
Evaluating the World Model Implicit
in a Generative Model

Keyon Vafa
Harvard University

Justin Y. Chen
MIT

Ashesh Rambachan
MIT

Jon Kleinberg
Cornell University

Sendhil Mullainathan
MIT

Abstract

Recent work suggests that large language models may implicitly learn world models.
How should we assess this possibility? We formalize this question for the case
where the underlying reality is governed by a deterministic finite automaton. This
includes problems as diverse as simple logical reasoning, geographic navigation,
game-playing, and chemistry. We propose new evaluation metrics for world model
recovery inspired by the classic Myhill-Nerode theorem from language theory. We
illustrate their utility in three domains: game playing, logic puzzles, and navigation.
In all domains, the generative models we consider do well on existing diagnostics
for assessing world models, but our evaluation metrics reveal their world models
to be far less coherent than they appear. Such incoherence creates fragility: using
a generative model to solve related but subtly different tasks can lead to failures.
Building generative models that meaningfully capture the underlying logic of the
domains they model would be immensely valuable; our results suggest new ways
to assess how close a given model is to that goal.

1 Introduction

Large language models (LLMs) appear to have capacities that far exceed the next-token prediction
task they were trained to perform [17, 39, 35]. Recent work suggests a reason: they are implicitly
recovering high-fidelity representations of the underlying domains they are trained on [1, 20].
An algorithm that recovers a “world model” from sequence data would be extremely valuable. As
an example, consider how one might build a navigation tool today: meticulously map each street and
intersection, and then use a search algorithm to provide directions. The success of language models
suggests an alternative approach: collect turn-by-turn sequences from trips in a city (e.g. “East
North...”) and then train a sequence model on them. If the sequence model successfully recovers
the world model, we would obtain a map of the city without ever mapping it and a routing algorithm
simply by predicting the next turn. This example is not far-fetched: it is the reason language models
are used in scientific domains such as protein generation, genetics and chemistry [7, 21, 3, 14, 6].
All of this relies on the presumption that the sequence model has recovered the true world model;
but how can we test whether it actually has? Answering this question requires first defining what
we mean by the true world model. Toshniwal et al. [36] and Li et al. [20] proposed a concrete and
influential approach: study whether sequence models trained on board game transcripts (e.g. chess
and Othello) recover the underlying game rules. Inspired by this approach, we consider the case where
the underlying world can be summarized by a finite collection of states and rules governing transitions
between the states; this includes many domains such as logic [19], location tracking [28, 9], games
[36, 20], and several of the scientific applications described above. As a result, the “world” in these
domains can be modeled as a deterministic finite automaton (DFA).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

26941 https://doi.org/10.52202/079017-0846

We show the difficulty in evaluating implicit world models. Consider an existing approach: for a
given sequence, compare the next tokens outputted by the generative model to the set of valid next
tokens for the state implied by that sequence [36, 20]. Though intuitive, this approach can fail to
diagnose severe problems, and we illustrate this concretely. The classic Myhill-Nerode theorem
[26, 27] provides intuition: every pair of distinct states can be distinguished by some sequence
(admitted by one state but not the other). Unless those minimal distinguishing sequences are of length
one, looking at the next single token outputted will not reliably assess whether the generative model
has an accurate model of the underlying state.
The logic of Myhill-Nerode suggests two metrics for measuring whether a generative model effectively
captures underlying states and transitions. The first metric summarizes sequence compression: under
the DFA, sequences that lead to the same state must have the same continuations; so one can test
whether the generative model has similar sequences of outputs when started on these two sequences.
The second metric summarizes sequence distinction: under the DFA, two sequences that lead to
distinct states should have distinct continuations; so one can test whether the generative model matches
these distinct outputs when started at these two sequences. We formally define these metrics and
provide model-agnostic procedures for calculating them when given query access to the true DFA.
To illustrate these ideas, we first take the stylized mapping example literally. We construct a turn-by-
turn sequence dataset of taxi rides in New York City. We then assess to what extent transformers
successfully recover the true street map of Manhattan. By the usual metrics, the transformers do
very well: their predicted next-direction is a valid turn nearly 100% of the time and their state
representations even appear to encode the current location of the ride. Our evaluation methods
reveal they are very far from recovering the true street map of New York City. As a visualization,
we use graph reconstruction techniques to recover each model’s implicit street map of New York
City. The resulting map bears little resemblance to the actual streets of Manhattan, containing streets
with impossible physical orientations and flyovers above other streets (see Figure 3). Because these
transformers fail to recover the true street map of New York City, they are fragile for downstream
tasks. While they sometimes have amazing route planning abilities, their performance breaks down
when detours are introduced.
These results are not unique to maps and navigation. For both Othello and logic puzzles, we use our
evaluation metrics to show language models can perform remarkably well on some tasks despite
being far from recovering the true world model. These results demonstrate the importance of using
theoretically-grounded evaluation metrics if our goal is to build language models that capture accurate
world models of the domains they are trained in. We release our benchmark dataset of taxi rides in
New York City along with software implementing our evaluation metrics.1

Related work. Our paper builds on influential work studying whether generative models recover a
world model in the context of games. Toshniwal et al. [36] and Li et al. [20] pioneered the study of games
as a testbed for world model evaluation, studying tests for chess and Othello, respectively, which were
further studied by Hazineh et al. [10] and Kuo et al. [18]. Our evaluation metrics apply to these games
because they are DFAs. A common method for assessing whether a trained model has recovered a world
model uses probes that assess whether a neural network’s representation can recover some real-world
state [11, 19, 1, 16, 20]. By contrast, our evaluation metrics are model-agnostic: they’re based only on
sequences. While the results from our evaluation metrics sometimes align with those used in existing
work, they also reveal incoherence in world models that are not captured by existing diagnostics.
We study whether a language model trained on sequences of directions recovers the true underlying map.
This question relates to other state tracking and navigation problems studied in the language modeling lit-
erature [31, 32]. For example, Patel & Pavlick [28] show that larger LLMs ground spatial concepts like
cardinal directions to locations in a grid world and generalize to various grid layouts. Relatedly, Schu-
mann & Riezler [30] demonstrate that transformer-based models can generate navigation instructions
in language from underlying graphs. Additionally, Guan et al. [9] use LLMs to perform planning tasks
from natural language descriptions. Our results suggest that LLMs can perform some of these tasks well
(such as finding shortest paths between two points on a map) without having a coherent world model.
Additionally, our evaluation metrics compare the language accepted by a sequence model to that
of an underlying DFA. Existing work studies whether transformers and other sequence models are
theoretically capable of recognizing languages in different complexity classes [34, 4, 22, 23, 24].

1https://github.com/keyonvafa/world-model-evaluation

2

26942https://doi.org/10.52202/079017-0846

https://github.com/keyonvafa/world-model-evaluation

Most relevant to our work, Liu et al. [22] show that low-depth transformers can theoretically represent
any finite state automata, and show that transformers trained explicitly to predict their labeled states
are capable of doing so. In contrast, our paper doesn’t aim to study whether models are theoretically
capable of recovering underlying automata or whether they can do so when given state labels. Instead,
we provide metrics for assessing how closely a given model recovers the underlying DFA.

2 Framework

In this section, we lay out a framework to interface between generative sequence models and world
models represented by deterministic finite automata. Both of these are built on the shared scaffolding
of tokens, sequences (a.k.a. strings), and languages.
Tokens and sequences. We consider a finite alphabet Σ with tokens 𝑎 ∈ Σ, and sequences
𝑠 = (𝑎1, 𝑎2, . . .). Let Σ∗ denote the collection of sequences on the alphabet.
Generative models. A generative model 𝑚(·) : Σ∗ → Δ(Σ) is a probability distribution over
next-tokens given an input sequence. That is, 𝑚(𝑠) ∈ Δ(Σ), and 𝑚(𝑎 | 𝑠) is the probability assigned
to token 𝑎 ∈ Σ given an input sequence 𝑠. Starting at a sequence 𝑠, the set of non-empty sequences
the model can generate with positive probability is:

𝐿𝑚 (𝑠) = {𝑎1𝑎2...𝑎𝑘 : ∀ 𝑗 < 𝑘, 𝑚(𝑎 𝑗+1 | 𝑠𝑎1...𝑎 𝑗) > 0}.
For simplicity, we write the equation above for next-tokens with nonzero probability, but in practice
we set a minimum probability 𝜖 > 0 corresponding to next-tokens with non-negligible probability.
Deterministic finite automata (DFA). We use standard notation for a deterministic finite state
automaton 𝑊 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) (see Appendix C for a complete definition). As a simplifying
assumption, we consider the case where there is a special state 𝑞reject with no outgoing transitions and
𝐹 = 𝑄 \ {𝑞reject} (i.e., the DFA accepts all valid states). An extended transition function 𝛿 takes a
state and a sequence, and it inductively applies 𝛿 to each token of the sequence. A token or a sequence
is valid if and only if the output of 𝛿 or 𝛿 respectively starting from 𝑞0 is not 𝑞reject.

We define 𝐿𝑊 (𝑞) to be the set of valid, non-empty sequences that are accepted by the DFA starting at
state 𝑞. We also define 𝑞(𝑠) ∈ 𝐹 to be the state that sequence 𝑠 leads to in the DFA starting from 𝑞0
and 𝑆(𝑞) ⊆ Σ∗ to be the collection of all sequences that lead from state 𝑞0 to state 𝑞 in the DFA.

2.1 Recovering world models

Throughout this paper we assume that the ground-truth sequences used to train and test a generative
model belong to the language of a deterministic finite state automaton 𝑊 . This generalizes past work
(e.g., on assuming sequences come from legal moves in a game [36, 20]) and allows us to formally
define world recovery.
Definition 2.1. A generative model 𝑚(·) recovers the DFA 𝑊 if

∀𝑞 ∈ 𝐹,∀𝑠 ∈ 𝑆(𝑞) : 𝐿𝑊 (𝑞) = 𝐿𝑚 (𝑠).
That is, recovery requires that a sequence can be generated with positive probability by the model
𝑚(·) if and only if the sequence is valid in the DFA 𝑊 .

Recovery is defined at the language level. However, generative models are often built and evaluated
token-by-token. It turns out that exact next-token prediction is enough for recovery of the language of
the world model.
Definition 2.2. A generative model 𝑚(·) satisfies exact next-token prediction under the DFA 𝑊 if

∀𝑞 ∈ 𝐹,∀𝑠 ∈ 𝑆(𝑞),∀𝑎 ∈ Σ : 𝑚(𝑎 | 𝑠) > 0 ⇐⇒ 𝛿(𝑞, 𝑎) ≠ 𝑞reject.

Proposition 2.3. A generative model 𝑚(·) recovers the DFA 𝑊 if and only if it satisfies exact
next-token prediction under the DFA 𝑊 .

Proposition 2.3 (proof given in Appendix A) suggests a way to evaluate whether a generative model
recovers the true DFA: assess the validity of next-token predictions. Existing world model diagnostics
are motivated by this intuition; for example, one way that Toshniwal et al. [36] and Li et al. [20]
assess world model recovery is by measuring the percent of top next-token predictions that are valid.

3

26943 https://doi.org/10.52202/079017-0846

Valid for

Interior

State 1 State 2 Neither

Myhill-Nerode Boundary

Figure 1: On the left, a visual depiction of a Myhill-Nerode boundary and interior. On the right, examples
of two states for cumulative Connect-4. Both states have the same set of valid next moves. The shortest sequence
in the Myhill-Nerode boundary has length 4, and the boundary contains sequences up to length 30. The interior
contains approximately 8.8 × 1027 sequences of length 29 that do not distinguish the two boards.

2.2 Next-token prediction is a fragile metric for recovering structure

Next-token prediction, however, is a limited evaluation metric. While exact next-token prediction
implies perfect world model recovery, being very nearly correct on next-token prediction does not
mean having very nearly recovered the world model. This can be illustrated by a simple example.
Example: Cumulative Connect-4. Consider a vertical grid with 𝑛 rows and 7 columns. Two players
take turns dropping a disk in a column, and they can choose any column that contains less than 𝑛 disks.
When a disk is dropped in a column, it occupies the bottom-most position that isn’t occupied by another
disk, and it remains in that position for the full game. The game continues until the entire board is
filled, for 7𝑛 moves, regardless of whether a player has achieved four in a row. Games are represented
as sequences of moves, where each sequence has 7𝑛 tokens and each token is an integer between 1 and
7 indicating the column the disk is placed in. Here, Σ = {1, . . . , 7} denotes the columns and the state
corresponds to the count in each column. A column is a valid move if that column is not already filled.
Consider a generative model that outputs {1, . . . , 7} with uniform probability given any sequence, i.e.
𝑚(𝑎 | 𝑠) = 𝑚(𝑎′ | 𝑠′) = 1/7 for all 𝑎, 𝑎′ ∈ Σ and 𝑠, 𝑠′ ∈ Σ∗. This model clearly encodes no information
about the board. However, for any board where there are no columns filled, this model provides a valid
next move (e.g., the right panel of Figure 1), and so it will be a near-perfect next-token predictor when
𝑛 is large. For example, when 𝑛 = 1000, it predicts a valid next move for more than 99% of all states.
Metrics based on next-token prediction will imply this algorithm is close to recovering a world model.

2.3 The Myhill-Nerode interior and boundary

Cumulative Connect-4 points to a general fragility in next-token prediction as an evaluation metric
that can be understood in the context of the Myhill-Nerode theorem [26, 27], a classic result from
language theory. The Myhill-Nerode theorem states that the sets of sequences accepted by a minimal
DFA starting at two distinct states are distinct (see Appendix C for a full statement). More formally,
for states 𝑞1 ≠ 𝑞2, we have 𝐿𝑊 (𝑞1) ≠ 𝐿𝑊 (𝑞2). However, while distinct, the two sets may exhibit a
great deal of overlap. Cumulative Connect-4 exhibits this behavior; any board for which there are less
than 𝑘 disks in each column will have the same set of valid moves for the next 𝑛 − 𝑘 moves. This
intuition motivates a pair of definitions:
Definition 2.4. Given a DFA 𝑊 , the Myhill-Nerode interior for the pair 𝑞1, 𝑞2 ∈ 𝐹 is the set of
sequences accepted when starting at both states:

MNI𝑊 (𝑞1, 𝑞2) = {𝑠 ∈ Σ∗ | 𝑠 ∈ 𝐿𝑊 (𝑞1) ∩ 𝐿𝑊 (𝑞2)}.

The Myhill-Nerode boundary is the set of minimal suffixes accepted by a DFA at 𝑞1 but not 𝑞2:

MNB𝑊 (𝑞1, 𝑞2) = {𝑠 = 𝑎1𝑎2...𝑎𝑘 | 𝑠 ∈ 𝐿𝑊 (𝑞1) \ 𝐿𝑊 (𝑞2) and ∀ 𝑗 < 𝑘 : 𝑎1...𝑎 𝑗 ∈ MNI𝑊 (𝑞1, 𝑞2)}.

Figure 1 depicts an example Myhill-Nerode interior and boundary for cumulative Connect 4.
Sequences on the interior are accepted by both states; it is only when we reach the boundary that
these states will be distinguishable. Thus, models that pool together states with large interiors will

4

26944https://doi.org/10.52202/079017-0846

Compression Errors
Distinction Errors

X

X

X

+ +

+s1

s2

+

+

Generative Model
Truth

Valid for
Neitherq1 q2

Boundary

Boundary
Errors

Compression Metric Distinction Metric

q1
s1 q1

s2 q2

X

Figure 2: A visual depiction of our two evaluation metrics. A compression error is a model failing to recognize
that two sequences that result in the same state should accept the same suffixes. A distinction error is a model
failing to find the right distinguishing suffixes for two sequences that lead to different states. Our metrics measure
errors at the boundary, which are visually depicted above.

perform well on next-token prediction tests; this is why the simple generative model succeeds in
the cumulative Connect-4 example. To properly differentiate states, we must consider sequences
that are long enough to be differentiated. In the remainder of the paper, we (i) use the Myhill-Nerode
logic to develop new evaluation metrics and (ii) apply these to several applications.

2.4 Compression and distinction metrics for evaluating world models

We propose metrics to evaluate a model’s implicit world model by comparing the true Myhill-Nerode
boundary to the one implied by the model.
Definition 2.5. For two sequences 𝑠1, 𝑠2, the Myhill-Nerode boundary implied by model 𝑚(·) is

MNB𝑚 (𝑠1, 𝑠2) = {𝑥 = 𝑥1...𝑥𝑘 | 𝑥 ∈ 𝐿𝑚 (𝑠1)\𝐿𝑚 (𝑠2) and ∀ 𝑗 < 𝑘 : 𝑥1...𝑥 𝑗 ∈ 𝐿𝑚 (𝑠1)∩𝐿𝑚 (𝑠2)}. (1)

This is the set of minimal suffixes that are accepted by the model conditioned on 𝑠1 but not 𝑠2. Since
we now focus on the generative model rather than the DFA, the definition refers to pairs of sequences
rather than to pairs of states.
Our evaluation metrics summarize how well a generative model identifies sequences that distinguish a
given pair of states. Given a pair of states 𝑞1 and 𝑞2, the metric is formed by first sampling sequences
that lead to each state, 𝑠1 ∈ 𝑆(𝑞1) and 𝑠2 ∈ 𝑆(𝑞2). We then calculate the true Myhill-Nerode boundary
between the states and the model’s boundary between the sequences. Our metrics then compare the
resulting boundaries using two statistics as building blocks:
Definition 2.6. The boundary recall of generative model 𝑚(·) with respect to a DFA 𝑊 is defined as

|MNB𝑊 (𝑞1, 𝑞2) ∩ (𝐿𝑚 (𝑠1) \ 𝐿𝑚 (𝑠2)) |
|MNB𝑊 (𝑞1, 𝑞2) |

, (2)

and the boundary precision is defined as

|MNB𝑚 (𝑠1, 𝑠2) ∩ (𝐿𝑊 (𝑞1) \ 𝐿𝑊 (𝑞2)) |
|MNB𝑚 (𝑠1, 𝑠2) |

. (3)

Notice that boundary recall and boundary precision are not affected by whether the Myhill-Nerode
interior is large between the two states. Returning to cumulative Connect-4, the simple generative
model that outputs {1, . . . , 7} with equal probability will perform poorly on these metrics; its recall
will be 0 for all pairs of distinct states.
Based on the building blocks of recall and precision, we construct evaluation metrics to summarize
whether the generative model correctly compresses sequences that arrive at the same state under the
DFA and correctly distinguishes sequences that arrive at different states under the DFA. These two
metrics correspond to different methods of sampling state pairs.
Sequence compression metric. To evaluate sequence compression, we sample equal state pairs
𝑞1 = 𝑞2. Since a DFA provides multiple ways to arrive at the same state, this test assesses whether
a generative model recognizes that two sequences correspond to the same state. For example, in
cumulative Connect-4, there may be multiple sequences that arrive at the same board position. Recall
is undefined for equal states because there is no true boundary, so our compression metric only reports

5

26945 https://doi.org/10.52202/079017-0846

precision, averaged over states sampled uniformly at random (we say a generative model’s precision
is 1 if its boundary is correctly empty).
Sequence distinction metric. To evaluate sequence distinction, we sample distinct state pairs, i.e.
𝑞1 ≠ 𝑞2. Here, there must be a true boundary, so we test how well a generative model recovers it. We
report both precision and recall averaged over state pairs sampled uniformly at random.
Both metrics are depicted in Figure 2. Although we have defined a generative model as accepting all
sequences it assigns positive probability to, in practice sequence models are regularized to assign all
sequences nonzero probability. Our evaluation metrics therefore depend on an acceptance threshold
parameter 𝜖 > 0. In practice, we explore sensitivity to different values of 𝜖 and other acceptance
mechanisms. We present ablations and other details in more depth in Section 3 and Appendix E.

3 Illustration: Do Transformers Recover the Street Map of New York City?

To illustrate these metrics, we create a dataset consisting of taxi rides in New York City. We process
each ride into sequences of turn-by-turn directions and train transformers to predict the next direction.
We show that transformers trained on these sequences have surprising route planning abilities: they
not only find valid routes between two intersections but usually find the shortest path.
We then examine the underlying world model of the trained models. Despite the route planning
capabilities of these models, our metrics reveal that their underlying world models are incoherent. Using
a graph reconstruction technique, we show that each model’s implicit street map of New York City bears
little resemblance to the actual map. Finally, we demonstrate that the route planning capabilities of these
models break down when detours are introduced, a consequence of their incoherent world models.

3.1 Data and models

We base our analysis on a dataset of taxi rides released by the NYC Taxi & Limousine Commission,
containing the latitude and longitude of each ride’s pickup and dropoff location in Manhattan. Each
taxi ride obeys a true world model: the weighted graph corresponding to the system of intersections and
streets in New York City. The graph is defined as 𝐺 = (𝑉, 𝐸,𝑊), where 𝑉 is the set of intersections,
𝐸 the set of streets, and 𝑊 : 𝐸 → R+ a weighting function containing the distance of each street.2
Each edge is labeled corresponding to its cardinal direction, represented as a function 𝐷 : 𝑉 ×𝑉 →
{□, N, S, E, W, NE, NW, SE, SW}with□ indicating that the edge does not exist. Each intersection has at most
one edge in each direction. The graph has 4580 nodes (i.e. intersections) and 9846 edges (i.e. streets).
A traversal is a sequence of nodes where an edge exists between each consecutive node in the
sequence. To study how the construction of traversals affects the resulting generative model, we
consider three different approaches. Shortest paths constructs traversals by finding the shortest
path between two nodes. Since these may not be reflective of real-world traversals due to traffic
conditions, noisy shortest paths constructs multiple shortest paths by perturbing the magnitude of
each edge weight in the underlying graph. Finally, random walks samples random traversals instead
of approximating shortest paths. See Appendix F for details.
We convert each traversal into a sequence of directions. Each sequence begins with the origin
and destination, followed by the cardinal directions in the traversal, and concludes with a special
end-of-sequence token. Figure 5 gives an example of a set directions and the corresponding path.
Since this language corresponds to a DFA 𝑊 with |𝑉 |2 + 1 accept states, corresponding to all
combinations of current intersection/destination intersection pairs and an additional end state, we can
apply the evaluation metrics in Section 2.4.
We randomly split data into train and test splits, ensuring no origin-destination pair is in both train and
test sets. We include all sequences containing less than 100 directions. Our training sets consist of 2.9M
sequences (120M tokens) for shortest paths; 31M sequences (1.7B tokens) for noisy shortest paths; and
91M sequences (4.7B tokens) for random walks. We train two types of transformers [38] from scratch
using next-token prediction for each dataset: an 89.3M parameter model consisting of 12 layers, 768
hidden dimensions, and 12 heads; and a 1.5B parameter model consisting of 48 layers, 1600 hidden
dimensions, and 25 heads. We follow the architecture of GPT-2 for each model [29]. We train models on

2A real-world intersection may be represented as multiple intersections here. For example, if a turn is only
valid from one direction, it is represented as two different nodes.

6

26946https://doi.org/10.52202/079017-0846

Existing metrics Proposed metrics

Next-token
test

Current state
probe

Compression
precision

Distinction
precision

Distinction
recall

Untrained transformer 0.03 (0.00) 0.10 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Shortest paths 1.00 (0.00) 0.91 (0.00) 0.10 (0.01) 0.35 (0.02) 0.20 (0.01)
Noisy shortest paths 1.00 (0.00) 0.92 (0.00) 0.05 (0.01) 0.37 (0.02) 0.24 (0.01)
Random walks 1.00 (0.00) 0.99 (0.00) 0.50 (0.02) 0.99 (0.00) 1.00 (0.00)
True world model 1.00 — 1.00 1.00 1.00

Table 1: Sequence compression and distinction metrics for world models compared to existing metrics (standard
errors in parentheses). Models that do well on existing metrics can perform poorly on ours.

8 A100 GPUs. For each dataset, we analyze the model with the best held-out performance: the 89.3M
parameter model for shortest paths, and the 1.5B parameter for noisy shortest paths and random walks.

3.2 Evaluating world models

To assess their capabilities, we first assess whether the trained models can recover the shortest paths
between unseen (origin, destination) pairs. We prompt each model with (origin, destination) pairs
from the test set and use greedy decoding to generate a set of directions. All models consistently
generate valid traversals — between 96% and 99%. Impressively, 97% of the sequences generated
by the shortest paths model are the true shortest path, and 94% of the sequences generated by the
model trained on noisy shortest paths find a shortest path for one of the noisy graphs used to generate
data. Figure 5 provides an example of a shortest path traversal.
To assess whether these capabilities correspond to coherent implicit world models, we first consider
two existing diagnostics [36, 20]. The next-token test assesses whether a model, when conditioned
on each subsequence in the test set, predicts a legal turn for its top-1 predicted next-token. In our
example, a directional move is legal if a street in the direction exists at the current intersection.
Predicting the end token is only legal if the traversal implied by the sequence is at the listed destination.
Meanwhile, the current-state probe trains a probe [11] from a transformer’s representation to predict
the current intersection implied by the directions so far. We train a linear probe on a transformer’s
last layer representation.
To implement the sequence compression metric, we randomly sample states (i.e., [intersection,
destination] pairs) and two distinct traversals (i.e. prefixes) that arrive at each state. We then assess
whether a model correctly admits the same suffixes for each prefix. We average over pairs of prefixes
to report a score for each state and average over states to report a final score. To implement the
sequence distinction metrics, we sample pairs of distinct states and traversals (i.e. prefixes) that
arrive at each state, comparing the model’s approximate Myhill-Nerode boundary to the true one.
We average over pairs of prefixes to report a score for each pair of states, and average over 1000
randomly sampled state pairs to report a final scores. Both metrics depend on a threshold parameter
𝜖 : a prefix is only sampled or accepted if the model’s assigned probability for each token is above 𝜖 .
Here, we consider 𝜖 = 0.01 for all models and metrics. We describe implementation details, provide
parameter ablations, and consider other acceptance rules (e.g. top-p and top-k) in Appendix E.
Table 1 summarizes our results. As references, we compare each trained transformer to a randomly
initialized transformer baseline following Li et al. [20] as well as to the true world model. The three
trained transformers perform exceptionally well on existing diagnostics; nearly 100% of next-token
predictions are valid and the probe recovers the true intersection for more than 90% of examples.3

Our evaluation metrics, however, reveal that these existing diagnostics are incomplete. All trained
transformers perform poorly on sequence compression, frequently failing to recognize that two
prefixes leading to the same state should admit the same continuations. Even the transformer trained
on random walks, which sees many distinct types of traversals during training, fails to compress
prefixes for half the states. For the sequence distinction metrics, the transformers trained on shortest
paths or noisy shortest paths perform poorly. In contrast, the transformer trained on random walks
performs well on the sequence distinction metric. Both metrics are therefore valuable for evaluating
world models; a model can perform well on one metric and poorly on the other. Here, a model that

3While the next-token test accuracy is rounded to 100%, no model performs perfectly.

7

26947 https://doi.org/10.52202/079017-0846

(a) World model (b) World model with noise (c) Transformer

Figure 3: Reconstructed maps of Manhattan from sequences produced by three models: the true world model
(left), the true world model corrupted with noise (middle), and a transformer trained on random walks (right).
Edges exit nodes in their specified cardinal direction. In the zoomed-in images, edges belonging to the true graph
are black and false edges added by the reconstruction algorithm are red. We host interactive reconstructed maps
from transformers at the following links: shortest paths, noisy shortest paths, and random walks.

distinguishes separate states at a high rate fails to recognize that two prefixes that lead to the same
state should have the same valid continuations.

3.3 Reconstructing implicit maps

Our evaluation metrics point to deficiencies in recovering world models. We now show that these
metrics reveal underlying incoherence. In the maps setting, the state structure of the true world model
is easy to interpret and visualize: it is defined by the map itself. We attempt to “reconstruct” the map
implied by sequences sampled from each generative model.
Reconstruction is an open-ended problem: the generative model produces directions between an origin
and destination that do not necessarily correspond to a fixed graph over the intersections in Manhattan.
To narrow the scope, our goal is to produce a visually interpretable reconstructed map. To that end, we
fix the reconstructed graph to have the same set of vertices as the true world model, corresponding to
intersections in Manhattan, and ensure that the reconstruction algorithm returns a map consistent with
the true model whenever it is run on valid sequences. Further, (a) we enforce each node has at most one
outgoing edge of any direction, (b) we limit the maximum degree of each node, and (c) we limit the
Euclidean distance spanned by any edge. Altogether, our reconstruction algorithm gives the generative
model the benefit of the doubt, attempting to reconstruct edges belonging to the true map until forced
to do otherwise in order to map a generated sequence. The algorithm is detailed in Appendix B.
Figure 3 shows three reconstructed maps using sequences generated by the transformer trained on
random walks. The sequences underlying each map are generated by randomly sampling 6400 (origin,
destination) pairs and then sampling the model’s traversal for each pair (Appendix G shows similar
results for when the distribution of origin/destination pairs follows the sampling distribution used
to train each model). On the left is the reconstructed map on only sequences which are valid under
the true world model. On the right is the reconstructed map using the transformer’s sequences.
The transformer’s underlying world model is incoherent; it recovers streets whose orientations are
physically impossible (e.g. labeled NW but facing east) and require flyovers above other streets.
To show that this map is not the product of a model that has the right world model but makes a few tran-
scription errors, we artificially corrupt sequences drawn from the true model. With probability equal to
the probability of an error for the random walks transformer, we randomly re-label an edge in a sequence
consistent with the world model. The middle panel of Figure 3 shows the reconstructed graph. It is much
closer to the true world model than the transformer (which makes errors at the same rate). While these
results are for random walks and one setting of graph reconstruction, Appendix G shows maps for the
other models and different reconstruction settings. All settings recover incoherent underlying maps.

8

26948https://doi.org/10.52202/079017-0846

https://manhattan-reconstruction-shortest.netlify.app/
https://manhattan-reconstruction-noisy.netlify.app/
https://manhattan-reconstruction-noisy.netlify.app/

Probability of detour
0% 1% 10% 50% 75%

Shortest paths 0.99 (0.01) 0.69 (0.05) 0.08 (0.03) 0.00 (0.00) 0.00 (0.00)
Random Noisy shortest paths 0.96 (0.02) 0.52 (0.05) 0.03 (0.02) 0.00 (0.00) 0.00 (0.00)
detours Random walks 0.99 (0.01) 0.99 (0.01) 1.00 (0.00) 0.97 (0.02) 0.74 (0.04)

True world model 1.00 1.00 1.00 1.00 1.00

Shortest paths 0.99 (0.01) 0.66 (0.05) 0.06 (0.02) 0.00 (0.00) 0.00 (0.00)
Adversarial Noisy shortest paths 0.96 (0.02) 0.64 (0.05) 0.04 (0.02) 0.00 (0.00) 0.00 (0.00)

detours Random walks 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 0.93 (0.03) 0.51 (0.05)
True world model 1.00 1.00 1.00 1.00 1.00

Table 2: The fraction of traversals that are valid when detours are introduced (standard errors in parentheses).

3.4 Implication of failing to recover the world model: detour fragility

Does it matter that the transformer has an incoherent world model? After all, it does very well at the
practical task of finding shortest paths. Here we look at a slightly adjacent task and consider a driver
facing detours while driving; how well does the model re-route?
Concretely, we feed each transformer an (origin, destination) pair from the test set and greedily
decode a traversal. But with probability 𝑝 for each token, we add one of two kinds of detours: for
“random detours”, the model’s proposed token is replaced with a randomly chosen (true) valid token;
for “adversarial detours”, it is replaced with the model’s lowest ranked valid token. We always
ensure a valid path to the destination exists (shorter than length 100) after each detour. Table 2
shows the fraction of valid traversals produced. While all models perform well initially, detours
erode performance, illustrating how faulty world models can prove problematic. Notably, the
transformer trained on random walks is more robust to detours than models trained on (noisy) shortest
paths, mirroring its advantage on our proposed evaluation metrics. The similarity between model
performance on these evaluation metrics and detour robustness illustrates the effectiveness of our
proposed metrics for assessing world model recovery.

4 Other Applications: Othello and Logic Puzzles

We apply our evaluation metrics to two other settings: sequence models trained on games of Othello
and large language models prompted to solve logic puzzles. In both cases, our framework finds the
same type of incoherence that we found in the previous section for maps.
Othello. Li et al. [20] study the question of evaluating world models in the context of Othello, a
board game that consists of players placing tokens on an 8x8 board. They train transformers on game
transcripts to predict the next move of each game. They show these models perform well on both the
next-token test and current-state probe considered in Section 2.4. Since the true Othello game can be rep-
resented as a DFA, we can apply our world model evaluation metrics. The sequence compression metric
assesses whether openings that lead to the same board position have the same predicted next moves,
while the sequence distinction metrics assess whether the model can differentiate two distinct boards.
We apply our metrics to the two Othello sequence models considered by Li et al. [20]: one trained on
real games from Othello championship tournaments and another trained on synthetic games. Table 3 in
Appendix D reports the metrics in both settings. The model trained on real games performs poorly on
both compression and distinction metrics, failing to group together most pairs of game openings that
lead to the same board. In contrast, the model trained on synthetic games performs well on both metrics.
This discernment is not captured by the existing metrics, which show both models performing similarly.
We validate this discernment by performing a “detours” exercise for Othello in Table 4 in Appendix D;
while the model trained on synthetic data produces near-perfect games regardless of detours, the model
trained on championship data fails immediately. Similar to the navigation setting, we again find that
models trained on random/synthetic data recover more structure than those trained on real-world data.
Logic puzzles. We consider an additional application involving LLMs. Our metrics require that
the ground truth language can be expressed as a DFA, so we consider a “seating arrangement” logic
puzzle similar to those in Suzgun et al. [35]. There are 𝑛 seats and 𝑛 individuals. The vocabulary
consists of statements like “Person ‘A’ is sitting in seat 1” and “Person ‘B’ is two seats away from

9

26949 https://doi.org/10.52202/079017-0846

There are 3 individuals named A, B, and
C, and there are 3 seats, positioned 1-3.
We have the following statements:
 1. B is in seat 3
 2. B is 1 seat away from A
Based on this information, where is C
seated? You can use chain-of-thought
reasoning.

Example task prompt

Capabilities Proposed metrics

Task
accuracy

Compression
precision

Distinction
recall

Llama-2 (70B) 0.77 (0.03) 0.08 (0.03) 0.42 (0.04)
Llama-3 (8B) 0.85 (0.02) 0.18 (0.04) 0.23 (0.03)
Llama-3 (70B) 0.98 (0.00) 0.25 (0.04) 0.57 (0.04)
Mixtral-8x22B 0.88 (0.01) 0.35 (0.05) 0.57 (0.05)
Qwen 1.5 (72B) 0.88 (0.02) 0.21 (0.04) 0.56 (0.03)
Qwen 1.5 (110B) 0.98 (0.00) 0.53 (0.05) 0.53 (0.04)
GPT-3.5 (turbo) 0.83 (0.02) 0.33 (0.05) 0.18 (0.03)
GPT-4 1.00 (0.00) 0.21 (0.04) 0.56 (0.03)
True world model 1.00 1.00 1.00

Figure 4: On the left, an example given to large language models to assess task capabilities. On the right, each
model’s average task performance along with their results on our proposed metrics. Models are very capable of
solving logic puzzles despite not having a coherent world model.

Person ‘C”. A state is the set of seating arrangements that are consistent with all of the statements
so far, and a statement is valid if it doesn’t contradict all arrangements in the given state.
We analyze Llama 2 (70B) [37], Llama-3 (8B and 70B), Mixtral (8x22B Instruct) [15], Qwen 1.5
Chat (72B and 110B) [2], GPT-3.5 turbo, and GPT-4. We consider 𝑛=3 individuals. We first assess
whether the LLMs solve the logic puzzle task when the seating arrangement is fully specified by
the statements. Figure 4 shows that most LLMs perform well at this task; GPT-4 is accurate on all
examples. We then apply our metrics, assessing if each LLM compresses correctly (whether two
sets of statements that lead to the same state lead to the same assessments) and has high recall for
distinction (we do not compute precision for distinction because it is too expensive to approximate
each LLM’s Myhill-Nerode boundary). See Appendix E for further discussion.
Figure 4 shows the results averaged over 100 samples. While most LLMs can solve the logic puzzle
when it’s fully specified, they perform poorly on the compression and distinction metrics: no model
has a compression precision higher than 40%. More than half the time a model is conditioned on two
sequences with the same set of viable states, it asserts that different continuations are allowed for
each sequence; see Figure 8 for an example. No model has distinction recall higher than 0.60. These
results bring up an interesting point: LLMs can perform well at some logic tasks (such as when the
seating arrangement is fully specified) without having a coherent world model.

5 Conclusion

In order to build high-fidelity algorithms that meaningfully capture the logic of the problems they
model, we need ways to measure how close we are to that goal. This paper suggests theoretically
grounded metrics for assessing the world models implicit inside generative models. Applications to
maps, games, and logic puzzles suggest these metrics are both feasible to implement and insightful.
Our results show that generative models can perform impressive tasks with incoherent world models
(e.g. provide directions for taxi rides). But this incoherence makes them fragile for other tasks (e.g.
providing directions when there are detours). This incoherence is also problematic when we hope to
use a generative model to learn something latent about the world in scientific domains.
Our primary limitation is the focus on DFAs. While it is suitable for many applications like games, logic,
and state tracking, extending it would be quite valuable, e.g. to situations where the underlying world
model is more complicated than a DFA or is unknown. We suspect that the core ideas related to sequence
compression and sequence distinction generalize to these richer settings, but leave that to future work.

Acknowledgements

Keyon Vafa is supported by the Harvard Data Science Initiative. Justin Chen is supported by an NSF
Graduate Research Fellowship under Grant No. 174530. Jon Kleinberg is supported in part by a
Vannevar Bush Faculty Fellowship, a Simons Collaboration grant, and a grant from the MacArthur
Foundation. We thank the Chicago Booth School of Business for generous support. We thank

10

26950https://doi.org/10.52202/079017-0846

Foundry4 for providing the compute required to conduct this research. We also thank Sarah Bentley,
Juan Carlos Perdomo, and Neekon Vafa for helpful comments and feedback.

References
[1] Abdou, M., Kulmizev, A., Hershcovich, D., Frank, S., Pavlick, E., and Søgaard, A. Can language

models encode perceptual structure without grounding? A case study in color. arXiv preprint
arXiv:2109.06129, 2021.

[2] Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W., Han, Y., Huang, F., et al.
Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[3] Benegas, G., Batra, S. S., and Song, Y. S. DNA language models are powerful predictors
of genome-wide variant effects. Proceedings of the National Academy of Sciences, 120(44):
e2311219120, 2023.

[4] Bhattamishra, S., Ahuja, K., and Goyal, N. On the ability and limitations of transformers to
recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

[5] Boeing, G. Modeling and analyzing urban networks and amenities with OSMnx. 2024.
[6] Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Autonomous chemical research with

large language models. Nature, 624(7992):570–578, 2023.
[7] Chowdhury, R., Bouatta, N., Biswas, S., Floristean, C., Kharkar, A., Roy, K., Rochereau, C.,

Ahdritz, G., Zhang, J., Church, G. M., Sorger, P. K., and AlQuraishi, M. Single-sequence protein
structure prediction using a language model and deep learning. Nature Biotechnology, 40(11):
1617–1623, 2022.

[8] Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

[9] Guan, L., Valmeekam, K., Sreedharan, S., and Kambhampati, S. Leveraging pre-trained large
language models to construct and utilize world models for model-based task planning. Advances
in Neural Information Processing Systems, 36:79081–79094, 2023.

[10] Hazineh, D. S., Zhang, Z., and Chiu, J. Linear latent world models in simple transformers: A
case study on Othello-GPT. arXiv preprint arXiv:2310.07582, 2023.

[11] Hewitt, J. and Liang, P. Designing and interpreting probes with control tasks. arXiv preprint
arXiv:1909.03368, 2019.

[12] Hewitt, J., Manning, C. D., and Liang, P. Truncation sampling as language model desmoothing.
arXiv preprint arXiv:2210.15191, 2022.

[13] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

[14] Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A., and Smit, B. Leveraging large language
models for predictive chemistry. Nature Machine Intelligence, pp. 1–9, 2024.

[15] Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

[16] Jin, C. and Rinard, M. Evidence of meaning in language models trained on programs. arXiv
preprint arXiv:2305.11169, 2023.

[17] Kıcıman, E., Ness, R., Sharma, A., and Tan, C. Causal reasoning and large language models:
Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

[18] Kuo, M.-T., Hsueh, C.-C., and Tsai, R. T.-H. Large language models on the chessboard: A study
on ChatGPT’s formal language comprehension and complex reasoning skills. arXiv preprint
arXiv:2308.15118, 2023.

[19] Li, B. Z., Nye, M., and Andreas, J. Implicit representations of meaning in neural language
models. arXiv preprint arXiv:2106.00737, 2021.

4https://www.mlfoundry.com/

11

26951 https://doi.org/10.52202/079017-0846

https://www.mlfoundry.com/

[20] Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., and Wattenberg, M. Emergent world
representations: Exploring a sequence model trained on a synthetic task. In International
Conference on Learning Representations, 2023.

[21] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O.,
Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A.
Evolutionary-scale prediction of atomic-level protein structure with a language model. Science,
379(6637):1123–1130, 2023.

[22] Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. Transformers learn shortcuts to
automata. arXiv preprint arXiv:2210.10749, 2022.

[23] Merrill, W. and Sabharwal, A. The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

[24] Merrill, W., Petty, J., and Sabharwal, A. The illusion of state in state-space models. arXiv
preprint arXiv:2404.08819, 2024.

[25] Murray, K. W. 2014 New York City taxi trips. https://www.kaggle.com/datasets/
kentonnlp/2014-new-york-city-taxi-trips, 2017. Accessed: 2024-10-24.

[26] Myhill, J. Finite automata and the representation of events. WADD Technical Report, 57:
112–137, 1957.

[27] Nerode, A. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958.

[28] Patel, R. and Pavlick, E. Mapping language models to grounded conceptual spaces. In
International Conference on Learning Representations, 2021.

[29] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[30] Schumann, R. and Riezler, S. Generating landmark navigation instructions from maps as a
graph-to-text problem. Association for Computational Linguistics, 2021.

[31] Schumann, R. and Riezler, S. Analyzing generalization of vision and language navigation to
unseen outdoor areas. Association for Computational Linguistics, 2022.

[32] Schumann, R., Zhu, W., Feng, W., Fu, T.-J., Riezler, S., and Wang, W. Y. VELMA: Verbalization
embodiment of LLM agents for vision and language navigation in street view. In AAAI Conference
on Artificial Intelligence, 2024.

[33] Sipser, M. Introduction to the Theory of Computation, Third Edition. Cengage Learning, 2013.
[34] Suzgun, M., Belinkov, Y., and Shieber, S. M. On evaluating the generalization of LSTM models

in formal languages. arXiv preprint arXiv:1811.01001, 2018.
[35] Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y., Chung, H. W., Chowdhery, A., Le,

Q. V., Chi, E. H., Zhou, D., et al. Challenging BIG-bench tasks and whether chain-of-thought
can solve them. arXiv preprint arXiv:2210.09261, 2022.

[36] Toshniwal, S., Wiseman, S., Livescu, K., and Gimpel, K. Chess as a testbed for language model
state tracking. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
11385–11393, 2022.

[37] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[38] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Neural Information Processing Systems, 2017.

[39] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,
Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., and Fedus, W.
Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

[40] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
Chain-of-thought prompting elicits reasoning in large language models. Neural Information
Processing Systems, 35:24824–24837, 2022.

12

26952https://doi.org/10.52202/079017-0846

https://www.kaggle.com/datasets/kentonnlp/2014-new-york-city-taxi-trips
https://www.kaggle.com/datasets/kentonnlp/2014-new-york-city-taxi-trips

820 210 N E E E SE W W N SE N end
193 450 E E E N E S E end
301 592 N N N SE S S S S S end
…

Training sequences Model generates:

110 244
850 820
592 301
…

Contexts for evaluation

Figure 5: Examples of data and traversals. On the left are examples of sequences seen during training and
contexts used for evaluation. On the right is an example traversal generated by a transformer trained on shortest
paths data

A Proof

Proof of Proposition 2.3. We will first prove the forward direction that if a generative model 𝑚(·)
recovers the world model DFA 𝑊 , then 𝑚(·) satisfies exact next-token prediction. By assumption,
𝐿𝑊 (𝑞) = 𝐿𝑚 (𝑠). Consider any state 𝑞 ∈ 𝐹 and sequence reaching that state 𝑠 ∈ 𝑆(𝑞). This implies
that for any sequence 𝑠𝑎 for any character 𝑎 ∈ Σ,

𝛿(𝑞, 𝑎) ≠ 𝑞reject ⇐⇒ 𝑚(𝑎 | 𝑠) > 0,

which is the definition of next-token prediction.
Now, we will prove the backwards direction that if 𝑚(·) achieves exact next-token prediction, it
recovers 𝑊 . Fix any state 𝑞 and sequence 𝑠 ∈ 𝑆(𝑞). Consider any sequence 𝑎1𝑎2..𝑎𝑘 ∈ Σ∗ and let
𝑞′ = 𝛿(𝑞, 𝑎1𝑎2..𝑎𝑘) be the state reached by following the sequence from 𝑞. Note that by definition of
𝑞reject not having any outgoing transitions,

𝑞′ ≠ 𝑞reject ⇐⇒ (∀ 𝑗 < 𝑘) : 𝛿(𝑞, 𝑎1𝑎2..𝑎 𝑗) ≠ 𝑞reject.

By assumption,
𝑚(𝑎𝑘 | 𝑎1𝑎2..𝑎𝑘−1) > 0 ⇐⇒ 𝑞 ≠ 𝑞reject.

If 𝑎1𝑎2...𝑎𝑘 ∈ 𝐿𝑊 (𝑞), then 𝑞′ ≠ 𝑞reject. It then must be the case that 𝑚(𝑎 𝑗 |𝑎1𝑎2..𝑎 𝑗−1) > 0 for all
𝑗 < 𝑘 , implying that 𝑎1𝑎2...𝑎𝑘 ∈ 𝐿𝑚 (𝑠).
Conversely, if 𝑎1𝑎2...𝑎𝑘 ∉ 𝐿𝑊 (𝑞), then 𝑞′ = 𝑞reject. It follows that 𝑚(𝑎𝑘 |𝑎1𝑎2..𝑎𝑘−1) = 0, and thus
𝑎1𝑎2...𝑎𝑘 ∉ 𝐿𝑚 (𝑠). □

B Reconstructed Maps

In this section, we give more details on our reconstruction algorithm and display maps for sequences
generated from models trained on shortest paths, noisy shortest paths, and random walks each for
several parameter settings.

B.1 Algorithm

Our reconstruction algorithm in Algorithm 1 takes a set of sequences from a generative model and
attempts to reconstruct the underlying map implied by the sequences. The reconstructed map has the
same set of vertices as the true world model (i.e. the intersections of Manhattan), and we visualize
each intersection by placing them at their real-world latitude/longitude. The reconstruction algorithm
thus attempts to recover the edges and edge directions implied by each set of sequences.
For each sequence that is valid under the true map, the algorithm adds the true edges and edge
directions implied by the sequence. In a sense, this algorithm gives the generative model the benefit
of the doubt. However, sometimes the model errs, i.e. it produces a sequence which is only valid by
adding an additional edge to the true map. In this case, our reconstruction algorithm adds a new edge
at the first invalid step of the traversal. There are usually multiple possible edges to add that would
make the traversal valid; the algorithm adds the edge that maximizes the number of subsequent steps

13

26953 https://doi.org/10.52202/079017-0846

0 50 100
Boundary Size

0.00

0.25

0.50

0.75

1.00
S

co
re

Compression (Precision)

2 4
Boundary Size

0.4

0.6

0.8

1.0
Distinction (Precision)

2 4
Boundary Size

0.2

0.4

0.6

0.8

1.0
Distinction (Recall)

Shortest paths Noisy shortest paths Random walks

Figure 6: Performance metrics as a function of the maximum suffix length used to approximate the Myhill-Nerode
boundary.

0 1 2 3 4
Number of two way-intersections

0.10

0.15

0.20

0.25

0.30

C
om

pr
es

si
on

 p
re

ci
si

on

Figure 7: Compression precision worsens as there are more two-way streets at the current intersection. Plotted
results are for the shortest paths model.

that would be valid. In other words, the algorithm adds new edges only when there is a discrepancy
between the transformer and the world model, choosing the edge which greedily maximizes the
number of subsequent steps that accord with the true world model. The direction label for each added
edge is thus the token at the corresponding invalid step of the traversal.
Our algorithm may fail to reconstruct some of the input sequences as they cannot be made consistent
with the partial graph we have reconstructed so far. Note that any reconstruction algorithm that
satisfies the constraints in the main text of having a single edge with a given direction coming out of
any intersection, a maximum degree, and a maximum edge distance will not be able to reconstruct
every set of sequences. For example, two sequences [𝑣1, 𝑣2, E, end] and [𝑣1, 𝑣3, E, end] cannot be
reconstructed without violating the first constraint.

B.2 Maps

We include reconstructed maps built from 6400 transformer-generated sequences for transformers
trained on shortest paths, noisy shortest paths (modeling traffic), and random walks in Manhattan.
Each sequence is generated by randomly sampling an (origin, destination) pair and then sampling
the model’s traversal for each pair. Because the transformer never sees sequences of length more
than 100 during training, we only sample pairs for which there exists a valid traversal in less than
100 moves. We note that this distribution of (origin, destination) pairs varies from the distributions
used to train and evaluate each model, and the percent of traversals that are valid falls from >95% to
65-80%; however, Figure 12 shows similar maps when each map is constructed by sampling (origin,
destination) pairs from the training/evaluation distributions. We vary the constrained maximum
degree between 4 and 8 (the true map has maximum degree 4 and there are 8 possible cardinal
directions), and the maximum edge distance between 1/2 and 1 mile.
Each map depicts the map of Manhattan implied by the graph reconstruction algorithm. Reconstructing
maps involves adding edges between two intersections. We make sure the edges visually accord with
the labels reconstructed by the algorithm. For example, if intersection 𝑣1 is north of intersection 𝑣2 in

14

26954https://doi.org/10.52202/079017-0846

Algorithm 1 Graph Reconstruction from Sequences
Input: A set of sequences {𝑠𝑖}𝑛𝑖=1 each consisting of source, destination, cardinal directions, and an end
token; a true graph described by vertices𝑉 ⊂ R2 and edges 𝐷 : 𝑉 ×𝑉 → {□, N, S, E, W, NE, NW, SE, SW};
a maximum degree 𝑑𝑒𝑔; and a maximum distance 𝑑𝑖𝑠𝑡.
Output: Reconstructed edges 𝐷̂.

1: Initialize 𝐷̂ (𝑢, 𝑣) ← □ for all 𝑢, 𝑣 ∈ 𝑉
2: for 𝑖 ∈ [𝑛] do
3: 𝑗 ← 2 is an index into the list of directions
4: 𝑢 ← 𝑠𝑖 [0] is the current node, starting at the source
5: while 𝑠𝑖 [𝑗] ≠ end do
6: if �𝑣 ∈ 𝑉 s.t. 𝐷̂ (𝑢, 𝑣) = 𝑠𝑖 [𝑗] then
7: if |{𝑣 ∈ 𝑉 : 𝐷̂ (𝑢, 𝑣) ≠ □}| ≥ 𝑑𝑒𝑔 then
8: FAIL to reconstruct sequence and continue to line 2 // No room for new edges
9: else if ∃𝑣 ∈ 𝑉 s.t. 𝐷 (𝑢, 𝑣) = 𝑠𝑖 [𝑗] then

10: 𝐷̂ (𝑢, 𝑣) ← 𝑠𝑖 [𝑗] // Add an edge from the real graph
11: else
12: 𝑁 (𝑢) ← {𝑣 ∈ 𝑉 : 𝑢, 𝑣 within Euclidean distance 𝑑𝑖𝑠𝑡}
13: 𝑣′ ← arg max𝑣∈𝑁 (𝑢) # of steps through the while loop if 𝐷̂ (𝑢, 𝑣) = 𝑠𝑖 [𝑗] before

reaching lines 8 or 13
14: 𝐷̂ (𝑢, 𝑣) ← 𝑠𝑖 [𝑗] // Add new edge that gives longest continuation
15: 𝑗 ← 𝑗 + 1
16: if 𝑢 ≠ 𝑠𝑖 [1] then
17: FAIL to construct sequence
18: return 𝐷̂

the true map but the reconstruction algorithm recovers an edge from 𝑣2 to 𝑣1 labeled “South”, we draw
an edge that leaves 𝑣2 facing south and loops back to 𝑣1. In the zoomed-in images, edges belonging
to the true map are in black and false edges added by the reconstruction algorithm are in red.
In each caption, we list the number of sequences the algorithm failed to reconstruct. In addition to the
reconstructed map from all of the transformer’s sequences, we plot the reconstructed map built only
on sequences which are valid under the true world model as well as a reconstruction of those valid
sequences with some artificial corruptions. For the artificial corruptions, each sequence is chosen to
be corrupted with a fixed probability of 25% for shortest paths, 35% for noisy shortest paths, and 20%
for random walks. These percentages correspond to the fraction of the transformer’s sequences that
are invalid, so the (b) and (c) subfigures of each plot have the same proportion of valid and invalid
sequences.
We note that the maps corresponding to the random walk model visually have more edges than, for
instance, the maps built from shortest paths data. This is due to the fact that while the inputs to
the reconstruction algorithm have the same number of sequences, the length of the sequences differ
between the different generative models. The total number of directions contained in the shortest path
sequences is 983,182, for noisy shortest paths is 1,140,487, and for random walks is 1,584,549.

C Deterministic Finite Automata and Myhill-Nerode

Recall that we use a standard parameterization of a DFA as 𝑊 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) (see [33]) with

1. 𝑄 is a finite set of states,
2. Σ is a finite set of characters,
3. 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function mapping a state and character to the next state,
4. 𝑞0 ∈ 𝑄 is the start state,
5. 𝐹 ⊆ 𝑄 is the set of accepting states.

In the rest of this section, we state the Myhill-Nerode theorem, which is the conceptual basis for our
world-model test.

15

26955 https://doi.org/10.52202/079017-0846

Compression
precision

Distinction
precision

Distinction
recall

Untrained transformer 0.00 (0.00) 0.02 (0.00) 0.14 (0.01)
Championship Othello 0.00 (0.00) 0.65 (0.01) 0.27 (0.01)
Synthetic Othello 0.98 (0.00) 0.99 (0.00) 1.00 (0.00)
True world model 1.00 1.00 1.00

Table 3: The metrics from Section 2.4 applied to Othello sequence models. The championship and synthetic
models refer to models trained on real-world tournament games and synthetic games, respectively.

Definition C.1 (Equivalent sequences). Two sequences 𝑠1, 𝑠2 ∈ Σ∗ are called equivalent under a
language 𝐿 if for all suffixes 𝑥 ∈ Σ∗, 𝑠1𝑥 ∈ 𝐿 ⇐⇒ 𝑠2𝑥 ∈ 𝐿. This equivalence relation can be used
to partition all strings into equivalence classes.

Theorem C.2 ([26, 27]). A language 𝐿 is regular if and only if it has a finite number of equivalence
classes. Then, the minimal DFA accepting 𝐿 has a number of states equal to the number of classes.
In the minimal DFA, for every pair of distinct states 𝑞1 ≠ 𝑞2, there exists a suffix 𝑥 such that exactly
one of 𝛿(𝑞1, 𝑥) or 𝛿(𝑞2, 𝑥) is in the set of accepting states 𝐹.

D Additional results

Figure 5 shows an example of sequences and traversals in our dataset. Each training sequences
consists of an origin node, a destination node, and a set of directions followed by an end node. To
evaluate, we condition on (origin, destination) pairs that are unseen during training and generate a
traversal from the model.
Figure 6 shows how our performance metrics vary as we consider different suffix lengths for
approximating the Myhill-Nerode boundary. For compression precision, considering a boundary of
size 𝑘 corresponds to sampling suffixes of length-𝑘 for each suffix and measuring whether prefixes
with the same state have the same length-𝑘 suffixes. For distinction precision, we consider a boundary
of size 𝑘 by only sampling 𝑘-length suffixes to approximate a model’s Myhill-Nerode boundary. For
distinction recall, we consider a boundary of size 𝑘 by only constructing the true Myhill-Nerode
boundary based on 𝑘-length suffixes. The results in Figure 6 show the importance of considering
larger boundaries as opposed to smaller ones (e.g. single next-tokens); for example, while the model
trained on random walks scores 100% on compression precision when boundaries of length-1 are
considered, its performance is 50% when the full Myhill-Nerode boundary is considered.
We also performed some analysis to explore why the models uniformly performed badly on compression
tests in the maps setting. We found a negative correlation between the number of two-way streets at
an intersection and the compression precision; as the number of two-way streets at an intersection
increases, the model’s ability to recognize that two sequences that lead to the same intersection are
indeed in the same state worsens. Figure 7 plots this relationship for the shortest paths model.
Table 3 reports our metrics on models trained to play Othello. We use the transformer model
checkpoints provided by Li et al. [20]. We perform 1000 samples of each test. Our metrics find
that while the model trained on synthetic data recovers the true world model, the model trained on
championship data does not. In Table 4, we perform a detour exercise analogous to the one performed
for taxi rides in Section 3, where here a model’s predicted move is replaced with another legal one.
The detour results support the discernment between models found by our metrics; while the model
trained on synthetic data produces near-perfect games regardless of detours, the model trained on
championship data fails immediately.

E Evaluation metric details and ablations

Here we provide implementation details and ablations for the test described in Section 2.4 and
implemented in Section 3. We discuss how it’s implemented in each of the three settings — maps,
Othello, and logic puzzles — and then show ablations with different settings.

16

26956https://doi.org/10.52202/079017-0846

Probability of detour
0% 1% 10% 25% 50%

Random Championship Othello 1.00 (0.00) 0.66 (0.05) 0.05 (0.02) 0.01 (0.01) 0.01 (0.01)
detours Synthetic Othello 1.00 (0.00) 0.99 (0.01) 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

True world model 1.00 1.00 1.00 1.00 1.00

Adversarial Championship Othello 1.00 (0.00) 0.70 (0.05) 0.01 (0.01) 0.01 (0.01) 0.00 (0.00)
detours Synthetic Othello 1.00 (0.00) 0.98 (0.01) 0.99 (0.01) 0.96 (0.02) 0.97 (0.02)

True world model 1.00 1.00 1.00 1.00 1.00
Table 4: The fraction of traversals that are valid when detours are introduced in Othello. For “random detours”,
a model’s proposed token is replaced with a randomly chosen (true) valid token; for “adversarial detours”, it is
replaced with the model’s lowest ranked valid token.

E.1 Implementation details

Maps. For the compression test, we sample a state at random from all possible states, where each
state is a (current intersection, destination intersection) tuple. We then sample two distinct sequences
that lead to the same state. Because models are only trained on sequences of length 100 or less, we
only sample sequences that are short enough to be possible to arrive at the destination in less than
100 moves. Among all possible sequences, we first sample a length 𝑙 uniformly at random, and then
perform two random walks for 𝑙 steps in the reversed graph. This provides two distinct length-𝑙
prefixes that lead to the same state, 𝑠1 and 𝑠2.
Because the true world’s Myhill-Nerode boundary is empty for the compression test, we only need to
compute the model’s boundary. However, computing the model’s boundary is intractable; it involves
evaluating a transformer on exponentially many outputs. However, we don’t actually need to compute
the full boundary; the precision is 0 any time there’s one sequence accepted by one prefix and not the
other. So we approximate precision by Monte-Carlo sampling. We sample 𝑀 complete sequences
from the model conditioned 𝑠1, insuring that each token has higher than 𝜖 probability. We then check
if each token in the sequence has higher than 𝜖 probability when the model is conditioned on 𝑠2. If
there exists a single violating sample, it means that the model has failed to compress the two prefixes.
Therefore, sampling results in an upper-bound on performance. In practice, we use 𝑀 = 30 samples.
Below, we show that results are not very sensitive to the number of samples.
For the distinction test, we sample two distinct states, 𝑞1 and 𝑞2, uniformly at random, and sample
sequences that lead to each state, 𝑠1 and 𝑠2, as before. As before, computing full Myhill-Nerode
boundaries is intractable, so we approximate them. To approximate the true world model’s Myhill-
Nerode boundary, we consider all continuations of length 𝑘 , and find the set of minimal suffixes that
are accepted after 𝑞1 but not 𝑞2. To see which elements in the true boundary are distinguished by the
model, we evaluate the model on each element in conditioned on 𝑠1 vs 𝑠2. We use 𝑘 = 5, and find that
results are robust across different 𝑘 ≥ 5. We again approximate the transformer’s Myhill-Nerode
boundary by taking 𝑀 = 30 Monte-Carlo samples. For each sequence that’s accepted after 𝑠1 but
not 𝑠2, we find the minimal distinguishing suffix and include it in the boundary set. We then assess
precision by calculating which elements in the model’s boundary are acceptable after 𝑞1 but not 𝑞2 .
For both tests, we get state-level scores by averaging the results over prefixes that lead to each state,
and we report overall scores by averaging all sampled states.
Othello. The compression test for Othello involves sampling a board and then two sequences that
lead to the board. We approximate this sampling by simulating 1000 random games and sampling a
board at random from the set of unique boards that are visited by at least two unique games. This
sampling provides us with two different sequences, 𝑠1 and 𝑠2, that lead to the same board, 𝑞. Like the
above, we don’t need to compute the model’s full Myhill-Nerode boundary since the precision is 0
any time one sequence is accepted by 𝑠1 and not 𝑠2. Therefore, we again approximate precision with
𝑀 = 30 Monte-Carlo samples, following the same method as performed for maps.
For the distinction test, we sample two distinct states 𝑞1 and 𝑞2 from the set of sampled games with
the same length. We sample prefixes 𝑠1 and 𝑠2 from the empirical distribution of observed games.
We approximate the transformer’s Myhill-Nerode boundary in the same way as we did for maps, by
taking 𝑀 Monte-Carlo samples of complete game trajectories. We perform the analogous sampling

17

26957 https://doi.org/10.52202/079017-0846

There are 3 individuals named A, B, and
C, and there are 3 seats, positioned 1-3.
We have the following statements:
 1. B is 1 away from C
 2. A is 1 away from B

Context 1

There are 3 individuals named A, B, and
C, and there are 3 seats, positioned 1-3.
We have the following statements:
 1. C is 2 away from A

Context 2

Is the following statement possible in this scenario?
 “C is 1 away from B”

Query

Yes

Response for Context 1

No

Response for Context 2

Figure 8: An example of a compression error for GPT-4 on the logic puzzle test. The model is prompted
with statements that correspond to the same underlying state and a sample continuation. It assesses that the
continuation is valid for one state yet invalid for the other.

technique for the true world model, sampling 𝑀 complete gameplay trajectories at random over the
set of valid continuations. We use 𝑀 = 30 for both sampling procedures and a threshold of 𝜖 = 0.01.
Logic puzzles. Performing our test on large language models presents a challenge that we do
not have token-level probability access. Moreover, because we allow large language models to
perform chain-of-thought reasoning, it’s computationally intractable to sample long continuations by
marginalizing over the possible chain-of-thoughts.
Our test design is therefore based on prompting. See Figure 8 for an example. For the compression
metric, we sample up to 2 statements uniformly at random from the set of possible statements to
arrive at a state 𝑞. We then sample two prefixes 𝑠1 and 𝑠2 that lead to 𝑞 by repeatedly sampling the
set of statements consistent with 𝑞 that don’t narrow down the state space until the state implied by
the statements is exactly that of 𝑞. The compression metric is failed for each state for which we can
find a suffix that is accepted by the model prompted with one sequence but not the other. We sample
5 different possible continuation statements, half the time from the set of valid statements, half the
time uniformly at random. We note that due to the nature of the compression metric, our reported
metric is an overestimate of true capability. So the fact that no model performs above 0.35 with only
5 samples suggests heavy compression failure. We sample 100 states. See Figure 8 for an example of
a compression error.
For the distinction metric, we again sample states 𝑞1 ≠ 𝑞2 and sample sequences that lead to the
states 𝑠1 and 𝑠2 using the same method as before. Because of the limited state space in our example,
we can compute the true Myhill-Nerode boundary tractably. To test recall, we then only need to
assess whether statements in the true boundary are accepted when the LLM is prompted by 𝑠1 or 𝑠2.
Although the true Myhill-Nerode boundary is tractable to compute, it is still expensive to query an
LLM with each example. Instead, we perform Monte Carlo sampling using 𝑀 statements from the
true boundary to prompt the model. We consider 𝑀 = 5 in our experiments.
We use the OpenAI API to query the GPT models, and use the Together AI API for all other LLMs. We
prompt LLMs to perform chain-of-thought reasoning [40] for each query and automatically evaluate
answers by prompting each model to output its response with the keyword “Answer:” followed by its
answer. All queries are performed with greedy decoding.

E.2 Ablations

Our test involves a few parameters, such as 𝜖 (the probability threshold for each model), the maximum
suffix length 𝑘 used to approximate the true Myhill-Nerode boundary, and the number of Monte Carlo
samples 𝑚 used to approximate the model’s Myhill-Nerode boundary.
We begin by considering 𝜖 , which dictates a tradeoff between precision and recall. In the main text,
we consider 𝜖 = 0.01. Table 5 reports results for other values of 𝜖 on the maps metrics. Empirically

18

26958https://doi.org/10.52202/079017-0846

Compression
precision

Distinction
precision

Distinction
recall

Shortest paths 0.08 (0.03) 0.30 (0.05) 0.16 (0.03)
𝜖 = 0.10 Noisy shortest paths 0.04 (0.02) 0.36 (0.05) 0.20 (0.03)

Random walks 0.16 (0.04) 1.00 (0.00) 1.00 (0.00)

Shortest paths 0.10 (0.03) 0.38 (0.05) 0.18 (0.03)
𝜖 = 10−2 Noisy shortest paths 0.08 (0.03) 0.38 (0.05) 0.26 (0.03)

Random walks 0.46 (0.06) 1.00 (0.00) 1.00 (0.00)

Shortest paths 0.36 (0.05) 0.29 (0.05) 0.29 (0.04)
𝜖 = 10−4 Noisy shortest paths 0.29 (0.05) 0.35 (0.05) 0.34 (0.04)

Random walks 0.79 (0.05) 1.00 (0.00) 0.97 (0.02)

Shortest paths 0.70 (0.05) 0.29 (0.05) 0.29 (0.04)
𝜖 = 10−6 Noisy shortest paths 0.70 (0.05) 0.48 (0.05) 0.23 (0.04)

Random walks 0.99 (0.01) 0.99 (0.01) 0.11 (0.03)
Table 5: Compression and distinction test results for different values of 𝜖 for models trained on map data.

Compression
precision

Distinction
precision

Distinction
recall

Shortest paths 0.14 (0.04) 0.33 (0.05) 0.17 (0.03)
𝑘 = 1 Noisy shortest paths 0.06 (0.04) 0.35 (0.07) 0.11 (0.03)

Random walks 0.40 (0.08) 0.69 (0.06) 0.30 (0.04)

Shortest paths 0.21 (0.05) 0.32 (0.05) 0.17 (0.03)
𝑘 = 2 Noisy shortest paths 0.07 (0.04) 0.31 (0.07) 0.23 (0.05)

Random walks 0.21 (0.07) 0.93 (0.03) 0.73 (0.05)

Shortest paths 0.49 (0.06) 0.41 (0.05) 0.30 (0.03)
𝑘 = 4 Noisy shortest paths 0.44 (0.08) 0.22 (0.06) 0.33 (0.06)

Random walks 0.64 (0.08) 0.98 (0.02) 0.51 (0.06)

Table 6: Compression and distinction metrics for maps data where token acceptance is based on the top-𝑘
decoding mechanism. We consider values from 𝑘 = 1 to 𝑘 = 4 because there are only 8 valid cardinal directions.

we see the tradeoff between precision and recall as 𝜖 changes. However, the conclusions are stable:
every model has an incoherent world model across values of 𝜖 . For example, while the random walks
model has high compression and distinction precision for 𝜖 = 10−6, it has a very low distinction recall,
of 0.11. Meanwhile, while the distinction recall is bumped up to 1.00 for 𝜖 = 0.10, its compression
precision falls to 0.16.
The metrics introduced in Section 2.4 depend on defining what it means for a model to accept or
reject a sequence. In the main text we consider acceptance based on a threshold parameter, which
corresponds to an 𝜖-sampling decoding mechanism [12]. Here, we consider two alternative forms
of acceptance based on other decoding strategies: top-𝑘 [8] and top-𝑝 [13]. For acceptance based
on top-𝑘 , a token is accepted if it’s in the model’s top-𝑘 ranked tokens for a sequence and rejected
otherwise. For top-𝑝, a token is accepted if it’s part of the the smallest set of highest-probability
tokens whose cumulative probability is larger than 𝑝. Results are depicted in Table 6 and Table 7 and
point to the same conclusion as the threshold-based metrics in Section 3; none of the models have
recovered the world model, but the model trained on random walks performs best.
Our test also relies on Monte-Carlo sampling the model’s Myhill-Nerode boundary. The number of
samples affects only the precision test. A prefix pair fails the compression test whenever there’s one
suffix that the model accepts for one prefix and not for the other, so performance should worsen as
the number of samples increases. Table 8 shows how the precision scores vary as a function of the
number of samples for the shortest paths model. We use 𝑀 = 30 Monte Carlo samples for our main
reported metrics.

19

26959 https://doi.org/10.52202/079017-0846

Compression
precision

Distinction
precision

Distinction
recall

Shortest paths 0.05 (0.02) 0.33 (0.05) 0.17 (0.03)
𝑝 = 0.90 Noisy shortest paths 0.08 (0.04) 0.34 (0.07) 0.20 (0.05)

Random walks 0.16 (0.06) 0.96 (0.04) 0.94 (0.03)

Shortest paths 0.22 (0.05) 0.39 (0.05) 0.21 (0.03)
𝑝 = 0.99 Noisy shortest paths 0.03 (0.03) 0.39 (0.07) 0.24 (0.05)

Random walks 0.54 (0.08) 1.00 (0.00) 1.00 (0.00)

Shortest paths 0.31 (0.05) 0.35 (0.05) 0.22 (0.04)
𝑝 = 0.999 Noisy shortest paths 0.15 (0.06) 0.46 (0.07) 0.31 (0.05)

Random walks 0.73 (0.07) 1.00 (0.00) 1.00 (0.00)

Table 7: Compression and distinction metrics for maps data where token acceptance is based on the top-𝑝
decoding mechanism.

Number of samples Compression precision Distinction precision

10 0.14 (0.04) 0.35 (0.05)
20 0.12 (0.04) 0.35 (0.05)
30 0.10 (0.03) 0.30 (0.04)

Table 8: Precision performance as a function of the number of Monte Carlo samples used to approximate a
model’s Myhill-Nerode boundary. Results are for the shortest paths map model.

F Rides data construction and training

Here we describe the rides dataset construction in more detail. Our empirical studies are based on
a dataset of taxi rides in New York from 2014, originally released by the NYC Taxi & Limousine
Commission. We use a subset of 15 million rides that took place between January and March 2014,
made available by Murray [25]. We drop duplicate rides and subset the dataset to only include rides
in Manhattan, resulting in 3,358,737 sequences. We use the OSMnx library [5] to represent New
York as a weighted graph. We match pickups and dropoffs to the closest intersection, measured in
terms of latitude/longitude. The graph consists of 4,580 nodes, 9,846 edges, and each node has a
median of 2 valid intersections. We convert bearings to one of 8 cardinal directions. We remove short
traversals with two node or less. We also remove sequences with more than 100 tokens.
Shortest paths. The first approach creates traversals between two nodes by finding the shortest path
between them. For each taxi ride in the dataset, we map the pickup latitude/longitude to the closest
intersection and do the same for the dropoff location. We then perform Dĳkstra’s algorithm to find
the shortest path weighted by distance. After filtering out duplicated traversals, we have a training set
of 2,932,675 sequences and 120,400,201 tokens, along with a validation set of 1,000 sequences and
41,641 tokens.
Noisy shortest paths. Shortest path traversals may not be reflective of real-world traversals due to
differences in traffic patterns. Moreover, shortest path traversals between two nodes are deterministic,
potentially limiting a model’s ability to pick up a world model. Therefore, we construct a noisy version
of shortest-path traversals. We do this by modifying the weighting function, 𝑊̃ (𝑖, 𝑗) = 𝑊 (𝑖, 𝑗) + 𝜖𝑖 𝑗 ,
where 𝜖𝑖 𝑗 ∼ Gamma(𝑊 (𝑖, 𝑗), 1); we can interpret this as artificially adding traffic to each edge that
scales with the original length. We resample 50 different weighting functions. After filtering out
duplicated traversals, we have a training set with 30,599,312 sequences and 1,677,587,216 tokens
while our validation set consists of 1,000 sequences and 54,539 tokens
Random walks. In the last setting, we sample random traversals rather than approximating shortest
paths. We construct each sequence by sampling a node uniformly at random, sampling a sequence
length uniformly between 3 and 100, and constructing traversals by sampling random edges uniformly
at random for the prespecified sequence length. We create a training set of 90,646,864 sequences and
4,735,591,368 tokens, along with a validation set of 1,000 sequences and 52,360 tokens.
We use the GPT-2 architecture [29] to train models on all datasets. We use the GPT-2 small architecture
for the shortest paths model and the GPT-2 extra-large architecture for the noisy shortest paths and

20

26960https://doi.org/10.52202/079017-0846

random walks models. For the shortest paths models, we train until we overfit and use the best
validation checkpoint. For the two larger datasets, we train for a fixed number of epochs and use
the last validation checkpoint; we use 5 epochs for the noisy shortest paths dataset and 1 epoch for
the random walks dataset. We train all models on 8 A100 GPUs, using a batch size of 6 sequences
per GPU. Training time ranges from about 12 hours for the shortest paths model to 48 hours for the
random walks model.

G Additional maps

21

26961 https://doi.org/10.52202/079017-0846

Figure 9: Reconstructed map from transformer trained on shortest paths. In the zoomed-in images,
edges belonging to the true graph are black and false edges added by the reconstruction algorithm are
red with a darkening gradient indicating the directionality of the edge. Interactive map available at
https://manhattan-reconstruction-shortest.netlify.app/.

22

26962https://doi.org/10.52202/079017-0846

https://manhattan-reconstruction-shortest.netlify.app/

Figure 10: Reconstructed map from transformer trained on noisy shortest paths. Edges exit nodes in
their specified cardinal direction. Interactive map available at https://manhattan-reconstruction-noisy.
netlify.app/.

23

26963 https://doi.org/10.52202/079017-0846

https://manhattan-reconstruction-noisy.netlify.app/
https://manhattan-reconstruction-noisy.netlify.app/

Figure 11: Reconstructed map from transformer trained on random walks. Interactive map available at
https://manhattan-reconstruction-random.netlify.app/.

24

26964https://doi.org/10.52202/079017-0846

https://manhattan-reconstruction-random.netlify.app/

(a) Shortest paths (b) Noisy shortest paths (c) Random walks

Figure 12: Reconstructed maps from transformers trained on shortest paths, noisy shortest paths, and random
walks constructed using (origin, destination) pairs sampled from the same distribution used for training. While
trajectories are valid more than 95% of the time, the errors reveal incoherence. Reconstruction uses 50k sequences
with maximum degree 4 and maximum edge length 1/2 mile.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 13: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
shortest paths with maximum degree 4 and the maximum edge length 1/2 mile. The reconstruction process
failed on 1513/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 14: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
shortest paths with maximum degree 8 and the maximum edge length 1/2 mile. The reconstruction process
failed on 1435/6400 sequences.

25

26965 https://doi.org/10.52202/079017-0846

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 15: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
shortest paths with maximum degree 4 and the maximum edge length 1 mile. The reconstruction process
failed on 1334/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 16: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
shortest paths with maximum degree 8 and the maximum edge length 1 mile. The reconstruction process
failed on 1174/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 17: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
noisy shortest paths with maximum degree 4 and the maximum edge length 1/2 mile. The reconstruction
process failed on 2213/6400 sequences.

26

26966https://doi.org/10.52202/079017-0846

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 18: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
noisy shortest paths with maximum degree 8 and the maximum edge length 1/2 mile. The reconstruction
process failed on 1869/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 19: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
noisy shortest paths with maximum degree 4 and the maximum edge length 1 mile. The reconstruction
process failed on 1935/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 20: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
noisy shortest paths with maximum degree 8 and the maximum edge length 1 mile. The reconstruction
process failed on 1702/6400 sequences.

27

26967 https://doi.org/10.52202/079017-0846

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 21: (Copy of Figure 3) Reconstructed maps of Manhattan from sequences produced by the generative
model trained on random walks with maximum degree 4 and the maximum edge length 1/2 mile. The
reconstruction process failed on 1987/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 22: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
random walks with maximum degree 8 and the maximum edge length 1/2 mile. The reconstruction process
failed on 1491/6400 sequences.

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 23: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
random walks with maximum degree 4 and the maximum edge length 1 mile. The reconstruction process
failed on 1905/6400 sequences.

28

26968https://doi.org/10.52202/079017-0846

(a) World model sequences (b) Artificially corrupted world
model sequences

(c) Transformer sequences

Figure 24: Reconstructed maps of Manhattan from sequences produced by the generative model trained on
random walks with maximum degree 8 and the maximum edge length 1 mile. The reconstruction process
failed on 1323/6400 sequences.

29

26969 https://doi.org/10.52202/079017-0846

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution is proposing new metrics to evaluate whether language
models have recovered the true world model of a domain. This is described in the abstract
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

30

26970https://doi.org/10.52202/079017-0846

Justification: For our theoretical results, we state assumptions and provide proofs in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe implementation details and dataset construction details in depth
to enable reproducibility. We also release code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

31

26971 https://doi.org/10.52202/079017-0846

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We release all code and our processed dataset of taxi rides.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the datasets, models, hyperparameters, and other experimental
settings, at a high-level in the main text and in detail in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard errors for experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

32

26972https://doi.org/10.52202/079017-0846

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We describe the compute and GPU type the model is trained on.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper provides evaluation metrics, and we don’t foresee societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

26973 https://doi.org/10.52202/079017-0846

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any data or models that pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the original creators of baseline models we use and datasets we train
on.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

34

26974https://doi.org/10.52202/079017-0846

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our Github provides the relevant code and information.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

26975 https://doi.org/10.52202/079017-0846

