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Abstract

Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain
data by learning only from unlabeled In-Distribution (ID) training samples, which
is crucial for developing a safe real-world machine learning system. Current
reconstruction-based method provides a good alternative approach, by measuring
the reconstruction error between the input and its corresponding generative coun-
terpart in the pixel/feature space. However, such generative methods face the key
dilemma, i.e., improving the reconstruction power of the generative model, while
keeping compact representation of the ID data. To address this issue, we propose
the diffusion-based layer-wise semantic reconstruction approach for unsupervised
OOD detection. The innovation of our approach is that we leverage the diffusion
model’s intrinsic data reconstruction ability to distinguish ID samples from OOD
samples in the latent feature space. Moreover, to set up a comprehensive and
discriminative feature representation, we devise a multi-layer semantic feature
extraction strategy. Through distorting the extracted features with Gaussian noises
and applying the diffusion model for feature reconstruction, the separation of ID
and OOD samples is implemented according to the reconstruction errors. Extensive
experimental results on multiple benchmarks built upon various datasets demon-
strate that our method achieves state-of-the-art performance in terms of detection
accuracy and speed. Code is available at https://github.com/xbyym/DLSR.

1 Introduction

Unsupervised Out-of-Distribution (OOD) detection aims to identify whether a data point belongs
to the In-Distribution (ID) or OOD dataset, by learning only from unlabeled in-distribution training
samples. OOD detection plays a vital role in developing a safe real-world machine learning system,
which ensures that the model is only performed on data drawn from the same distribution as its
training data. If the test data does not follow the training distribution, the model could unintentionally
produce nonsensical predictions, resulting in some misleading conclusions. Naturally, OOD detection
is one of the key techniques for ensuring the model’s robustness and safety.

Existing research studies the OOD detection mainly under two settings, i.e., supervised and unsu-
pervised. The supervised OOD detection methods usually deem this task as a binary classification
problem, which relies on training with data labeled as OOD from disjoint categories or adversaries
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[Hendrycks et al., 2018], [Ming et al., 2022]. However, in many practical applications, it is almost
impossible to access representative OOD samples, as the OOD data usually can be highly diverse
and unpredictable. Therefore, we prefer to study the more challenging while practical unsupervised
OOD detection problem. We will build an OOD detector trained solely on unlabeled ID data, as large
amounts of unlabeled data are readily available and widely utilized due to their ease of acquisition.

Current reconstruction-based methods provide a good alternative approach for OOD detection, by
measuring the reconstruction error between the input and its corresponding generative counterpart in
the pixel/feature space. Obviously, the generative models and metric learning evaluation strategies
are the main research directions. However, such methods of the generative models always face the
following key dilemma: The projected in-distribution latent feature space should be compressed
sufficiently to capture the exclusive characteristics of ID images, while it should also provide sufficient
reconstruction power for the large-scale ID images of various categories. Existing generative-based
methods (e.g., auto-encoder (AE), variational AE [Kingma and Welling, 2013] and Generative
Adversarial Network(GAN)) [Goodfellow et al., 2014], can not always fulfill these two requirements
simultaneously, and a good balance between them is required. Besides, recent OOD detection
methods based on diffusion models such as [Graham et al., 2023], [Gao et al., 2023] and [Liu
et al., 2023] often involve the pixel-level reconstruction of distorted images, which consume much
training/inference time and computation resources.

To address the above-mentioned issues, and inspired by the latent space noise addition mechanism
in Latent Diffusion Models (LDM) Rombach et al. [2022], we propose the diffusion-based layer-
wise semantic reconstruction approach for unsupervised OOD detection. Specifically, the proposed
method makes full use of the diffusion model’s intrinsic data reconstruction ability, to distinguish
in-distribution samples from OOD samples in the latent feature space. In the diffusion denoising
probabilistic models (DDPM) [Ho et al., 2020], the model is trained to incrementally remove noise
from the noised inputs of different levels. Clearly, we can see that, instead of faithfully reconstructing
inputs from the distribution it was trained on as previous VAE Kingma and Welling [2013] or
GAN Goodfellow et al. [2014], the diffusion-based model shows more powerful reconstruction
capabilities. Practically, our model involves reconstructing an input image feature from multiple
values of the time step, this allows a single trained model to handle large amount of noise applied to
the input, obviating the need for any dataset-specific fine-tuning.

Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-
layer semantic feature extraction strategy. Performing feature reconstruction on top of the multi-layer
semantic features, encourages to restrict the in-distribution latent features distributed more compactly
within a certain space, so as to better rebuild in-distribution samples while not reconstructing OOD
comparatively. Overall, by distorting the extracted multi-layer features with Gaussian noises and
applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is
implemented according to the reconstruction errors. Note that, the proposed Latent Feature Diffusion
Network (LFDN) is built on top of the feature level instead of the traditional pixel level, which
could significantly improve the computation efficiency and achieve effective OOD detection. The
other potential strength of such a strategy is that it avoids the reconstruction of minor characteristics
unrelated to image understanding. In summary, the contributions of this work are as follows:

• We propose a diffusion-based layer-wise semantic reconstruction framework to tackle OOD
detection, based on multi-layer semantic feature distortion and reconstruction. Meanwhile,
We are the first to successfully incorporate generative modeling of features within the
framework of OOD detection in image classification tasks.

• The layer-wise semantic feature reconstruction encourages restricting the in-distribution
latent features to be more compactly distributed within a certain space, enabling better
reconstruction of ID samples while limiting the reconstruction of OOD samples.

• Extensive experiments on multiple benchmarks across various datasets show that our method
achieves state-of-the-art detection accuracy and speed.

2 Related Work
Existing researches study the OOD detection mainly under two settings: supervised and unsupervised.
The Supervised method is generally based on classification. The method usually uses the maximum
softmax probability [Hendrycks and Gimpel, 2016] from the final fully connected (FC) layer as the
score to judge the ID sample. But the classification-based OOD detection methods often encounter

2

26847https://doi.org/10.52202/079017-0843



Av
g-

Po
ol

in
g 

&
 Z

-s
co

re
 N

or
m

Pixel space

·····

��

······

Latent Feature 
Diffusion Network

R
es

 B
lo

ck

R
es

 B
lo

ck

R
es

 B
lo

ck
R

es
 B

lo
ck

��

��−�

��

��
��

��−�

��

��

��

ε(·)

···

·····

ε

��

O
O

D
 D

et
ec

tio
n

��

��

��−�

��

Guide

��

Figure 1: Overview of proposed diffusion-based layer-wise semantic reconstruction framework for
unsupervised OOD detection. It includes multi-layer semantic feature extraction, Diffusion-based
Feature Distortion and Reconstruction, and OOD detection head modules.

issues with assigning high softmax probability to OOD samples. Recent works [Liu et al., 2020],
[Sun and Li, 2022], [Djurisic et al., 2022], [Zhao et al., 2024], attempt to alleviate this issue. The
unsupervised OOD detection can be roughly categorized as the distance-based metric evaluation and
the generative-based reconstruction methods.

Distance-based methods assume that OOD data lies far from ID class centroids. [Ren et al., 2021]
improved OOD detection by separating image foregrounds from backgrounds and computing the
Mahalanobis distance for each, then combining them. [Sun et al., 2022] used a non-parametric nearest
neighbor distance for OOD detection. [Techapanurak et al., 2020] and [Chen et al., 2020] used cosine
similarity to measure distances between test data features of in-distribution data to identify OOD data.
[Huang et al., 2020] applied Euclidean distance, while [Gomes et al., 2022] used Geodesic distance
for OOD detection. These methods often fail to capture sample distribution accurately.

Among the generative-based methods, the Likelihood-based methods can be traced back to as early
as [Bishop, 1994]. This method assumes that the generative model assigns high likelihood to ID data,
while the likelihood for OOD data tends to be lower. Recently, several deep generative models have
supported the computation of likelihood, such as VAE [Kingma and Welling, 2013], PixelCNN++
[Salimans et al., 2017], and Glow [Kingma and Dhariwal, 2018]. However, some studies ([Nalisnick
et al., 2018]; [Choi et al., 2018]; [Kirichenko et al., 2020]) have found that probabilistic generative
models might also assign high likelihood to OOD data.

A series of studies have attempted to mitigate this issue. [Serrà et al., 2019] explored the relationship
between image complexity and likelihood values, which adjusted likelihoods based on the size of
image compression. [Ren et al., 2019] enhanced OOD detection by comparing likelihood values
derived from different models. Another closely related approach highlights that these indicators are
not well suited for VAEs. [Xiao et al., 2020] proposed a specialized metric known as likelihood
regret for OOD detection in VAEs. [Cai and Li, 2023] suggested to leverage the high-frequency
information of images to improve the model’s ability to recognize OOD data. Additionally, a range
of studies [Nalisnick et al., 2019], [Wang et al., 2020], [Bergamin et al., 2022], [Osada et al., 2023],
have proposed typicality tests, estimating layer activation distributions and other statistical measures
on training data, which are then evaluated through hypothesis testing or density estimation.

Another type of OOD detection methods leverage the idea that generative networks produce different
reconstruction errors for ID and OOD data. Some methods such as [Sakurada and Yairi, 2014], [Zong
et al., 2018], and [Zhou and Paffenroth, 2017], used auto-encoders to analyze reconstruction errors.
GAN-based methods [Schlegl et al., 2017], [Zenati et al., 2018], and [Madzia-Madzou and Kuijf,
2022] utilized reconstruction errors and discriminator confidence to detect anomalies. Recent works
[Graham et al., 2023], [Gao et al., 2023], and [Liu et al., 2023] applied diffusion models to model
the pixel-level distribution of images, using errors from multiple reconstructions for OOD detection.
Different from previous methods, we propose to leverage diffusion models to perform multi-layer
semantic reconstruction in the latent feature space, not only for their stability in generation but also
for significantly reducing training and inference time costs.

3 Method

Unsupervised OOD detection leverages intrinsic information from an unlabeled ID dataset D to train
a detector. Suppose D contains N images, namely D = {xi}Ni=1, where xi denotes the i-th image.
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The target is to learn an OOD detector denoted as S(·), which can effectively evaluate an OOD
score for each input image. The judgment of whether the input image belongs to ID or OOD is
implemented by thresholding the OOD score. For example, given a testing image x, it is recognized
as an ID sample if the OOD score S(x) is lower than the pre-defined threshold λ; otherwise, it is
recognized as an OOD sample.

In this paper, we propose a diffusion-based layer-wise semantic reconstruction framework to accom-
plish the OOD detection task. Specifically, as illustrated in Figure 1, the proposed framework consists
of the following three components: the multi-layer semantic feature extraction module, the latent
feature diffusion stage, and the OOD detection head.

3.1 Multi-layer Semantic Feature Extraction

The proposed semantic reconstruction-based method achieves OOD detection by measuring the
reconstruction error between the input and its generative counterpart in the feature space. Specifically,
we devise a multi-layer semantic feature extraction strategy, to set up a comprehensive and discrimi-
native feature representation for each input image. Such multi-layer features could better rebuild the
samples and encourage the ID semantic features distributed more compactly within a certain space
from different semantic layers.

Specifically, given an image x ∈ R3×w×h with w and h being the width and height of the input
image, passing through an image encoder E(·), (e.g., EfficientNet [Tan and Le, 2019]), we can extract
its feature maps from different layers (i.e., low-level to high-level semantic blocks). The multi-layer
intermediate feature map from the m-th block can be defined as Fm ∈ Rcm×wm×hm ,m ∈ {1, ...,M},
where cm, wm and hm are the number of channels, width and height of the feature map Fm, and
M is the total number of intermediate feature maps. Then, each feature map Fm undergoes the
global average pooling, obtaining the one-dimensional feature vector fm ∈ Rcm . Afterward, Z-
score normalization [Al Shalabi et al., 2006] is applied to each feature vector fm, resulting in
f
m

= fm−µfm√
Var(fm)+δ

for the m-th intermediate feature vector fm of the input image x, where Var(fm)

is the variance of fm along the channel elements, and δ is a small constant value. Finally, we obtain the
overall multi-layer feature vector for the input image x as: z0 = H(x) = [f

1
, . . . , f

m
, . . . , f

M
] ∈ Rc

by concatenating all the intermediate feature vectors, where c =
∑M

m=1 cm, andH(x) denotes the
whole feature extraction process.

3.2 Diffusion-based Feature Distortion and Reconstruction
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Figure 2: Residual Block Structure in LFDN.

Fitting the semantic feature distribution of ID samples
is crucial for identifying whether the input is an ID
or OOD sample. However, it is difficult to explicitly
model the semantic feature space which has moderate
complexity. Existing generative-based models [Zhou,
2022], [Cai and Li, 2023] address the modeling of
complex data/feature space by transferring the orig-
inal data/features into an implicit bottleneck space
and learning a generator capable of recovering ID
samples from the bottleneck space. Since the gen-
erator can not generalize well in recovering unseen
OOD samples, it can be used as the OOD detector.
Inspired by this, we set up a diffusion-based feature
distortion and reconstruction framework, considering
the strength of diffusion models in data reconstruction. Our framework is innovative in the intro-
duction of diffusion models in modeling semantic features, while previous works [Graham et al.,
2023], [Liu et al., 2023], [Gao et al., 2023] focus on applying diffusion models for straightforward
pixel-level distortion and reconstruction.

Semantic Feature Distortion.

The semantic feature distortion process can be conceptualized as transforming the semantic features
into distorted counterparts with different levels of noise. For each step t belonging to [1, . . . , T ], the
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generation of data point zt follows the formula:

zt = ennoise(z0, t) =
√
αt × z0 +

√
1− αt × ϵ, ϵ ∼ N (0c, Ic×c) (1)

where ϵ ∈ Rc represents a Gaussian noise vector; N (·, ·) denotes the Gaussian distribution; 0c

and Ic×c denote the c-dimensional zero vector and the c × c identity matrix, respectively. αt is a
predefined noise level that controls the amount of noise added at each step.

Semantic Feature Reconstruction. For reconstructing the semantic features from their distorted
counterparts, we build up a Latent Feature Diffusion Network (LFDN) constituted by 16 residual
blocks (ResBlock), as shown in Fig. 1.

The structure of ResBlock is illustrated in Fig. 2. Its residual branch is formed with two groups of
Groupnorm [Wu and He, 2018], SiLU, and linear layers, as well as a MLP used for absorbing in the
time embedding.

Following the calculation process of the denoising diffusion implicit model [Song et al., 2020], we
employ LFDN to remove the noises injected into the semantic features with skipping step stride
denoted as s. The detailed noise-removing process for zt is described as follows. s is set to a value
randomly selected from {1, 2, · · · , t}.

1) We first input zt and the time embedding of t into LFDN, generating an initial reconstruction
state denoted as z̃t. The calculation formulation can be summarized as: z̃t = LFDN(zt, t),
where LFDN(·) denotes the feed-forward process of LFDN.

2) Afterwards, we estimate the noise correction vector for zt denoted as ϵ̃t as follows,

ϵ̃t =
zt −

√
αt × z̃t√

1− αt
, (2)

where αt is the predefined noise level of the t-th feature distortion step.
3) Then, we sample the input (z̃t′) for implementing the t′-th step’s feature reconstruction

where t′ = max(t− s, 0) as:

z̃t′ =
√
αt′

(
zt −

√
1− αt × ϵ̃t)√

αt
+
√
1− αt′ − σ2

t × ϵ̃t

)
+ σ2

t ϵ, (3)

where σ2
t represents the variance of the additional noise at step t. Regarding z̃t′ and

time embedding of t′ as inputs, LFDN predicts reconstruction results of the t′-th step as
z̃t′ = LFDN(z̃t′ , t

′).
4) Repeating steps 2 and 3 until t′ = 0, yields the final reconstructed semantic features z̃0.

We summarize the above process as z̃0 = denoise(zt, t). This framework ensures that z̃0 is not solely
derived from the LFDN output but is continuously refined by DDIM, integrating detailed corrections
to achieve high accuracy in reconstructing the original data from its noisy observations.

Objective Function. For optimizing the network parameters of LFDN, the mean square error is used
as the loss function for pulling close the outputs of LFDN with the original semantic features. The
calculation formulation is as follows:

L =
1

N

∑
x∈D
∥z0 − LFDN(zt, t)∥22 (4)

During training, t is randomly selected from {1, 2, · · · , T}. The detail is illustrated in Algorithm 1.

3.3 OOD Detection Head

Our approach can be integrated with three metrics to detect OOD data. Firstly, we utilize the Mean
Squared Error (MSE) to measure the feature reconstruction error. Secondly, we use the Likelihood
Regret metric (LR = MSEinitial − MSEfinal) [Xiao et al., 2020], which quantifies the change in
MSE from the initial epoch to the final epoch. This metric reflects the model’s evolving certainty
during training. Generally, the reconstruction errors for ID samples decrease as the model becomes
more familiar with these samples, whereas the errors for OOD samples remain relatively stable.
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Lastly, we employ the Multi-layer Semantic Feature Similarity (MFsim), i.e., the cosine similarity.
We assesses the cosine similarity between the original features z0 = [f

1
, . . . , f

m
, . . . , f

M
] and the

reconstructed features z̃0 = [f̃1, . . . , f̃m, . . . , f̃M ] at various layers: Sim(f
m
, f̃m) = f

m·f̃m
∥fm∥·∥f̃m∥ . The

OOD detection score MFsim, is then computed as the negative average of these similarities: MFsim =
− 1

M

∑M
m=1 Sim(f

m
, f̃m), where M is the number of feature maps. A higher MFsim score indicates

a greater likelihood of the data being OOD. Algorithm 2 details the MFsim calculation. The flows for
MSE and LR calculations are provided in Appendix A.

Algorithm 1 Training Algorithm

1: Input: Train image x ∈ R3×h×w

2: z0 = H(x) = [f
1
, . . . , f

m
, . . . , f

M
] ∈ Rc

3: repeat
4: Draw t ∼ Uniform{1, . . . , T}
5: Draw ϵ ∼ N (0, I)
6: Compute zt and L
7: zt =

√
αtz0 +

√
1− αtϵ

8: L = 1
N

∑
x∈D ∥z0 − LFDN(zt, t)∥22

9: Update the parameters via the AdamW
optimizer.

10: until convergence

Algorithm 2 Testing Algorithm

1: Input: An image x ∈ R3×h×w

2: Output: OOD score
3: z0 = H(x) = [f

1
, . . . , f

m
, . . . , f

M
] ∈ Rc

4: zt ← ennoise(z0, t)
5: z̃0 ← denoise(zt, t)
6: [f̃1, . . . , f̃m, . . . , f̃M ]← z̃0
7: for m = 1 to M do
8: Sm ← Sim(f

m
, f̃m)

9: end for
10: MFsim← −

(∑M
m=1 Sm

)
/M

11: return MFsim

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets: We train the OOD detection model on three in-distribution (ID) datasets: CIFAR-10
[Krizhevsky et al., 2009], CIFAR-100, and CelebA [Liu et al., 2015]. When testing models learned
on a specific ID dataset, we select several datasets from SVHN [Netzer et al., 2011], SUN [Xiao
et al., 2010], LSUN-c [Yu et al., 2015], LSUN-r, iSUN [Xu et al., 2015], iNaturalist [Van Horn et al.,
2018], Textures [Cimpoi et al., 2014], Places365 [Zhou et al., 2017], MNIST [Deng, 2012], FMNIST,
KMNIST [Clanuwat et al., 2018], Omniglot [Lake et al., 2015], and NotMNIST as OOD data.

Evaluation Metrics: We employed the area under the receiver operating characteristic (AUROC)
and the false positive rate at 95% true positive rate (FPR95) as evaluation metrics. Results in FPR95
metric are provided in Appendix C.1.

4.2 Implementation Details

We utilize EfficientNet-b4 [Tan and Le, 2019] or ResNet50 [He et al., 2016] pre-trained on ImageNet
[Deng et al., 2009] as our encoder. The main text presents results using EfficientNet-b4, while results
using ResNet50 are detailed in Appendix C.2. For EfficientNet-b4, we select feature maps from
the first to fifth stages (M = 5) to construct the multi-layer semantic features, resulting in a feature
dimension (c) of 720. The LFDN is consisting of 16 residual blocks. Inside each residual block, the
number of groups in Groupnorm and the intermediate feature dimension of the residual branch are
set to 1 and 1440, respectively. We employ the AdamW optimizer with a weight decay of 10−4. Our
method is trained on NVIDIA Geforce 4090 GPU for 150 epochs, with a batch size of 128 and a
constant learning rate of 10−4 throughout the training phase.

4.3 Comparison with State-of-the-art Methods

Compared Generative-based Methods: In Table 1, regarding CIFAR-10 as the ID dataset, we
compare our method against pixel-level generative-based methods including GLOW [Serrà et al.,
2019], PixelCNN++ [Serrà et al., 2019], VAE [Xiao et al., 2020], and DDPM [Graham et al., 2023].
To validate the effectiveness of LFDN, we implement a variant of our method through replacing LFDN
with AutoEncoder in which MFsim is used for estimating the OOD score. In comparison with the best
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pixel-level method, VAE, our method achieves a 9.1% improvement in average AUROC when using
MFsim for OOD score estimation. Compared to DDPM, our method variants show a significantly
improvement in average AUROC. For example, when integrated with MSE, our method achieves
20.4% higher AUROC than DDPM. This indirectly indicates that performing OOD detection at the
pixel level is much worse than performing OOD detection at the feature level. Generating pixels may
reconstruct more content unrelated to the image’s semantics, which may interfere the identification
of OOD samples. Making the model focus on the reconstruction of compactly distributed semantic
features benefits in separating ID and OOD samples. In terms of testing speed, our method is nearly
100 times faster than DDPM, significantly enhancing performance while reducing detection costs.
Moreover, the final version of our method built upon LFDN improves average AUROC by 18.5%
compared to the variant basd on AutoEncoder, as the diffusion model captures data distribution more
effectively.

In Table 2, we compare our method with VAE, DDPM and AutoEncoder, using CelebA as the ID
dataset. Our method integrated with MFsim achieves state-of-the-art performances, with an AUROC
improvement of 19.89% compared to DDPM, and the performance of the remaining two metrics also
far exceeds the baseline, demonstrating the generalizability of our approach.

Compared Classification-based and Distance-based Methods: In Table 3, we compare our method
with classification-based methods including MSP [Hendrycks and Gimpel, 2016], EBO [Liu et al.,
2020], DICE [Sun and Li, 2022], and ASH-S [Djurisic et al., 2022], as well as distance-based
methods including ‘SimCLR+Mahalanobis Distance’ [Xiao et al., 2021] and ‘SimCLR+KNN’ [Sun
et al., 2022]. All methods are evaluated using EfficientNet-b4 as the backbone. Compared to
classification-based and distance-based methods, our approach consistently shows a clear advantage.
Specifically, for CIFAR-100 as the in-distribution dataset, our method integrated with MFsim achieves
an average AUROC of 13.84% higher than the classification-based method DICE. Moreover, unlike
classification-based methods, our approach does not require labeled data.

The inference speed of our method based on MSE or MFsim is faster than that of distance-based
methods SimCLR+Maha and SimCLR+KNN, because the computation of covariance matrix or K
nearest neighbors occupies part of time. Our method is also comparable to classifier-based methods
including MSP, EBO, DICE and ASH-S. This demonstrates the effectiveness of leveraging the
strong ability of diffusion models to reconstruct original distributions from different noise levels for
reconstructing low-dimensional features and performing OOD detection.

Table 1: The AUROC values for OOD detection, where CIFAR-10 is used as the in-distribution
dataset. The results are compared with generative-based methods. Higher AUROC values indicate
better performance, with the best results highlighted in bold for clarity.

Dataset Pixel-Generative-Base Feature-Generative-Base
ID OOD GLOW PixelCNN++ VAE DDPM AutoEncoder our(+MSE) ours(+LR) ours(+MFsim)

CIFRA10

SVHN 88.3 73.7 95.9 97.3 57.7 97.3±0.0 98.2±0.0 98.9±0.1
LSUN 21.3 64.0 40.3 68.2 81.5 97.6±0.1 97.8±0.1 99.8±0.1

MNIST 85.8 96.7 99.9 83.2 95.8 99.4±0.0 98.9±0.1 99.9±0.0
FMNIST 71.2 90.7 99.1 84.3 79.6 99.0±0.0 98.8±0.0 99.9±0.0
KMNIST 38.0 82.6 99.9 89.7 90.5 99.5±0.0 99.1±0.0 99.9±0.0
Omniglot 95.5 98.9 99.6 35.9 81.5 99.1±0.1 97.1±0.1 99.9±0.0

NotMNIST 53.9 82.6 99.4 88.7 81.6 99.8±0.1 99.5±0.0 99.9±0.0
average 64.9 84.2 90.6 78.2 81.2 98.8±0.1 98.5±0.1 99.7±0.1

Time Num img/s (↑) 38.6 19.3 0.7 11.4 1224.2 999.3 273.6 999.3

4.4 Ablation Study

Illustration of the generation ability of the diffusion model on OOD detection. To demonstrate
the evolution of the generative model’s reconstruction capability for both ID and OOD samples before
and after training, we compare the distributions of the MFsim scores at the first epoch and the final
epoch in Figure 3. CIFAR-10 serves as the ID dataset, while the other six datasets listed in Table 3
are employed as OOD data. Our observations reveal that the diffusion model’s reconstruction ability
enhances across most datasets, with a notably more pronounced improvement for the in-distribution
samples. This indicates that ID samples are reconstructed more effectively, thereby validating the
efficacy of our method.
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Table 2: The AUROC values for OOD detection, where CelebA is used as the in-distribution dataset.
The results are compared with generative-based methods. Higher AUROC values indicate better
performance, with the best results highlighted in bold for clarity.

Dataset Pixel-Generative-Based Feature-Generative-Based
ID OOD VAE DDPM AutoEncoder ours(+MSE) ours(+LR) ours(+MFsim)

CelebA

SUN 95.89 83.41 32.90 99.98±0.01 97.15±0.02 99.98±0.01
iNaturalist 95.52 82.38 41.56 100+0.00 99.96±0.01 99.99±0.00
Textures 91.73 78.33 56.33 99.93±0.02 98.51±0.02 99.96±0.01

Places365 97.58 76.25 35.90 99.96±0.01 97.47±0.03 99.98±0.00
average 95.18 80.09 41.67 99.97±0.01 98.27±0.02 99.98±0.01

Time Num img/s (↑) 18.7 10.2 1357.6 1033.8 290.4 1033.8

Table 3: The AUROC values for OOD detection, where CIFAR-10/100 is used as the in-distribution
dataset. The results are compared with Classification-based and Distance-based methods using
EfficientNet-b4 as the backbone. Higher AUROC values indicate better performance, with the best
results highlighted in bold for clarity.

ID Based Method Num img/s (↑)
OOD

averageSVHN LSUN-c LSUN-r iSUN Textures Places365

CIFAR10

Classifier-based

MSP 1060.5 94.53 96.37 91.80 92.23 95.93 97.59 94.74
EBO 1060.5 96.79 97.34 94.42 94.64 96.30 98.34 96.31
DICE 1066.3 98.53 99.03 94.49 95.25 97.68 99.63 97.44
ASH-S 1047.6 98.01 98.23 93.17 94.13 97.01 98.48 96.51

Distance-based
SimCLR+Mahalanobis 674.8 97.80 73.61 69.28 88.63 76.47 67.42 78.87
SimCLR+KNN 919.8 92.40 92.05 89.81 90.14 97.24 94.36 92.67

Generative-based
ours(+MSE) 960.6 97.31±0.02 97.59±0.01 93.93±0.01 92.78±0.01 100±0.00 99.96±0.00 96.93±0.01
ours(+LR) 360.2 98.22±0.02 97.84±0.02 95.37±0.01 94.31±0.02 100±0.00 99.91±0.01 97.61±0.02
ours(+MFsim) 960.6 98.89±0.01 99.83±0.02 98.83±0.01 98.52±0.02 100±0.00 100±0.00 99.34±0.01

CIFAR100

Classifier-based

MSP 1060.5 77.56 84.03 72.09 71.52 90.02 89.00 80.70
EBO 1060.5 76.51 81.59 78.92 76.38 79.38 83.07 79.31
DICE 1066.3 86.93 88.54 71.97 71.29 92.83 90.78 83.72
ASH-S 1047.6 92.11 90.03 63.30 65.12 95.25 92.99 83.13

Distance-based
SimCLR+Mahalanobis 674.8 56.24 52.23 61.34 73.53 71.92 51.98 61.21
SimCLR+KNN 919.8 54.37 51.49 83.80 77.21 53.31 54.43 62.44

Generative-based
ours(+MSE) 960.6 83.93±0.01 86.86±0.01 75.38±0.01 71.99±0.02 99.99±0.00 99.97±0.01 86.35±0.01
ours(+LR) 360.2 88.84±0.01 87.60±0.02 80.96±0.01 77.71±0.02 99.98±0.01 99.92±0.02 89.17±0.01
ours(+MFsim) 960.6 93.90±0.01 99.14±0.01 95.74±0.01 94.40±0.01 100±0.00 100±0.00 97.20±0.01

Performance variations across different sampling time steps: Figure 4 illustrates the variations
in average AUROC and FPR95 values for different evaluation metrics at various sampling time steps,
using CIFAR-10 as the ID data, with the final time step T = 100. It is observed that all metrics
perform poorly at t = 1 primarily due to minimal noise added, making zt too similar to z0 and
thus, limiting the denoising capability of LFDN; both ID and OOD data are well reconstructed. As t
increases to about 3-10 steps, the appropriate amount of noise allows MSE, LR, and MFsim to reach
optimal performances. However, as t continues to increase, the difference between zt and the original
z0 enlarges, with zt gradually approaching random noise, thereby worsening the reconstruction
differences between z̃0 and z0 for both ID and OOD samples.

Figure 3: The MFsim score distributions of the first epoch (left) and the last epoch (right)
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Figure 4: CIFAR-10 dataset is the ID data, the six datasets listed in Table 3 are used as OOD data.
The average AUROC and FPR95 for the three metrics are evaluated at different sampling time steps.

Table 4: Changes in Average AUROC Across Six Datasets listed in Table 3 for CIFAR100 as ID.
Metrics MSE LR MFsim
Linear Linear=720 Linear=1440 Linear=720 Linear=1440 Linear=720 Linear=1440

Average 83.35 86.35 84.05 89.17 96.43 97.20

Number of Blocks Number=8 Number=16 Number=8 Number=16 Number=8 Number=16

Average 85.26 86.35 87.32 89.17 97.13 97.20

Comparison of MFsim across different feature scales. Figure 5 displays performance compar-
isons of MFsim when reconstructing the last block (i.e., f4, C = 448) versus multi-layer semantic
features under an EfficientNet-b4 encoder. The results demonstrate that multi-layer semantic features
generally outperform single-layer ones, indicating that multi-layer semantic features contain richer
semantic information and are more representative of samples across different in-distribution datasets.
Furthermore, considering the diverse semantic information represented by different layers, combing
various layers of semantic features helps to boost the OOD performances of LFDN.

Ablation study on LFDN network parameters. We conducted ablation experiments on two groups
of parameters within the LFDN network: the dimension of the linear layers and the number of
ResBlocks. For each experiment, we reduced one of these parameters to half of its original size
while keeping all other parameters unchanged. Table 4 presents the results of these experiments,
showing how these modifications affect the performance. It is observed that the performance of
our MFsim metric remains relatively stable, indicating that it continues to provide effective OOD
detection capabilities even under conditions of reduced network size.

99.94

92.79 

99.9399.97

98.27

99.98

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

MSE LR MFsim
 Single-layer Multi-layer

78.43
82.39 

79.24

86.35
89.17

97.2

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

MSE LR MFsim
 Single-layer Multi-layer

94.46
95.21

93.84

96.93
97.61

99.35

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

MSE LR MFsim
 Single-layer Multi-layer

CIFAR10 CIFAR100 CelebA

A
U

R
O

C
(%

)

Figure 5: Variation of Average AUROC Values across Different Scales

5 Conclusion and Limitation

In this paper, we propose a diffusion-based layer-wise semantic reconstruction framework for unsu-
pervised OOD detection. We leverage the diffusion model’s intrinsic data reconstruction ability to
distinguish in-distribution and OOD samples in the latent feature space. Specially, the diffusion-based
feature generation is built on top of the devised multi-layer semantic feature extraction strategy, which
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sets up a comprehensive and discriminative feature representation benefiting the generative OOD
detection methods. Finally, we hope our proposed OOD detection method could make contributions
to develop a safe real-world machine learning system. Additionally, it needs to point out that the
performance of our method also relies on the quality of features extracted by the encoder. There-
fore, selecting an encoder with strong feature extraction capabilities is crucial for achieving good
performances.
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7 Broader Impacts

Positive Societal Impacts: The proposed diffusion-based layer-wise semantic reconstruction method
for unsupervised out-of-distribution (OOD) detection can significantly enhance the security and
safety of machine learning systems. By effectively identifying OOD data, the system can prevent
incorrect or potentially harmful decisions, making AI applications more reliable in critical areas
such as healthcare, autonomous driving, and financial systems. This method increases the robustness
of AI systems by ensuring they can handle unexpected inputs gracefully. This contributes to the
overall stability and trustworthiness of AI deployments in various industries, thereby promoting wider
acceptance and integration of AI technologies. Negative Societal Impacts: As with any advanced
detection method, there is a risk that the technology could be misused. For instance, surveillance
applications, it could be employed to monitor individuals without their consent, leading to privacy
violations and ethical concerns.
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Appendix

A Supplementary Algorithm

This section provides two key algorithms used for evaluating our approach: the MSE (Mean Squared
Error) calculation and the Likelihood Regret (LR) calculation.

The MSE calculation, as shown in Algorithm 3, computes the mean squared error between the original
and reconstructed latent features. It serves as a basic measure of reconstruction error for detecting
OOD samples.

The LR calculation, detailed in Algorithm 4, measures the reduction in reconstruction error by
comparing the MSE values at the initial and final epochs of training. This metric reflects how well
the model has adapted to the ID data over time, with a higher reduction indicating better adaptation.

Algorithm 3 Testing Algorithm for MSE Calculation

1: Input: An image x
2: Output: MSE score
3: z0 = H(x)
4: zt ← ennoise(z0)
5: z̃0 = denoise(zt, t)
6: MSE← 1

N

∑N
i=1(z0[i]− z̃0[i])

2 ▷ i indexes the elements of z0 and z̃0
7: return MSE

Algorithm 4 Testing Algorithm for LR Calculation

1: Input: An image x, MSE at initial and final epochs
2: Output: LR score
3: zinitial

0 = H(x) at the beginning of training
4: zinitial

t ← ennoise(zinitial
0 )

5: z̃initial
0 = denoise(zinitial

t , t)

6: MSEinitial ← 1
N

∑N
i=1(z

initial
0 [i]− z̃initial

0 [i])2

7: zfinal
0 = H(x) at the end of training

8: zfinal
t ← ennoise(zfinal

0 )
9: z̃final

0 = denoise(zfinal
t , t)

10: MSEfinal ← 1
N

∑N
i=1(z

final
0 [i]− z̃final

0 [i])2

11: LR← MSEinitial −MSEfinal
12: return LR

B More Experimental Details

B.1 Dataset Details and Testing Speeds

Table 1 : CIFAR-10 Dataset The CIFAR-10 test set consisted of 10,000 images. The SVHN
dataset contained 26,032 images, LSUN-r had 10,000 images, and Fashion-MNIST, MNIST, and
KMNIST each comprised 10,000 images. Omniglot included 13,180 images, and notMNIST had
18,724 images, totaling 97,936 OOD samples. The testing of the MFsim metric took a total of 98
seconds, with an average speed of 999.3 images per second.

Table 2 : CelebA Dataset The CelebA test set comprised 60,780 images, SUN included 10,000
images, iNaturalist had 100,000 images, Textures consisted of 1,678 images, and Places365 had
1,002 images, making up a total of 112,680 OOD samples. Testing the MFsim metric took a total of
109 seconds, processing an average of 1033.8 images per second.
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B.2 Training Details

Both CIFAR-10 and CelebA datasets were trained for 200 epochs using the VAE model. The GLOW
model was trained for 150 epochs with a learning rate of 5 × 10−4, and PixelCNN+ was trained
for 150 epochs at the same learning rate. Under the DDPM model, both datasets were trained for
350 epochs, following the experimental setups and code provided in the original papers. We used
LFDN without time-step embeddings as our autoencoder, used MFsim metrics, and kept all remaining
training details consistent with our approach.

C Supplementary Experiments

C.1 Experimental Results for FPR95 Values Using EfficientNet-b4 as Backbone

We conducted tests to evaluate the FPR95 (False Positive Rate at 95% True Positive Rate) values
using CIFAR10 and CIFAR100 datasets as in-distribution data while treating the remaining six
datasets as out-of-distribution datasets. The specific FPR95 values are summarized in Table 5.

Table 5: The FPR95 values for OOD detection, where CIFAR-10/100 is used as the in-distribution
dataset. The results are compared with Classification-based and Distance-based methods using
EfficientNet-b4 as the backbone. Higher AUROC values indicate better performance, with the best
results highlighted in bold for clarity.

ID Based Method Num img/s (↑)
OOD

averageSVHN LSUN-c LSUN-r iSUN Textures Places365

CIFAR10

Classifier-based

MSP 1060.5 43.99 26.13 48.65 46.89 27.50 15.03 34.70
EBO 1060.5 16.51 11.52 28.38 27.03 16.08 4.99 17.42
DICE 1066.3 7.70 4.81 25.74 21.76 7.80 1.49 11.55
ASH-S 1047.6 6.89 4.15 31.29 26.29 5.21 1.32 12.53

Distance-based
SimCLR+Mahalanobis 674.8 9.24 67.73 75.43 64.32 56.22 72.15 57.52
SimCLR+KNN 919.8 49.15 54.89 76.97 73.48 15.27 39.39 51.53

Generative-based
ours(+MSE) 960.6 21.15±0.03 19.52±0.01 39.67±0.02 43.76±0.02 0±0.00 0.42±0.03 20.75±0.02
ours(+LR) 360.2 14.26±0.02 18.67±0.03 31.62±0.02 37.76±0.02 0.06±0.01 0.83±0.02 17.20±0.02
ours(+MFsim) 960.6 4.34±0.02 0.04±0.01 4.42±0.02 6.26±0.02 0±0.00 0±0.00 2.51±0.01

CIFAR100

Classifier-based

MSP 1060.5 80.10 68.80 80.35 80.36 47.11 57.41 69.02
EBO 1060.5 88.74 78.64 72.35 76.57 95.83 94.04 84.36
DICE 1066.3 63.77 58.96 77.89 78.67 34.26 48.77 60.39
ASH-S 1047.6 34.28 44.39 89.45 86.13 21.44 34.59 51.71

Distance-based
SimCLR+Mahalanobis 674.8 94.95 96.35 85.05 86.29 80.37 95.50 89.75
SimCLR+KNN 919.8 95.32 97.11 78.45 84.38 95.28 94.82 90.89

Generative-based
ours(+MSE) 960.6 89.05±0.02 69.14±0.03 69.63±0.02 89.79±0.01 0.12±0.02 0±0.00 52.95±0.02
ours(+LR) 360.2 62.06±0.03 72.19±0.04 86.67±0.02 86.17±0.02 0.42±0.02 2.81±0.02 51.72±0.03
ours(+MFsim) 960.6 37.48±0.02 1.90±0.01 23.05±0.02 26.00±0.02 0±0.00 0±0.00 14.78±0.02

As shown in Table 5, our method demonstrates a significant advantage in terms of FPR95 values
compared to other classification-based and distance-based approaches. Specifically, when using
CIFAR100 as in-distribution data, our method achieves an average reduction of 36.93% in FPR95
values compared to the state-of-the-art classification-based approach, ASH-S.

C.2 Experimental Results with ResNet50 as Encoder

Besides using EfficientNet-b4 as the encoder, we also employed the commonly used ResNet50 to
extract multi-layer semantic features. For ResNet50, feature maps from stages 1 to 3 were selected,
with channel counts of 256, 512, and 1024, respectively. These feature maps were concatenated to
form a 1792-dimensional vector, which was then used as input for the LFDN. The results for three
OOD detection metrics are presented in Table 6 and Table 7. Both tables compare our method with
classification-based and distance-based methods.

As shown in Table 6 and Table 7, when using ResNet50 as the backbone, our method still achieves
the best performance. Specifically, with CIFAR-10 as the in-distribution dataset, the average AUROC
and MFsim values are 98.30% and 8.89%, respectively, outperforming the classification-based SOTA
method DICE by 6.17% in AUROC and reducing the FPR95 by 24.43%.

Figures 6 and 7 illustrate the differences in the MFsim score distributions for various datasets, with
ResNet50 as the encoder and CIFAR10 as the in-distribution dataset, across the first and last epochs.
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Table 6: The AUROC values for OOD detection, where CIFAR-10/100 is used as the in-distribution
dataset. The results are compared with Classification-based and Distance-based methods using
ResNet50 as the backbone. Higher AUROC values indicate better performance, with the best results
highlighted in bold for clarity.

ID Based Method Num img/s (↑)
OOD

averageSVHN LSUN-c LSUN-r iSUN Textures Places365

CIFAR10

Classifier-based

MSP 1321.5 80.64 95.05 91.65 89.95 87.78 90.43 89.25
EBO 1321.5 81.90 98.21 94.43 93.09 86.84 92.45 91.15
DICE 1369.3 91.92 99.18 91.13 90.51 87.39 92.66 92.13
ASH-S 1307.4 84.16 98.76 95.00 94.40 87.88 91.63 91.97

Distance-based
SimCLR+Mahalanobis 857.2 90.17 73.74 86.14 83.25 81.48 91.23 84.34
SimCLR+KNN 1179.8 92.36 91.13 87.78 91.82 88.62 79.41 88.52

Generative-based
ours(+MSE) 654.9 81.40 94.02 81.11 81.36 100.00 100.00 89.65
ours(+LR) 296.7 90.95 92.53 85.22 85.91 100.00 100.00 92.44
ours(+MFsim) 654.9 95.98±0.02 99.86±0.02 97.06±0.02 96.89±0.01 100±0.00 100±0.00 98.30±0.01

CIFAR100

Classifier-based

MSP 1321.5 78.38 84.18 78.98 78.09 76.54 72.00 78.03
EBO 1321.5 83.13 89.35 83.83 83.35 78.85 71.42 81.66
DICE 1369.3 87.93 93.32 82.41 82.20 79.29 69.65 82.47
ASH-S 1307.4 91.66 93.24 69.93 72.78 87.75 71.00 81.06

Distance-based
SimCLR+Mahalanobis 857.2 91.92 57.14 87.47 88.00 94.96 71.86 81.89
SimCLR+KNN 1179.8 87.78 84.30 82.51 77.69 83.35 73.74 81.56

Generative-based
ours(+MSE) 654.9 86.55 99.11 93.02 91.87 100.00 100.00 95.09
ours(+LR) 296.7 89.17 99.16 93.65 92.33 100.00 100.00 95.72
ours(+MFsim) 654.9 89.68±0.02 99.18±0.01 93.64±0.02 92.94±0.02 100±0.00 100±0.00 95.91±0.01

Table 7: The FPR95 values for OOD detection, where CIFAR-10/100 is used as the in-distribution
dataset. The results are compared with Classification-based and Distance-based methods using
ResNet50 as the backbone. Higher AUROC values indicate better performance, with the best results
highlighted in bold for clarity.

ID Based Method Num img/s (↑)
OOD

averageSVHN LSUN-c LSUN-r iSUN Textures Places365

CIFAR10

Classifier-based

MSP 1321.5 60.56 16.09 28.21 35.63 45.4 32.93 36.47
EBO 1321.5 59.15 8.07 23.79 30.72 60.2 31.66 35.60
DICE 1369.3 27.07 4.11 37.83 41.12 57.48 32.32 33.32
ASH-S 1307.4 53.93 5.57 20.29 22.31 64.36 39.71 34.36

Distance-based
SimCLR+Mahalanobis 857.2 27.65 33.35 48.17 51.22 38.12 60.43 43.16
SimCLR+KNN 1179.8 24.53 25.29 37.81 27.55 34.36 62.19 35.29

Generative-based
ours(+MSE) 654.9 94.79 45.99 95.86 91.68 0.00 0.00 54.72
ours(+LR) 296.7 34.59 25.77 56.54 52.05 0.00 0.00 28.16
ours(+MFsim) 654.9 21.10±0.03 0.02±0.01 15.75±0.03 16.48±0.04 0.00±0.00 0.00±0.00 8.89±0.02

CIFAR100

Classifier-based

MSP 1321.5 53.38 43.52 56.23 57.69 63.63 77.53 58.66
EBO 1321.5 47.04 34.15 51.14 52.36 63.05 80.95 54.78
DICE 1369.3 38.7 28.77 56.21 56.74 65.21 82.63 54.71
ASH-S 1307.4 29.83 28.75 89.48 85.22 51.8 81.48 61.09

Distance-based
SimCLR+Mahalanobis 857.2 32.19 80.43 39.93 40.39 28.21 81.44 50.43
SimCLR+KNN 1179.8 39.23 48.99 60.21 74.99 57.15 80.74 60.22

Generative-based
ours(+MSE) 654.9 78.54 0.49 41.81 43.12 0.00 0.00 27.33
ours(+LR) 296.7 65.93 0.57 36.71 38.78 0.00 0.00 23.67
ours(+MFsim) 654.9 64.72±0.03 1.08±0.02 39.66±0.04 39.79±0.03 0.00±0.00 0.00±0.00 24.21±0.02
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Figure 6: The MFsim score distributions of the
First Epoch with ResNet50 as Encoder
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Figure 7: The MFsim score distributions of the
Last Epoch with ResNet50 as Encoder
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C.3 CIFAR-10 as ID and CIFAR-100 as OOD

As shown in Table 8, when CIFAR-10 is used as the ID dataset and CIFAR-100 as the OOD dataset,
our method consistently achieves the best performance across different evaluation metrics, including
AUROC and FPR95. Compared to classification-based methods, the improvement is not significantly
large, but our approach still shows a consistent edge, particularly in feature-generative-based models,
demonstrating the robustness of our method.

Table 8: The FPR95 and AUROC Values for CIFAR-10 as ID Samples and CIFAR100 as OOD
Samples.

ID OOD Based Method FPR95↓ AUROC↑

CIFAR10 CIFAR100

Classification-Based
MSP 52.04 86.14
EBO 51.32 86.19
ASH-S 51.29 87.13

Pixel-Generative-Based
GLOW - 73.60
VAE 90.41 55.95
DDPM 67.38 82.43

Feature-Generative-Based
ours(+MSE) 48.87 87.54
ours(+LR) 49.48 87.24
ours(+MFsim) 53.70 85.60

C.4 Comparisons with recent generative methods

The comparison between our method and DDPM[Graham et al., 2023] can be referred to Table 1 and
Table 2. Our method outperforms DDPM consistently on benchmarks using CIFAR10 or CelebA as
ID data.

The comparison between our method and Diffuard[Gao et al., 2023] is provided in Table 9. Results
of Diffuard are taken from its original paper. Here, CIFAR10 is regarded as ID data, while CIFAR100
or TinyImagenet is regarded as OOD data. Our method based on MFsim achieves overall better
performance than ‘Diffuard+Deep Ens’, with 1.55 higher AUROC and 21.77 lower FPR95.

The comparison between our method and LMD[Liu et al., 2023] is shown in Table 10. The evaluation
metric is AUROC. The average AUROC of our method based on MFsim is 6.94 higher than that of
LMD.

Table 9: The AUROC and FPR95 values compared to DiffGuard [Gao et al., 2023] using CIFAR-10
as the ID dataset and CIFAR-100/TinyImageNet as the OOD datasets.

Method
CIFAR-100 TINYIMAGENET average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Diffuard 89.88 52.67 91.88 45.48 90.88 49.08
Diffuard+EBO 89.93 50.77 91.95 43.58 90.94 47.18
Diffuaed+Deep Ens 90.40 52.51 91.98 45.04 91.19 48.78

ours(+MSE) 87.54 48.87 97.68 13.42 92.61 31.15
ours(+LR) 87.24 49.48 97.11 15.04 92.18 32.26
ours(+MFsim) 85.60 53.70 99.88 0.39 92.74 27.01

C.5 Comparison against other methods using the multi-scale feature encodings as the input.

In Table 11, we have made comparison of our method against AE and VAE using the multi-layer
feature encodings as inputs. For AE (AutoEncoder), we use the LFDN network without the timestep
embedding, i.e., a 16-layer linear network. For VAE, we use a 5-layer linear network as the encoder
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Table 10: The AUROC values compared to LMD [Liu et al., 2023] using CIFAR-10/CIFAR-100 as
the ID dataset and CIFAR-100/CIFAR10/SVHN as the OOD datasets.

ID OOD LMD ours(+MSE) ours(+LR) ours(+MFsim)

CIFAR10
CIFAR100 60.70 87.54 87.24 85.6

SVHN 99.20 97.31 98.22 98.89

CIFAR100
CIFAR10 56.80 70.52 72.86 64.58

SVHN 98.50 83.93 88.84 93.9

AVERAGE 78.80 84.83 86.79 85.74

and an 8-layer linear network as the decoder. Compared to AE and VAE, the diffusion model has
significant advantages when modeling complex multidimensional distributions.

C.6 Comparisons with pixel-level denoising approaches.

We provide the distribution differences of the MSE score and MFsim score at two levels after training,
with CIFAR-10 as ID dataset and other datasets as OOD; The results are shown in Figures 8 and 9.

It can be observed that at the pixel level(DDPM), the reconstruction error distributions of ID and OOD
samples are very similar. The mixed MSE scores make it very hard to distinguish ID samples from
OOD samples. However, at the feature level, the reconstruction score distribution of ID samples shows
a clear distinction from that of OOD samples. The reason is that, our feature-level diffusion-based
generative model makes the projected in-distribution latent space not only be compressed sufficiently
to capture the exclusive characteristics of ID images, but also provide sufficient reconstruction power
for the large-scale ID images of various categories. In other words, the pretrained encoder has
inherent generalization capabilities, and the multi-layer features it extracts are more discriminative
than the high-dimensional pixels of the images themselves.

Table 11: The AUROC values compared to the other generative models using CIFAR-10 as the ID
dataset.

Dataset Method

ID OOD AE(+MFsim) VAE(+MFsim) Diffusion(+MFsim)

CIFRA10

SVHN 57.68 83.96 98.89
LSUN 81.47 97.69 99.83
MNIST 95.85 99.98 99.99

FMNIST 79.61 98.69 99.99
KMNIST 90.51 99.96 99.99
Omniglot 81.50 97.69 99.99

NotMNIST 81.61 99.88 99.99

average 81.18 96.84 99.81
Time Num img/s (↑) 1224.2 1179.4 999.3

C.7 ImageNet100 as ID Dataset

In Table 12, our method using MSE outperforms the classification-based SOTA method DICE,
achieving an improvement of 3.91% in AUROC when ImageNet100 is used as the ID dataset and
various datasets such as SUN, iNaturalist, Textures, and Places365 are used as OOD datasets. The
significant improvements in performance metrics demonstrate that our generative-based approach
can effectively model the in-distribution characteristics, leading to better OOD detection capabilities.
This indicates that our proposed method is particularly suitable for more complex datasets like
ImageNet100, where capturing detailed features is crucial for accurate OOD detection.
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Table 12: The AUROC and FPR95 Values for Different Methods with ImageNet100 as ID Dataset
and SUN/iNaturalist/Textures/Places365 as OOD Datasets.

ID Method # img/s (↑) SUN iNaturalist Textures Places365 Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet100

MSP 956.2 89.68 52.16 86.44 57.88 86.48 55.18 88.85 53.79 87.86 54.75
EBO 956.2 90.83 49.46 87.82 58.29 86.04 66.81 90.01 51.80 88.68 56.59
DICE 950.8 93.78 37.14 89.76 50.47 89.52 52.32 93.18 41.42 91.56 45.34
ASH-S 977.5 90.12 44.54 86.94 51.45 88.38 45.23 88.76 49.70 88.55 47.73

ours(+MSE) 954.9 98.81 5.91 86.59 71.88 97.68 10.76 98.79 5.73 95.47 23.57
ours(+LR) 313.4 93.98 16.51 51.39 87.99 76.02 47.54 94.95 16.25 79.09 42.07
ours(+MFsim) 954.9 98.49 8.41 84.63 77.86 98.08 9.98 98.37 8.75 94.89 26.25
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Figure 8: Reconstruction Error Distribution of
ID and OOD Samples for Pixel-level

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60
The MFsim Score

0

10

20

30

40

De
ns

ity

CIFAR10 test
iSUN
SVHN
LSUN-r
LSUN-c
Textures
Places365

Figure 9: Reconstruction Error Distribution of
ID and OOD Samples for Feature-level

D Qualitative results.

We have included three types of failure cases Figures 10, 11 and 12 . The first type, shown in Figure
10, represents ID samples misclassified as OOD. It can be observed that these misclassified samples
often have significant shadows and lack semantic information, resulting in high reconstruction errors
and being incorrectly classified as OOD samples. The second type, shown in Figure 11, represents
OOD samples misclassified as ID. It can be observed that these OOD samples have categories very
similar to those of the ID samples (CIFAR-10), such as cars and ships, which are categories present
in CIFAR-10. The third type, shown in Figure 12, represents OOD samples with colors very similar
to the ID samples, leading to their misclassification as ID.

Figure 10: Examples of ID Samples Misclassified as OOD (Lacking Semantic Information).

Figure 11: Examples of OOD Samples Misclassified as ID (Similar to ID Sample Categories).

Figure 12: Examples of OOD Samples Misclassified as ID (Similar to ID Sample Colors).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] Yes

Justification: The main claims in the abstract and introduction accurately reflect our con-
tributions. We propose a diffusion-based layer-wise semantic reconstruction method for
unsupervised out-of-distribution (OOD) detection. Our method demonstrates superior
performance in detecting OOD samples, as detailed in Section 3 and Section 4of our paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] Yes

Justification: The limitations of our work are discussed in detail in Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper. ,
but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] N/A

Justification: Our paper focuses on an experimental approach to out-of-distribution detection
and does not include theoretical results. Therefore, this question is not applicable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] Yes

Justification: Our paper fully discloses all necessary information to reproduce the main
experimental results, including detailed descriptions of the experimental setup, datasets used,
and evaluation metrics. This information is provided in Sections 4 of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] Yes

Justification: We have provided open access to our data and code, along with detailed
instructions for reproducing the main experimental results. These resources are described in
the supplemental material and can be accessed via the provided links.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] Yes

Justification: Our paper specifies all necessary training and test details, including data splits,
hyperparameters, and optimizer settings. These details are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] Yes
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Justification: We have reported error bars for our main experimental results, calculated as
the mean and standard deviation over three runs. Details on the calculation of error bars and
the factors of variability considered (such as train/test split and random initialization) are
provided in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] Yes
Justification: The paper provides detailed information on the compute resources used for the
experiments, including the type of compute workers (GPU), memory, and execution time.
These details are specified in the experimental setup section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] Yes
Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and confirm that
our research conforms to these guidelines in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] Yes

Justification: We discuss the potential positive and negative societal impacts of our work
in Section 7. Specifically, we address how our method could improve unsupervised out-of-
distribution detection, as well as the potential risks associated with misuse in surveillance
applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] N/A

Justification: Our paper does not involve the release of data or models that have a high risk
for misuse. Therefore, this question is not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] Yes
Justification: We have properly credited the creators and original owners of the datasets and
models used in our work. The licenses and terms of use are explicitly mentioned in Section
4 of our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] Yes
Justification: We have introduced new assets in the form of original code, and they are well
documented. Detailed documentation is provided alongside the assets to ensure reproducibil-
ity and ease of use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] N/A
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Therefore, this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] N/A
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Therefore, this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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