
confidence intervals for the limit #splits — oo, see|Appendix C.6

we evaluate if robust scaling and smooth clipping can improve MLP, ResNet, MLP-PLR, FTT, and
TabR-S as well. This also yields a more direct comparison of the architectures, although the nets still
differ in other aspects such as initialization and regularization.

includes results with robust scaling and smooth clipping (RS+SC) for MLP, ResNet,
MLP-PLR, FTT, and TabR-S. While the results look promising for some methods (MLP, TabR)
and not so promising for others (MLP-PLR), at least without re-tuning their default parameters, our
results also show that trying both preprocessing methods can already give considerable improvements
on most benchmarks.

B.8 Results for Varying Architecture

shows the effects of including the preprocessing and architecture of RealMLP within
other models. In particular, we study the benefits of our architectural changes, cf. (c),

https://doi.org/10.52202/079017-0837 26602

Meta-train classification benchmark Meta-train regression benchmark

'
H H
€ 0.062 ResNe:t-D+ ResNet-Day
o ’ i .
E MLP-B, 0.30 i &{esNet D (best of both)
¢ o :
c H w
. 0.060 - » -
= . = MLP-D®" ™"}
3] ! oc 1
= ResNet-D (best of botf o f
D f FTT-D 5 028 :
@ 0.058] ° °
© MLP-PLR-Df 3 MLP-PLR-D @--5
k]] €)
c ! 2) i FITD
@ 0.056 T S 0.26 ! o H
2 | FTED (best of both) 53 H FTT-D (best ofboth) o
b ; TabR s-D £ i
) S !
@ 0.054 : o :
5 ' + Box !
ol TabR-S-D (R§+SC) = | TabR-S-Dg
o H (% :
B 0.0:2 : 4 RealMLP-TD4 TabR-S-D|(RS+SC)
& i TabR-§JD (best of both) (" TR ®
H
5 * %ealTabR—D 0.22 TabRe D/ (best of both)
0.0 RealMLP-TD' ‘He'a'I:FéBP‘T:)'
107! 10" 10! 10? 10 10! 10%
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]
Meta-test classification benchmark Meta-test regression benchmark
0.135
' '
H H
o i l
4 H
g R.L:e’sNel-D MLP-D ResNetlD
20130 -FesNet-D (best of both) o 044 .
5 MLP-D ® u ;
=
=
8 ' T :
:‘ﬁ i E RCSNCI D (best of both)
0125 J. 5
k] FbR,S,D gt MLP-PLR-D
— i3
5 MLPVPLR7D+ £ -
5 k<) H :
S 0.1 TabR-S-D ,Rg sC) = i I1abR-S-D
@ 0.120 £ H
€ TabR-S- D (best of both) € H
o 5040 i
2 ! S !
g ; =) ! TabR-5-B (RS+SC)
£ : 3 ! ‘|’
g0.115 ; £ '
o 1 < !
TabR-S-D (best of both)
! %)
3 ' 4 0.38
£ | RealJabR-D RealMLP-TD
%)
0.110 Rea\MLP-TD+ """""""
107! 10" 10! 10 10! 10?
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
5 0-36 ResNEetrD
0.200 MLP-D f
<) MLP-D;
ResNet-D
- 0.35 H
l-: ResNet-D (best of both)
! 5
1 i
0-195 ResNet-D (best of both) 0.34 : ,
T MLP-PLRR-D *TabR'S'D
i H
i i +FTT—D
+ 0.33 -

0.190 MLP-PLR-Df
FTT-D

FTTD (best of bmh)
TabR-S-D (RS+SC),
RealMLP-TD TabH-.S;—D

1)
s}

FTT-D-(best of-both \+
grsp s +
i -S-D (bestofboth)

RealTabR-DY "} Rea\TabR—D%

0.185 RealMLP-TD

Shifted geometric mean of nRMSEs

0.31

Shifted geometric mean of classification errors

TabR-S-D (best of both) ’
0.30

107! 10° 10! 10% 10" 10! 10%
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

0.180

D =defaults TD =tuned defaults =~ HPO = hyperparameter optimization
Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

Figure B.5: Benchmark scores on all benchmarks vs. average training time. Compared to
[Figure 2] additional results for robust scale + smooth clip (RS+SC) preprocessing are included. The
y-axis shows the shifted geometric mean (SGM.) classification error (left) or nRMSE (right) as
explained in [Section 2.2 The z-axis shows average training times per 1000 samples (measured on
Btrain for efficiency reasons), see The error bars are approximate 95% confidence
intervals for the limit #splits — oo, see [Appendix C.6)

26603 https://doi.org/10.52202/079017-0837

Table B.5: Comparison of preprocessing and architecture for different models. We include
variants with robust scaling and smooth clipping (RS+SC), as well as other modified aspects, cf.
We report the relative decrease in the shifted geometric mean benchmark scores
compared to MLP-D. We also report approximate 95% confidence intervals, cf. [Appendix C.6|

Error reduction relative to MLP-D in %

Method meta-train-class meta-train-reg meta-test-class meta-test-reg
MLP-D -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0] -0.0 [-0.0, -0.0]
MLP-D (RS+SC) 1.5[0.7,2.4] -1.6 [-1.9,-1.2] -0.7 [-1.6,0.2] 43[34,5.2]
MLP-D (RS+SC, no wd, meta-tuned Ir) 2.5[1.8,3.3] -1.0 [-1.5,-0.5] -1.6 [-2.7,-0.6] 43[3.3,5.3]
MLP-D (RS+SC, no wd, meta-tuned Ir, PL embeddings) 4.6[4.0,5.2] -1.5[-1.9,-1.0] -10.9[-12.3,-9.4] 5.4[4.0,6.9]
MLP-D (RS+SC, no wd, meta-tuned Ir, RealMLP architecture) 7.71[6.9, 8.5] 10.4[9.4,11.3] 3.2[2.0,44] 9.6 [8.6, 10.6]
RealMLP-TD-S 12.6[11.9,13.2] 13.8[13.2, 14.4] 9.8[8.4,11.2] 13.2[12.1, 14.3]
RealMLP-TD 16.9 [16.1, 17.6] 22.1[21.2,22.9] 15.2 [14.0, 16.5] 14.9 [14.0, 15.8]
TabR-S-D 9.1[8.2,10.1] 18.8[18.3,19.3] 4.3[3.0,5.6] 8.9(7.9,9.8]
TabR-S-D (RS+SC) 12.4[11.6, 13.1] 21.9(21.1,22.7) 7.0 (5.6, 8.3] 11.6 [10.4, 12.8]
ResNet-D -1.9[-3.0,-0.9] -6.4[-7.0,-5.8] -0.6[-1.3,0.1] 0.6 [-0.4, 1.6]
ResNet-D (RS+SC) 2.0[1.3,2.8] -5.9[-6.6,-5.2] -1.5[-2.7,-04] 2.3(1.4,33]

when applied directly to the setting of MLP-D. To this end, we approximately reproduce MLP-D
in our codebase without weight decay (since the optimal value changes when including the NTP)
and with marginally different early stopping thresholding logic. We also determine the best default
learning rate on the meta-train benchmark, similar to Our reproduction achieves
benchmark scores within 1% of the benchmark scores of the MLP-D (RS+SC) version. Adding the
PL embeddings from Gorishniy et al. [16] with our default settings sometimes gives good results but
is significantly worse on BEt | indicating that they need more tuning. In contrast, incorporating the
RealMLP architectural changes (including their associated learning rate factors) improves scores on
all benchmarks by around 5% or more, although they alone do not match the results of TabR-S-D.
However, the non-architectural changes in RealMLP-TD make an even larger difference.

B.9 Comparing HPO Methods

In we compare two different HPO methods for GBDTs:

* Random search (HPO), as used in the main paper, with 50 steps.
* Tree parzen estimator (HPO-TPE) as implemented in hyperopt [2], with 50 steps. The first
20 of these steps use random search.

While TPE often performs slightly better, the differences in benchmark scores are relatively small.

B.10 More Time-Error Plots

Here, we provide more time-vs-error plots. shows results for the arithmetic mean error,
shows results for the arithmetic mean rank, and [Figure B.9|shows results for the arithmetic
mean normalized error. For the normalized error, the scores are affinely rescaled on each dataset split
such that the worst score is 1 and the best score is 0.

B.11 Critical Difference Diagrams

analyzes the external validity of differences in average ranks between methods, i.e.,
whether they will generalize to new datasets from a distribution. While establishing external validity
requires a large number of datasets, our meta-test benchmarks show at least the improvements of
RealMLP-TD over MLP-D to be externally valid.

B.12 Win-rate Plots

For pairs of methods, we analyze the percentage of (dataset, split) combinations on which the first
method has a lower error than the second method. We plot these win-rates in marix plots: [Figure B.1T1
shows the results on B2 |Figure B.12|shows the results on BE¢5t | IFigure B.13| shows the results

clags’®

- : - clas
on BGrinsztajn Figure B.14|shows the results on B2, [Figure B.15|shows the results on B3¢, and

class reg reg *

Figure B.16|shows the results on BGLmstain,

https://doi.org/10.52202/079017-0837 26604

Meta-train classification benchmark Meta-train regression benchmark

1 LGBM-D CatBoost-D
] LGBM-By & 0.30 +
o XGB-D)] ‘CatBoost-D XGB-D
E
g 0.056 a
o XGB-HPO, »
S =
8 XGB-HPO-TPE x 0.28 XGB-HPO
% 5 XGB-HPO-TPE* QatBoost-HPO
& 0.054 c XGB-TD, (CatBoost-HPO-TPE
8 g CatBo.ost*-TD
° LGBM-TD, €026 LGBM-TD *l:GBM-HPo
g o LGBMHPOL 2 LGBM-HPO-TPE
IS LGBM-HPO-TPE CatBgostHPO-TPE 2
o 0.052 CatBoost-TD CAtBoostHPO S
k) S
© (o))
2 7024
3 =S
- ReaIMLP—TD+ o
@ 0.050
£ ReaLp-TDM
% * 0.22
RealMLP-HPO ReaMLp-HPO ¥
107! 10" 10! 10? 107! 10° 10! 107
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]
Meta-test classification benchmark Meta-test regression benchmark
0.135
LGBM-D, 046 hae-D
4
e +LGBM-D
@ ().130 XGB-D, N
s w (.44
2 #(GB-TD Q XGB-TD *GBM-TD
[
o [C |
% 0125 + +CatBoost—D = (CatBoost-D
@ LGBM-TD 2042
© ©
5 XGB-HPO-TPE 2 YGBHPO.
£ 0.120 atBoost TD+ XGB-HPO ° Catgoost_m+ - # | GBM-HPO
. = | GBM-HPO-TPE
Lo = N -
£ Cent)lc;st—HPO—TPE 2 0.40 AGB-HPO-TPE K B0t HPO
o N @atBoost-HPO o 3
= LGBM-HPO 1 [} CatBoost-HPO-TPE
Qo115 LGBM-HPO-TPE 2
8 2038
o c RealMLP-TD
° »
£0.110
£ RealMLP-TD
» 0.36 5
RealMLP-HPO RealMLP-HP
0.105 - -
107! 10" 10! 10? 107! 10° 10! 107
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

D =defaults TD =tuned defaults HPO = hyperparameter optimization
Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

Figure B.6: Benchmark scores of selected methods on 521", Bita™, Bl , and Big:' vs. average
training time. The y-axis shows the shifted geometric mean (SGEME) classification error (left) or
nRMSE (right) as explained in[Section 2.2} The z-axis shows average training times per 1000 samples
(measured on B for efficiency reasons), see|Appendix C.7} The error bars are approximate 95%

confidence intervals for the limit #splits — oo, see[Appendix C.6]

26605 https://doi.org/10.52202/079017-0837

Meta-train classification benchmark Meta-train regression benchmark

,
'
ResNet-D 040 [GBM-D

CatBoost-D ResNet-D
[J
) MLP-D)
§ 0.0% $) Ao
H MLP—HPO* ’FTT—D o o
s MLP-PLR-D 038 ResNet- POy
T TabR-S-D Regklet—HPO = MLP-HPO
20090 : x RbalMLP-TD-S
@ ReaIMLPrTD—S+) LP-PLR D‘ (gatBoostHRO
3 MLPVPLRVHPO* 5 ko
2 e 0.36 \ FTT-D
o -
< 0.085 H \ % CB-HPO o B0 Best LGBM-HPO
< XGB{PBB-Dy RealTabR-D S i MLP-PLR-HPO
] (9] Ensemble-D® 1t *
£ N ealMLP-TD' £ ReamLp.ToW:
< -
2 CatBoostTD M- Best.D ’&GBM#'PO £ T | RealMLP-HPO
g esty ©atBoost-HPO < 0.34 i calll-E-HFO%
Ensemble'D RealMLP-HPO, i
£ 0.080 H eal * H .
£ H H abR-S-D
< 1 Best-Tl
gest-TD Ensemble-TD™ ~~~~"7 Q*
Ensemb\e,ﬂ# ------------- Best-HPOE . RealTabR-D®-Best-HROT
Ensemble-HPO' 0.32 Ensemble-HPO
0.075
107! 10° 10! 10? 107! 10° 10t 10%
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]
Meta-test classification benchmark Meta-test regression benchmark
0.58
'
H
0195 g
LGBD
) ML-P-D++
g 0190 ResNet-D 0.56
] MLP-PLR-D, »
5 XGB-DP T S MLP-HPO u GB-TD
= 0.185 \ abR-S- |
E Resl\et-HPO E 051 MLP-D, ResNet HPO"
:'F',) E ResNet-D
@ 0.180 RealV[-P.TD-S MLP-PLR-HPO °
S] ML:P-PLR-Dj MLFLHPQ"(
k<] XGB-PBB-D €052 alMLP-TD-S; d2bR-S-D,
* o | |
£017 \ GB-HPO o RealMLP-TPI J,L BN-HPO
........ =
o) x 15} Best-D g
g RealMLP-]T| ILGBM%HPO £ CatBoost-TD M~-—--=)Z$ BLHRO CatBoost-HPO
< N A
£ 0170 Best-D #{ealTabR-,D CatBoost-HPO 2050 Ensemble D’ peorrfuhicl ¥ S
E Ensemble—D"'": RealMLP-HPO' BestTD| ReaIMI}P-HPO
£ Best-HPO, Ensemble-TDY ™77 """ BESEHTO
< 0.165 Best-T0) *
_____________________ N Ensemble-HPO® ™
Ensemble-TD 0.48
0.160 Ensemble-HPO
107! 10" 10t 10? 107! 10° 10t 10%
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark

0.49

, .
0220 | :
A9 1 MLP—D+
i
'
'
:

d
» i
4 i 1
(] i MLP-D, s MLP-HPOLETT.p
] : s ’ RF-D MLP-PLR-D,
H ResNet-D, MLP-HRO [}
S 0.215 L w D
o 1 RealVILP-TD-S , 7] ResNet-D
=1
] T ResNet-HPO z I
= i €047 GB-TD |
2 LPVPLR—D+ Lo € % 5 [ResNet-HPO
eal - q | . .
S 0010 H ? fierireo 5 i“F'HPO FI-HPO
= RF-HPO 4 FTTHPO o GEMD ™}
5 B ealMLPHPO £ T RealMLP-TD;S|
c TabR-S-D4L fea O (.45 CatBoost-D~@RealMLP-TDM XGB-HPO |
& GB-HPO £ 046 alMLP-T{ YLP-PLR-HPO
o CatBoost-TD | M---- X
g BLPBB- Rmeana'bR-D E L GBMTD W
2 (o5 CatBoost-TD Best-D LGBM-r—lPof:atBoosx-HPo = CatBoost-HRO; ealMLE-HPO
o - < Best-Tl L%BM-H 0
1S Ensemble-DYBeést-TD Best-HPO 0.45 Ensemble-D T
£ 4 <! H §
2 A] ! Re;”"b“g’ e # TabR-HP
< Ensemble-TD - ----Best-HRX
Ensemble-TD
Ensemble-HPO] nsemole
0200 TabR-HPOJ™ ™™~ BrisembleHPO™
0.44
107! 10° 10! 10? 10° 10* 107! 10° 10! 10? 10° 10*
Average training time (CPU) per 1K samples [s] Average training time (CPU) per 1K samples [s]

D =defaults TD = tuned defaults HPO = hyperparameter optimization
Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

Figure B.7: Benchmark scores (arithmetic mean) vs. average training time. The y-axis shows the
arithmetic mean classification error (left) or nRMSE (right). The z-axis shows average training times
per 1000 samples (measured on B**#i for efficiency reasons), see The error bars are
approximate 95% confidence intervals for the limit #splits — oo, see[Appendix

https://doi.org/10.52202/079017-0837 26606

20

Arithmetic mean of ranks
=

10

3

Arithmetic mean of ranks

Arithmetic mean of ranks

Figure B.8: Benchmark scores (ranks) vs. average training time. The y-axis shows the arithmetic
mean rank, averaged over all splits and datasets. The x-axis shows
1000 samples (measured on B for efficiency reasons), see
approximate 95% confidence intervals for the limit #splits — oo, see

Meta-train classification benchmark

\
H

RF-D‘_

MLP-HPO

MLP7D+
%SsNet-D 3

ET-D
)&GB HPO 0*
GB PBB-D ResNet-HPO,

MLP-PLR- HPO*
IMLP-TD-$,

St-D) Re
| TabR-S-
o) LGBM HPO
CatBoost-TD! """'4:’:“2“_ CatBoost)

Ensemble-D
RealMLP- 'ﬂD'

N MLP-PLR D*

RealMLP-| HPO

Best-TD Best-HPO!
Ensontio TN Erigriia ok

107! 10° 10! 102
Average training time (CPU) per 1K samples [s]

Meta-test classification benchmark

RF-Di_I

MLP-D,
+ ResNet-D

MLP-HPO
MLP-PLR-D
LeBMD =TT h { *
RealMLP-TD-S
TabR S-Dg MLP-PLR- HPO
ResNet- HPO
CatBoostiD XGB-HPO
0@
:Best D ealTabR-D
TReamRlo ¥atmoost tPo
Ensemble-D LGBM HP@
: ' RealMLP- HPO*
H
:
Best-TD#
Ensemble-TDY Bost.HPO
Best—HPO:
Ensemb\e—HPO*"
107! 10° 10! 107

Average training time (CPU) per 1K samples [s]
Grinsztajn et al. (2022) classification benchmark

MLP-HPO

T

TabR-S-0y FTT0

+ V!/ILP PLR-HPO
LGBM-TD REaimLPirD *ea,TabR_DTi FIFHPO

XGB- PBBﬁ ?GB HPO *ReaIMLP-HIPO

RF-HPQ, 1;{esNet—HPo

CatBoost-TD LGBM PO
CatBoost-DYP-~~BgstJD

Bestl] GaBoost-HPO [=oRHPok
: Best-HPO
i
nsemble»D"“ _________________
Ensemble-TD

Ensemble-HPO]

107! 10° 10! 10% 10°
Average training time (CPU) per 1K samples [s]

D = defaults

10

TD = tuned defaults

Meta-train regression benchmark

ResNet-D
(3
MLP-Dg
@ MLP-PLR-D, MLP-HPO,,
= ® ResNet-fiPo%
g IMLP-TD-Sgg FTT 0y
(=]
< &atBoost-HPo
@ XGB-HPO
5 MLP-PLR-HPO,
2 RealMLP- TD., bR-SD
£ i %eBN-HPO
<
E 10 i RealMLP-| HPO*
|
RealTabR-
Best-TD& ___ L ___
Ensemble-TD i
5 Best-HPO*
|
Ensemble-HPO® ™
107! 10° 10! 10?
Average training time (CPU) per 1K samples [s]
Meta-test regression benchmark
25
20.0
00 MLP-Dg [BResNet-D
(X]
2175 MLP-PLR-D
c Fga\MLP—TD—S ResNet:HPQ,
- MEP-HPO
o150 CatBoost-D@====-gp TabR-S-D
= CatBoost-TD l
€ 125 Best-D GB HPO
2™ RealMLP- TD‘ * CatB, MS‘L;";?R o
= -
Ensemble-D LGBM- HPO
£ nsembles RealTabR-D
= 100 Best- TD
< : RealMLP-HPOX
75 Ensemble- TN~~~ BTGy
H
i
5.0 i
Ensemble—HF’O*"
25

107! 10" 10! 10?
Average training time (CPU) per 1K samples [s]

Grinsztajn et al. (2022) regression benchmark

ResNet-D
()
MLP-D
[J
ResNet-HPO
veP-fPo

MLP-PLR-D 4
@ calMLP-TD-S | ETTD
g " ¢
©
= ?Gﬂ"*ﬂ\,b‘kealmp-m gF-HPO
= LGBM-Ti] 205Dy FITHPO
@ .. CatBoostDgy o WLP-PLR-HPO
g CatBoost-T! T XGB-HPO I
° Best-Dp %
2 CatBoosiHgOk RealMLP-HPO
c Best-i TD *
= RealTabR-D
Z0 '—GBM HPO TaoreHPok

Ensemb\e—D’"; &
‘Best-HPO

Ensemb\e-TD‘

Ensemble-HPO® ™"""7"T T

107! 10° 10! 10? 10° 10*

Average training time (CPU) per 1K samples [s]

HPO = hyperparameter optimization

Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

26607

avera,

Appendix C.7

e training times per
The error bars are

https://doi.org/10.52202/079017-0837

https://doi.org/10.52202/079017-0837

Meta-train classification benchmark

H
0.6 RF—E*'

ResNet-D
b4

NILPVHPO*

3

¢ALP PLR-D P

]
1

H

H

1

H

i MLP-Dj
i

H

1

H

1

ResNet-HPO
XGB-HPO '

'S

§orsD
MLP-PLR-HPO

estD & LGBM-HPO
------- RealTabR-Dj ?

CatBoost-TD '%eaIMLP-TD
Ensemble-D * 1

’(léatBoost—HPO
RealMLP-HPO

Best—HPO*

Ensemb\e-HPO*

Arithmetic mean of normalized classification errors
o

Ensemble—TDt
107! 10" 10! 10

Average training time (CPU) per 1K samples [s]
Meta-test classification benchmark

155
05 FlF—D+‘

M +Re Net-D
¢ sNet:

045 TMLF’—HPO
XGB- *
NALP-PLR-D 1TabR-S-D
0.40 . ®
ealMLP-TD-S' ResNét-HPO
MLP-PLR-HPO
0.35 | \
XGB-HPO
: ealMLRSTD -
030 CatBoost-TD ’Be@»D 2‘“8""5‘ o

D' dgBm-HPO
RealifabR™D ReallLP-HPO

Ensemble-D

i

Best-TD

Ensemb\e-TDt i

Arithmetic mean of normalized classification errors
i

Ensemble»HPO*"'

&

107! 10" 10" 10%
Average training time (CPU) per 1K samples [s]

Grinsztajn et al. (2022) classification benchmark

'
_ RF—%

MLP-D

L4

ResNet—D+ MLP'HPO*
RealMLP-TD-S
]

RF-HPQ, *ResNel—HPO

TabR#-S-D* FTT,[)&ALiPLRrHPO
+ ReallLP-TD RedlMLP-HPO

=Y

Arithmetic mean of normalized classification errors

0.4 LP-PLR-D' F
%GB-HPO IT FTTHPQ
XGB=PBB-D+ RealTabR-D
0.3 CatBoost—[M"‘Begi-'ﬁ?L BM-HRO
CatBoost-TD Best-ﬂlr(;aqsoospHpé II‘
i Best-HPO
]
EnSemb\e—D¢"i _________________ .TabR—HPo*
0.2 Ensemble-TD
Ensemble-HPOT ™~ 7777777
107! 10" 10! 10? 10°

Average training time (CPU) per 1K samples [s]

D = defaults

TD = tuned defaults

o -~ w =N

Arithmetic mean of normalized nRMSEs
o

o - = >

Arithmetic mean of normalized nRMSEs

S 3 =y

.3

Arithmetic mean of normalized nRMSEs

Meta-train regression benchmark

ResNet-D
L 4
LX)
ResNet-HPOx
MLP-PLR-D, MLPVHF’O*
RegIMLP-TD-S;
L FrroP

CatBoost-HPO

P

XGE—HF’O
- - -Best-D8 | ~ .
Ensemble—D’., MLP-PLR HPQ#

RealMLP-TD} L€BM-HPO {
H RealMLP-HRO
TabR-S-D ¢ ¥
H
i
Best-TDa i
Ensemble-TD '""“’@{éél’fa’b’ﬁ:ﬁl

Best-HPQ!
Ensemble—HPO*"
107! 100 10! 10°
Average training time (CPU) per 1K samples [s]
Meta-test regression benchmark

#RF-D

MLP-D& ResNet-D
¢¢

MLP-PLR-D
ResNet-KPO,

-TDES &

L MtP—H*Po

TabR-S-D

¢

GB-HPO

o

RealMLP-TD
Ensemble-D Best:D * * MLEPLR HPO'

CatBoost-HPO
M)
LGBM-HP!
BostTD | RealMLP-HPO¥
4RealTabR-D e

Ensemble-TD ™ BestHP
i
Ensemb\e-HPO*"

107! 10" 10! 10°
Average training time (CPU) per 1K samples [s]

Grinsztajn et al. (2022) regression benchmark

\
H
i BF-D
H X
i # ?ResNetD
) MLP-D
? ResNet-HPO
VLP-PLR-D ,lr\‘/ILPrHPO
ReaIMLP-TD-S b
| L RF-HPO
me‘!eaqua §o550 FTEHPO
D %GB'HPO ri’ALP PLR-HPO

CatBoost-HPO

Best-D
D‘ReaIMLP-HPO*

Best-T!
LGBM-HPO

&
Ensemble-D®"} RealTabRD TabR-HPO*
i

Best-HPO
Ensemble-TOW===""==="""= H

107! 10° 10t 10? 10° 10*
Average training time (CPU) per 1K samples [s]

HPO = hyperparameter optimization
Best/Ensemble: out of XGB, LGBM, CatBoost, (Real)MLP

26608

Figure B.9: Benchmark scores (normalized errors) vs. average training time. The y-axis shows
the arithmetic mean normalized error, averaged over all splits and datasets. Errors are normalized
by rescaling the lowest error to zero and the largest error to one. The z-axis shows average training
times per 1000 samples (measured on B'"#" for efficiency reasons), see
bars are approximate 95% confidence intervals for the limit #splits — oo, see

The error

meta-train-class

cD
23222120191817161514131211109 8 7 6 5 4 3 2 1
MLP-D RealMLP-HPO
ResNet-D CatBoost-TD
MLP-HPO RealMLP-TD
RF-D CatBoost-HPO
FTTD XGB-TD
ResNet-HPO RealTabR-D
MLP-PLR-D LGBM-HPO
XGB-D LGBM-TD
MLP-PLR-HPO CatBoost-D
TabR-5-D XGB-PBB-D
XGB-HPO RealMLP-TD-S
LGBM-D
meta-test-class
cD
e —
22212019181716151413121110 9 8 7 6 5 4 3 2 1
[RN I
MLP-D RealMLP-HPO
RF-D LGBM-HPO
ResNet-D CatBoost-HPO
XGB-D RealMLP-TD
MLP-HPO CatBoost-TD
LGBM-D RealTabR-D
MLP-PLR-D XGB-PBB-D
RealMLP-TD-§ CatBoost-D
XGB-TD XGB-HPO
TabR-5-D LGBM-TD
MLP-PLR-HPO ResNet-HPO
grinsztajn-class
cD
26252423222120191817161514131211109 8 7 6 5 4 3 2 1
RF-D TabR-HPO
XGB-D CatBoost-D
MLP-D CatBoost-HPO
RealMLP-TD-S CatBoost-TD
ResNet-D LGBM-HPO
MLP-HPO RealMLP-HPO
XGB-TD XGB-PBB-D
LGBM-D MLP-PLR-HPO
RF-HPO MLP-PLR-D
ResNet-HPO LGBM-TD
TabR-S-D XGB-HPO
RealMLP-TD FTT-HPO
FTT-D RealTabR-D

ResNet-D
MLP-D
XGB-D

LGBM-D
CatBoost-D
MLP-HPO
MLP-PLR-D
ResNet-HPO
RE-D
RealMLP-TD-S
FTT-D

XGB-D

RF-D
ResNet-D
MLP-D
XGB-TD
MLP-PLR-D
LGBM-D
RealMLP-TD-S
ResNet-HPO
LGBM-TD
MLP-HPO

ResNet-D
XGB-D
MLP-D

RF-D
ResNet-HPO
XGB-TD
MLP-HPO
MLP-PLR-D
RealMLP-TD-S
FTT-D
LGBM-D
RF-HPO
RealMLP-TD

CD
e

22212019181716151413121110 9 8 7 6 5 4

meta-train-reg

321

RealTabR-D
RealMLP-HPO
LGBM-HPO
RealMLP-TD
TabR-S-D
MLP-PLR-HPO

CatBoost-TD
LGBM-TD

XGB-HPO
CatBoost-HPO

CD
—

212019181716151413121110 9 8 7 6 5
[S A S S AT L

XGB-TD

meta-test-reg

4321
Lo

RealMLP-HPO
LGBM-HPO
CatBoost-HPO
MLP-PLR-HPO
RealTabR-D

XGB-HPO

RealMLP-TD

CatBoost-TD

TabR-S-D

CatBoost-D

CD
—

252423222120191817161514131211 11

grinsztajn-reg

LGBM-HPO
TabR-HPO
RealMLP-HPO
RealTabR-D
CatBoost-HPO
XGB-HPO
MLP-PLR-HPO
CatBoost-D

CatBoost-TD

FTT-HPO

TabR-S-D

LGBM-TD

Figure B.10: Critical difference diagrams on all benchmarks. The plots show the average rank of
methods on each benchmark. Horizontal bars indicate groups of algorithms that are not statistically
significantly different at a 95% confidence level according to a Friedman test and post-hoc Nemenyi

test implemented in autorank [22].

26609

https://doi.org/10.52202/079017-0837

RF-D

MLP-D
ResNet-D
MLP-HPO
XGB-D

FTT-D
MLP-PLR-D
LGBM-D
XGB-HPO
ResNet-HPO
XGB-PBB-D
MLP-PLR-HPO
CatBoost-D
RealMLP-TD-S
TabR-S-D
Best-D
LGBM-HPO
LGBM-TD
XGB-TD
CatBoost-TD
CatBoost-HPO
RealTabR-D
Ensemble-D
RealMLP-TD
RealMLP-HPO
Best-HPO
Best-TD
Ensemble-TD
Ensemble-HPO

Figure B.11: Percentages of wins of row algorithms vs column algorithms on 3

RF-D

Meta-train classification benchmark, percentage of row wins

3.
4.8
6.
3.6
7.9

[a]
=
m
9]
x

MLP-D
ResNet-D
MLP-HPO
XGB-D
FTT-D
MLP-PLR-D
LGBM-D
XGB-HPO
ResNet-HPO
XGB-PBB-D
MLP-PLR-HPO
CatBoost-D
RealMLP-TD-S
TabR-S-D
LGBM-HPO
LGBM-TD
CatBoost-TD ﬂ E

5
5
o3

-34.2 29.3.24.9 856296 330874 250 246 21.6 19.2 207 204 286 21.6 27.4 24.1 196 17.1 154 16.8
..32.9 . 312321 26.9 20.5 28.5 289 29.3 26.0 26.6 24.5 22.7 21.4 19.1 185 16.8 17.1

.323 28.2 29.1 26.7 25.1 23.6 23.0 22.6

342 309 30.5 32.0 27.2 286 . 293345347 259 21.8 21.5 224
.32.2 33.8 33.3 30.4 30.4 . 29.6.33.3 26.3 212 183 205

. 30.5 . 27.9 27.7 26.6 24.7 23.1 24.0

33.0 27.6 26.2 24.4 24.6

-34.1 28.1 28.0 29.7

327315 292 28.7 27.9 263
.31.5 30.7 285 2856

34.1 33.3 29.6 28.9

.. 32.8 321 302
.. 33.2 326 33.1

33.1 30.7 30.9

33.1 32.9 338

o o o o o
gzsepg2geERg
I £ d I I % oI
- v 90 2o o
2§ sY5 % a € 3
S 3 2§ S o S €
S 4 @3 2 o
54 c 3 S 3
o [5

train
class

100

60

40

. Wins are

averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average win-rate
(i.e., the average of the values in the row). When averaging, we use dataset-dependent weighting as

explained in|Section C.3.

https://doi.org/10.52202/079017-0837

26610

Meta-test classification benchmark, percentage of row wins

RF-D .- ..345....-294273228263 25.7 22.8 30.7 33.2 20.6 23.5 22.2 28.5 20.2 20.9 18.1 17.9

MLP-D
XGB-D
100
ResNet-D
MLP-HPO
MLP-PLR-D

LGBM-D
RealMLP-TD-S .27.3 32.9.34.7 32.7 25.1 21.3 20.2 23.2 18.0 80

XGB-TD ..- 347 334 29.2 31.9 22.3 24.2 21.0 19.4

MLP-PLR-HPO
TabR-S-D
ResNet-HPO 60
LGBM-TD
CatBoost-D
XGB-HPO
XGB-PBB-D
Best-D 318 31.0 331 27.0 40
CatBoost-TD

RealMLP-TD
RealTabR-D
CatBoost-HPO
Ensemble-D
LGBM-HPO
RealMLP-HPO
Best-TD

Best-HPO

Ensemble-TD
Ensemble-HPO

RF-D
MLP-D
ResNet-D
MLP-HPO
LGBM-D
RealMLP-TD-S E
XGB-TD
TabR-S-D
LGBM-TD
XGB-HPO
Best-D
Best-TD
Best-HPO

Ensemble-TD E

MLP-PLR-D
Ensemble-HPO

MLP-PLR-HPO
ResNet-HPO
CatBoost-D
XGB-PBB-D
RealMLP-TD
RealTabR-D
CatBoost-HPO
Ensemble-D
LGBM-HPO
RealMLP-HPO

Figure B.12: Percentages of wins of row algorithms vs column algorithms on B! . Wins are
averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average win-rate
(i.e., the average of the values in the row).

26611 https://doi.org/10.52202/079017-0837

Grinsztajn et al. (2022) classification benchmark, percentage of row wins

RF-D -30.3 19.716.916.928.924.425.624.226.110.019.421.112.213.121.7 83 10.0 8.6 7.5 16.9 6.9 7.5 122 9.4 3.1 50 56
XGB-D
MLP-D
ResNet-D
MLP-HPO
RealMLP-TD-S 369 38131731 .7.2e.s 26.936.933.133.125.826727.220.324.421.4 186 14.2133
LGBM-D 33.9. 314 ..30.6 27.221125321.920622.530.023.912.816.116.1
XGB-TD .. .34.2.25.9 52.830.028.626.729.725.822.8 23.920.013.917.2
RF-HPO sz.a..a1 7 ..29.2 30.024.226.927.822.524.429.726.718.317.819.7
ResNet-HPO
FTT-D
MLP-PLR-D 34231.715320821.4
MLP-PLR-HPO .27.5 20.619.719.4
TabR-S-D 28.3.38.9 30629.7
LGBM-TD 35.031.727.823.617.516.1
FTT-HPO
RealMLP-TD -. .34.2 26.715621.7
XGB-HPO 35.807.637.233.187.230.821.920.320.3
RealTabR-D . 32 .23.9 256272
RealMLP-HPO ..23.9 217136
XGB-PBB-D 33.130.828.319.720.0
LGBM-HPO .35.326.924.424.7
CatBoost-TD
Best-TD
CatBoost-D
Best-D
CatBoost-HPO
TabR-HPO
Best-HPO
Ensemble-D
Ensemble-TD

Ensemble-HPO

-D

MLP-PLR-D

RF-D
MLP-PLR-HPO

XGB-D
MLP-D
ResNet-D
MLP-HPO
RealMLP-TD-S
LGBM-D
RF-HPO
ResNet-HPO
LGBM-TD
FTT-HPO
RealMLP-TD
XGB-HPO
RealTabR-D

TabR-S-D
RealMLP-HPO

Figure B.13: Percentages of wins of row algorithms vs column algorithms on B

XGB-PBB-D E

LGBM-HPO
CatBoost-TD

Best-TD
CatBoost-D
Best-D
CatBoost-HPO
Best-HPO
Ensemble-D
Ensemble-TD

TabR-HPO
Ensemble-HPO

class

Grinsztajn

100

80

60

40

. Wins

are averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average
win-rate (i.e., the average of the values in the row). When averaging, we use dataset-dependent

weighting as explained in[Section C.3.1}

https://doi.org/10.52202/079017-0837 26612

Meta-train regression benchmark, percentage of row wins

ResNet-D .. 30.1 .35.9 20.6 17.8 9.8 21.2 14.5 26.7 25.1 13.9 23.4 23.8 23.2 9.7 12.0 10.7 122 196 63 7.1 42 56 38 3.1
XGB-D ---..15.6 85 191 83 11.1 10.8 10.5 31.3 24.1 253 6.0 243 187 59 3.7 52 35
LGBM-D .37.4 28.7 16.2 125 17.6 18.9 12.2 9.6 30.1 235 23.7 7.5 23.8 17.0 11.1 10.2 6.8 43 100
MLP-D -34.8 27.3 299 28.7 28.4 32.8 30.3 24.9 28.6 29.6 305 22.3 19.3 165 22.1 21.7 8.0 143 86 65 52 4.0
CatBoost-D .. 343 11.9 17.3 24.5 29.0 22.3 16.2 30.3 25.8 25.1 17.0 26.8 18.6 14.1 142 9.4 7.5
RF-D .. 19.4 349 323 17.9 12.3 20.5 22.6 34.9 289 282 9.5 27.4 187 95 69 49 38
MLP-PLR-D 19.6 122 120 80 63
MLP-HPO 17.6 121 11.4 63 5.1 80
ResNet-HPO 153 16.1 13.0 9.0 6.2
FTT-D 144 74 47
RealMLP-TD-S 172 98 7.9
XGB-TD 36 103 45 o
CatBoost-HPO 17.8 11.7 5.8
Best-D 34.3 32.0 27.9 19.1 161 10.7 8.4

CatBoost-TD -... 200 225 96 148 6.7

LGBM-TD 140 5.7
XGB-HPO 201 89 40
Ensemble-D 96 7.1
RealMLP-TD 212 17.6
MLP-PLR-HPO 14.0 10.2
TabR-S-D . 19,0 37.1 373348 315 .
LGBM-HPO .370 322 251 22.0 8.0
RealMLP-HPO -
RealTabR-D
Best-TD
Ensemble-TD -0
Best-HPO

Ensemble-HPO

oo o0 o0oo0o0oo0o0 o000 ® oo e oo0o0oe o000 0 a0 a0 o0
t d 2 4 % L ¢ & pfEAFRE R E& $F & p & &gk FEoEoQ
2 0@ 2 8§ 1T I FraI 85I sd I LTI 5 5 o I I
2 X 0 = 9 L d 5 %+ ¢ 0 3 @ 8 @ am e 2 § = d g 33T 5 oo
¢ = 2 d 4 = J X g g © o g 2 J 8 a@d 5 ®E 8 32
o 3 a3 3 s 2 F 2 X 2 3 & F g =2 § 3 @ E
© = KuJ T a 3 o & o J T c 2

o > T (] [o} w 1

2

i o = o i

Figure B.14: Percentages of wins of row algorithms vs column algorithms on Bﬁggin. Wins are
averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average win-rate
(i.e., the average of the values in the row). When averaging, we use dataset-dependent weighting as

explained in|Section C.3.

26613 https://doi.org/10.52202/079017-0837

Meta-test regression benchmark, percentage of row wins

XGB-D m35.2 36.7 20.0 28.6 33.1 19.8 27.6 29.5 29.8 21.7 13.6 224 12.7 16.4 10.0 6.9 17.6

RF-D
MLP-D
ResNet-D

XGB-TD

MLP-PLR-D
LGBM-TD
RealMLP-TD-S
ResNet-HPO
MLP-HPO
CatBoost-D
CatBoost-TD
TabR-S-D
Best-D
RealMLP-TD
XGB-HPO
CatBoost-HPO
MLP-PLR-HPO
RealTabR-D
Ensemble-D
LGBM-HPO
Best-TD
RealMLP-HPO
Ensemble-TD
Best-HPO
Ensemble-HPO

RF-D
MLP-D

Q
m
<]
<

ResNet-D
XGB-TD
MLP-PLR-D
LGBM-TD
RealMLP-TD-S
ResNet-HPO
MLP-HPO

Figure B.15: Percentages of wins of row algorithms vs column algorithms on Bt¢5t,

CatBoost-D

CatBoost-TD

TabR-S-D
Best-D

85.5 85.7 23.8 24.8 26.7 18.1 27.4 31.0 31.9 224 16.0 23.8 14.8 16.2 9.8 121 176
-31.4 29.3 33.1 31.2 25.7 27.6 221 22.9 255 195

.22,6 33.6 36.0 36.7 28.8 25.7 22.9 25.5 24.0 195

-.. 27.1 . 30.7 290 248 255 25.7
LGBM-D . .-.352 305.250 312 19.8 19.3 28.1

13.8

32.6

42 74 86

12.4 10.7 11.0

21.0 18.8 16.0

224 236 19.3

24.8 16.0 18.9

16.0 14.8 20.2

212 29.8 23.6

85.2 21.2 26.8

33.6 33.3 33.8 30.7 29.0 34.0 31.7 26.2

34.8 35.5

RealMLP-TD

CatBoost-HPO

29.5 33.6

MLP-PLR-HPO

RealTabR-D

35.7

Best-TD

Ensemble-D
LGBM-HPO

13.8

121

26.2

20.2

20.0

245

RealMLP-HPO

4.3

6.2

24.8

229

28.6

4.3

4.3

8.3

5.0

9.0

6.0

8.8

10.2

121

8.1

15.7

12.3

13.1

18.1

14.8

1.2

121

s -

Ensemble-TD

19.5

Ensemble-HPO

reg

100

40

Wins are

averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average win-rate

(i.e., the average of the values in the row).

https://doi.org/10.52202/079017-0837

26614

Grinsztajn et al. (2022) regression benchmark, percentage of row wins

ResNet-D 20.033.6 .22.5 28.926.118.627.522.920.7 13.6 17.911.1 146 15.4 18.6 9.6 10.012.1104 6.8 9.3 7.5 64 86 6.4 3.9
XGB-D -.33.6 35.7 36.8 35.0 20.4 30.7 23.6 29.6 26.1 26.4 22.922.1 11.810.011.6 8.6 7.1 13.911.1 6.8 9.6 2.1 6.1 25 14
MLP-D [.304.304.286 23.230.423.923.621.416.815.017.519.6 18.6 12.913.914.6 10.7 11.1 10.0 96 50 86 7.5 4.3
RF-D 87.137.935.0 31.8 33.9 31.1 32.1 20.7 22.1 26.1 33.2 27.1 26.4 28.9 23.6 24.3 25.7 21.8 16.8 21.4 18.212.920.7 186 11.4 7.1 6.8 100
ResNet-HPO .34.3.31 .827.9387.531.832.125.722.920.7 23.223.226.8 16.4 13.916.8 13.213.6 13.212.1 11.4 89 8.6 5.0
MLP-HPO .31 .837.127.530.437.129.322.928.228.629.321.121.117.915.418.6 16.113.6 11.411.811.4 5.0
XGB-TD - 1134.6/33.6 33,6 31.136.1 18.220.4 28.923.2 14.825.0 193 11.417.913.6 9.6 3.2 4.3
MLP-PLR-D
RealMLP-TD-S 50
FTTD
LGBM-D
RF-HPO
LGBM-TD
RealMLP-TD o
TabR-S-D
FTT-HPO
MLP-PLR-HPO .32.5 82.125.732.529.329.6 20.0 13.917.1 6.4
CatBoost-D 36.331. 1..321307325113243214 7.9 o

CatBoost-TD
XGB-HPO
Best-D
CatBoost-HPO
Best-TD
RealMLP-HPO
RealTabR-D
LGBM-HPO

— 20

. 364355282 143

TabR-HPO .33.9 221
Ensemble-D 36.8 16.1
[Lo
Best-HPO

11.3

Ensemble-TD 19.3

Ensemble-HPO

ResNet-D
MLP-HPO
XGB-TD
MLP-PLR-D
FTT-D
LGBM-TD
RealMLP-TD
FTT-HPO
Best-D
CatBoost-HPO
Best-TD
RealMLP-HPO

MLP-PLR-HPO

CatBoost-D -
CatBoost-TD n

XGB-HPO
TabR-HPO
Ensemble-D
Best-HPO
Ensemble-TD
Ensemble-HPO

ResNet-HPO !
RealTabR-D !

LGBM-HPO

Figure B.16: Percentages of wins of row algorithms vs column algorithms on BS1"s#tain Wing
are averaged over all datasets and splits. Ties count as half-wins. Methods are sorted by average
win-rate (i.e., the average of the values in the row).

26615 https://doi.org/10.52202/079017-0837

C Benchmark Details

C.1 Default Configurations

The parameters for RealMLP-TD and RealMLP-TD-S have already been given in[Table A.T] [Table C.1
shows the hyperparameters of LGBM-TD and LGBM-D. shows the hyperparameters of
XGB-TD and XGB-D. shows the hyperparameters of CatBoost-TD and CatBoost-D. The
parameters for LGBM-D, XGB-D, and CatBoost-D have been taken from the respective libraries at the
time of writing and are given here for completeness. We also provide tables for MLP-D (Table C.4),
ResNet-D (Table C.6), MLP-PLR-D (Table C.3), FTT-D (Table C.7), TabR-S-D (Table C.8), and
RealTabR-D (Table C.9). By “RTDL quantile transform”, we refer to the version adding noise before
fitting the quantile transform.

For XGB-PBB-D, we use the default parameters from Probst et al. [S0], with the following mod-
ifications: We use hist gradient boosting since it is the new default in XGBoost 2.0. Moreover,
since we have high-cardinality categories, we limit one-hot encoding to categories with less than 20
distinct values (not counting missing values) and use XGBoost’s native categorical feature handling
for the remaining categorical features. For RF-D, we use the default parameters from scikit-learn,
do not give RF-D access to the validation set (to make it more similar to other methods that do not
use nested cross-validation), and encode categorical columns using ordinal encoding with a random
shuffling of categories.

C.2 Hyperparameter Optimization

For all methods, we run 50 steps of random search with the search spaces presented in the following.

The search spaces for LGBM-HPO (Table C.10), XGB-HPO (Table C.TT), and CatBoost-HPO
are adapted from the “tree-friendly” literature, using n_estimators=1000 in each case.

The search space for RF-HPO (Table C.13)) is taken from Grinsztajn et al. [[18].

For RealMLP-HPO, we provide a custom search space specified in[Table C.14] The search spaces
for MLP-HPO (Table C.15), MLP-PLR-HPO (Table C.16), ResNet-HPO (Table C.17), FTT-HPO
(Table C.18)), and TabR-HPO are adapted from the literature, with minor modifications

to decrease RAM usage.

Table C.1: Hyperparameters for LGBM-TD and LGBM-D. Italic hyperparameters have not been

tuned.
Hyperparameter LGBM-TD LGBM-D
classif. reg.

num_leaves 50 100 31
learning_rate 0.04 0.05 0.1
subsample 0.75 0.7 1.0
colsample_bytree 1.0 1.0 1.0
min_data_in_leaf 40 3 20
min_sum_hessian_in_leaf le-7 le-7 le-3
n_estimators 1000 1000 100

bagging_freq 1 1 1

max_bin 255 255 255

early_stopping_rounds 300 300 1000

https://doi.org/10.52202/079017-0837 26616

Table C.2: Hyperparameters for XGB-TD and XGB-D. Italic hyperparameters have not been tuned

for XGB-TD.
Hyperparameter XGB-TD XGB-D
classif. reg.
max_depth 6 9 6

learning_rate 0.08 0.05 0.3
subsample 0.65 0.7 1.0
colsample_bytree 1.0 1.0 1.0
colsample_bylevel 0.9 1.0 1.0
min_child_weight 5e-6 2.0 1.0
lambda 0.0 0.0 1.0
tree_method hist hist hist
n_estimators 1000 1000 100
max_bin 256 256 256
early_stopping_rounds 300 300 1000

Table C.3: Hyperparameters for CatBoost-TD and CatBoost-D. Italic hyperparameters have not

been tuned for CatBoost-TD.

Hyperparameter CatBoost-TD CatBoost-D
classif. reg.
boosting_type Plain Plain Plain
bootstrap_type Bernoulli Bernoulli Bayesian
max_depth 7 9 6
learning_rate 0.08 0.09 automatic
subsample 0.9 0.9 —
bagging_temperature — — 1.0
12_leaf reg le-5 le-5 3.0
random_strength 0.8 0.0 1.0
one_hot_max_size 15 20 2
leaf estimation_iterations 1 20 None
n_estimators 1000 1000 1000
max_bin 254 254 256
od_wait 300 300 None
od_type Iter Iter Iter

Table C.4: Hyperparameters for MLP-D, adapted from McElfresh et al. [43].

Hyperparameter Value
Ir scheduler None
n_layers 3
d_layers [128, 256, 128]
Dropout prob. 0.1
Ir le-3
Optimizer AdamW
d_embedding 8
batch_size 128
max_epochs 1000
early stopping patience 20
Preprocessing RTDL quantile transform
Activation function ReLU
Initialization PyTorch default
Weight decay 0.01

26617

https://doi.org/10.52202/079017-0837

Table C.5: Hyperparameters for MLP-PLR-D. The MLP hyperparameters are taken from [Table C.4
and the PLR embedding hyperparameters are taken as the defaults of the library associated with

Gorishniy et al. [[16]].

Hyperparameter Value
MLP hyperparameters ~ same as in
Num. emb. type PLR
Num. emb. initialization o le-2
Num. emb. #frequencies 48
Num. emb. dimension 24

Table C.6: Hyperparameters for ResNet-D, adapted from McElfresh et al. [43]].

Hyperparameter Value
Ir scheduler None
Activation RelLU
Normalization BatchNorm
n_layers 2
d_layers [128, 128]
d_hidden_factor 2
hidden_dropout 0.25
residual_dropout 0.1
Ir le-3
weight_decay 0.01
Optimizer AdamW
d_embedding 8
batch_size 128
max_epochs 1000
early stopping patience 20
Preprocessing RTDL quantile transform

Table C.7: Hyperparameter search space for FTT-D, adapted from Gorishniy et al. [[15]. Differences
to Gorishniy et al. [15] are: We limit the number of epochs to 300 as in Grinsztajn et al. [18]], we fix
the batch size to 256 (Gorishniy et al. [[15] use dataset-dependent batch sizes and Grinsztajn et al.
[18] uses 512). We do not adopt the larger patience from Grinsztajn et al. [18]].

Hyperparameter Value
n_layers 3
d_token 192

d_ffn_factor 4/3
ffn_dropout 0.1
attention_dropout 0.2
residual_dropout 0.0
Ir le-4
weight_decay le-5
batch_size 256
max_epochs 300
early stopping patience 16
Preprocessing RTDL quantile transform
n_heads 8

https://doi.org/10.52202/079017-0837 26618

Table C.8: Hyperparameters for TabR-S-D,

taken from Gorishniy et al. [17]]. The criterion on batch

sizes is inferred to match the batch sizes used in the original paper.

Hyperparameter Value
num_embeddings None
d_main 265
context_dropout 0.38920071545944357
d_multiplier 2.0
encoder_n_blocks 0
predictor_n_blocks 1
mixer_normalization auto
dropout0 0.38852797479169876
dropoutl 0.0
normalization LayerNorm
activation ReLU
batch_size 128 if Nipain < 10K else 256 if Nipain < 30K
else 512 if Nipqin < 200K else 1024
patience 16
n_epochs 100,000
context_size 96
optimizer AdamW
Ir 0.0003121273641315169
weight_decay 1.2260352006404615e-06
Preprocessing RTDL quantile transform

Table C.9: Hyperparameters for RealTabR-D.

Hyperparameter Value
num_embeddings PBLD
num. emb. #frequencies 8
num. emb. d_embedding 4
num. emb. frequency_scale 0.1
Preprocessing robust scale + smooth clip
Add scaling layer yes
Scaling layer Ir factor 96

Label smoothing epsilon
Other hyperparameters

0.1 (for classification)
as in|Table C.§

Table C.10: Hyperparameter seach space for LGBM-HPO, adapted from Prokhorenkova et al. [51]]

with 1000 estimators instead of 5000.

Hyperparameter Space
n_estimators 1000
bagging_freq 1
early_stopping_rounds 300

num_leaves

learning_rate
subsample

feature fraction
min_data_in_leaf
min_sum_hessian_in_leaf

lambda_l1
lambda_12

LogUniformlInt[1, e’]
LogUniform[e‘7, 1]
Uniform[0.5, 1]
Uniform[0.5, 1]
LogUniformInt[1, %]
LogUniform[e 16, €3]
Random{0, LogUniform[e ¢,

e?1}
Random{0, LogUniform[e 16, 2]}

26619

https://doi.org/10.52202/079017-0837

Table C.11: Hyperparameter search space for XGB-HPO, adapted from Grinsztajn et al. [18]. We
use the hist method, which is the new default in XGBoost 2.0 and supports native handling of
categorical values, while the old auto method selection is not available in XGBoost 2.0. We also
increase early_stopping_rounds to 300.

Hyperparameter Space
tree_method hist
n_estimators 1000

early_stopping_rounds 300
max_depth UniformlInt[1, 11]
learning_rate LogUniform[1e-5, 0.7]
subsample Uniform[0.5, 1]
colsample_bytree Uniform[0.5, 1]
colsample_bylevel Uniform[0.5, 1]
min_child_weight LogUniformlInt[1, 100]
alpha LogUniform[1e-8, 1e-2]
lambda LogUniform[1, 4]
gamma LogUniform[1e-8, 7.0]

Table C.12: Hyperparameter search space for CatBoost-HPO, adapted from Shwartz-Ziv and Armon
[58], who did not specify the number of estimators.

Hyperparameter Space
boosting_type Plain
bootstrap_type Bayesian
n_estimators 1000
max_depth 6
od_wait 300
od_type Iter
learning_rate LogUniform[e*‘r’, 1]
bagging_temperature Uniform[O0, 1]
12_leaf_reg LogUniform[1, 10]
random_strength UniformlInt[1, 20]
one_hot_max_size UniformInt[0, 25]

leaf _estimation_iterations UniformlInt[1, 20]

Table C.13: Hyperparameter search space for RF-HPO, taken from Grinsztajn et al. [[18].

Hyperparameter Space
n_estimators 250
max_depth Choice([None, 2, 3, 4], p=[0.7, 0.1, 0.1, 0.1])
criterion Choice([gini, entropy]) if classification
else Choice([squared_error, absolute_error])
max_features Choice([sqrt, sqrt, log2, None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
min_samples_split Choice([2, 3], p=[0.95, 0.05])
min_samples_leaf LogUniformlInt[1.5, 50.5]
bootstrap Choice(True, False)
min_impurity_decrease Choice([0, 0.01, 0.02, 0.05], p=[0.85, 0.05, 0.05, 0.05])

https://doi.org/10.52202/079017-0837 26620

Table C.14: Hyperparameter search space for RealMLP-HPO. The remaining hyperparameters are
set as in RealMLP-TD. For best performance, it might be beneficial to use a larger search space for

the init standard deviation of the first embedding layer, and to tune the embedding dimensions, as in
Table C.

Hyperparameter classif. reg.
Num. embedding type Choice([None, PBLD, PL, PLR]) same
Use scaling layer Choice([True, False], p=[0.6, 0.4]) same
Learning rate LogUniform([2e-2, 3e-1]) same
Dropout prob. Choice([0.0, 0.15, 0.3], p=[0.3, 0.5, 0.2]) same
Activation fct. Choice([ReLU, SELU, Mish]) same
Hidden layer sizes Choice([[256, 256, 256], [64, 64, 64, 64, 64], [512]], p=[0.6, 0.2, 0.2]) same
Weight decay Choice([0.0, 2e-2]) same
wi‘}‘él) init std. LogUniform([0.05, 0.5])
Label smoothing Choice([0.0, 0.1], p=[0.3, 0.7]) no label smoothing

Table C.15: Hyperparameter search space for MLP-HPO, adapted from Gorishniy et al. [[15]. We
reduced the embedding dimension upper bound, and the maximum number of epochs to have a more
acceptable runtime on the meta-test benchmarks. As in the original paper, the size of the first and the

last layers are tuned and set separately, while the size for “in-between” layers is the same for all of
them.

Hyperparameter Space
N <100, 000 N > 100,000
n_layers Uniformlnt[1, 8] UniformlInt[1, 16]
d_hidden_layers UniformlInt[1, 512] UniformlInt[1, 1024]
d_first_layer UniformInt[1, 512] UniformlInt[1, 1024]
d_last_layer UniformlInt[1, 512] UniformlInt[1, 1024]
dropout Choice(0, Uniform[0, 0.5])
Ir LogUniform[1e-5, 1e-2]
weight decay Choice(0, LogUniform[le-6, 1e-3])
d_embedding UniformInt[1, 64]
batch_size 128 if Nipain < 10K else 256 if Nipain < 30K
else 512 if Nipain < 100K else 1024
Ir_scheduler None
Optimizer AdamW
max #epochs 400
early stopping patience 16
Preprocessing RTDL quantile transform

Table C.16: Hyperparameter search space for MLP-PLR-HPO, adapted from Gorishniy et al. [16]].
Differences to Gorishniy et al. [[16]] are: (1) For the MLP part of the search space, we use the same
space as for MLP, which includes categorical embeddings and slightly different ranges for some
hyperparameters. (2) We shrank the search space for o, as recommended by one of the authors in

private communication. (3) We reduced the maximum embedding dimension from 128 to 64 to avoid
RAM issues on datasets with many numerical features.

Hyperparameter Space
MLP hyperparameters as in
Num. emb. type PLR
Num. emb. initialization 0 LogUniform[le-2, lel]
Num. emb. #frequencies Uniform[1, 64]
Num. emb. dimension Uniform[1, 64]

26621 https://doi.org/10.52202/079017-0837

Table C.17: Hyperparameter search space for ResNet-HPO, adapted from Gorishniy et al. [15]]. We
reduced the embedding dimension upper bound, the maximum number of epochs, and the number of
layers to have a more acceptable runtime on the meta-test benchmarks. As in the original paper, the

size of the first and the last layers are tuned and set separately, while the size for “in-between” layers
is the same for all of them.

Hyperparameter

Space

N <100, 000 N > 100,000

n_layers
d_hidden_layers
d_hidden_factor
hidden_dropout
residual_dropout
Ir
weight decay
d_embedding
batch_size

activation
normalization
Ir_scheduler
Optimizer
max #epochs
early stopping patience
Preprocessing

Table C.18: Hyperparameter search space for FTT-HPO, adapted from Gorishniy et al. [17]]. Differ-
ences to Gorishniy et al. [[17]] are: We limit the number of epochs to 400, and the batch size choices

UniformlInt[1, 8] UniformlInt[1, 16]
UniformlInt[1, 512] UniformlInt[1, 1024]
UniformlInt[1, 4]

Uniform[0, 0.5]

Choice(0, Uniform[0, 0.5])
LogUniform[1e-5, le-2]
Choice(0, LogUniform[1e-6, 1e-3])
UniformInt[1, 64]

128 if Nirain < 10K else 256 if Niyain < 30K
else 512 if Nirain < 100K else 1024
ReLLU
BatchNorm
None
AdamW
400
16
RTDL quantile transform

might differ slightly since the criterion in Gorishniy et al. [[17] is unclear to us.

Hyperparameter Space
n_layers UniformInt[1, 4]
d_token

d_ffn_factor
ffn_dropout
attention_dropout
residual _dropout
Ir
weight_decay
batch_size

max_epochs

8 - UniformlInt[2, 48]
Uniform[2/3, 8/3]
Uniform[0, 0.5]
Uniform[0, 0.5]

Choice(0, Uniform[0, 0.2])
LogUniform[1e-5, le-3]
Choice(0, LogUniform[1e-6, 1e-4])

128 if Nipain < 10K else 256 if Nipain < 30K
else 512 if Nipqain < 100K else 1024

400
early stopping patience 16
Preprocessing RTDL quantile transform
n_heads 8

https://doi.org/10.52202/079017-0837

26622

Table C.19: Hyperparameter search space for TabR-HPO, taken from Gorishniy et al. [17]. Non-
specified hyperparameters are chosen as in TabR-S-D (Table C.8). For the weight decay, we used an
upper bound of le-4 as used in the original code, and not 1e-3 as specified in the paper.

Hyperparameter Space
d_main UniformlInt[96, 384]
context_dropout Uniform[0.0, 0.6]
dropout0 Uniform[0.0, 0.6]
dropoutl 0.0
Ir LogUniform[3e-5, le-3]

weight_decay
encoder_n_blocks
predictor_n_blocks
num. emb. type
num. emb. n_frequencies
num. emb. d_embedding
num. emb. frequency_scale
num. emb. lite

Choice(0, LogUniform[1e-6, 1e-4])

26623

UniformlInt[0, 1]
UniformlInt[1, 2]
PLR
UniformlInt[16, 96]
UniformInt[16, 65]

LogUniform[1le-2, 1e2]

True

https://doi.org/10.52202/079017-0837

C.3 Dataset Selection and Preprocessing

C.3.1 Meta-train Benchmarks

For the meta-train benchmarks, we adapt code from Steinwart [61] to collect all datasets from the
UCI repository that follow certain criteria:

* Between 2,500 and 50,000 samples.

¢ Number of features at most 1,000.

* Labeled as classification or regression task.

* Description made it straightforward to convert the original dataset into a numeric .csv format.
* Uploaded before 2019-05-08.

We remove rows with missing values and keep only those datasets that still have at least 2,500
samples Some datasets are labeled both as regression and classification datasets, in which case we
use them for both. Some datasets contain different versions (e.g., different target columns), in which
case we use all of them. To avoid biasing the results towards one dataset, we compute benchmark
scores using weights proportional to 1/#versions. In total, we obtain 71 classification datasets
(including versions) out of 46 original datasets, and 47 regression datasets (including versions) out of
26 original datasets. Tables[C.20]and [C.2| summarize key characteristics of these datasets. We count
datasets with the same prefix (before the first underscore) as being versions of the same dataset for
weighting, except for the two “facebook” datasets in nggin, which we count as distinct because they
are taken from different sources. For regression, we standardize the targets to have mean zero and
variance 1 on the whole dataset. This does not introduce leakage since all neural networks standardize
regression targets based on the training set, and tree-based methods are invariant to affine rescaling.

During earlier development of the MLP, the meta-train benchmark used to include an epileptic seizure
recognition dataset, which has since been removed from the UCI repository, hence we do not report
results on it.

C.3.2 Meta-test Benchmarks

The meta-test benchmarks consist of datasets from the AutoML Benchmark [13]] and additional
regression datasets from the OpenML-CTR23 benchmark [[12]], obtained from OpenML [65].

We make the following modifications:

* We use brazilian_houses from OpenML-CTR23 and exclude Brazilian_houses from the
AutoML regression benchmark, since the latter contains three additional features that should
not be used for predicting the target.

* We use another version of the sarcos dataset where the original test set is not included, since
the original test set consists of duplicates of training samples.

* We excluded the following datasets because versions of them were already contained in the
meta-training set:

— For classification: kr-vs-kp, wilt, ozone-level-8hr, first-order-theorem-proving, Ges-
turePhaseSegmentationProcessed, PhishingWebsites, wine-quality-white, nomao, bank-
marketing, adult

— For regression: wine_quality, abalone, OnlineNewsPopularity, Brazilian_houses,
physicochemical_protein, naval_propulsion_plant, superconductivity, white_wine,
red_wine, grid_stability

We preprocess the datasets as follows:

* We remove rows with missing continuous values

* We subsample large datasets to contain at most 500,000 samples. Since the dionis dataset
was particularly slow to train with GBDT models due to its 355 classes, we subsampled it to
100,000 samples.

* We encode missing categorical values as a separate category.

* For regression, we standardize the targets to have mean zero and variance 1. This does
not introduce leakage since all neural networks standardize regression targets based on the
training set, and tree-based methods are invariant to affine rescaling.

3We noticed later that the ozone_level 1hr and ozone_level 8hr datasets contain less than 2,500 samples, but
we decided to keep them since we already used them for tuning the hyperparameters.

https://doi.org/10.52202/079017-0837 26624

Table C.20: Datasets in the meta-train classification benchmark.

Name #samples #num. features #cat. features largest #categories #classes
abalone 4177 8 0 3
adult 45222 7 7 41 2
anuran_calls_families 7127 22 0 3
anuran_calls_genus 6073 22 0 5
anuran_calls_species 5696 22 0 7
avila 20867 10 0 12
bank_marketing 41579 12 5 2
bank_marketing_additional 39457 19 3 2
chess 3196 1 31 2
chess_krvk 28056 3 3 8 18
crowd_sourced_mapping 10494 28 0 4
default_credit_card 30000 23 1 2 2
eeg_eye_state 14980 14 0 2
electrical_grid_stability_simulated 10000 12 0 2
facebook_live_sellers_thailand_status 6622 9 0 2
firm_teacher_clave 10800 0 16 2 4
first_order_theorem_proving 6118 51 0 2
gas_sensor_drift_class 13910 128 0 6
gesture_phase_segmentation_raw 9900 19 0 5
gesture_phase_segmentation_va3 9873 32 0 5
htru2 17898 8 0 2
human_activity_smartphone 10299 561 0 6
indoor_loc_building 21048 470 50 2 3
indoor_loc_relative 21048 470 50 2 3
insurance_benchmark 9822 80 4 5 2
landsat_satimage 6435 36 0 6
letter_recognition 20000 16 0 26
madelon 2600 500 0 2
magic_gamma_telescope 19020 10 0 2
mushroom 8124 0 21 12 2
musk 6598 166 0 2
nomao 34465 118 2 2 2
nursery 12960 7 1 2 4
occupancy_detection 20560 7 0 2
online_shoppers_attention 12330 16 2 3 2
optical_recognition_handwritten_digits 5620 59 3 2 10
ozone_level_lhr 1848 72 0 2
ozone_level_8hr 1847 72 0 2
page_blocks 5473 10 0 5
pen_recognition_handwritten_characters 10992 16 0 10
phishing 11055 8 22 2 2
polish_companies_bankruptcy_lyear 7027 64 0 2
polish_companies_bankruptcy_2year 10173 64 0 2
polish_companies_bankruptcy_3year 10503 64 0 2
polish_companies_bankruptcy_4year 9792 64 0 2
polish_companies_bankruptcy_Syear 5910 64 0 2
seismic_bumps 2584 12 3 2 2
skill_craft 3338 18 0 7
smartphone_human_activity 5744 561 0 6
smartphone_human_activity_postural 10411 561 0 6
spambase 4601 57 0 2
superconductivity_class 21263 81 0 2
thyroid_all_bp 3621 6 17 5 2
thyroid_all_hyper 3621 6 17 5 2
thyroid_all_hypo 3621 6 17 5 3
thyroid_all_rep 3621 6 17 5 2
thyroid_ann 7200 6 11 3 3
thyroid_dis 3621 6 17 5 2
thyroid_hypo 2700 7 14 3 2
thyroid_sick 3621 6 17 5 2
thyroid_sick_eu 3163 8 18 2 2
turkiye_student_evaluation 5820 32 0 3
wall_follow_robot_2 5456 2 0 4
wall_follow_robot_24 5456 24 0 4
wall_follow_robot_4 5456 4 0 4
waveform 5000 21 0 3
waveform_noise 5000 40 0 3
wilt 4839 5 0 2
wine_quality_all 6497 11 1 2 7
wine_quality_type 6497 11 0 2
wine_quality_white 4898 11 0 7

26625 https://doi.org/10.52202/079017-0837

Table C.21: Datasets in the meta-train regression benchmark.

Name #samples #num. features #cat. features largest #categories
air_quality_bc 8991 10 0
air_quality_co2 7674 10 0
air_quality_no2 7715 10 0
air_quality_nox 7718 10 0
appliances_energy 19735 29 0
bejing_pm25 41757 12 0
bike_sharing_casual 17379 9 3 2
bike_sharing_total 17379 9 3 2
carbon_nanotubes_u 10721 5 0
carbon_nanotubes_v 10721 5 0
carbon_nanotubes_w 10721 5 0
chess_krvk 28056 3 3 8
cycle_power_plant 9568 4 0
electrical_grid_stability_simulated 10000 12 0
facebook_comment_volume 40949 38 2 7
facebook_live_sellers_thailand_shares 7050 9 0
five_cities_beijing_pm25 19062 14 0
five_cities_chengdu_pm25 21074 14 0
five_cities_guangzhou_pm?25 20074 14 0
five_cities_shanghai_pm25 21436 14 0
five_cities_shenyang_pm25 19038 14 0
gas_sensor_drift_class 13910 128 0
gas_sensor_drift_conc 13910 128 0
indoor_loc_alt 21048 470 50 2
indoor_loc_lat 21048 470 50 2
indoor_loc_long 21048 470 50 2
insurance_benchmark 9822 80 4 5
metro_interstate_traffic_volume_long 48204 6 2 38
metro_interstate_traffic_volume_short 48204 6 2 11
naval_propulsion_comp 11934 14 0
naval_propulsion_turb 11934 14 0
nursery 12960 7 1 2
online_news_popularity 39644 44 3 7
parking_birmingham 35717 5 0
parkinson_motor 5875 18 1 2
parkinson_total 5875 18 1 2
protein_tertiary_structure 45730 9 0
skill_craft 3338 18 0
sml2010_dining 4137 17 0
sml2010_room 4137 17 0
superconductivity 21263 81 0
travel_review_ratings 5456 23 0
wall_follow_robot_2 5456 2 0
wall_follow_robot_24 5456 24 0
wall_follow_robot_4 5456 4 0
wine_quality_all 6497 11 1 2
wine_quality_white 4898 11 0

After preprocessing, we

* exclude datasets with less than 1,000 samples, these were
— for classification: albert, APSFailure, arcene, Australian, blood-transfusion-service-
center, eucalyptus, KDDCup09_appetency, KDDCup09-Upselling, micro-mass, vehi-
cle
— for regression: boston, cars, colleges, energy_efficiency, forest_fires, Moneyball,
QSAR_fish_toxicity, sensory, student_performance_por, tecator, us_crime
* exclude datasets that have more than 10,000 features after one-hot encoding. These were
Amazon_employee_access, Click_prediction_small, and sf-police-incidents (all classifica-
tion).

C.3.3 Grinsztajn et al. [18] Benchmarks

We select the datasets as follows:

* We use the newer version of the benchmark on OpenML.

* When a dataset is used both in benchmarks with and without categorical features, we use
the version with categorical features.

* We exclude the eye_movements dataset since a leak in the dataset was reported by Gorishniy
etal. [17].

https://doi.org/10.52202/079017-0837 26626

Table C.22: Datasets in the meta-test classification benchmark.

Name #samples #num. features #cat. features largest #categories #classes OpenML task ID
Bioresponse 3751 1776 0 2 359967
Diabetes130US 101766 13 36 789 3 211986
Fashion-MNIST 70000 784 0 10 359976
Higgs 500000 28 0 2 360114
Internet-Advertisements 3279 3 1555 2 2 359966
KDDCup99 500000 32 9 65 21 360112
MiniBooNE 130064 50 0 2 359990
Satellite 5100 36 0 2 359975
ada 4147 48 0 2 190411
airlines 500000 3 4 293 2 189354
amazon-commerce-reviews 1500 10000 0 50 10090
car 1728 0 6 4 4 359960
christine 5418 1599 37 2 2 359973
churn 5000 16 4 10 2 359968
cme 1473 2 7 4 3 359959
cnae-9 1080 856 0 9 359957
connect-4 67557 0 42 3 3 359977
covertype 500000 10 44 2 7 7593
credit-g 1000 7 13 10 2 168757
dilbert 10000 2000 0 5 168909
dionis 100000 60 0 355 189355
dna 3186 0 180 2 3 359964
fabert 8237 800 0 7 168910
gina 3153 970 0 2 189922
guillermo 20000 4296 0 2 359988
helena 65196 27 0 100 359984
jannis 83733 54 0 4 211979
jasmine 2984 8 136 2 2 168911
jungle_chess_2pcs_raw_endgame_complete 44819 6 0 3 359981
kel 2109 21 0 2 359962
kick 72600 14 18 1054 2 359991
madeline 3140 259 0 2 190392
mfeat-factors 2000 216 0 10 359961
numerai28.6 96320 21 0 2 167120
okcupid-stem 50788 2 17 7019 3 359993
pc4 1458 37 0 2 359958
philippine 5832 308 0 2 190410
phoneme 5404 5 0 2 168350
porto-seguro 453046 26 31 102 2 360113
gsar-biodeg 1055 41 0 2 359956
riccardo 20000 4296 0 2 359989
robert 10000 7200 0 10 359986
segment 2310 16 0 7 359963
shuttle 58000 9 0 7 359987
steel-plates-fault 1941 27 0 7 168784
sylvine 5124 20 0 2 359972
volkert 58310 180 0 10 359985
yeast 1484 8 0 10 2073

26627 https://doi.org/10.52202/079017-0837

Table C.23: Datasets in the meta-test regression benchmark.

Name

#samples #num. features

#cat. features

largest #categories

OpenML task ID

Airlines_DepDelay_10M
Allstate_Claims_Severity

Buzzinsocialmedia_Twitter

MIP-2016-regression

Mercedes_Benz_Greener_Manufacturing

QSAR-TID-10980
QSAR-TID-11

SAT11-HAND-runtime-regression
Santander_transaction_value

Yolanda
airfoil_self_noise

auction_verification

black_friday
brazilian_houses
california_housing

concrete_compressive_strength

cps88wages
cpu_activity
diamonds
elevators
fifa
fps_benchmark

geographical_origin_of_music

health_insurance
house_16H

house_prices_nominal

house_sales
kin8nm
kings_county
miami_housing

nyc-taxi-green-dec-2016

pol
pumadyn32nh
quake
sarcos
socmob
solar_flare
space_ga
topo_2_1
video_transcoding
wave_energy
yprop_4_1

500000
188318
500000
1090
4209
5766
5742
1725
4459
400000
1503
2043
166821
10692
20640
1030
28155
8192
53940
16599
19178
2592
1059
22272
22784
1121
21613
8192
21613
13932
500000
15000
8192
2178
44484
1156
1066
3107
8885
68784
72000
8885

6
14
71
143

368
1024
1024
115
4991
100
5

5
5
5
8
8
2

21
6
18
27
29
116
4
16
36
20
8
17
15
9
48
32
3
21
1
2
6
266
16
48
251

3
116

— O WO ROORENODOO—~OO0—O

=

oNo

cComocoO®xhROOOOCVCO RO ~E

359
326

163
24

25
70

70

259

359929
233212
233213
360945
233215
360933
360932
359948
233214
317614
361235
361236
359937
361267
361255
361237
361261
361256
361257
359936
361272
361268
361243
361269
359952
359951
359949
361258
361266
361260
359943
359946
361259
359930
361011
361264
361244
361623
359939
361252
361253
359940

Table C.24: Datasets in the Grinsztajn et al. [18]] classification benchmark.

Name #samples #num. features #cat. features largest #categories #classes OpenML task ID
Bioresponse 3434 419 0 2 361276
Diabetes130US 71090 7 0 2 361273
Higgs 500000 24 0 2 361069
MagicTelescope 13376 10 0 2 361065
MiniBooNE 72998 50 0 2 361068
albert 58252 21 10 14 2 361282
bank-marketing 10578 7 0 2 361066
california 20634 8 0 2 361277
compas-two-years 4966 3 8 2 2 361286
covertype 423680 10 44 2 2 361113
credit 16714 10 0 2 361055
default-of-credit-card-clients 13272 20 1 2 2 361283
electricity 38474 7 1 7 2 361110
heloc 10000 22 0 2 361278
house_16H 13488 16 0 2 361063
jannis 57580 54 0 2 361274
pol 10082 26 0 2 361062
road-safety 111762 29 3 2 2 361285

https://doi.org/10.52202/079017-0837 26628

Table C.25: Datasets in the Grinsztajn et al. [18]] regression benchmark.

Name #samples #num. features #cat. features largest #categories OpenML task ID
Ailerons 13750 33 0 361077
Airlines_DepDelay_1M 500000 5 0 361293
Allstate_Claims_Severity 188318 14 110 20 361292
Bike_Sharing_Demand 17379 6 5 4 361099
Brazilian_houses 10692 8 3 5 361098
Mercedes_Benz_Greener_Manufacturing 4209 0 359 12 361097
MiamiHousing2016 13932 13 0 361087
SGEMM_GPU_kernel_performance 241600 3 6 2 361104
abalone 4177 7 1 3 361288
analcatdata_supreme 4052 2 5 2 361093
cpu_act 8192 21 0 361072
delays_zurich_transport 500000 8 3 7 361291
diamonds 53940 6 3 8 361096
elevators 16599 16 0 361074
house_16H 22784 16 0 361079
house_sales 21613 15 2 2 361102
houses 20640 8 0 361078
medical_charges 163065 3 0 361294
nyc-taxi-green-dec-2016 500000 9 7 5 361101
particulate-matter-ukair-2017 394299 3 3 12 361103
pol 15000 26 0 361073
seattlecrime6 52031 2 2 17 361289
sulfur 10081 6 0 361085
superconduct 21263 79 0 361088
topo_2_1 8885 252 3 2 361287
visualizing_soil 8641 3 1 2 361094
wine_quality 6497 11 0 361076
yprop_4_1 8885 42 0 361279
26629 https://doi.org/10.52202/079017-0837

C.4 Comparison with Standard Grinsztajn et al. [18] Benchmark

Here, we compare two versions of the Grinsztajn et al. [18]] benchmark:

(a) The “new” version, u

sing our benchmarking setup with the datasets of the Grinsztajn et al.

[18] benchmark. This version is used in all plots except[Figure C.2]and [Figure C.3}
(b) The “old” version, which is a slightly modified version of the original code, described in

Append

The corresponding results for the most comparable metrics are shown in for the new

paper version, and [Figure C.2

reasons, including a more real

| for the old version. We decided to use the new version for multiple
istic validation setting, having the exact same baselines, and having

more options for evaluation and plotting. Here is a list of differences in our adapted version:

* In the new version, we removed the eye_movements dataset due to a leak reported in
Gorishniy et al. [17].

* We subsample datasets after downloading them to SOOK samples (all train-test splits are
performed on the same 500K samples).

* We always standardize targets, to make our results independent of the scaling of the datasets.
(In contrast, HPO methods on the original benchmark have standardization as an option in
their tuning space.)

* We limit training+validation set sizes to 13333, such that at most 10K samples are used for
training. Of these samples, we always use 25% for validation, unlike the original benchmark,
which limits the training and validation set sizes separately to 10K and 50K samples.

» The new version does not use separate validation sets for early stopping and for HPO, which
avoids unfairly disadvantaging D and TD methods compared to HPO methods.

* With the new version, we mostly report results using different aggregation strategies and
using nRMSE instead of R? for regression, but try to provide comparable aggregated metrics
in

* The new version uses different random hyperparameter configurations on different train-test
splits, which should provide more accurate results and allows computing confidence intervals
as in[Appendix C§

* The new version uses ten train-test splits on all datasets, instead of a smaller dataset-size-
dependent number.

¢ The new version measures all runtimes on the CPU, while the old version measures NN
runtimes on the GPU.

* The old version uses slightly different baseline configurations:

— The old version uses (in the code) a simplified version of the MLP without dropout and
without weight decay.

— The old version sometimes replaces search spaces like Choice([0, LogUniform[1e-6,
1e-3]]) with more simple spaces.

— The new version doesn’t use as large categorical embedding sizes for ResNet and MLP

models (up to 64 instead of [64, 512]).

The old version uses larger stopping patiences for default models than in the original

literature [[15]].

In the old version, ResNet-HPO tunes the normalization, unlike the original paper [15]].

In the old version, the batch size is tuned for some models.

In the old version, XGBoost uses the exact tree method with one-hot encoding, while

in the new version, we use the hist method that supports native categorical feature

handling. This makes XGBoost slower but also more accurate in the older version.

The old version uses different versions of quantile preprocessing for NN methods,

while we use the RTDL quantile transform for all methods except RealMLP.

Both the new and the old version use early stopping and best-epoch selection on accuracy (for
classification) / RMSE (for regression).

C.5 Closer-to-original Version of the Grinsztajn et al. [18] Benchmark

In the following, we document the benchmark settings for obtaining the results in and
Figure C.3| The results were obtained using a modification of the original code.

https://doi.org/10.52202/079017-0837

26630

Grinsztajn et al. (2022) classification benchmark

0.7 RF{*

0.6 Lo
XGB-D .
ResNet-D+ MLP-HPO
0.5 RealMLP-TD-S T
! * RF-HPO ﬁesNet-HPO
R RS 8 prrol |
+Rea|MLPfTD JLP-PLR-HPO
04 LP-PLR T 1 RealMLP-HPO
XeB-HPO FTTHPQ
XGBIPBB-D® | ‘?ealTabR-D '
03 CatBoost-TD ---B&t- TP LEBMH-PO
CatBoost-D" Best'D CatBoost-HRO
H <li3es1-HPO
Ensemble—D*“i _________________ TabR-HPQ)
)

o

Arithmetic mean of custom-normalized classification errors

10° 10! 10? 10°

107!
Average training time (CPU) per 1K samples [s]

10t

Grinsztajn et al. (2022) regression benchmark

RF-D
()

&SE-D\‘
XGB-TD'

L'GBM-D ‘ReaIMLP-Ta

ResNet-D
[]
MLCP-D
(]

*HesNet—HPO
ML&HPO

MLP-PLR-D
RealMLP-TD-S

" g
HPO

RF-
$abﬁ‘—S—D

i
LGBM:'TD " FTg-HPO
CatBoost P EhtBoose, | VLPPLRHPO

Best-D XGB-HPO &

Best—?D‘ % ‘RealMLP-HPO
CatBoos!-HPOy J.R HeBReD

1 eallal -
LGBM-HRO™ | * TabH-HPO*
Ensemble—D.": Best-HPO

107!
Average

Ensemble—TD‘

Ensemb\e—HPO*

10 10! 10? 10° 10!

training time (CPU) per 1K samples [s]

Figure C.1: Benchmark scores (custom normalized errors) vs. average training time. The y-axis
shows the arithmetic mean normalized error as described in[Appendix C.5| averaged over all splits
and datasets. Errors are normalized by rescaling the lowest error to zero and the largest error to
one. The z-axis shows average training times per 1000 samples (measured on B*#" for efficiency

reasons), see

#splits — oo, see|Appendix C.6

03 Grinsztajn et al. classification benchmark

MLP-D
.ResNet—D
0.4
MLP-HPO
ResNet-HPO
£] &8
3 SAINTD
806 SAINT-HPO,
8 . FT-Transformer-D) X
N RealMLP-TD_ @abR-S-D
g m vy FT—Transformer—HiO
€ - B e-XGB-
507 Teewp XcBp RealMLP-HPO _
z ! RE-HP®
! GBTHPO
0 LGBM-TD® ="
. |
CatBoost-TDE-
S -—----Best-TD,
< \GatBoost-D LGBM HPO' _____
a& : LatBoost-HPO
00 | ® XGB-HPO®™™~=""7~ ;', ________
Best-HPO
107! 10 10 10° 10°

Average training time per 1K samples (s)

'S

0.6

Normalized R2 score

Appendix C.7| The error bars are approximate 95% confidence intervals for the limit

Grinsztajn et al. regression benchmark

.ResNet—D

GBT-Dg MLP-D ~SA|NT—D
XGB-TD,
XG B-D. RfFrl‘E)
ResNet-HPO,
MLP-HPQ,
x SAINT-HPO.,
FT—Transformer—D. IET—Tramsformer—HPOx
&MD m RSO GBT-HPQ ot
LGBM-TD®} . - X
i .ReaII\%LP-TD x REHPO
i
1
| 6"""‘ 300SE
CatBoost-D' CatBoost:TD RealMLP-HPO
1
Best-TD iCatBoost-HPg

10°

10?
Average training time per 1K samples (s)

10

Figure C.2: Results on the benchmarks of Grinsztajn et al. [18], using closer-to-original settings

(Appendix C.5). The y-axis (inverted) shows the normalized accuracy / R2 score used in the original
paper (see|Appendix C.5). The z-axis shows average training times per 1000 samples, using GPUs

for NN as in Grinsztajn et al. [18], see

The datasets are taken from the benchmarks described in Grinsztajn et al. [[18]. When a dataset is
used both in benchmarks with and without categorical features, we use the version with categorical
features. We preprocess the datasets following the same steps as in Grinsztajn et al. [18]]:

* For neural networks, we quantile-transform the features to have a Gaussian distribution. For
TabR [17], we use the modified quantile transform from the TabR paper. For RealMLP, we
use the preprocessing described in[Section 3] namely robust scaling and smooth clipping.

* For neural networks, we add as a hyperparameter the possibility to normalize the target
variable for the model fit and transform it back for evaluation (via scikit-learn’s Transformed-

26631

https://doi.org/10.52202/079017-0837

0.9 0.9

0.8

"GBM =
0.7 {—=RealMLP

Lg

Normalized test accuracy of best
model (on valid set) up to this iteration
Normalized test R2 score of best
model (on valid set) up to this iteration

0.6
0.5 ZEMUBISA
0.4
1 3 10 30
Number of random search iterations Number of random search iterations

Figure C.3: Results on the benchmarks of Grinsztajn et al. [18], for classification (left) and
regression (right), using the closer-to-original settings (Appendix C.5). The plot is similar to the
one in the main part of Grinsztajn et al. [[18]], with our algorithms added. The y-axis shows the result
of the best (on val, but evaluated on test) hyperparameter combination up to n steps of random step
(z-axis). As in the original paper, we normalize each score between the max and the 10% quantile
(classification) or 50% (regression), and truncate scores below 0 for regression.

TargetRegressor and StandardScaler, which differs from the QuantileTransformer from the
original paper, as we found it to work better). The same standardization is also applied to all
default-parameter versions of neural networks.

* For models that do not handle categorical variables natively, we encode categorical features
using OneHotEncoder from scikit-learn.

* Train size is restricted to 10,000 samples and test and validation size to 50,000 samples.

Note that the datasets from the original benchmark are already slightly preprocessed, e.g., heavy-tailed
targets are standardized and missing values are removed. More details can be found in the original

paper.

Results normalization For Figure[C.2] as in the original paper, we normalize the R2 or accuracy
score for each dataset before averaging them. We use an affine normalization between 0 and 1, 1
corresponding to the score of the best model for each dataset, and 0 corresponding to the score of the
worst model (for classification) and the 10th percentile of the scores (for regression). We use slightly
different percentiles compared to the original paper as we normalize across the scores of the tuned
and default models, and not all steps of the random search, which reduces the number of outliers.

Other aggregation metrics are shown in

Time measurement We follow the original paper and run neural networks on a GPU and the other
models on 1 core of an AMD EPYC 7742 64-Core processor, and we average the time across all
random steps (for each random step, the time is averaged across splits). To compute the runtime of
neural networks, we restrict ourselves to steps ran on the same GPU model (NVIDIA A100-40GB),
which means that we exclude datasets for which we have less than 15 steps of each model on this
GPU (leaving us with 11 datasets for classification and 15 for regression). We then compute the
average runtime per 1000 samples on each dataset and average them.

Other details We rerun classification results for neural networks compared to the original results to
early stop on accuracy rather than on cross-entropy, to make results more comparable with the rest of
this paper.

Athttps://github.com/LeoGrin/tabular-benchmark/tree/better_by_default, we pro-
vide code for the adapted original Grinsztajn et al. [18] benchmark.

https://doi.org/10.52202/079017-0837 26632

https://github.com/LeoGrin/tabular-benchmark/tree/better_by_default

C.6 Confidence Intervals

Here, we specify how our confidence intervals are computed. Let X;; denote the score (error/rank)
of a method on dataset ¢ and split j, with ¢ € {1,...,n} and j € {1,...,m}. Then, the benchmark
score S can be written as

s=y(X mYs0n). M
1= J=

where f = g = id for the arithmetic mean. For the shifted geometric mean, we instead have g = exp
and f(x) = log(x + €), € = 0.01. We interpret the benchmark datasets as fixed, but the splits as
random. For each dataset ¢, X;1,..., X;,, are i.i.d. random variables. We first take the dataset
averages

i=1

The random variables X, ..., X,,; are independent but not identically distributed. Still, for lack of
a better option, we assume that the Z; are normally distributed with unknown mean and variance. We
know that the Z; are i.i.d., hence we use the confidence intervals from the Student’s ¢-distribution for
normally distributed random variables with unknown mean and variance. This gives us a confidence

interval [a, b] for -- >j=1 Z;. Since g is increasing, we hence obtain a confidence interval [g(a), g(b)]

forS=yg (% >t Zj).

Comparison of two methods We often compute the error increase in % in the benchmark score of
method A compared to method B with the shifted geometric mean, given by

S
100 - (S(B) — 1) .

Here, we leverage that the shifted geometric mean uses g = exp to write
S — Wi A B
SB) =g ZEZ(f(XZ(J)) _f(Xi(j))))
i=1 = j=1

which is of the same form as Eq. (I)). Hence, we obtain confidence intervals for this quantity using
the same method.

C.7 Time Measurements

For our meta-train and meta-test benchmarks, we report training times measured as follows: We run
all methods on a single compute node with a 32-core AMD Ryzen Threadripper Pro 3975 WX CPU,
using 32 threads for GBDTSs and the PyTorch default settings for NNs. No method is run on GPUs.
We run methods sequentially on one split on each dataset of the meta-train-class and meta-train-reg
benchmarks. For random-search-based HPO methods, we only run one (TabR-HPO, FTT-HPO)
or two (other methods) random search steps and extrapolate the runtime to 50 steps. Runtimes for
combinations of models (Best and Ensemble) are computed as the sum of the individual runtimes.
We compute the runtime per 1000 samples on each dataset and then average them. For simplicity, we
do not use the dataset-dependent weighting employed otherwise on the meta-train benchmark.

C.8 Compute Resources

While we did not measure compute resources precisely, our experiments required at least around
3000 hours on RTX 3090 GPUs and other GPUs, as well as roughly 10,000 hours on HPC CPU
nodes (32-64 cores).

C.9 Used Libraries

Our implementation uses various libraries, out of which we would like to particularly acknowledge
PyTorch [47], Scikit-learn [48]], Ray [46], XGBoost [9], LightGBM [31]], and CatBoost [51]. For
using XGBoost, LightGBM, and CatBoost, we adapted wrapping code from the CatBoost quality
benchmarks [31]].

26633 https://doi.org/10.52202/079017-0837

D Results for Individual Datasets

Here, we provide and compare the results of central methods per dataset. Figures [D.1]—[D.7) show

scatterplot comparisons for different models.

class *

Table D.1|and [Table D.2|show results on B{j22. [Table D.3|and [Table D.4| show results on Birai.

Grinsztajn
BCrmsztan,

Table D.5|and [Table D.6[show results on B{fs! . [Table D.7|and [Table D.8|show results on B;gs'.
Table D.9 and|Table D.10| show results on BS;S;SZ an, rTable D.1 1| and|Table D.12| show results on

https://doi.org/10.52202/079017-0837 26634

Meta-train classification benchmark Meta-train regression benchmark

0.6 1.0
Best-TD better Best-TD better
~ 0.5
2 0.8
1) D
= -~
T = o
Z 0.4 A 8
=3 ==
e = 0.6 °
o g
£ 0.3 % .
5 o
5 & 041 ‘
5 g .
£ 0.2 g] °
2 &~
b= ° =
2 o
= 0.2 4 “.
© 014 .
..
° CatBoost-HPO better CatBoost-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Best-TD ({.) nRMSE for Best-TD ({,)
Meta-test classification benchmark Meta-test regression benchmark
) 1.0 4
967 Best-TD better Best-TD better
2 05 4
3 0.5 ° 0.8 °
|- % fary
== Z
2
& 047 % £ o
= % 0.6
% H
S =) .
< 0.3 ° 3
g 5
° = 0.4 o
& o g ° °
3 0.2 = o~
% % o
i .
5 P 0.2 -
0.1
.
y CatBoost-HPO better | CatBoost-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Best-TD () nRMSE for Best-TD ()
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40 1.0
Best-TD better Best-TD better
0.35
3 0.8
Q 0.30 4
£ 0.30 =)
o o
§ o =
2 0% L 0.6
3 g
< 0.20 4 %
5 <
§ € 0.4 4 Q
£ 015 4 . g
2 g
'Z 0.10
o) 0.2 -
0.05 .
CatBoost-HPO better CatBoost-HPO better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Best-TD () nRMSE for Best-TD ({,)

Figure D.1: Best-TD vs CatBoost-HPO on individual datasets. Each point represents the errors of
both models on a dataset, averaged across 10 train-valid-test splits. The black line represents equal
errors (r = y).

26635 https://doi.org/10.52202/079017-0837

Meta-train classification benchmark Meta-train regression benchmark

0.6 1.0
Best-TD better Best-TD better
0.5
5 0.8
e ~
T 0.4 =2
3 g
2] T 0.6 4 %
= -
S 3
5 0.3 m
3 E
g 2 0.4 4
Zood 2
]
0.2
0.1
Best-HPO better Best-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Best-TD ({) nRMSE for Best-TD ()
Meta-test classification benchmark Meta-test regression benchmark
0.6 °
) Best-TD better 1.0 4 Best-TD better
o,
= 054 ° o
=~ 0.8
o
= 3
‘:;) 0.4 Q
S &
= M
S 0.3 4
5 8 ¢ °
g 2 0.4 4 °
5 z°
& 0.2 [
E
© .
0.2
0.1
Best-HPO better Best-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Best-TD () nRMSE for Best-TD (/)
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40 -
Best-TD better Best-TD better
0.35
. 0.8
2
S 0:30 1 R
= 3
ol o
g 0.25 ?E,- 0.6
g i
5 0.20 f
5 E
g 2 0.4
S - %]
£ 0.15 S .
e %
2
= 0.10
© 0.2
0.05
Best-HPO better Best-HPO better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.0 0.2 0.4 0.6 0.8
Classification error for Best-TD () nRMSE for Best-TD ()

Figure D.2: Best-TD vs Best-HPO on individual datasets. Each point represents the errors of both
models on a dataset, averaged across 10 train-valid-test splits. The black line represents equal errors

(x =y).

https://doi.org/10.52202/079017-0837 26636

Meta-train classification benchmark

Meta-train regression benchmark

0.6 - 1.0
RealMLP-TD better RealMLP-TD better
~ 0.5
3 0.8
n o,
3 :
S 0.4 a
g e 2
g f Z 0.6
5]
= 0.3 - S (X
8 = L]
bl & °
g = 0.4 'S °
g 024 = . °
2 . o (N
o 0.2 o
0.1 4 °
. o8 .
oS CatBoost-TD better of CatBoost-TD better
)
0.0 - T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for RealMLP-TD () nRMSE for RealMLP-TD ()
Meta-test classification benchmark Meta-test regression benchmark
D
0.6 1 RealMLP-TD better 1.0 4 RealMLP-TD better
2 0.5 4 °
e 5 0% ¢
Z a
R 0.4 I
= ° ‘g (]
o R 06 .
8 5
5 0.3 D
5 .° &
< . m .
.% : E 0.4 S
‘é_’ 0.2 ° % ®e
g
O d ° 0.2 4 S
01 © °
CatBoost-TD better », . CatBoost-TD better
0.0 7 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for RealMLP-TD () nRMSE for RealMLP-TD ()
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40
RealMLP-TD better RealMLP-TD better
0.35
fary 0.8
E. 0.30 5 .
g a
é 0.25 I 0.6
< 8 N
8} ° 3
=
“E 0.20 A g
o
£)
2 = 0.4
8 0.15 a2
E] ° = °
£ o %
Z 0.10 7 °
o 0.2
L}
0.05 .
CatBoost-TD better CatBoost-TD better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.0 0.5 0.20 025 0.30 0.35 0.40 0.0 0.2 0.4 0.6 0.8

Figure D.3: RealMLP-TD vs CatBoost-TD on individual datasets. Each point represents the errors
of both models on a dataset, averaged across 10 train-valid-test splits. The black line represents equal

Classification error for RealMLP-TD (/)

errors (r = y).

26637

nRMSE for RealMLP-TD ()

https://doi.org/10.

52202/079017-0837

Meta-train classification benchmark Meta-train regression benchmark

1.0 4
RealMLP-HPO better RealMLP-HPO better
~ 0.5
2 0.8 4
2 v 5
T 2 3
§ 0.4 g
<] = 0.6 - o
S ¢ Z :
S 0.3 E . °
5 ¢ .)
5 5 o
E 5 01 . Y
= 0.2 o E ° °
S &
g %% =
2 . b
s o
© 014 021 LRy
°© /e
e CatBoost-HPO better e, CatBoost-HPO better
0.0 T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for ReaIMLP-HPO (]) nRMSE for RealMLP-HPO ({)
Meta-test classification benchmark Meta-test regression benchmark
- 1.0 4
%61 RealMLP-HPO better RealMLP-HPO better °
L]
2 05 4
S 0.5 0.8 4 7 e
& 3
2 ’
é 0.4 4 = B .
2 0.6
S g .
= a °
‘g 0.3 4 °/ S
£ 5
2 ° 5 0.4 4
S . ® g .
= 0.2
2 E >
Z o
5 P 0.2 4 °
0.1
°®
y CatBoost-HPO better L /e CatBoost-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for RealMLP-HPO () nRMSE for RealMLP-HPO ()
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40 1.0
RealMLP-HPO better RealMLP-HPO better
0.35
3 0.8 -
o .
£ 0.30 3 4
~;, S o
. z
@ 0.25 o L 0.6 4
S g
& 0.20 4 2
5 ¢
5 < 0.4 - .
£ 015 1 o g
g D
= . %
2 0.10 o °
e .
5 0.2
0.05 °
CatBoost-HPO better CatBoost-HPO better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for ReaIMLP-HPO ({) nRMSE for RealMLP-HPO ()

Figure D.4: RealMLP-HPO vs CatBoost-HPO on individual datasets. Each point represents the
errors of both models on a dataset, averaged across 10 train-valid-test splits. The black line represents
equal errors (z = ¥).

https://doi.org/10.52202/079017-0837 26638

Meta-train classification benchmark Meta-train regression benchmark

0.6 1.0
Ensemble-TD better Ensemble-TD better
0.5
_ 0.8
2
E —_
% 0.4 2
o a
A = 0.6
& g
5 0.3 y, 2
b} &
.5 E’ 0.4 - °
B =
< 0.2 & °
Z
E
]
0.2
0.1
Best-TD better Best-TD better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Ensemble-TD () nRMSE for Ensemble-TD ()
Meta-test classification benchmark Meta-test regression benchmark
0.6 4 1.0
) Ensemble-TD better Ensemble-TD better
05 08 4 °
2
£ 5 .
% 0.4 4 A
M £ 0.6+
£
=
o
£ 0.3 1 8 D
5 m L]
g & 0.4
o
£ 0.2 1 . =
E [
o
0.2 4
0.1
Best-TD better Best-TD better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for Ensemble-TD ({) nRMSE for Ensemble-TD ()
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40
Ensemble-TD better Ensemble-TD better
0.35
0.8
Z 0.30 -
a
&= S
R 0.25 1 e 0.6 4
= -
& %
= m
S 0.20
: £ .
8 5 0.4 1
S 0.15 =
= %
Z
&
5 0.10
0.2
0.05
Best-TD better Best-TD better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 010 0.5 0.20 025 0.30 0.35 0.0 0.0 0.2 0.4 0.6 0.8
Classification error for Ensemble-TD () nRMSE for Ensemble-TD ({)

Figure D.5: Ensemble-TD vs Best-TD on individual datasets. Each point represents the errors of
both models on a dataset, averaged across 10 train-valid-test splits. The black line represents equal
errors (r = y).

26639 https://doi.org/10.52202/079017-0837

0.6

Meta-train classification benchmark

Meta-train regression benchmark

Classification error for RealMLP-TD (/)

1.0
RealMLP-TD better RealMLP-TD better
5 05 7
S _ 0.8
z 3
“__,‘- 0.4 e
= =
= A 0.6 4
E = {
8 0.3 4 3z
5 -2
2)
E g 0.4
g N 2]
g 0.2 ° g
< g
g 02 -
© 0.1 4 ()
RealMLP-HPO better RealMLP-HPO better
0.0 - T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for RealMLP-TD (]) nRMSE for RealMLP-TD ()
Meta-test classification benchmark Meta-test regression benchmark
0.6
RealMLP-TD better 104 RealMLP-TD better o
Z 0.5 4 .
o
& 3 08 °
Al o}
§ 0.4 &
3 5
- L]
% Em 0.6
<= 0.3 o 3
5 4 &~ °
5 g
_g o a 0.4 o
§ 02 s
L] . %
Z .
= ;
SH 0.2
RealMLP-HPO better ° RealMLP-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for RealMLP-TD (]) nRMSE for RealMLP-TD (])
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40
RealMLP-TD better RealMLP-TD better
0.35
3 0.8
g 0.30 =
3 g t
% 0.25 2 0.6
& s
& 0.20 A 5
5 o~
3 £ 0.4
£ 0.15 2 °
Z 0.10 -
8 0.2
0.05
RealMLP-HPO better RealMLP-HPO better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 0.40 0.0 0.2 0.4 0.6 0.8

nRMSE for RealMLP-TD (].)

Figure D.6: RealMLP-TD vs RealMLP-HPO on individual datasets. Each point represents the
errors of both models on a dataset, averaged across 10 train-valid-test splits. The black line represents
equal errors (z = ¥).

https://doi.org/10.52202/079017-0837 26640

Meta-train classification benchmark

Meta-train regression benchmark

Classification error for CatBoost-TD ({)

nRMSE for CatBoost-TD ({)

0.6 - 1.0
o
CatBoost-TD better CatBoost-TD better
3 0.5
S 0.8
& S
== =
Z 0.4 4 I
o
g % 06 .
< 0.3 g °
=
5 5 Ly
= m 4] o
g 2] °
= 0.2 s 4
& 4
2 ° El
< L]
8 0.2
© o1
CatBoost-HPO better CatBoost-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for CatBoost-TD () nRMSE for CatBoost-TD ()
Meta-test classification benchmark Meta-test regression benchmark
1.0 4
0.6 4 CatBoost-TD better CatBoost-TD better
2
g 0.5 - _ 0.8 4 ‘e
P 5 .
S 0.4 =
i% ° 2 0.6
S g e
5 =] D)
= <
5 0.3 o 9] “
5 5
° = 0.4 o
g § %o
= 0.2 4 o,
£ % A
2 o, ©
= 0.2
5 .
0.1 L4
. °
CatBoost-HPO better CatBoost-HPO better
0.0 T T T T T T 0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Classification error for CatBoost-TD (]) nRMSE for CatBoost-TD ()
Grinsztajn et al. (2022) classification benchmark Grinsztajn et al. (2022) regression benchmark
0.40 1.0
CatBoost-TD better CatBoost-TD better
0.35
3 0.8
Q]
£ 0.30 3
o o
S 0.5 £
3 025 7 T 0o -
S g
£ 0.20 - e
5]
§ & 4
£ 015 4 %4
K
= %
Z 0.10
o) 0.2 -
0.05 .
CatBoost-HPO better CatBoost-HPO better
0.00 T T T T T T T T 0.0 T T T T
0.00 0.05 0.10 0.15 020 025 030 0.35 0.40 0.0 0.2 0.4 0.6 0.8 1.0

Figure D.7: CatBoost-TD vs CatBoost-HPO on individual datasets. Each point represents the
errors of both models on a dataset, averaged across 10 train-valid-test splits. The black line represents
equal errors (z = ¥).

26641 https://doi.org/10.52202/079017-0837

Table D.1: Classification error of untuned methods on datasets in 3
validation-test splits. When we write a & b, a is the mean error on the dataset and [a — b, a + b] is an
approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence interval
is computed from the ¢-distribution using a normality assumption as in In each row,
the lowest mean error is highlighted in bold, and errors whose confidence interval contains the lowest

error are underlined.

train
class?

averaged over ten train-

Dataset RealMLP-TD RealTabR-D TabR-S-D MLP-PLR-D MLP-D CatBoost:TD LGBM-TD XGB-TD RF-D
abalone 0.447-£0.014 0.445:£0.006 0.440=£0.010 0.45320.010 0.448+0.014 0.4580.009 0.45540.012 0.4510.013 0.45740.010

adult 0.140=£0.004 0.1340.004 0.142-20.004 0.1440.003 0.144=£0.003 0.130=:0.003 0.13140.003 0.131:£0.003 0.146=-0.003
anuran_calls_families 0.006=20.001 0.006=£0.001 0.008=£0.002 0.00940.002 0.009=£0.002 0.007-0.002 0.0090.002 0.008-£0.003 0.012--0.003
anuran_calls_genus 0.007-20.002 0.008-£0.002 0.008=20.002 0.011:0.002 0.010-£0.002 0.008=:0.002 0.009-:0.002 0.009-£0.002 0.012--0.003
0.006=20.001 0.007:£0.001 0.010=:0.002 0.0080.002 0.009-£0.002 0.00740.001 0.008+-0.002 0.008=:0.002 0.010:0.001

bank_marketing
bank_marketing_additional
chess
chess_krvk
crowd_sourced_mapping
default_credit_card
eeg_eye_state

electrical_grid_stability_simulated
facebook_live_sellers_thailand_status

firm_teacher_clave
first_order_theorem_proving
gas_sensor_drift_class
gesture_phase_segmentation_raw
gesture_phase_segmentation_va3
htru2
human_activity_smartphone
indoor_loc_building
indoor_loc_relative
insurance_benchmark
landsat_satimage
letter_recognition
madelon
magic_gamma_telescope
mushroom
musk
nomao
nursery
occupancy_detection
online_shoppers_attention

optical_recognition_handwritten_digits

ozone_level_lhr
ozone_level_8hr
page_blocks

pen_recognition_handwritten_characters

phishing

polish_companies_bankruptcy_lyear
polish_companies_bankruptcy_2year
polish_companies_bankruptcy_3year
polish_companies_bankruptcy_4year
polish_companies_bankruptcy_Syear

seismic_bumps
skill_craft
smartphone_human_activity

smartphone_human_activity_postural

spambase
superconductivity_class
thyroid_all_bp
thyroid_all_hyper
thyroid_all_hypo
thyroid_all_rep
thyroid_ann
thyroid_dis
thyroid_hypo
thyroid_sick
thyroid_sick_eu
turkiye_student_evaluation
wall_follow_robot_2
wall_follow_robot_24
wall_follow_robot_4
waveform
waveform_noise
wilt
wine_quality_all
wine_quality_type
wine_quality_white

0.000--0.000
0.08940.002
0.08540.003
0.00540.002
0.0810.004
0.032£0.004
0.17940.004
0.016£0.002
0.0320.004
0.13440.007
0.12940.006
0.1790.006
0.0050.001
0.087-£0.006
0.3230.007
0.02040.002
0.00840.001
0.00240.000
0.070=£0.002
0.06140.005
0.077-0.006
0.01940.001
0.340£0.016
0.1150.005
0.000-0.000
0.0030.002
0.02240.002
0.0200.001
0.006=-0.001
0.09840.004
0.011£0.003
0.03640.007
0.07140.010
0.02840.004
0.004--0.001
0.03140.002
0.018--0.003
0.01740.002
0.0230.002
0.029-0.003
0.0370.002
0.06840.009
0.5890.010
0.0450.004
0.0090.002
0.05240.008
0.05840.003
0.026=£0.004
0.01540.002
0.0080.002
0.009£0.002
0.008=£0.002
0.0132£0.002
0.014-£0.003
0.016-20.003
0.000-£0.000
0.01640.002
0.00240.001
0.02940.004
0.00240.001
0.14140.004
0.1390.006
0.01240.003
0.3770.008
0.00440.001
0.371£0.009

0.000:0.000 0.001£0.000 0.003=£0.001 0.016:0.002
0.087-20.003 0.088-:0.002 0.089-£0.001 0.091=-0.001
0.08440.002 0.086+0.003 0.085-£0.002 0.0864-0.002
0.013£0.003 0.0154:0.003 0.010+0.004 0.008-£0.003
0.120£0.005 0.12840.004 0.121:0.006 0.141-£0.009
0.031£0.003 0.0284-0.001 0.037:£0.003 0.034-£0.004
0.18140.004 0.1820.003 0.179-£0.003 0.18140.004
0.01120.001 0.10740.024 0.1762:0.014 0.120-£0.017
0.036=20.003 0.04840.004 0.039=:0.004 0.057-£0.003
0.1372£0.005 0.13940.007 0.1370.008 0.139-£0.007
0.128--0.005 0.13040.005 0.133+0.007 0.134-£0.005
0.180=£0.007 0.18240.007 0.188:0.008 0.181=£0.006
0.006=£0.001 0.0040.001 0.006=£0.001 0.00540.001
0.079£0.009 0.07940.006 0.1082£0.006 0.106=£0.007
0.289-20.008 0.29340.006 0.347£0.011 0.368-£0.008
0.01940.002 0.020£0.001 0.020-£0.002 0.0204-0.002
0.009£0.001 0.010£0.001 0.0112£0.002 0.015-£0.002
0.00240.000 0.002£0.000 0.002-20.000 0.002-0.000
0.081220.005 0.090:0.002 0.084-0.003 0.099-£0.004
0.06040.004 0.060-£0.004 0.060--0.004 0.060--0.004
0.083£0.006 0.0944-0.006 0.085+0.007 0.090-£0.005
0.01920.001 0.02040.001 0.0392:0.002 0.030-£0.002
0.401£0.019 0.44340.011 0.349+0.027 0.435-£0.019
0.108-20.004 0.10940.004 0.11920.005 0.122-£0.003
0.000-20.000 0.000-0.000 0.000+0.000 0.000-£0.000
0.00440.002 0.005+0.002 0.007-£0.001 0.01140.003
0.020=£0.001 0.02240.001 0.024:0.001 0.026--0.002
0.01240.003 0.0112£0.002 0.022-£0.002 0.02440.002
0.00740.001 0.008=£0.001 0.00940.001 0.0080.001
0.101=£0.004 0.09840.004 0.095::0.003 0.099-£0.004
0.01240.002 0.015:£0.003 0.020-£0.003 0.0180.003
0.03740.008 0.035:£0.008 0.035-20.008 0.03540.008
0.07040.010 0.072+0.012 0.067-£0.011 0.07240.010
0.02640.005 0.0270.004 0.026-20.004 0.028-0.004
0.00440.001 0.007-£0.001 0.007-£0.002 0.008:0.002
0.02940.002 0.029-£0.003 0.032-20.003 0.034-:0.002
0.019-20.001 0.026:0.003 0.026--0.003 0.028--0.002
0.017-20.001 0.04140.002 0.04120.002 0.041-£0.002
0.02540.002 0.041£0.004 0.038-£0.002 0.0464-0.003
0.03040.002 0.051£0.002 0.048-£0.004 0.0534-0.002
0.040£0.002 0.06440.004 0.056::0.004 0.066--0.002
0.06540.009 0.066=:0.009 0.065--0.009 0.0654-0.008
0.58240.014 0.601=£0.012 0.574-£0.019 0.59740.015
0.035-20.007 0.04240.004 0.064=£0.006 0.071-£0.004
0.00840.002 0.010=£0.001 0.011=£0.002 0.0130.002
0.059=£0.005 0.05240.007 0.0510.006 0.054--0.006
0.063£0.002 0.05940.002 0.067=£0.002 0.063-£0.003
0.0272£0.003 0.02840.003 0.0270.006 0.029-£0.005
0.01640.003 0.017:£0.003 0.014-:0.002 0.018:0.003
0.012-£0.002 0.0180.004 0.013=£0.002 0.020-£0.002
0.009£0.003 0.00940.002 0.0132£0.002 0.016-:0.005
0.009=£0.002 0.01240.004 0.006=£0.002 0.010-£0.002
0.0132£0.002 0.014:0.002 0.0152£0.003 0.016--0.003
0.014-£0.003 0.014:0.003 0.0142£0.005 0.016--0.003
0.020-£0.003 0.02240.004 0.019+0.004 0.029-£0.003
0.0004-0.001 0.001+0.001 0.000-£0.000 0.0004-0.000
0.016--0.002 0.0174-0.003 0.016+-0.002 0.033-£0.005
0.008-£0.003 0.00940.002 0.004=£0.001 0.008-£0.002
0.042-20.003 0.0404:0.007 0.016::0.004 0.042-£0.005
0.009£0.003 0.01240.003 0.007£0.002 0.011£0.003
0.14020.004 0.14740.008 0.145:0.004 0.145--0.006
0.14540.010 0.161=£0.012 0.140-£0.009 0.14340.007
0.01140.002 0.0110.002 0.014-£0.002 0.01140.002
0.353£0.007 0.35240.010 0.422+0.016 0.412-£0.015
0.00440.002 0.004=£0.001 0.00540.002 0.0040.001
0.342-£0.007 0.34540.008 0.4030.021 0.405-£0.018

0.001-0.000 0.0010.001 0.001-£0.000
0.088-:0.002 0.090-0.002 0.090-£0.002
0.08440.003 0.0840.002 0.085-0.002
0.008-£0.003 0.01140.002 0.005-£0.001
0.153=£0.002 0.14740.003 0.1464-0.003
0.035-£0.003 0.0314-0.003 0.03340.003
0.17940.004 0.178-0.004 0.180-0.004
0.05140.002 0.0524£0.001 0.0514-0.002
0.051:£0.004 0.05340.004 0.05740.003
0.131:£0.005 0.13540.006 0.133+0.008
0.150=£0.006 0.14940.003 0.14940.005
0.158-£0.008 0.16040.008 0.160+-0.006
0.006=£0.001 0.0060.001 0.0060.001
0.0712£0.005 0.06740.005 0.0660.004
0.3212£0.007 0.31240.006 0.31630.009
0.0210.002 0.0190.002 0.020-£0.002
0.008:0.002 0.008-0.002 0.008-£0.001
0.002-£0.000 0.0032:0.001 0.002-0.000
0.077-£0.003 0.059--0.003 0.066-:0.007
0.061--0.005 0.059-:0.004 0.061--0.004 0.072--0.004
0.087-£0.005 0.08040.004 0.080+0.004 0.090-£0.004
0.034-£0.003 0.0324-0.002 0.03330.002 0.045-0.002
0.139-£0.010 0.21140.010 0.2100.014 0.3200.011
0.116-£0.004 0.11840.004 0.118=£0.003 0.1224-0.003
0.000-£0.000 0.0004-0.000 0.000-0.000 0.000-£0.000
0.0112£0.002 0.01240.002 0.01240.002 0.028-0.002
0.01840.001 0.01740.001 0.017-£0.002 0.020-0.002
0.021£0.001 0.02640.002 0.024=0.002 0.034=-0.001
0.007-£0.001 0.00740.001 0.0072£0.000 0.006=-0.001
0.09740.003 0.096+0.005 0.097-£0.004 0.096=-0.003
0.017-£0.003 0.01540.003 0.0163-0.003 0.020=£0.004
0.036:0.009 0.03540.007 0.035:£0.007 0.035--0.007
0.07140.011 0.07040.012 0.067-£0.011 0.0700.009
0.025-£0.003 0.02540.003 0.025-£0.004 0.026--0.003
0.007-£0.001 0.0070.001 0.006-£0.001 0.011=-0.001
0.0312£0.002 0.0322:0.002 0.031£0.002 0.0322:0.003
0.0212£0.002 0.022-:0.003 0.021£0.002 0.027-:0.003
0.025-£0.003 0.02540.003 0.0264-0.003 0.035-£0.002
0.0312£0.003 0.0334-0.003 0.033=£0.003 0.040--0.003
0.03140.002 0.03640.002 0.035-£0.002 0.048-0.002
0.031-£0.004 0.03340.003 0.036=£0.004 0.050-0.005
0.0704-0.007 0.06640.009 0.067-0.007 0.068--0.008
0.600-£0.014 0.60740.013 0.61040.014 0.593+0.014
0.03540.003 0.03540.005 0.036--0.004 0.07940.004
0.006-£0.001 0.00740.001 0.00740.001 0.025:£0.002
0.04840.008 0.049+0.008 0.048-£0.008 0.052-40.008
0.057-£0.003 0.05840.003 0.058-0.003 0.059-0.002
0.02440.004 0.02540.003 0.022:£0.003 0.027-0.003
0.0140.003 0.014+0.003 0.014-£0.003 0.015--0.003
0.003-£0.002 0.005:0.002 0.00540.002 0.007-£0.002
0.005:0.002 0.0060.002 0.005-£0.002 0.009--0.002
0.003-£0.001 0.003:0.001 0.005-£0.002 0.003=-0.001
0.010-20.002 0.011:0.002 0.0104-0.003 0.013:-0.002
0.009-£0.004 0.010-:0.002 0.012£0.003 0.012--0.003
0.011-£0.003 0.0184-0.004 0.011+0.003 0.017-40.005
0.000-£0.000 0.000-0.000 0.000-0.000 0.000-£0.000
0.01640.002 0.0164-0.002 0.017-0.003 0.1130.005
0.002-£0.001 0.00440.002 0.002+0.001 0.001=-0.001
0.002-£0.001 0.0054-0.002 0.004=0.001 0.007=-0.001
0.002-£0.001 0.00440.002 0.00320.001 0.001=0.001
0.146-£0.005 0.14940.006 0.147-0.005 0.148=0.005
0.14540.007 0.14640.009 0.145:0.007 0.150-0.008
0.014=£0.002 0.01440.003 0.0140.003 0.016=:0.002
0.34640.008 0.35130.007 0.349-£0.007 0.338=-0.009
0.00440.001 0.005+0.001 0.003=£0.001 0.0060.001
0.334:0.008 0.3430.009 0.338=£0.008 0.330=-0.008

0.0112£0.001
0.091£0.002
0.086--0.002
0.01540.003
0.29340.017
0.05840.004
0.18340.003
0.08340.003
0.0860.005
0.14140.004
0.19140.006
0.16240.007
0.0080.001
0.0742£0.005
0.355£0.006
0.02040.002
0.0242:0.002
0.002-0.000
0.0772£0.003

https://doi.org/10.52202/079017-0837

26642

Table D.2: Classification error of funed methods on datasets in B2, averaged over ten train-
validation-test splits. When we write a & b, a is the mean error on the dataset and [a — b, a + b] is an
approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence interval
is computed from the ¢-distribution using a normality assumption as in In each row,
the lowest mean error is highlighted in bold, and errors whose confidence interval contains the lowest

error are underlined.

Dataset RealMLP-HPO MLP-PLR-HPO ResNet-HPO ~MLP-HPO CatBoost-HPO LGBM-HPO XGB-HPO
abalone 044440011 045140011 0.4432£0.007 044640013 0.4661+0.017 0.463+0.013 0.45940.016
adult 0.13940.003 0.136£0.003 0.145:£0.004 0.146:£0.003 0.130£0.003 0.12940.003 0.131--0.003

anuran_calls_families 0.0062:0.001 0.010££0.002 0.006-20.001 0.009£0.001 0.008-£0.002 0.00940.003 0.011=:0.002
anuran_calls_genus 0.0062£0.002 0.013£0.003 0.007£0.002 0.0112£0.002 0.00940.002 0.008=:0.002 0.012--0.002
anuran_calls_species 0.0074£0.002 0.010£0.003 0.009£0.002 0.009-£0.003 0.008-:0.001 ~ 0.00940.002 0.010=:0.002
avila 0.0014£0.000 0.00120.000 0.015£0.002 0.014-20.004 0.001-0.000 0.001=:0.000 0.002=-0.000
bank_marketing 0.0884+0.002 0.0904:0.002 0.09140.002 0.09240.002 0.088+0.002 0.088+0.002 0.0900.002

bank_marketing_additional 0.084+0.003 0.08440.002 0.08640.002 0.08740.002 0.083+0.002 0.083+0.002 0.08440.002

chess 0.0084+0.004 0.01040.004 0.00540.002 0.00940.003 0.00640.002 0.00740.003 0.01140.003
chess_krvk 0.07040.004 0.112£0.008 0.106£0.006 0.130£0.010 0.137£0.005 0.14940.005 0.194--0.008
crowd_sourced_mapping 0.031£0.005 0.036£0.003 0.031+0.003 0.034+0.003 0.034+0.003 0.034+0.004 0.039:0.003
default_credit_card 0.1804+0.004 0.18040.004 0.18040.003 0.18140.004 0.17940.003 0.179+0.004 0.18040.004
eeg_eye_state 0.015:£0.001 0.102+0.011 0.081+0.018 0.113+0.011 0.054£0.003 0.050£0.003 0.065-£0.006

electrical_grid_stability_simulated 0.02940.003 0.035+0.004 0.0461+0.005 0.056+0.004 0.0484-0.004 0.05440.003 0.05740.005
facebook_live_sellers_thailand_status 0.13340.007 0.13740.007 0.1384+0.006 0.1384+0.005 0.1324-0.006 0.13640.006 0.13840.007

firm_teacher_clave 0.1254-0.006 0.13240.004 0.1284+0.006 0.13040.006 0.144£0.007 0.14340.006 0.1414-0.004
first_order_theorem_proving 0.1824-0.009 0.18240.004 0.18140.008 0.18440.007 0.161+0.008 0.160+0.006 0.16440.009
gas_sensor_drift_class 0.0054-0.001 0.0064:0.001 0.0044-0.001 0.00540.001 0.006£0.001 0.0064-0.001 0.00740.001
gesture_phase_segmentation_raw 0.086£0.004 0.09140.007 0.10340.006 0.09840.007 0.071£0.004 0.0661+0.004 0.0694-0.004
gesture_phase_segmentation_va3 0.3324-0.009 0.33340.008 0.34340.009 0.35340.008 0.323+0.008 0.3074-0.005 0.33140.010
htru2 0.020£0.001 0.02040.001 0.02040.002 0.019:£0.002 0.020-£0.002 0.02040.002 0.02040.002
human_activity_smartphone 0.008+0.001 0.01240.003 0.01140.002 0.01440.003 0.009+0.002 0.00740.001 0.01140.002
indoor_loc_building 0.002-£0.000 0.00240.000 0.00240.000 0.002-£0.000 0.002-£0.000 0.00240.000 0.00240.000
indoor_loc_relative 0.060+£0.004 0.06240.003 0.09440.003 0.09540.003 0.070£0.003 0.056£0.002 0.063£0.004
insurance_benchmark 0.0614+0.004 0.0601+0.004 0.0614+0.005 0.060+0.004 0.06240.005 0.06140.004 0.06140.004
landsat_satimage 0.079+0.005 0.089£0.006 0.09040.005 0.08840.004 0.084+0.004 0.080+0.003 0.088-0.007
letter_recognition 0.018+0.001 0.03940.003 0.0244-0.002 0.030£0.002 0.0334-0.002 0.03440.002 0.04440.002
madelon 0.19440.019 0311£0.022 0.414£0.015 0.421£0.015 0.158+0.015 0.1764-0.009 0.1824-0.009
magic_gamma_telescope 0.11540.003 0.116+0.005 0.115+0.004 0.121+0.002 0.11740.004 0.118+0.004 0.119+0.004
mushroom 0.000-£0.000 0.000-£0.000 0.0004-0.000 0.0004-0.000 0.000-£0.000 0.000--0.000 0.000-£0.000

musk 0.00340.002 0.00740.002 0.00940.002 0.00840.002 0.010£0.003 0.01040.003 0.01740.003

nomao 0.0214-0.001 0.02140.002 0.0244-0.002 0.0254+0.001 0.018+0.001 0.01740.001 0.01840.001

nursery 0.0194-0.002 0.020+0.002 0.021+0.001 0.02240.002 0.02140.002 0.021+0.002 0.023+£0.003
occupancy_detection 0.007+0.001 0.00740.001 0.00940.001 0.00940.001 0.007+0.001 0.006+0.001 0.00740.001
online_shoppers_attention 0.098-£0.006 0.09410.003 0.09740.005 0.098-£0.006 0.098-£0.004 0.098+0.005 0.098-0.004
optical_recognition_handwritten_digits ~ 0.010+0.002 0.02140.005 0.0134+0.004 0.01840.003 0.016£0.003 0.01540.004 0.0204-0.004
ozone_level_lhr 0.035:£0.008 0.03840.007 0.036:0.007 0.036-£0.007 0.035-£0.008 0.038+0.008 0.03540.008
ozone_level_8hr 0.071:£0011 0.071+0.011 0.06820.012 0.071:£0.013 0.073+£0.011 0.077+0.014 0.07340.007
page_blocks 0.025-£0.003 0.02740.006 0.028:0.005 0.027-£0.003 0.024:£0.004 0.026+-0.003 0.025-0.004
pen_recognition_handwritten_characters ~ 0.004-+0.001 0.00740.002 0.00740.001 0.00840.001 0.00640.001 0.006+0.001 0.009+0.001
phishing 0.030+0.002 0.03340.003 0.0314+0.001 0.03340.002 0.031+0.002 0.0304-0.002 0.03340.002

polish_companies_bankruptcy_lyear 0.018+0.003 0.02540.002 0.02540.003 0.02840.003 0.021£0.002 0.021£0.001 0.022+0.002
polish_companies_bankruptcy_2year ~ 0.016£0.002 0.03540.003 0.041+0.002 0.040£0.003 0.024£0.003 0.024£0.003 0.0244-0.003
polish_companies_bankruptcy_3year ~ 0.024£0.002 0.03740.004 0.043+0.004 0.041£0.005 0.030£0.002 0.031£0.004 0.03240.004
polish_companies_bankruptcy_dyear 0.029+£0.002 0.0444-0.002 0.050+0.003 0.053£0.002 0.031£0.002 0.032£0.002 0.0344-0.002
polish_companies_bankruptcy_Syear 0.03840.003 0.05540.005 0.0644-0.005 0.06340.003 0.030+£0.004 0.0331+0.004 0.0364-0.004

seismic_bumps 0.071+0.010 0.0654+0.008 0.07040.008 0.06640.009 0.069+0.009 0.0714+0.009 0.07040.008
skill_craft 0.584+0.012 0.57740.010 0.59940.011 0.595+0.013 0.5874+0.017 0.609+0.015 0.60240.015
smartphone_human_activity 0.03940.006 0.065£0.007 0.059+£0.006 0.072:£0.005 0.04040.003 0.04040.005 0.048=-0.004
smartphone_human_activity_postural ~ 0.00740.002 0.012£0.002 0.011£0.002 0.014£0.002 0.0070.001 ~ 0.006-£0.001 0.011=£0.002
spambase 0.05440.007 0.055£0.007 0.053£0.005 0.053£0.007 0.046£0.006 0.05140.008 0.055-0.006
superconductivity_class 0.0594+0.003 0.0604£0.002 0.06140.002 0.06140.002 0.058+0.001 0.058+0.003 0.05740.002
thyroid_all_bp 0.02440.004 0.026-:0.005 0.028-£0.003 0.029:£0.005 0.025-£0.004 0.02540.004 0.027-0.003
thyroid_all_hyper 0.01440.002 0.015£0.002 0.018-£0.003 0.018£0.004 0.014-:0.003 0.01540.002 0.015--0.002
thyroid_all_hypo 0.0074£0.002 0.010£0.002 0.0212£0.003 0.0212£0.003 0.004-20.002 0.006=:0.002 0.005--0.002
thyroid_all_rep 0.010£0.003 0.009£0.003 0.0140.003 0.015+0.004 0.005:£0.003 0.007-£0.003 0.007-£0.002
thyroid_ann 0.0052£0.001 0.0050.001 0.0132£0.002 0.012:£0.002 0.004-£0.001 ~ 0.003=:0.001 0.002=-0.001
thyroid_dis 0.013+0.004 0.014:0.003 0.01740.003 0.016:0.003 0.01040.002 0.01320.002 0.01340.003
thyroid_hypo 001440002 0.01140.003 0.0160.003 0.0180.005 0.01140.003 0.01140.004 0.009-£0.003
thyroid_sick 0.01140.003 0.018-£0.004 0.026-£0.006 0.025-£0.004 0.013+0.003 0.0154+0.004 0.017-4-0.004
thyroid_sick_eu 0.00040.000 0.000-£0.000 0.001-£0.002 0.000-£0.000 0.00040.000 0.0004-0.000 0.000--0.000
turkiye_student_evaluation 0.01640.002 0.017-£0.002 0.032:£0.004 0.021£0.004 0.016--0.003 0.01940.002 0.017-40.003
wall_follow_robot_2 0.0024+0.002 0.00320.001 0.01140.003 0.00540.002 0.00240.001 0.00330.001 0.00140.001
wall_follow_robot_24 0.011£0.004 0.0124£0.003 0.041£0.006 0.041+0.004 0.003£0.001 0.005+£0.001 0.004-0.002
wall_follow_robot_4 0.0024+0.001 0.004£0.001 0.01840.004 0.01040.002 0.0034+0.002 0.003+0.001 0.0020.001
waveform 0.136+0.005 0.136£0.005 0.13640.005 0.14040.007 0.143+0.003 0.15240.007 0.14840.005
waveform_noise 0.141+0.008 0.14140.006 0.13740.007 0.14340.007 0.1394+0.008 0.145+0.008 0.14640.007
wilt 0.013+0.003 0.01240.003 0.01140.002 0.01240.002 0.014+0.003 0.01420.003 0.01540.003
wine_quality_all 036740011 0.383£0.012 0.388£0.014 03860010 0.351£0.009 0.344--0.009 0.350=0.011
wine_quality_type 0.005+0.002 0.005£0.001 0.00420.001 0.004£0.001 0.004£0.002 0.004+0.001 0.0060.002
wine_quality_white 0.36740.008 0.382£0.011 0.378£0.005 0.375£0.010 0.344-:0.008 0.3380.011 0.352-0.016

26643 https://doi.org/10.52202/079017-0837

Table D.3: nRMSE of untuned methods on datasets in B0

reg

, averaged over ten train-validation-test

splits. When we write a + b, a is the mean error on the dataset and [a — b, a +)] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in In each row, the lowest
mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are

underlined.
Dataset RealMLP-TD RealTabR-D TabR-S-D MLP-PLR-D MLP-D CatBoost-TD LGBM-TD XGB-TD RF-D
air_quality_bc 0.0051+0.000 0.008+£0.001 0.025£0.004 0.0401+0.005 0.0431+0.003 0.0314-0.007 0.03040.005 0.03340.007 0.013£0.004
air_quality_co2 0.3054+0.018 0.233+0.010 0.246+0.011 0.295+0.017 0.29740.017 0.2404-0.015 0.26440.017 0.27840.018 0.294+0.016
air_quality_no2 0.31540.004 0.263£0.009 0.281£0.005 0.33540.006 0.33540.008 0.2844-0.005 0.2944-0.010 0.29440.006 0.323£0.006
air_quality_nox 028740016 025640019 0.26140.019 0.28740.015 02880014 0.254+0.020 0.25240.019 0.256-£0.017 0.257+0.012
appliances_energy 0.76010.015 0.604+0.011 0.651+£0.014 0.770+0.014 0.7961+0.011 0.68740.007 0.67940.007 0.67740.006 0.70640.008
bejing_pm25 0.31040.006 0.256+0.008 0.2794+0.005 0.3894+0.010 0.44040.012 0.39440.007 0.37740.007 0.37840.006 0.42040.005
bike_sharing_casual 0.28240.006 0.257+0.005 0.271£0.007 0.29240.006 0.28940.005 0.2764-0.006 0.27840.007 0.28440.008 0.30640.008
bike_sharing_total 0.21340.006 0.21540.007 0.22140.005 0.225£0.006 0.22440.006 0.207£0.006 0.2114+0.006 0.21540.006 0.2424-0.007
carbon_nanotubes_u 0.0104:0.000 0.0104£0.000 0.01340.001 0.02240.002 0.0264-0.003 0.00740.000 0.0094-0.000 0.01040.000 0.011=0.000
carbon_nanotubes_v 0.0104:0.000 0.0104£0.000 0.01420.001 0.02240.002 0.02840.005 0.00740.000 0.0094:0.000 0.01040.000 0.011=0.000
carbon_nanotubes_w 0.050+0.013 0.050+0.013 0.053+0.011 0.054+0.011 0.061+0.010 0.052-£0.012 0.056+0.009 0.058--0.009 0.060+0.007
chess_krvk 0.0954+0.005 0.12540.005 0.13740.009 0.12640.005 0.1224£0.006 0.261£0.003 0.2264+0.004 0.23740.004 0.43940.034
cycle_power_plant 0.21540.005 0.1671+0.005 0.16940.005 0.22240.005 0.223+0.003 0.182+£0.004 0.18440.004 0.18840.004 0.20140.003
electrical_grid_stability_simulated 0.14310.003 0.14940.003 0.17840.004 0.1664-0.003 0.18740.004 0.204£0.004 0.21740.003 0.25140.003 0.33140.005
facebook_comment_volume 0.622-00.045 0.646-£0.034 0.637+0.041 0.59940.035 0.64140.025 0.611+0.043 0.596-£0.045 0.60240.046 0.599-0.045
facebook_live_sellers_thailand_shares 0.5654-0.039 0.48310.034 0.49840.034 0.49540.036 0.500+0.039 0.488+0.038 0.483+0.034 0.48440.038 0.49440.050
five_cities_beijing_pm25 0.29940.020 0.244+0.009 0.254+0.005 0.3561+0.015 0.4184+0.008 0.35440.006 0.34540.007 0.35840.008 0.41040.007
five_cities_chengdu_pm25 0.2691+0.010 0.205+£0.006 0.214+0.006 0.3274+0.004 0.3784+0.008 0.31540.004 0.30440.005 0.30140.006 0.326+0.006
five_cities_guangzhou_pm25 0.4014+0.014 0.317£0.015 0.331£0.012 0.4584+0.008 0.5184+0.014 0.45440.010 0.45340.011 0.45740.012 0.488=+0.010
five_cities_shanghai_pm25 0.3184+0.014 0.229+0.007 0.254+0.008 0.4324+0.031 0.4454+0.011 0.3864-0.006 0.3864-0.008 0.39840.009 0.450+0.010
five_cities_shenyang_pm?25 0.333+0.019 0.283+0.014 0.29740.011 0.47740.020 0.52040.018 0.4154+0.013 0.41940.014 0.43040.015 0.51940.013
gas_sensor_drift_class 0.082+0.012 0.07940.009 0.073£0.010 0.090£0.010 0.079+0.008 0.121£0.005 0.1284+0.008 0.13240.008 0.1394-0.008
gas_sensor_drift_conc 0.1624+0.013 0.149+0.013 0.146+£0.011 0.1714+0.015 0.17040.019 0.16840.015 0.17240.016 0.1734£0.013 0.173£0.014
indoor_loc_alt 0.099+0.004 0.1284£0.006 0.181£0.004 0.12140.004 0.18740.005 0.1664-0.003 0.14840.002 0.16240.003 0.17140.003
indoor_loc_lat 0.0794+0.004 0.0924£0.005 0.110£0.004 0.1084+0.005 0.11240.004 0.10940.004 0.09740.004 0.10940.004 0.10540.004
indoor_loc_long 0.058+0.004 0.07240.004 0.083+0.002 0.07940.006 0.08040.002 0.08440.003 0.07040.003 0.08540.003 0.07440.003
insurance_benchmark 0.978+0.006 0.98240.008 0.98440.008 0.976+0.007 0.982+0.007 0.980+0.007 0.98540.004 0.98640.003 1.07840.013
metro_interstate_traffic_volume_long 0.465+0.003 0.289+0.007 0.305£0.003 0.464+0.003 0.466+0.003 0.38940.003 0.38440.004 0.442+0.016 0.436£0.004
metro_interstate_traffic_volume_short 0.464+£0.003 0.28640.004 0.299+£0.004 0.461+£0.004 0.4641+0.003 0.38440.003 0.37540.004 0.38540.004 0.4340.005
naval_propulsion_comp 0.01440.003 0.006+0.001 0.02840.005 0.08640.004 0.059+0.003 0.060+£0.002 0.063+0.002 0.06440.003 0.07940.005
naval_propulsion_turb 0.0414+0.027 0.014£0.001 0.039+0.003 0.10940.010 0.0864-0.006 0.09640.006 0.097+0.005 0.097+0.005 0.11540.005
nursery 0.08540.003 0.0794+0.003 0.08740.008 0.08640.004 0.100£0.003 0.111£0.003 0.1064+0.004 0.10240.003 0.11640.004
online_news_popularity 0.989+0.003 0.98940.003 0.991£0.002 0.989+0.003 0.988-+0.003 1.000+£0.002 0.998+0.003 0.9994+0.001 1.0354-0.023
parking_birmingham 0.29240.004 0.294+0.004 0.298+0.004 0.301+0.004 0.3031+0.004 0.28310.004 0.28840.004 0.29340.004 0.333£0.004
parkinson_motor 0.10040.010 0.085+£0.009 0.095+0.008 0.1974+0.026 0.40840.012 0.18240.011 0.16840.010 0.164+0.006 0.195+0.011
parkinson_total 0.11040.010 0.094+£0.009 0.105+£0.010 0.210+0.014 0.4234+0.025 0.18040.009 0.16340.010 0.15840.010 0.18140.007
protein_tertiary_structure 0.60010.004 0.494+0.003 0.502+0.004 0.6024+0.004 0.57940.004 0.58140.002 0.5764-0.002 0.57640.002 0.59340.002
skill_craft 0.627+0.012 0.63240.012 0.67240.010 0.62840.013 0.66240.010 0.64940.010 0.6461-0.006 0.65010.010 0.6451-0.009
sml2010_dining 0.030+0.003 0.030+0.002 0.040£0.002 0.084£0.006 0.085+0.008 0.074£0.002 0.091+0.002 0.10140.003 0.13240.003
sml2010_room 0.02910.002 0.030+0.002 0.041£0.004 0.07940.004 0.08240.005 0.0764-0.003 0.08940.004 0.09840.004 0.12940.004
superconductivity 0.2934+0.007 0.295+0.006 0.294+0.008 0.30940.008 0.3004-0.006 0.28140.004 0.28240.005 0.28140.005 0.287+0.004
travel_review_ratings 0.5184+0.018 0.528+0.012 0.523+0.013 0.51940.011 0.53040.013 0.4834+0.013 0.480+0.014 0.486+0.015 0.485+0.011
wall_follow_robot_2 0.03740.010 0.101£0.016 0.10940.013 0.088+0.013 0.090£0.017 0.059+£0.020 0.06940.026 0.05440.026 0.02740.020
wall_follow_robot_24 0.19940.018 0.313+0.013 0.3074£0.025 0.17240.025 0.3034+0.017 0.1034+0.014 0.09040.021 0.09440.018 0.09540.018
wall_follow_robot_4 0.05740.025 0.11540.024 0.136+£0.021 0.08940.013 0.14140.017 0.06540.024 0.06740.029 0.05340.024 0.027+0.020
wine_quality_all 0.76540.008 0.7341+0.010 0.73240.011 0.77740.008 0.777£0.010 0.712+0.011 0.710+0.012 0.71340.012 0.71740.012
wine_quality_white 0.75840.021 0.7294+0.012 0.72840.014 0.78240.012 0.774£0.011 0.710£0.013 0.709+0.014 0.7104+0.014 0.71440.011
https://doi.org/10.52202/079017-0837 26644

Table D.4: nRMSE of tuned methods on datasets in Bﬁggin, averaged over ten train-validation-test
splits. When we write a + b, a is the mean error on the dataset and [a — b, a + b] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in In each row, the lowest
mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are

underlined.

Dataset RealMLP-HPO MLP-PLR-HPO ResNet-HPO MLP-HPO CatBoost-HPO LGBM-HPO XGB-HPO
air_quality_bc 0.004+£0.000 0.01240.003 0.03940.003 0.026+0.006 0.029+0.004 0.029+0.004 0.026+0.006
air_quality_co2 0.2884-0.017 0.28440.013 0.29340.016 0.298+0.014 0.241+0.013 0.24740.016 0.24540.014
air_quality_no2 0.31140.006 0.32540.005 0.32240.006 0.333£0.006 0.286+0.003 0.29140.007 0.287+40.004
air_quality_nox 0.28040.016 0.28740.013 0.28340.014 0.281£0.015 0.24440.015 0.25240.015 0.23940.009

appliances_energy 0.72440.019 0.71540.011 0.77840.009 0.791£0.009 0.7024+0.006 0.67440.009 0.678+0.008
bejing_pm25 0.30940.007 0.34340.009 0.39340.005 0.423£0.006 0.433+0.007 0.37040.010 0.38640.007
bike_sharing_casual 0.27240.006 0.28440.007 0.28740.008 0.28840.008 0.283+0.006 0.2804-0.008 0.28440.006
bike_sharing_total 0.209+40.007 0.21740.007 0.25940.006 0.22840.004 0.21740.006 0.2134+0.006 0.21540.005
carbon_nanotubes_u 0.007+0.001 0.010£0.003 0.02340.002 0.011£0.000 0.00940.001 0.00940.001 0.015£0.002
carbon_nanotubes_v 0.00740.001 0.011£0.004 0.02240.001 0.011£0.000 0.0094+0.000 0.00940.001 0.01440.001
carbon_nanotubes_w 004910014 004940013 0.053+0.012 005140012 005140012 0.050+0.012 0.05240.012
chess_krvk 0.090+0.005 0.117£0.005 0.13540.004 0.109£0.005 0.3404+0.002 0.26640.024 0.41040.031
cycle_power_plant 0.20740.004 0.211£0.004 0.22040.003 0.212+£0.005 0.18440.004 0.18240.005 0.186+0.007
electrical_grid_stability_simulated 0.14440.003 0.15240.003 0.17140.003 0.184+0.003 0.19440.003 0.20940.004 0.226+0.006
facebook_comment_volume 0.626+0.045 0.61940.049 0.63440.027 0.644£0.029 0.591+0.037 0.60740.039 0.598+0.045
facebook_live_sellers_thailand_shares ~ 0.566+£0.049 0.5214+0.056 0.4924+0.036 0.505+0.040 0.494+0.056 0.485+0.048 0.469+0.043
five_cities_beijing_pm25 0.277+£0.009 0.33040.009 0.37940.005 0.421£0.008 0.380+0.008 0.358+0.009 0.367+0.007
five_cities_chengdu_pm25 0.261+0.006 0.29940.011 0.34240.007 0.374+0.006 0.348+0.006 0.301£0.009 0.321£0.014
five_cities_guangzhou_pm25 0.3924-0.013 0.44140.011 0.50240.011 0.519£0.008 0.4984+0.008 0.45840.014 0.47440.012
five_cities_shanghai_pm25 0.30640.012 0.3614£0.011 0.39740.011 0.415+0.012 0.4384+0.008 0.39740.012 0.398+0.014
five_cities_shenyang_pm?25 0.3304-0.022 0.40040.017 0.46940.016 0.507£0.019 0.4524+0.012 0.42740.015 0.44240.016
gas_sensor_drift_class 0.0794+0.010 0.08740.009 0.073£0.009 0.07840.009 0.1204+0.005 0.12040.007 0.12040.007
gas_sensor_drift_conc 0.14740.014 0.16540.012 0.15040.012 0.15040.011 0.165+0.013 0.16940.013 0.16340.014
indoor_loc_alt 0.1004-0.004 0.1054+0.006 0.17240.004 0.18540.004 0.181£0.004 0.13740.003 0.15940.006
indoor_loc_lat 0.07940.004 0.08640.004 0.10440.004 0.106£0.004 0.12240.004 0.09140.004 0.10640.007
indoor_loc_long 0.060+0.004 0.066£0.005 0.07440.003 0.077£0.004 0.09740.003 0.06840.003 0.0840.006
insurance_benchmark 0.97740.008 0.97940.008 0.98240.006 0.98040.007 0.976+0.007 0.9724+0.006 0.97440.007

metro_interstate_traffic_volume_long 0.459+40.003 0.41840.006 0.46740.004 0.465+0.003 0.3974+0.004 0.39140.008 0.39240.008
metro_interstate_traffic_volume_short 0.4574-0.004 0.41840.007 0.46640.003 0.465+0.003 0.393+0.004 0.38740.010 0.386+0.009

naval_propulsion_comp 0.0054-0.001 0.0334£0.003 0.05940.003 0.036+£0.003 0.0621+0.002 0.05840.001 0.062+0.004
naval_propulsion_turb 0.014+0.001 0.04740.007 0.07840.005 0.054+0.003 0.0954+0.002 0.09140.007 0.096+0.006
nursery 0.080+£0.004 0.08040.002 0.08340.003 0.086+£0.004 0.125+0.003 0.113£0.005 0.12040.006
online_news_popularity 0.99740.008 0.99340.014 0.99040.004 0.99040.004 0.990+0.003 0.988+0.004 0.9904-0.002
parking_birmingham 0.29240.005 0.2834+0.009 0.29940.005 0.301£0.005 0.284+0.004 0.286+0.004 0.279+0.004
parkinson_motor 0.098+0.015 0.165+0.015 0.37240.018 0.389+0.019 0.219£0.011 0.187£0.011 0.21440.025
parkinson_total 0.114+0.013 0.17140.017 0.38840.020 0.387+0.028 0.219£0.010 0.177+0.011 0.20740.023
protein_tertiary_structure 0.567+0.003 0.59140.007 0.56640.004 0.577£0.005 0.608+0.002 0.56840.003 0.59040.009
skill_craft 0.62540011 0.62740.014 0.663+0.011 0.66240.009 0.62740.010 0.633+0.015 0.635+0.011
sml2010_dining 0.0294-0.001 0.05240.004 0.06540.003 0.066£0.005 0.076+0.003 0.08540.004 0.08940.006
sml2010_room 0.0294-0.002 0.05440.006 0.06540.004 0.064£0.003 0.0754+0.002 0.08340.003 0.08740.006
superconductivity 0.2884-0.007 0.29640.007 0.29340.008 0.29440.008 0.2861+0.006 0.27840.007 0.28140.005
travel_review_ratings 0.49940.015 0.50140.020 0.52940.015 0.531£0.016 0.475+0.012 0.4634+0.012 0.46040.011
wall_follow_robot_2 0.04440.024 0.05140.022 0.19440.012 0.09240.017 0.06040.020 0.066+0.025 0.21140.005
wall_follow_robot_24 0.16740.020 0.136£0.029 0.30240.018 0.306+0.021 0.095+0.016 0.09740.018 0.080+0.016
wall_follow_robot_4 0.04740.026 0.05940.021 0.21340.012 0.12640.014 0.055+0.019 0.0654+0.024 0.043+0.016
wine_quality_all 0.75140.011 0.771£0.010 0.771£0.013 0.773+£0.007 0.72740.009 0.7034+0.012 0.707+0.010
wine_quality_white 0.73640.011 0.7754£0.015 0.768+0.011 0.775+£0.012 0.72240.013 0.70440.012 0.710+0.013

26645 https://doi.org/10.52202/079017-0837

Table D.5: Classification error of untuned methods on datasets in B%5! | averaged over ten train-

class®

validation-test splits. When we write a £ b, a is the mean error on the dataset and [a — b, a +] is an
approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence interval
is computed from the ¢-distribution using a normality assumption as in In each row,
the lowest mean error is highlighted in bold, and errors whose confidence interval contains the lowest

error are underlined.

Dataset RealMLP-TD RealTabR-D ~ TabR-S-D MLP-PLR-D ~ MLP-D CatBoost:TD LGBM-TD XGB-TD RF-D
ada 0.148-£0.012 0.146-£0.013 0.15140.009 0.146--0.013 0.149+0.011 0.13940.008 0.14140.011 0.14040.011 0.144--0.007
airlines 0.33540.001 0.3314+0.001 0.33240.001 0.33740.001 0.33740.001 0.3324£0.001 0.333+0.001 0.33740.001 0.3824-0.001
amazon-commerce-reviews 0.209+40.021 0.24240.016 0.402£0.028 0.576£0.102 0.3724£0.019 0.197+0.017 0.2854+0.020 0.29010.020 0.40740.022
Bioresponse 0.2384+0.010 0.228+0.013 0.2284+0.013 0.2361+0.009 0.2324+0.006 0.20540.010 0.20440.008 0.21140.007 0.205+0.009
car 0.008+0.006 0.013+0.009 0.0114+0.006 0.013+0.006 0.0114+0.006 0.01940.009 0.02140.006 0.01940.004 0.071£0.017
christine 0.2931+0.012 0.293+0.009 0.2894+0.007 0.2714+0.011 0.28440.015 0.26940.012 0.266+0.012 0.2734+0.015 0.281£0.013
churn 0.04410.003 0.050+0.005 0.055+0.006 0.046+0.004 0.0651+0.007 0.0504-0.004 0.04840.005 0.04840.004 0.06440.005
cme 0.4651+0.019 0.457+0.019 0.4494+0.025 0.4524+0.014 0.4411+0.015 0.46040.017 0.45740.017 0.46740.018 0.472£0.014
cnae-9 0.06840.010 0.055+0.008 0.066+0.011 0.0654+0.008 0.0531+0.011 0.0764-0.010 0.30840.017 0.09140.012 0.087£0.012
connect-4 0.1304+0.003 0.135£0.003 0.13540.003 0.14940.002 0.14940.002 0.14340.003 0.13640.003 0.14240.003 0.181£0.003
covertype 0.02940.001 0.026£0.000 0.02940.001 0.05640.002 0.06940.002 0.10540.000 0.058+40.001 0.072=0.000 0.055+0.001
credit-g 02570017 0250-£0.015 0.25240.025 0.256-0.023 0269+0.017 0.25040.018 0252+0.019 025540013 0.256-0.025
Diabetes130US 0.40240.003 0.399+0.003 0.40140.003 0.39640.002 0.4004-0.003 0.3834-0.002 0.39840.002 0.45540.005 0.398=40.002
dilbert 0.01040.002 0.01420.002 0.0204£0.002 0.01940.003 0.0244-0.003 0.01340.002 0.01340.002 0.01240.002 0.039£0.004
dionis 0.089+0.002 0.0931+0.001 0.09940.002 0.12940.002 0.114£0.001 0.19940.008 0.128+0.023 0.4354-0.003 0.12340.002
dna 0.0441+0.004 0.050£0.005 0.063+0.007 0.05610.005 0.0564-0.006 0.04640.003 0.040£0.004 0.041+0.003 0.05040.005
fabert 0.31240.009 0.31440.008 0.35440.009 0.36740.010 0.370£0.009 0.285+0.006 0.3861+0.008 0.2994-0.006 0.31740.008
Fashion-MNIST 0.09740.001 0.10140.002 0.10640.002 0.11540.002 0.109£0.002 0.099+0.001 0.0911+0.001 0.09240.002 0.12240.002
gina 0.053+0.005 0.060£0.005 0.080+0.006 0.07940.008 0.0904-0.005 0.04740.005 0.053+0.005 0.061+0.005 0.07740.008
guillermo 0.17540.004 0.21940.006 0.271+0.010 0.210+0.007 0.2434+0.006 0.16540.004 0.17140.003 0.17940.004 0.197+0.005
helena 0.61740.002 0.599+0.003 0.602+0.002 0.6344+0.002 0.6231+0.002 0.6314-0.003 0.6384+0.003 0.71840.003 0.647+0.002
Higgs 0.25040.001 0.248+0.001 0.2554+0.001 0.26140.002 0.25340.001 0.25740.001 0.25940.001 0.260+0.001 0.271£0.001
Internet-Advertisements 0.02440.003 0.026+£0.004 0.026+0.004 0.0261+0.005 0.0261-0.005 0.0244-0.005 0.02540.003 0.02540.005 0.020+0.003
Jjannis 0.27340.002 0.262+£0.002 0.27140.002 0.27610.002 0.2914-0.002 0.2824-0.002 0.28240.002 0.28540.002 0.302£0.002
jasmine 0207£0.014 02010011 0.20620.012 0.197+0.011 020720012 0.187-£0.011 0.190£0.010 0.195-0.012 0.189+0.008
jungle_chess_2pcs_raw_endgame_complete 0.00440.001 0.01440.003 0.09840.010 0.00940.001 0.10740.003 0.13340.002 0.134£0.003 0.136£0.002 0.204+0.002
kel 0.140-£0.007 0.139-£0.007 0.14340.009 0.142-£0.007 0.145+0.011 0.14740.010 0.143+0.007 0.14420.010 0.141--0.007
KDDCup99 0.0004:0.000 0.000£0.000 0.00040.000 0.00040.000 0.0004-0.000 0.0004-0.000 0.00240.000 0.000£0.000 0.000=£0.000
kick 0.09940.001 0.09940.001 0.10040.001 0.09840.001 0.09840.001 0.09640.001 0.09740.001 0.138=0.008 0.098=0.001
madeline 0.2584+0.013 0.269+0.021 0.42540.022 0.2614+0.015 0.4134+0.012 0.1364-0.008 0.19840.011 0.19540.018 0.262=40.008
mfeat-factors 0.01610.004 0.0232£0.004 0.02440.005 0.02640.004 0.02940.005 0.0214:0.004 0.02840.005 0.03040.005 0.031£0.006
MiniBooNE 0.0504+0.001 0.0514+0.001 0.0504-0.001 0.05340.001 0.052£0.001 0.053+0.001 0.0534+0.001 0.05540.002 0.0654-0.001
numerai28.6 0.47940.004 0.4141+0.003 0.42140.002 0.48140.002 0.480£0.002 0.480+0.003 0.48140.003 0.48340.004 0.48940.003
okcupid-stem 0.25340.004 0.2461+0.003 0.24740.003 0.24840.004 0.249+0.004 0.243+0.003 0.2461+0.003 0.4104-0.016 0.26240.003
ped 0.095-£0.012 0.105+£0.014 0.10140.019 0.098--0.009 0.094+0.008 0.099+£0.012 0.099+0.013 0.10040.013 0.104+0.012
philippine 0.28440.011 0.2684+0.009 0.30540.012 0.27140.008 0.301£0.008 0.249+0.012 0.2514+0.011 0.25340.009 0.25440.010
phoneme 0.09740.007 0.10040.007 0.10140.007 0.1124£0.008 0.120£0.013 0.097+0.007 0.1004+0.005 0.1024+0.007 0.0984+0.006
porto-seguro 0.038+0.000 0.0384+0.000 0.038+0.000 0.038£0.000 0.038+0.000 0.038+0.000 0.038+0.000 0.038+0.000 0.0384-0.000
qsar-biodeg 0.126+0.015 0.12540.021 0.133+0.013 0.139£0.017 0.121+£0.016 0.1394+0.014 0.1374+0.016 0.1314+0.012 0.1364-0.016
riccardo 0.0021+0.000 0.002+0.001 0.004+0.001 0.01140.001 0.0064-0.001 0.00340.001 0.00340.001 0.00340.001 0.048+0.003
robert 0.48840.008 0.52240.006 0.5741+0.004 0.54440.023 0.57940.007 0.48740.006 0.46440.006 0.47140.008 0.570£0.008
Satellite 0.00640.002 0.00640.002 0.007-£0.002 0.0060.002 0.00640.001 0.006--0.002 0.005+0.002 0.00540.002 0.006-£0.002
segment 0.07740.009 0.07440.010 0.071-40.007 0.080+0.009 0.08240.008 0.069--0.008 0.0714+0.006 0.07040.006 0.072-0.006
shuttle 0.0004£0.000 0.00140.000 0.001£0.000 0.000£0.000 0.0012£0.000 0.000+0.000 0.00240.001 0.0004-0.000 0.0004-0.000
steel-plates-fault 0.24140.019 0.225+0.015 0.2324+0.011 0.2274+0.017 0.25040.014 0.2234+0.014 0.2234+0.011 0.220£0.011 0.241£0.013
sylvine 0.05440.005 0.035£0.006 0.060+0.007 0.058+0.006 0.07540.006 0.05240.005 0.05740.006 0.058=40.005 0.067=40.005
volkert 0.28240.003 0.228+0.004 0.223+0.003 0.30040.004 0.27140.003 0.29940.002 0.29140.002 0.29640.002 0.341240.002
yeast 0.403£0.021 0396-0.015 0.40440.019 0.404-£0.020 0411+0.019 041140019 0401+0.017 040940024 0.391-0.017

https://doi.org/10.52202/079017-0837 26646

Table D.6: Classification error of funed methods on datasets in BYf>t , averaged over ten train-

validation-test splits. When we write a £ b, a is the mean error on the dataset and [a — b, a +] is an
approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence interval
is computed from the ¢-distribution using a normality assumption as in In each row,
the lowest mean error is highlighted in bold, and errors whose confidence interval contains the lowest

error are underlined.

Dataset RealMLP-HPO MLP-PLR-HPO ResNet-HPO ~ MLP-HPO ~ CatBoost-HPO LGBM-HPO ~ XGB-HPO
ada 0.14740.008 0.14040.008 0.148-£0.012 0.1504+0.010 0.13840.012 0.141-£0.013 0.140+0.012
airlines 0.3344-0.001 0.33440.001 0.33440.001 0.33440.001 0.331£0.001 0.32940.001 0.3294-0.001
amazon-commerce-reviews 0.20740.022 0.43740.068 0.28040.018 0.33640.032 0.216+0.015 0.26440.022 0.3004-0.021
Bioresponse 0.21940.010 0.2334+0.010 0.22540.008 0.22940.011 0.209+0.010 0.206+0.012 0.204+0.011
car 0.00410.003 0.0134+0.007 0.01640.013 0.01240.007 0.017£0.008 0.01740.010 0.0224-0.007
christine 0.280+0.014 0.27440.011 0.2844+0.010 0.27740.012 0.27040.009 0.268+0.012 0.270+0.013
churn 0.0421-0.003 0.045+0.003 0.0591+0.007 0.05410.006 0.04840.004 0.048+0.005 0.048+0.005
cme 0.47240.022 0.456+0.034 0.450+0.027 0.4471+0.020 0.47140.021 0.470£0.016 0.454+0.018
cnae-9 0.07940.020 0.0664+0.010 0.06440.012 0.053+0.011 0.0660.009 0.07940.013 0.09540.015
connect-4 0.13240.002 0.1434+0.003 0.13640.002 0.14140.003 0.139£0.003 0.13640.002 0.1454-0.001
covertype 0.0284-0.001 0.03640.001 0.03840.001 0.04040.001 0.062+0.001 0.03340.001 0.0404-0.003
credit-g 0.26240.023 0.27640.022 0.27240.028 0.2714+0.018 0.234+0.024 0.26840.027 0.24840.017
Diabetes130US 0.39540.002 0.39240.002 0.39840.003 0.40140.003 0.384£0.003 0.3904-0.002 0.3874-0.002
dilbert 0.0074-0.001 0.01940.003 0.01640.002 0.02640.002 0.0142£0.002 0.0144:0.002 0.0224-0.004
dionis 0.0884-0.001 0.12640.009 0.09040.002 0.10840.005 0.104+0.002 0.10940.003 0.12240.003
dna 0.0434+0.005 0.05640.008 0.04640.003 0.05440.006 0.043+0.004 0.0404-0.003 0.04040.003
fabert 0.3094-0.006 0.34340.014 0.3634+0.011 0.36740.006 0.286+0.006 0.29840.007 0.30340.007
Fashion-MNIST 0.093+0.003 0.10740.002 0.10340.002 0.1054£0.002 0.09740.002 0.09140.001 0.09440.002
gina 0.04610.006 0.07740.006 0.07340.006 0.08640.006 0.053+0.005 0.0504-0.005 0.05840.005
guillermo 0.16510.002 0.20240.006 0.22840.006 0.24240.005 0.170£0.002 0.16740.002 0.16940.003
helena 0.61440.003 0.62740.005 0.6031+0.003 0.62040.006 0.622+0.002 0.62440.003 0.6264-0.002
Higgs 0.24740.002 0.25240.001 0.2444-0.001 0.25240.001 0.258£0.001 0.2554+0.001 0.25740.001
Internet-Advertisements 0.0244-0.002 0.0214+0.004 0.02440.004 0.02540.004 0.025+0.005 0.02540.004 0.0264-0.004
jannis 0.26910.002 0.27840.004 0.27940.003 0.28740.002 0.281£0.002 0.27840.002 0.2794-0.002
Jjasmine 0.21310.012 0.20540.014 0.2084+0.011 0.21840.011 0.202+0.011 0.19640.016 0.1884-0.006
jungle_chess_2pcs_raw_endgame_complete 0.00340.001 0.00840.001 0.11540.005 0.03240.005 0.133+0.002 0.1334-0.003 0.1344-0.002
kel 0.14340.010 0.153£0.010 0.13920.006 0.142-£0.005 0.14240.008 0.14320.010 0.144-0.005
KDDCup99 0.0004-0.000 0.0004:0.000 0.00040.000 0.00040.000 0.000£0.000 0.0004-0.000 0.0004-0.000
kick 0.0984-0.001 0.09840.001 0.09740.001 0.09840.001 0.096£0.001 0.09640.001 0.09740.001
madeline 0.16640.012 0.2154+0.018 0.41140.011 0.40640.016 0.150+0.013 0.1534+0.010 0.16240.014
mfeat-factors 0.0154-0.003 0.02940.005 0.0194:0.003 0.03040.006 0.02240.003 0.02940.005 0.0344-0.006
MiniBooNE 0.0494-0.001 0.05140.001 0.04940.001 0.051£0.001 0.053+0.001 0.05240.001 0.05340.001
numerai28.6 047940004 0.47940.003 0.481-£0.003 0.480+0.003 0.48040.003 0479-£0.004 0.48140.002
okcupid-stem 0.25040.004 0.24740.003 0.24840.003 0.24740.003 0.242+0.003 0.24540.003 0.25440.004
pcé 0.1034-0.009 0.1114£0.017 0.093+0.011 0.103£0.009 0.096+0.012 0.10340.015 0.10440.014
philippine 0.27340.015 0.27240.010 0.3014+0.010 0.29640.010 0.250+0.008 0.24140.010 0.24540.007
phoneme 0.098+0.007 0.099+0.006 0.116+0.009 0.1074+0.007 0.10240.004 0.102+0.008 0.1124+0.006
porto-seguro 0.038+0.000 0.0384+0.000 0.0384+0.000 0.0384+0.000 0.038+0.000 0.038+0.000 0.03840.000
gsar-biodeg 0.129+0.014 0.134+0.016 0.126+0.017 0.1224+0.016 0.1354+0.012 0.136+£0.012 0.134+0.020
riccardo 0.0024-0.001 0.00240.000 0.005+0.001 0.005+0.001 0.00340.001 0.003+0.001 0.003+0.001
robert 0.47840.007 0.49640.007 0.54440.006 0.55540.008 0.486+0.008 0.46710.005 0.4754-0.008
Satellite 0.00640.001 0.00740.002 0.00620.001 0.00720.001 0.00740.002 0.00640.002 0.0050.002
segment 0.07940.007 0.08140.008 0.07740.007 0.08240.009 0.070+£0.007 0.07240.008 0.07340.006
shuttle 0.0004-0.000 0.00040.000 0.0014:0.000 0.00140.000 0.000£0.000 0.0004-0.000 0.0004-0.000
steel-plates-fault 0.23940.014 0.24440.010 0.24740.012 0.2484+0.014 0.222+0.012 0.2234+0.008 0.23240.017
sylvine 0.05340.005 0.058+0.005 0.07440.004 0.0731+0.005 0.05540.005 0.053-£0.004 0.058+0.003
volkert 0.27240.004 0.28840.006 0.23540.003 0.25640.004 0.301£0.003 0.28540.004 0.2904-0.003
yeast 040740020 0408+0.014 039940026 0410+£0.020 0.3934+0.020 0.40440.022 0.391-0.017
26647 https://doi.org/10.52202/079017-0837

Table D.7: nRMSE of untuned methods on datasets in Bﬁg?, averaged over ten train-validation-test
splits. When we write a + b, a is the mean error on the dataset and [a — b, a + b] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in In each row, the lowest

mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are

underlined.

Dataset RealMLP-TD RealTabR-D TabR-S-D MLP-PLR-D MLP-D CatBoostTD LGBM-TD XGB-TD RE-D
airfoil_self_noise 0.1804+0.012 0.2234+0.009 0.26340.025 0.24940.020 0.308+0.019 0.213+£0.009 0.233+0.017 0.23840.016 0.30040.016
Airlines_DepDelay_10M 0.9791+0.000 0.983+£0.000 0.983+0.000 0.98440.001 0.9831+0.001 0.98140.001 0.98540.000 1.00040.000 1.013£0.002
Allstate_Claims_Severity 0.6541+0.006 0.665+0.008 0.667+0.006 0.662+0.006 0.6631+0.005 0.658+0.008 0.6624+0.008 0.95140.158 0.68640.007
auction_verification 0.19740.018 0.065+0.013 0.107£0.029 0.160+0.015 0.1961+0.029 0.06410.019 0.2064-0.036 0.06440.014 0.12240.019
black_friday 0.69240.001 0.690£0.002 0.688+0.002 0.69410.002 0.69440.001 0.67940.002 0.67940.002 0.68140.002 0.743£0.002
brazilian_houses 1.076+0.569 0.78440.287 0.70640.127 0.576+0.154 0.703+£0.148 0.581+0.133 0.891+0.281 0.818+0.114 0.5394-0.074
Buzzinsocialmedia_Twitter 0.34140.014 0.2331£0.012 0.24740.013 0.35740.020 0.33740.028 0.3234+0.016 0.2964-0.016 0.36140.018 0.234+0.014
california_housing 0.42040.007 0.362+0.008 0.363+0.008 0.4284+0.007 0.43240.009 0.4004-0.007 0.40240.008 0.40940.008 0.43940.008
concrete_compressive_strength 0.298-£0.025 0.301-£0.024 0.306+£0.029 0303+0.019 0.32340.025 0.303+£0.017 0.297+0.025 0.29840.024 0.330-£0.022
cpsS8wages 0.834-£0.016 0.834-£0.015 0.835+0.015 0.836+0.015 0.836--0.016 0.842-0.013 0.850+0.015 0.85340.014 0.928--0.029
cpu_activity 0.12740.004 0.1212£0.004 0.123+0.004 0.13040.004 0.1434+0.004 0.16640.010 0.12540.009 0.12740.011 0.13440.005
diamonds 0.13740.002 0.132+£0.002 0.136+0.002 0.14540.002 0.14440.002 0.13840.002 0.14340.003 0.13840.003 0.14840.005
elevators 0.2814+0.005 0.28040.004 0.72440.013 0.557£0.160 0.747£0.012 0.32320.007 0.33440.007 0.34610.007 0.42140.011
fifa 0.460+0.023 0.50740.031 0.50640.026 0.46140.030 0.504£0.021 0.485+0.021 0.4724+0.023 0.54840.032 0.48240.026
fps_benchmark 0.0061+0.002 0.02140.004 0.02640.004 0.03240.003 0.036£0.003 0.070£0.018 0.0924+0.020 0.0334-0.004 0.09340.009
geographical_origin_of_music 0.887-£0.030 0.874-£0.017 0.901:£0.022 0.9234+0.039 0.9030.016 0.881:£0.015 0.880+0.017 0.8754+0.015 0.884--0.014
health_insurance 0.77540.005 0.77740.005 0.77640.004 0.77640.005 0.77740.004 0.776+0.004 0.7811+0.003 0.78440.004 0.82740.004
house_16H 0.570£0.010 0.573+£0.011 0.564=0.011 0.5704+0.015 0.57040.016 0.580-£0.011 0.573+0.011 0.5840.012 0.608=-0.009
house_prices_nominal 0.378+0.039 0.370+0.041 0.38240.035 0.419+0.041 0.406+0.051 0.42240.021 0.376+0.035 0.378+0.038 0.3724+0.038
house_sales 0.3191+0.007 0.336+£0.014 0.341£0.009 0.323+0.013 0.3344+0.010 0.3214+0.013 0.32440.013 0.3314£0.011 0.360£0.009
kin8nm 0.2421+0.003 0.258+0.003 0.300+0.006 0.276+0.005 0.3024+0.005 0.34740.006 0.42540.005 0.45240.007 0.56040.008
kings_county 0.326+0.007 0.34940.012 0.34740.011 0.325+0.011 0.336£0.008 0.323+0.013 0.3284+0.013 0.343+0.009 0.3604-0.010
Mercedes_Benz_Greener_Manufacturing 0.67240.030 0.672+0.030 0.6794+0.033 0.668+0.031 0.68240.031 0.67240.028 0.693+0.027 0.990+0.039 0.718+0.028
miami_housing 0.278+0.007 0.27240.008 0.27640.008 0.286£0.006 0.296+£0.010 0.279+0.010 0.2744+0.007 0.278+0.008 0.3074-0.008
MIP-2016-regression 0.835+0.038 0.8154+0.032 0.801+£0.027 0.852+0.037 0.825+0.023 0.809+0.032 0.8144+0.043 0.809+0.036 0.83740.025
nyc-taxi-green-dec-2016 0.6951+0.025 0.658+0.016 0.660+0.017 0.72240.019 0.70640.015 0.6514+0.015 0.66240.013 1.13740.166 0.643+0.010
pol 0.067+0.003 0.06740.003 0.14440.005 0.074£0.004 0.133£0.008 0.102£0.004 0.103+0.005 0.10940.007 0.1204-0.007
pumadyn32nh 0.5904+0.007 0.590+0.007 0.644+0.011 0.5934+0.006 0.65240.007 0.59340.008 0.60540.007 0.60840.007 0.60240.008
QSAR-TID-10980 0.593+0.012 0.60040.013 0.59640.011 0.672£0.014 0.617£0.009 0.593+0.010 0.589+0.008 0.596+0.009 0.61240.009
QSAR-TID-11 0.5224+0.016 0.5114+0.014 0.51940.014 0.578+0.014 0.531£0.012 0.527+0.013 0.5214+0.014 0.52640.013 0.53840.015
quake 1.006£0.005 1.007-£0.008 1.004=0.011 1.00440.008 1.002--0.010 1.000-£0.004 1.004+0.005 1.00140.004 1.050--0.020
Santander_transaction_value 0.90140.015 0.9324+0.011 0.99440.003 0.90740.014 0.996£0.005 0.866+0.017 0.864+0.021 0.8714+0.018 0.88340.022
sarcos 0.11740.002 0.101+0.002 0.10740.002 0.14140.006 0.1324£0.003 0.125£0.002 0.12940.002 0.1344-0.002 0.17240.003
SAT11-HAND-runtime-regression ~ 0.4750.040 0.481-£0.039 0.465+0.032 0.50940.054 0.485-£0.031 0.492:0.034 0.5580.028 0.49340.034 0.6190.035
socmob 0.42640.038 0.396+0.034 0.37940.057 0.39640.086 0.481£0.091 0.378+£0.028 0.4361+0.056 0.40240.062 0.49040.055
solar_flare 0.982+0.055 0.976+0.055 0.963+0.050 0.973+0.070 0.9794-0.057 0.99540.016 1.002+0.035 0.984+0.013 1.11610.078
space_ga 0.5554+0.024 0.496+0.031 0.504+0.028 0.5204+0.027 0.5034+0.025 0.57040.033 0.56540.031 0.57140.029 0.610£0.030
topo_2_1 0.968+0.004 0.970+0.004 0.970+0.009 0.973+0.007 0.969+0.006 0.97540.006 0.97740.005 0.97840.006 0.983+0.009
video_transcoding 0.0561+0.004 0.073£0.006 0.080£0.007 0.110+0.004 0.09540.005 0.05740.004 0.06740.005 0.06740.006 0.11540.006
wave_energy 0.0031+0.001 0.006£0.001 0.023+0.002 0.0624+0.007 0.11040.005 0.07840.001 0.13940.001 0.19340.001 0.41440.002
Yolanda 0.79310.001 0.754+0.002 0.7541+0.001 0.80440.002 0.79640.001 0.8044-0.001 0.80640.001 0.806+0.001 0.845+0.001
yprop_4_1 0.9631+0.010 0.964+0.009 0.950+0.007 0.9674+0.009 0.9651+0.007 0.96040.007 0.95940.008 0.96740.015 0.963+0.019

https://doi.org/10.52202/079017-0837 26648

Table D.8: nRMSE of funed methods on datasets in Bﬁf;‘gt, averaged over ten train-validation-test
splits. When we write a + b, a is the mean error on the dataset and [a — b, a + b] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in In each row, the lowest
mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are

underlined.

Dataset RealMLP-HPO MLP-PLR-HPO ResNet-HPO MLP-HPO CatBoost-HPO LGBM-HPO XGB-HPO
airfoil_self_noise 0.17440.011 0.210£0.011 0.32940.015 0.233+0.017 0.22740.011 0.24140.015 0.248+0.012
Airlines_DepDelay_10M 0.979+0.000 0.980£0.001 0.98240.000 0.983+0.000 0.9801+0.001 0.98040.001 0.982+40.001
Allstate_Claims_Severity 0.6514£0.006 0.65540.006 0.6580.006 0.65940.005 0.652-40.005 0.656+0.008 0.656-0.006
auction_verification 0.101£0.016 0.06740.025 0.17840.013 0.16240.014 0.061+£0.020 0.13040.030 0.08840.010
black_friday 0.6864-0.003 0.68740.001 0.69040.002 0.693+0.002 0.679+0.002 0.679+0.001 0.68140.001
brazilian_houses 0.788+0.345 0.74240.109 1.62341.223 0.606+0.147 0.7114+0.369 0.8784+0.340 0.565+0.079
Buzzinsocialmedia_Twitter 0.26640.015 0.25440.018 0.28640.025 0.275+0.017 0.320+0.018 0.28940.018 0.22240.014
california_housing 0.41340.008 0.42740.008 0.42640.010 0.435+0.008 0.402+0.007 0.39840.008 0.40040.008
concrete_compressive_strength 0.290+0.029 0.29540.024 0.31440.028 0.314£0.029 0.271+0.030 0.27940.021 0.27840.023
cps88wages 0.83440.015 083320016 0.8350.015 0.834--0.015 0.83540.015 0.8354+0.016 0.834-0.016
cpu_activity 0.12540.005 0.12440.004 0.12740.003 0.137£0.006 0.1224+0.003 0.12240.007 0.11940.006
diamonds 0.1344-0.002 0.13840.003 0.14140.002 0.141£0.002 0.1364+0.002 0.13840.003 0.13540.002
elevators 0.27640.005 0.30640.013 0.31540.005 0.731£0.039 0.30740.007 0.31840.006 0.32240.006

fifa 0.45740.025 0.466+0.027 0.49440.028 0.51240.026 0.465+40.026 0.466+0.027 0.48610.021
fps_benchmark 0.0044-0.002 0.00640.001 0.03940.002 0.00840.001 0.0384+0.019 0.01840.002 0.03340.007
geographical_origin_of_music 0.89940.038 0.934+0.033 091940039 0.906+0.030 0.87140.017 0.869-0.024 0.861+0.020
health_insurance 0.77540.004 0.775+0.005 077740006 0.775+0.005 0.7754+0.005 0.775+£0.004 0.77440.005
house_16H 0.56440.014 0.5584+0.011 0.5514+0.012 0.57040.018 0.573+0.011 0.5714+0.013 0.57540.014
house_prices_nominal 039940051 0.378+0.031 04450063 0.384+0.046 0.36140.022 038340030 0.374+0.039
house_sales 0.32040.013 0.32040.010 0.34040.010 0.34040.011 0.310+£0.011 0.31940.008 0.3244-0.007
kin8nm 0.23840.003 0.2644+0.004 0.27940.004 0.298+0.006 0.3784+0.009 0.42440.014 0.461£0.006
kings_county 0.32740.010 0.31740.008 0.34140.013 0.33940.009 0.309+0.008 0.3234+0.008 0.32540.007
Mercedes_Benz_Greener_Manufacturing 0.668+0.032 0.67040.030 0.68040.029 0.67740.030 0.664+0.031 0.669+0.029 0.66440.031
miami_housing 0.26740.009 0.27240.007 0.28740.010 0.295+0.013 0.257+0.006 0.26940.008 0.27240.011
MIP-2016-regression 0.84340.037 0.82940.032 0.83540.030 0.846+0.043 0.788+0.034 0.78840.038 0.80740.030
nyc-taxi-green-dec-2016 0.61340.031 0.66540.020 0.64340.019 0.692+0.065 0.656+0.014 0.65540.013 0.66140.016
pol 0.0594-0.004 0.06540.005 0.16940.006 0.130£0.006 0.11940.004 0.1064-0.005 0.10840.006
pumadyn32nh 0.5864-0.007 0.58940.007 0.6061+0.009 0.62640.010 0.594£0.006 0.59940.006 0.60240.007
QSAR-TID-10980 0.59840.014 0.6364+0.010 0.61440.008 0.612+0.011 0.596+0.011 0.58240.010 0.59040.010
QSAR-TID-11 0.51440.016 0.55240.015 0.52440.017 0.527£0.011 0.526+0.014 0.50940.015 0.51740.015
quake 101240012 1.004£0.010 1.006£0.007 1.003+0.006 1.0054+0.008 1.001-£0.007 1.00540.010
Santander_transaction_value 0.8794:0.024 0.8561+0.026 0.9344+0.016 0.92140.012 0.873£0.017 0.843+0.020 0.85140.019
sarcos 0.1024-0.002 0.11040.002 0.10940.002 0.113£0.003 0.13640.002 0.12840.002 0.13240.003
SAT11-HAND-runtime-regression 0.44440.053 0.48940.035 0.47740.031 0.464+0.038 0.5154+0.032 0.50140.029 0.53140.041
socmob 0.38340.054 0.299+0.041 0.45940.055 0.412+£0.080 0.36410.054 0.40440.052 0.417+0.054
solar_flare 101740089 0.9814+0.067 09750069 0.975+0.066 0.98440.046 0.972-£0.054 1.009+0.156
space_ga 0.495+0.022 0.516+£0.015 0.489+0.021 0.499+0.019 0.5481+0.026 0.54640.026 0.564+0.025
topo_2_1 0.968+0.005 0.9724£0.005 0.97040.005 0.968+0.004 0.9701+0.004 0.96440.004 0.968-+0.007
video_transcoding 0.05240.005 0.05740.005 0.06840.006 0.0634+0.006 0.073+0.002 0.06740.004 0.0724-0.002
wave_energy 0.00340.001 0.00740.001 0.04440.002 0.029£0.004 0.049+0.001 0.08140.004 0.09540.009
Yolanda 0.786+0.001 0.79140.002 0.78640.001 0.791£0.002 0.810+0.001 0.79540.002 0.80040.003
yprop_4_1 0.9654-0.007 0.96540.004 0.96340.009 0.965+0.009 0.963+0.008 0.94940.005 0.954+40.008

Grinsztajn

Table D.9: Classification error of unfuned methods on datasets in B, , averaged over ten
train-validation-test splits. When we write a & b, a is the mean error on the dataset and [a — b, a + b)
is an approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence
interval is computed from the ¢-distribution using a normality assumption as in[Appendix C.6] In
each row, the lowest mean error is highlighted in bold, and errors whose confidence interval contains
the lowest error are underlined.

Dataset RealMLP-TD RealTabR-D TabR-S-D MLP-PLR-D ~ MLP-D CatBoostTD LGBM-TD XGB-TD RF-D
albert 0.34840.003 0.35020.001 0.34940.001 0.34640.001 0.34840.002 0.347-£0.002 0.347-£0.002 0.363£0.005 0.353=£0.001
bank-marketing 0.206-£0.008 0.19840.009 0.196-:0.004 0.201:£0.006 0.207:£0.006 0.193£0.009 0.196:0.008 0.195+0.006 0.20020.006
Bioresponse 0.240£0.011 0.23340.007 0.236£0.011 0.249:£0.013 0.240£0.008 0.228+0.013 0.227+0.010 0.229+0.006 0.23240.008
california 0.1142£0.003 0.090:0.004 0.092-£0.003 0.113£0.003 0.122:£0.003 0.095:£0.002 0.097:£0.002 0.09720.003 0.1110.002
compas-two-years 0.325:£0.009 0.332-:0.008 0.326-:0.007 0.328-£0.007 0.326:£0.005 0.325:0.008 0.329+0.006 0.331+0.009 0.3770.009
covertype 0.122:£0.002 0.096:0.001 0.10120.001 0.145-£0.004 0.144-£0.002 0.138:£0.001 0.143£0.002 0.14620.003 0.153:0.001

credit 0.22740.005 0.22440.005 0.22640.007 0.22440.007 0.22540.006 0.223:0.007 0.226-20.007 0.227-£0.008 0.235:£0.005
default-of-credit-card-clients 0.281:£0.005 0.284--0.005 0.286--0.005 0.284--0.004 0.285-£0.006 0.286:£0.005 0.284+0.005 0.2870.005 0.292:0.003
Diabetes130US 0.39740.002 0.396+0.001 0.39740.001 0.39640.001 0.396--0.001 0.395-20.001 0.399-£0.002 0.398-£0.001 0.438-0.001
electricity 0.1704£0.007 0.154-0.015 0.1104£0.007 0.161-£0.002 0.170+£0.004 0.1174£0.002 0.115+0.001 0.1114+0.001 0.13740.002

heloc 0.284£0.007 0.284-40.009 0.284--0.009 0.276-£0.008 0.282-+0.009 0.281+0.008 0.282+0.007 0.284+0.006 0.28340.006

Higgs 0.288-£0.002 0.29240.002 0.307-£0.001 0.288-£0.001 0.310+£0.002 0.290+0.001 0.289+0.001 0.29440.002 0.300-0.001
house_16H 0.11640.004 0.11940.002 0.11540.003 0.113£0.003 0.11640.005 0.116--0.004 0.115--0.004 0.118=£0.004 0.121:£0.003

jannis 0.22240.002 0.22640.001 0.25740.002 0.22140.001 0.24940.002 0.222-4-0.001 0.224-£0.001 0.230£0.001 0.235:0.001
MagicTelescope 0.137£0.004 0.13140.004 0.130£0.003 0.136-£0.004 0.139+£0.004 0.136:£0.004 0.1390.005 0.138+0.005 0.14440.004
MiniBooNE 0.063:£0.001 0.06540.001 0.06720.001 0.066-£0.001 0.064=£0.001 0.064=£0.001 0.063+0.001 0.064+0.001 0.0780.001

pol 0.012:£0.002 0.01440.001 0.032£0.002 0.017-£0.002 0.037:£0.004 0.014£0.001 0.015+0.001 0.0140.001 0.0160.002
road-safety 0.233£0.002 0.23240.002 0.2300.001 0.238:£0.004 0.241:£0.002 0.233£0.001 0.2370.001 0.24240.001 0.24340.001

26649 https://doi.org/10.52202/079017-0837

https://doi.org/10.52202/079017-0837

Table D.10: Classification error of funed methods on datasets in BS;isrslszmjn, averaged over ten

train-validation-test splits. When we write a £ b, a is the mean error on the dataset and [a — b, a + b)
is an approximate 95% confidence interval for the mean in the #splits — oo limit. The confidence
interval is computed from the ¢-distribution using a normality assumption as in[Appendix C.6] In
each row, the lowest mean error is highlighted in bold, and errors whose confidence interval contains
the lowest error are underlined.

Dataset RealMLP-HPO ~ TabR-HPO ~MLP-PLR-HPO FTT-HPO ResNet-HPO ~ MLP-HPO CatBoostHPO LGBM-HPO XGB-HPO RF-HPO
albert 03490002 0.348:£0.002 0.34610.002 0346+0.002 0.34820.002 0.3470.001 03440001 034740.003 0.348:20.002 0.346:0.002
bank-marketing 0.20240.004 0.19340.006 0.199+0.005 0.199+0.003 0.20420.007 0.20740.007 0.194+0.008 0.194£0.005 0.193+0.006 0.19940.009
Bioresponse 023540010 024420010 025040008 024540011 023240010 023620010 0234+0009 0.22940.007 0229+0013 0.22340.008
california 0.11120.003 0.090+0.002 01140003 0.109£0.003 0.116+0.003 0.123£0.002 0.095+0.002 0.095+0.004 0.0970.002 0.108+0.003
compas-two-years 0.3254-0.007 0.330£0.010 0.329+0.010 0.332+0.011 0.330£0.008 0.3254+0.006 0.327+0.008 0.32740.008 0.329+0.007 0.329+0.004
covertype 0.12040.002 0.096£0.001 0.140£0.002 0.125£0.002 0.14240.003 0.14540.002 0.142£0.001 0.13540.002 0.147+0.006 0.144+0.003
credit 0.22540.006 0.22540.007 0.22540.006 0.224+0.007 0.225+0.006 0.223+0.005 0.222-4-0.007 0.22640.007 0.224+0.007 0.226+0.006
default-of-credit-card-clients ~ 0.28540.005 0.28440.007 0.286+0.004 0.285-£0.005 0.28540.007 0.2864-0.007 0.281+0.005 0.285--0.005 0.28140.004 0.28140.005
Diabetes130US 0.3984+0.002 0.39740.001 0.396-£0.001 0.39740.003 0.39740.002 0.398+0.003 0.396-£0.002 0.3954+0.001 0.395+0.001 0.395+-0.001
electricity 0.16240.003 0.063+£0.003 0.160£0.004 0.160£0.002 0.170£0.003 0.16740.002 0.113£0.002 0.11240.002 0.11940.003 0.126+0.002
heloc 0.284+0.010 0.279+0.010 0.27740.008 0.279+0.008 0.280+0.009 0.283+0.008 0.277-4-0.006 0.28040.007 0.283+0.008 0.282+0.008
Higgs 0.2861+0.002 0.288+0.001 0.290+0.003 0.291£0.002 0.299£0.003 0.303£0.002 0.290+0.002 0.28940.002 0.289+0.002 0.295+0.002
house_16H 0.11940.004 0.115+0.004 0.114:£0.003 0.11540.004 0.115+0.004 0.116+0.003 0.114-£0.004 0.1154+0.005 0.116+0.003 0.121+0.004
jannis 0.22140.002 0.220£0.002 0.22240.002 0.22540.004 0.234£0.002 0.243+0.003 0.22240.001 0.22240.002 0.22440.002 0.22740.002
MagicTelescope 0.13440.005 0.130£0.005 0.13740.008 0.13740.004 0.137£0.005 0.140+£0.004 0.1384+0.007 0.13940.005 0.140£0.004 0.142+0.005
MiniBooNE 0.0614+0.001 0.063+0.001 0.063+0.001 0.065+0.001 0.061+0.001 0.0624+0.001 0.06440.001 0.064£0.001 0.064+0.001 0.074+0.001
pol 0.0134+0.002 0.01540.002 0.0144+0.002 0.015+0.002 0.0314+0.003 0.0324+0.004 0.01440.002 0.015£0.001 0.016+0.002 0.0184+0.002
road-safety 022940002 0.223£0002 023420002 0229+0.001 022940.002 0.234£0.002 0235+£0.001 023420.001 0.23720.001 0.241:£0.001
Table D.11: nRMSE of untuned methods on datasets in BchrgmmaJn, averaged over ten train-validation-
test splits. When we write a b, a is the mean error on the dataset and [a — b, a 4] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in[Appendix C.6| In each row, the lowest
mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are
underlined.
Dataset RealMLP-TD RealTabR-D TabR-S-D MLP-PLR-D MLP-D CatBoost-TD LGBM-TD XGB-TD RF-D
abalone 0.6681+0.014 0.647+£0.012 0.649+0.013 0.666+0.012 0.6661+0.015 0.68640.011 0.68740.013 0.6924+0.011 0.688+0.012
Ailerons 0.3961+0.006 0.394+0.007 0.3974+0.007 0.39740.006 0.4031+0.007 0.3831+0.007 0.38940.006 0.408+0.006 0.402+0.006
Airlines_DepDelay_IM 0.979+0.001 0.97940.001 0.9814£0.001 0.980+£0.001 0.980+£0.001 0.979+0.000 0.982+0.000 0.98440.001 1.0114-0.001
Allstate_Claims_Severity 0.70740.003 0.69740.001 0.699+0.001 0.692+0.001 0.698+0.001 0.69540.001 0.69440.001 0.83940.026 0.728=+0.002
analcatdata_supreme 014240015 013620011 0.14240013 (.144:£0.015 0.14140.014 014140013 014450013 0.145£0013 0.145+0.013
Bike_Sharing_Demand 022840005 0.23240.006 023740006 024240003 0.24410.005 02280.005 023140004 0.24340.016 0.258-0.005
Brazilian_houses 0.068+0.026 0.064+0.028 0.07410.022 0.065+£0.015 0.068+0.011 0.067+0.020 0.059-£0.021 0.067+0.021 0.07440.025
cpu_act 012940005 01210004 0.123+0.004 012740004 0.14420.004 0.168£0.011 0.125+0.009 0.12740.011 0.134:0.005
delays_zurich_transport 0.966+0.002 0.96640.001 0.96740.001 0.96740.001 0.9694-0.001 0.96740.001 0.968+0.001 0.97140.001 1.068+-0.003
diamonds 0.096+0.002 0.088+0.001 0.09240.001 0.10240.002 0.10240.003 0.09240.001 0.09740.001 0.0944-0.001 0.1154-0.004
elevators 0.280+0.005 0.28040.005 0.72840.013 0.66740.138 0.7454-0.014 0.3231-0.006 0.3341-0.007 0.34510.006 0.420+0.011
house_16H 0.698+0.024 0.7014£0.019 0.6854+0.021 0.67240.013 0.68040.011 0.68240.014 0.6854+0.018 0.6931+0.016 0.667+0.019
house_sales 0.32440.003 0.31240.003 0.32040.003 0.32840.003 0.3414-0.003 0.3244-0.003 0.32740.003 0.3341-0.002 0.3544-0.003
houses 0.41140.006 0.36240.005 0.36240.004 0.41540.004 0.41940.004 0.39140.003 0.3941-0.004 0.39940.003 0.41940.005
medical_charges 0.1441+0.000 0.14440.000 0.14540.001 0.14540.001 0.14840.002 0.1464-0.000 0.1504-0.000 0.15440.000 0.153+0.001
Mercedes_Benz_Greener_Manufacturing 0.675+0.030 0.672-£0.030 0.675-:0.029 0.67340.032 0.67440.031 0.6774+0.029 0.694+0.027 0.691+0.026 0.736::0.023
MiamiHousing2016 0.26240.003 0.246+0.005 0.25240.005 0.26940.005 0.28040.005 0.2604-0.004 0.26740.004 0.27140.004 0.29540.006
nyc-taxi-green-dec-2016 0.70440.009 0.664+0.002 0.677+0.003 0.7504+0.028 0.70740.003 0.67740.002 0.66940.003 0.69540.003 0.668+0.002
particulate-matter-ukair-2017 0.58140.002 0.566+0.004 0.568+0.004 0.58240.002 0.58740.001 0.56640.001 0.57240.001 0.57940.001 0.59740.001
pol 0.0671+0.003 0.067+40.003 0.1424+0.006 0.0744+0.004 0.14140.009 0.10240.004 0.10340.005 0.10940.007 0.12040.007
seattlecrime6 0.9064+0.002 0.904+0.001 0.9054+0.001 0.9054+0.001 0.9064-0.001 0.9034+0.001 0.90540.001 0.910+£0.001 0.914+0.001
SGEMM_GPU_kernel_performance 0.014:0.000 0.014-£0.000 0.02240.003 0.03240.002 0.032£0.003 0.017-£0.000 0.016:0.000 0.01740.000 0.0150.000
sulfur 042740063 03760038 0.40240.051 042940057 0438+0.051 0.41440.056 04240058 0415+0.065 0.43940.049
superconduct 0.305+0.005 0.30840.004 0.304£0.004 031940004 0.30820.005 029140005 0290+0.004 0.28940.004 0.295-0.003
topo_2_1 0.969-£0.005 0.970+0.005 0.971+£0.004 0.969+0.004 0970+0.003 0.975+0.007 0.978-0.009 0.979+0.007 0.9840.011
visualizing_soil 0.0000.001 0.00740.001 0.02040.009 002040001 0.02740.002 0.004£0.001 0.005+0.001 0.005+0.001 0.0040.001
wine_quality 0.762+0.014 0.73640.010 0.73740.011 0.78340.011 0.77840.015 0.7164-0.010 0.7114-0.013 0.71140.012 0.71740.012
yprop_4_1 0.968+0.008 0.9584+0.005 0.95740.005 0.9664-0.003 0.96940.009 0.96240.005 0.9654+0.008 0.969+0.004 0.968+-0.007
26650

Table D.12: nRMSE of tuned methods on datasets in ngnszmjn, averaged over ten train-validation-
test splits. When we write a £ b, a is the mean error on the dataset and [a — b, @ + b] is an approximate
95% confidence interval for the mean in the #splits — oo limit. The confidence interval is computed
from the ¢-distribution using a normality assumption as in In each row, the lowest
mean error is highlighted in bold, and errors whose confidence interval contains the lowest error are

underlined.

Dataset RealMLP-HPO TabR-HPO MLP-PLR-HPO FTT-HPO ResNet-HPO MLP-HPO CatBoost-HPO LGBM-HPO XGB-HPO RF-HPO
abalone 0.661+0.013 0.6531+0.009 0.664£0.011 0.66510.011 0.6564-0.015 0.666+0.010 0.679+0.011 0.675+0.011 0.672+0.010 0.675+0.012
Ailerons 0.385+0.009 0.39040.008 0.397£0.007 0.388+0.006 0.4004-0.007 0.40240.007 0.380+0.006 0.385+40.007 0.411£0.006 0.4024-0.006
Airlines_DepDelay_IM 0.978+0.000 0.978+0.001 0.97840.001 0.97840.001 0.980=+0.001 0.982+0.001 0.97840.001 0.977+0.001 0.97740.000 0.97940.000
Allstate_Claims_Severity 0.6914+0.001 0.692+0.001 0.68940.001 0.68940.002 0.698+0.001 0.695+0.001 0.68540.001 0.685+0.001 0.75310.012 0.71340.002
analcatdata_supreme 0.144+0.018 0.14840.015 0.142--0.018 0.142+0.017 0.14940.016 0.144+0.016 0.142+0.014 0.14340.016 0.1410.018 0.146+0.013
Bike_Sharing_Demand 0.229+0.005 0.22740.004 0.237£0.005 0.23840.007 0.2764-0.005 0.24540.007 0.23410.004 0.23440.005 0.241+0.014 0.25740.005
Brazilian_houses 0.053+0.015 0.072-£0.022 0.057+0.014 0.058+0.014 0.063+0.010 0.0624+0.014 0.06740.016 0.056--0.023 0.063+0.017 0.089-£0.031
cpu_act 0.12540.004 0.1154-0.004 0.12540.004 0.1204-0.005 0.128=£0.004 0.1374-0.004 0.123+0.003 0.122+0.007 0.1204-0.005 0.132+0.005
delays_zurich_transport 0.96540.001 0.96640.001 0.966+£0.001 0.9664-0.001 0.968-+0.001 0.96940.001 0.964+0.001 0.963+0.001 0.963+-0.001 0.963+0.000
diamonds 0.0914+0.001 0.090+0.001 0.09540.002 0.095+0.001 0.10740.003 0.105+0.002 0.092+0.001 0.09340.002 0.093+0.001 0.107+0.001
elevators 0.27640.005 0.28540.005 0.315£0.013 0.48540.137 0.3182£0.007 0.74440.017 0.308+0.007 0.319£0.005 0.3284-0.008 0.428+0.013
house_16H 0.71440.032 0.69440.013 0.680+0.025 0.69440.036 0.680+£0.014 0.68410.018 0.674+0.015 0.680+0.021 0.6734+0.016 0.665+0.015
house_sales 0.32040.003 0.313+0.003 0.32310.003 0.32140.003 0.331£0.003 0.338£0.002 0.32040.003 0.323+0.003 0.3231-0.003 0.3534-0.003
houses 0.40240.004 0.357+£0.005 0.41840.005 0.40540.005 0.420£0.005 0.421£0.006 0.39240.004 0.391£0.004 0.3951-0.006 0.4184-0.004
medical_charges 0.14310.000 0.14420.000 0.1444-0.000 0.14440.000 0.1472£0.002 0.145£0.001 0.14540.000 0.1454-0.000 0.1474-0.000 0.14740.001
Mercedes_Benz_Greener_Manufacturing 0.6714-0.032 0.67240.030 0.6704-0.030 0.668+0.031 0.677+0.032 0.66940.030 0.669+0.029 0.6664-0.030 0.665+0.031 0.668+0.030
MiamiHousing2016 0.26010.004 0.245+0.004 0.26240.005 0.26140.004 0.268+0.006 0.280+£0.006 0.2544-0.003 0.258+0.004 0.2584-0.005 0.2804-0.005
nyc-taxi-green-dec-2016 0.67010.002 0.656+0.012 0.688+0.004 0.71540.022 0.691£0.004 0.701£0.004 0.66840.004 0.665+0.003 0.69710.004 0.655+-0.004
particulate-matter-ukair-2017 0.57840.002 0.564+0.004 0.5754-0.001 0.57940.003 0.583£0.002 0.586+0.001 0.563+0.001 0.563+0.001 0.5634-0.002 0.577=40.001
pol 0.059+0.004 0.066+0.004 0.06410.003 0.06640.003 0.166+0.007 0.127+0.008 0.11840.004 0.107+0.005 0.10940.004 0.1174-0.005
seattlecrime6 0.90410.001 0.903+0.001 0.9044-0.001 0.90440.001 0.909+0.001 0.905+0.001 0.90340.001 0.903+0.001 0.90340.001 0.904+0.001
SGEMM_GPU_kernel_performance 0.014+0.000 0.015+0.001 0.01640.001 0.01740.001 0.039£0.002 0.017+0.000 0.01740.000 0.016+0.000 0.016+-0.000 0.0144-0.000
sulfur 0.3611+0.057 0.372+0.040 0.3974+0.068 0.41040.056 0.428-+0.057 0.404+0.055 0.39840.036 0.423+0.060 0.416+0.058 0.4164-0.044
superconduct 0.29940.006 0.299+0.004 0.3041-0.005 0.31540.005 0.304+0.006 0.305+0.004 0.29440.003 0.286+0.004 0.285+0.004 0.291+40.006
topo_2_1 0.968-£0.006 0.968+0.004 0.970-£0.004 0.968+0.005 0.97140.004 0.967+0.007 0.97240.004 0.96740.006 0.966--0.005 0.964--0.003
visualizing_soil 0.00540.001 0.006+0.001 0.00940.001 0.011£0.001 0.0264-0.001 0.010£0.001 0.006£0.000 0.00540.001 0.024+0.006 0.00640.002
wine_quality 0.75240.010 0.73940.012 0.776£0.012 0.7814-0.008 0.781£0.008 0.78040.012 0.72740.008 0.703-+£0.012 0.70940.009 0.709+0.013
yprop_4_1 0.97140.007 0.95340.004 0.967£0.007 0.968+0.008 0.966-£0.008 0.96010.004 0.982+0.030 0.953+0.006 0.95440.005 0.949-+0.006

26651 https://doi.org/10.52202/079017-0837

E Broader Impact

We present NN models with an improved speed-accuracy tradeoff and hope that this can reduce the
resource consumption of tabular models in applications and further benchmarks. While tabular ML
has many potential applications, we feel that none must be particularly highlighted here.

https://doi.org/10.52202/079017-0837 26652

NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the paper.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a paragraph on limitations in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

26653 https://doi.org/10.52202/079017-0837

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in the paper and the appendix, especially
Appendix Cl We cannot provide all details on dataset preprocessing, but these are provided
with the code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code for the meta-train and meta-test benchmarks in the supplemen-
tary material. For the camera-ready version, we will provide more complete documentation,
the code for the Grinsztajn et al. [18]] benchmark, and the experimental data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

https://doi.org/10.52202/079017-0837 26654

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details are provided in the paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for fixed datasets, quantifying the uncertainty over the
random splits, as described in the appendix. We also provide critical-difference diagrams in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

26655 https://doi.org/10.52202/079017-0837

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We did not track these resources in detail, but a rough estimate for the total
resources can be found in[Appendix C.§|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?
Answer: [NA]
Justification: The research appears to conform to the code of ethics but we did not check all
~ 200 datasets used in this paper.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See but this work is foundational research and the impact is
unclear.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

https://doi.org/10.52202/079017-0837 26656

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use publicly available tabular datasets without obvious safety risks
and do not release pretrained models.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: We use = 200 datasets from online repositories, so we cite the repositories /
benchmark curators but not the individual datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We only provide download code for existing datasets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

26657 https://doi.org/10.52202/079017-0837

paperswithcode.com/datasets

Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

https://doi.org/10.52202/079017-0837 26658

