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Abstract

Public pretraining is a promising approach to improve differentially private model
training. However, recent work has noted that many positive research results
studying this paradigm only consider in-distribution tasks, and may not apply to
settings where there is distribution shift between the pretraining and finetuning
data—a scenario that is likely when finetuning private tasks due to the sensitive
nature of the data. In this work, we show empirically across three tasks that even in
settings with large distribution shift, where both zero-shot performance from public
data and training from scratch with private data give unusably weak results, public
features can in fact improve private training accuracy by up to 67% over private
training from scratch. We provide a theoretical explanation for this phenomenon,
showing that if the public and private data share a low-dimensional representation,
public representations can improve the sample complexity of private training even
if it is impossible to learn the private task from the public data alone. Altogether, our
results provide evidence that public data can indeed make private training practical
in realistic settings of extreme distribution shift.

1 Introduction

Learning models from user data can potentially disclose sensitive user information, violating privacy
constraints [1–3]. Differential privacy is a standard framework that can be used when learning models
from sensitive data to mitigate the risk of leaking private information [4]. However, differentially
private learning may significantly degrade accuracy, which remains a barrier to adoption [5]. This
has motivated recent works to explore the benefits of incorporating publicly available data into
private training, e.g., by pretraining a model on public data and then finetuning it using private data.
Empirically, this paradigm has been shown to substantially improve performance on private tasks
relative to fully-private training [6–13].

While these results are encouraging, Tramèr et al. [14] point out that much of the existing work focuses
on in-distribution tasks, where the public and private tasks are very similar. For example, many private
vision models [15–19] use public features pretrained on ImageNet [20], CIFAR-10 or CIFAR-100
[21], but these works also simulate private transfer performance by finetuning on one of these datasets.
In fact, Tramèr et al. [14] point out that “every single class contained in the CIFAR-10 dataset has
an identical class label in the ImageNet dataset!” This is particularly problematic when attempting
to understand the utility of public pretraining for private tasks, because in practice the private task is
likely to contain sensitive data that is not perfectly represented by public data, such as in applications in
medicine [22] or law [23]. Indeed, if data is already well-represented in a public dataset, the zero-shot
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performance of a model trained only on public data should be good enough that no private “transfer”
learning is required, potentially making these benchmark datasets uninformative for evaluating the
benefits of transfer learning.

From a practical perspective, it is particularly important to understand transfer learning in the private
setting: if a non-privacy-sensitive task is poorly represented by the pretrained features, one solution
might be to simply add the data from that task into the public training dataset and learn a more general
set of features for downstream use. But privacy-sensitive data cannot be used to train a public backbone,
and individual private datasets often cannot be combined or shared. Thus, the ability to leverage public
features to improve the sample dependence of private learning is critical.

Our contributions. In this work, we provide evidence to alleviate these concerns, showing
theoretically and empirically that public pretraining can be helpful even in settings with realistic and
possibly extreme distribution shift between public (training) and private (transfer) tasks. In particular,
we focus on concept shift, where the conditional distributions P (Y |X) can vary drastically between
public and private tasks. Our results are summarized as follows.

First, we conduct empirical case studies1 on three datasets to show that public features improve private
training accuracy even under extreme distribution shift. In particular, we use a pretrained CLIP ViT-B
vision model for public features and measure the accuracy of private transfer learning on datasets
including the PatchCamelyon (PCam) [24], Functional Map of the World (fMoW) [25], and Remote
Sensing Image Scene Classification (RESISC45) [26]. On all three datasets, the pretrained model
has unacceptably low zero-shot accuracy (random guessing on both PCam and fMoW), indicating
that “perfect privacy” with zero-shot queries is likely hopeless. In comparison, on CIFAR-10, the
CLIP ViT-B/32 model achieves 91.3% zero-shot accuracy [27], making transfer learning performance
far less relevant as the zero-shot accuracy is already high. We observe that across all datasets, private
finetuning and linear probing using public features outperform differentially training from scratch
– by up to 67%. In addition, private linear probing consistently outperforms private finetuning.

Motivated by our empirical results, we provide a stylized theoretical model to understand and explain
our findings. We study a simple linear transfer learning model, a common theoretical model in the
non-private meta-learning literature [28–34], to show the statistical benefit of learning a shared, low-
dimensional representation (in our model, a low-rank linear subspace) using public data. Our transfer
learning model captures an extreme form of concept shift in the sense that the target model on private data
is entirely different from those on public data, even though they are all contained in the same subspace.
Analogous to the paradigm of public pre-training then private linear probing, we analyze a simple two-
stage algorithm that (1) first estimates the shared, low-dimensional representation (or subspace) from a
diverse set of tasks in public data, and (2) performs private linear regression within the learned subspace.
By leveraging the dimensionality reduction, we provide a better sample complexity that scales with
the rank of the shared subspace instead of the ambient dimension of the features. To complement this
sample complexity bound, we also show a novel lower bound that shows that our bound is tight among
algorithms that search for regression parameters within a fixed low-rank subspace estimate.

In short, our findings provide optimistic insights regarding the concerns raised by Tramèr et al. [14].
Specifically, Tramèr et al. [14] suggest that “current methods for large-scale pretraining may be less ef-
fective.” In contrast, our results indicate that pretrained features can indeed benefit private learning, even
under concept shift. Additionally, our findings address another concern from Tramèr et al. [14] regarding
the necessity of uploading private data to cloud services for finetuning large models due to high re-
source requirements. We demonstrate that training a linear probe privately is more effective, potentially
requiring significantly fewer resources (both memory and computation) than finetuning a full model.

2 Related Work

Empirical studies of public pretraining for private learning. As Tramèr et al. [14] point out,
existing empirical studies on public pretraining for private learning largely focus on transfer between
similar datasets. For example, [15–19, 35] pretrain on CIFAR-100 or ImageNet and finetune on
CIFAR-10 or STL-10 (a dataset very similar to CIFAR-10). [8] pretrains on Places365 and finetunes
on ImageNet. [18, 36] pretrain on JFT and finetune on ImageNet. Finally, [37, 38, 9, 39] pretrain and
finetune on publicly available text on the Web.

1Code will be made available at https://github.com/pratiksha/private-transfer.
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All of these works build evidence that pretraining could be beneficial for private learning. Unfortunately,
because the public and private tasks are so similar, these results are unlikely to be representative of
real-world private training in which the private task requires learning a model on sensitive data with
a very different distribution from data available on the Web.

Recent work [40] evaluates their algorithm on private learning tasks that are out-of-distribution for
the feature extractor they use, including the PCam dataset that we also study. However, their algorithm
requires access to (nearly) in-distribution public data in order to learn a projection matrix into a
low-dimensional space. We argue that this is a strong and unrealistic assumption considering the
arguments put forth in Tramèr et al. [14] that private data, because of its sensitive nature, will not be
well-represented by public datasets. Our work instead focuses on understanding the improvements from
using off-the-shelf feature extractors, with no in-distribution public data, over fully-private learning.

Transfer or meta-learning. Our results build on the framework of Tripuraneni et al. [28] for
nonprivate transfer learning with a low-dimensional subspace. This linear, low-dimensional subspace
assumption has been studied extensively in the nonprivate meta-learning literature as a tractable model
for real shared representation learning [28–34]. However, none of these works consider the setting
of public subspace estimation followed by private transfer learning. PILLAR [40] makes a shared
subspace assumption in the private setting, but on the input features rather than on the models.

Private algorithms that leverage public data. A number of prior works have theoretically studied
the benefits of public data in other settings, including mean estimation [41], query release [42–44],
and optimization when gradients lie in a low-rank subspace [45–47]. Kairouz et al. [45] in particular
gives a similar analysis using the principal angle error of the subspace, but the analysis does not apply
directly as we assume that models, rather than gradients, lie in a shared low-dimensional subspace.
As a result, the algorithm in that work requires expensive subspace oracle calls on every iteration and
would be computationally suboptimal in our setting.

Finally, as discussed earlier, pretraining has empirically been shown to be useful in a number of domains,
including vision [6–8] and NLP [9–12]. While our work does not model the complexities of neural
networks, we can understand our results as a stylized version of finetuning in which the public network is
tuned with linear regression on the last layer, potentially giving insight into these more complex models.

Theoretical analyses of pretraining for private learning. Ganesh et al. [35] provides a lower
bound construction for a related setting in which public data is abundant and the private task is out
of distribution, though does not consider the case where the public and private task explicitly share
structure. In our setting, learning from the public data alone provides no guarantees on the transfer task,
as we do not assume any bounded shift in the data distributions or target parameters between the public
tasks to the private tasks; the key information enabling more efficient learning is the shared structure
among the tasks. PILLAR [40] incorporates public pretraining, but their analysis focuses on the
benefits of dimensionality reduction using in-distribution public data, rather than transfer from out-of-
distribution public data. Finally, Ke et al. [19] study the tradeoffs between linear probing and finetuning
in the private setting. While their empirical results focus on the in-distribution image recognition
settings outlined previously, their theoretical results corroborate our findings that even under extreme
distribution shift, linear probing is more effective than finetuning under differential privacy.

3 Preliminaries

Notation. Throughout the paper, we use lower-case v for vectors, upper-case V for matrices and
calligraphic V for sets. Generally, we use the “hatted” notation B̂, α̂ to refer to estimates of the
underlying population variables. The use of O,Ω,Θ is standard and Õ, Ω̃ hides polylog factors in
quantities we specify separately. We use ∥·∥F for Frobenius, ∥·∥op for operator and ∥·∥p for ℓp norms.

3.1 Differential Privacy

Differential privacy (DP) is a quantitative constraint on the information gained from a released
statistic [48]. Definition 3.1 restates the standard (ε,δ)-differential privacy introduced in [4].

Definition 3.1 ( (ϵ,δ)-differential privacy [4]). Given ϵ ≥ 0, δ ∈ [0,1] and a neighboring relation
∼, a randomized mechanism M :Xn → Y from the set of datasets of size n to an output space Y is
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(ϵ,δ)-differentially private if for all neighboring datasets S∼S ′⊆X , and all events E⊆Y ,

Pr[M(S)∈E] ≤ eϵ ·Pr[M(S ′)∈E]+δ.

Here, probabilities are taken over the random coins of M.

The “neighboring” relation differs according to the desired privacy guarantee. In this paper, we will
study row-level privacy in which neighboring datasets S∼S ′ differ in a single element.

3.2 Problem Setting: Leveraging public samples for private transfer learning

We will study a setting in which the learner first sees n1 public samples (xi,yi), possibly drawn from
multiple different underlying tasks (i.e., sample distributions) P1, ... ,Pt, and then sees n2 private
samples from a new task Pt+1. The goal is to learn a predictor f :Rd →Y that maps inputs x∈Rd

to outputs y∈Y with the constraint that f must satisfy (ε,δ)-differential privacy. We aim to minimize
the population loss on the private task:

L(f)=E(x,y)∼Pt+1
[ℓ(f(x),y)]. (1)

The private learner may or may not use the public samples. We assume the samples are drawn i.i.d.
conditioned on the task, but make no other assumptions on the task distribution or the number of
samples drawn from each task. In Section 5, we develop a theoretical model of the relationship between
the public and private tasks that allows the learner to effectively leverage information from the public
tasks to improve private learning.

4 Public Data Improves Out-of-Distribution Private Transfer

We begin by studying three datasets and show empirically that public data can provide benefits for
private transfer learning even when the public data alone gives unusable zero-shot results on the
private task. Each of the tasks we evaluate on has unusably low zero-shot performance on CLIP
[27], indicating that these are highly out-of-distribution relative to the pretraining data. This directly
contrasts with existing work: the CLIP model that we use (pretrained with LAION-2B) achieves 66.6%
zero-shot performance on ImageNet and 93.5% accuracy on CIFAR-10.

4.1 Datasets

PatchCamelyon. The PatchCamelyon (PCam) medical images dataset is a binary lymph node tumor
detection task highlighted by [14]. [14] point out that CLIP [27] as well as other similar text-vision mod-
els [22] have notably poor zero-shot performance on PCam: CLIP ViT-B/32 achieves 51.2%, or close to
random, in our evaluation. The poor zero-shot performance (relative to tasks like ImageNet or CIFAR)
indicates that the task is truly “out of distribution” in comparison to the source (public) data. Moreover,
being medical image data, PCam more faithfully represents a highly privacy-sensitive dataset.

While the next two datasets are not medical image datasets, they are widely studied distribution
shift datasets that have poor zero-shot performance on the training data, making them suitable for
understanding transfer learning performance. In particular, they are remote sensing datasets; Wang
et al. [49] analyze LAION-2B and find that only 0.03% of samples are remote sensing images, another
strong indication that this data is underrepresented in pretraining.

fMoW. The Functional Map of the World (fMoW) dataset [25, 50] is a 62-class satellite image
classification task. The pretrained CLIP ViT-B model achieves only 1.64% zero-shot accuracy, so
“perfect privacy” with zero-shot classification is not possible.

RESISC45. The Remote Sensing Image Scene Classification dataset [26] is a 45-class satellite
image classification task. The pretrained CLIP ViT-B model achieves 56.3% zero-shot accuracy.

4.2 Experimental Setup

We train a ViT-B/32 model [51] on each dataset (which has output dimension 512) with a linear
classification head for each task. For models trained from scratch, we use Xavier initialization on
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PCam fMoW RESISC45
Zero-shot CLIP 51.2 1.64 56.3

Full training from scratch 78.2 19.7 41.9
Full finetuning 82.5 58.2 93.6
Linear probing 83.5 42.1 91.7

Table 1: Test accuracy of nonprivate training on each dataset that we evaluate.
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(b) fMoW.
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(c) RESISC45.

Figure 1: Private training on three datasets. (a) PCam is a binary classification task on which private training from
scratch achieves relatively high accuracy, but linear probing on the pretrained model still improves accuracy up to
4%. (b) The fMoW model trained from scratch is unusable at low privacy levels while linear probing achieves close
to nonprivate accuracy. (c) On RESISC45, linear probing outperforms full finetuning by over 50% at all ε levels.

the weights, while for pretrained features, we use OpenCLIP [52] models initialized with weights
pretrained using LAION-2B (a 2B-sample subset of LAION-5B [53]). We use the Opacus library [54]
to implement private training. For each training setting we performed a hyperparameter sweep over
learning rate ({1e−6,...,1e−2}) and number of epochs (1-10 for full training and 1000-2500 for linear
probing), and for private learning, clipping norm ({0.5,1.0,2.5,5.0}). For both private and nonprivate
models, we evaluate training from scratch, full finetuning, and linear probing. We train private models
for ε∈{0.3,0.4,0.5,1.0,2.0,5.0} for each training setting. For PCam and RESISC45, we use SGD
with momentum (parameter 0.9), while for fMoW we found that Adam gave better performance [55].
We use a cosine learning rate schedule for all experiments and a batch size of 32. Each finetuning
run is performed on an A100 or A6000 GPU.

4.3 Results
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Figure 2: Linear probing results for ViT-B/32 pretrained
on a 14M subset of Datacomp-1B and on LAION-2B.
(Solid lines are LAION results while dashed lines are Dat-
acomp results.) While the linear probing results in both
settings outperform training from scratch, the worse ac-
curacy on the Datacomp pretrained features are reflective
of the lower-quality features from the smaller pretraining
set.

We plot our private training results in Figure 1,
and also provide nonprivate training and zero-
shot CLIP numbers for reference in Table 1. Zero-
shot CLIP has random accuracy on PCam (bi-
nary) and fMoW (62 classes). On RESISC45,
zero-shot CLIP performs better than training
from scratch (nonprivately), but finetuning and
linear probing have nearly 40% higher accuracy.
As pointed out by Tramèr et al. [14], if the zero-
shot numbers (with no knowledge of the transfer
task) matched the best performance of finetun-
ing, then “perfect privacy” with no finetuning
would be sufficient. But in each of these settings,
the zero-shot performance is considerably worse
than what is achievable with finetuning in both
the nonprivate and private settings.

Across all datasets, we find that any type of
finetuning significantly outperforms training pri-
vately from scratch. This indicates that the pre-
trained features are indeed contributing to train-
ing accuracy. Further, we find across all datasets
that linear probing (fixing the pretrained features) outperforms full finetuning, sometimes by a large
margin, as in the case of RESISC45. This finding is consistent with theoretical work [19] that models
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the benefits of linear probing over finetuning under differential privacy. This is also consistent with
earlier empirical findings on (in-distribution) private finetuning [8].

The key takeaway is positive: that features that work well for nonprivate transfer learning also benefit
private transfer learning even when the distribution shift is large. While the conclusions are similar,
these results are especially important in the private setting: training models from scratch with strong
privacy is simply infeasible for many tasks, resulting in only around 10% test accuracy for fMoW and
RESISC at small values of ε.

To further support our results, we additionally evaluate linear probing for all three datasets with features
pretrained on a 14M subset of Datacomp-1B [56] in Figure 2. The trends in this setting are the same and
linear probing still outperforms private training from scratch on all datasets, but the smaller pretraining
dataset leads to lower-quality features that impact the final accuracy of linear probing.

5 Theoretical Model

Our empirical results show that even when distribution shift is extreme, public pretraining can indeed
improve the accuracy of private training. In order to explain this observation, we study a simplified
linear regression setting in which the goal is to estimate regression parameters privately for a single,
unseen private task. This setting has been studied extensively in the nonprivate meta-learning literature
as a theoretically tractable model to explain results on larger models [28–34], and we propose a novel
extension to the private setting that helps explain our empirical findings.

We show that if the regression parameters for the private task lie in a low-dimensional subspace that
is shared with the public tasks, the learner can use the public data to efficiently estimate the low-
dimensional subspace, project the private data into the subspace, and thus achieve private estimation
error rates that match optimal private linear regression rates (up to constant factors) in k dimensions
(rather than d dimensions), with an additive term that accounts for the error in estimating the subspace
publicly. These results hold even when we make no assumptions on the relationship between the public
and private task other than that they share the same low-dimensional subspace.

We additionally provide a novel lower bound that shows that the algorithm we analyze for our upper
bound achieves the optimal rate among “two-stage” algorithms that estimate the transfer parameters
within a fixed low-dimensional subspace.

Figure 3: Eigenspectrum of feature covariance matrix for
PCam features extracted from pretrained CLIP ViT-B/32
model.

How realistic is the shared subspace assump-
tion? As mentioned, the theoretical model we
analyze has been previously studied to explain
meta-learning results in nonprivate settings. Nev-
ertheless, one might ask how realistic the model
is for the particular settings we study, especially
the assumption of a low-rank subspace shared by
both the training and transfer tasks.

As a step toward understanding whether this as-
sumption holds in practice, we plotted the eigen-
spectrum of the feature covariance matrix com-
puted after extracting features of PCam images
from the CLIP ViT-B-32 pretrained model (Fig-
ure 3).

From these results, we see that the pretrained
features are approximately low-rank for the out-

of-distribution task PCam, yet a linear probe over these features achieves good (83.5%) performance
(Table 1). The fact that the representation still gives good performance when only a linear layer
is trained on top suggests that the data does fundamentally lie in or near the low-rank space that is
identified by the pretrained model.

In Appendix A, we plot and see similar results for the fMoW and RESISC45 datasets, where linear
probing is similarly successful (relative to full finetuning).
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5.1 Model and preliminaries

We first describe our model of the data distribution for the private task, learning objective, any
assumptions we make and results from prior works we use.

5.1.1 Shared task structure

We consider linear regression models in which every observation (xi,yi) for a given task is generated
according to:

xi ∼ N (0,Id), η ∼ N (0,1)

yi = x⊤
i Bαt(i)+ηi. (2)

The covariates xi and noise η are sampled i.i.d. Here, B ∈Rd×k is an unknown, low rank (k≪ d)
feature matrix with orthonormal columns. The matrix B, and consequently the subspace spanned by
its columns, is shared across all tasks in our problem setting. This includes both the public tasks that
may be used to derive the initial estimate of B, as well as the private tasks in single-task and multi-task
transfer settings.

The task vectors αj are all assumed to lie in the true shared subspace B. t(i) indexes the task αj for the
covariate xi: public tasks are in α1...t, and the transfer task is αt+1. Note that the tasks are not random
variables and we do not make distributional assumptions on the tasks for our results. In Appendix B we
provide details on the requirements for the public tasks α1...t (and also refer the reader to Tripuraneni
et al. [28]), but for now we simply require that the public tasks are sufficiently “diverse” within B.

The learner sees n1 samples from the public tasks (in total across all tasks) and n2 samples drawn from
the private task.

We are interested in learning w that minimizes the following population risk:

L(w)= 1

2
E(x,y)

[
(x⊤w−y)2

]
(3)

on the private task Bαt+1.

5.1.2 Oracle for public subspace estimation

In stating our main results, we first assume access to an oracle that can output an orthonormal matrix
B̂∈Rd×k that is “close to” B. We measure the distance between subspaces in terms of the principal
angle distance, denoted sinθ(B,B̂)=sinθ(B̂,B) (see supplement and Tripuraneni et al. [28] for more
discussion).

The following identities on sinθ will be useful:
Lemma 5.1 (subspace estimation errors). The following inequalities are satisfied for matrices with
orthonormal columns B, B̂ ∈ Rd×k (and when B, B̂ are swapped): ∥(I − B̂B̂⊤)B∥F ≥ ∥(I −
B̂B̂⊤)B∥op=sinθ(B̂,B)≥∥(I−B̂B̂⊤)B∥F/

√
k.

Instantiating the oracle with public data. The following corollary characterizes the error incurred
from estimating the underlying subspace from public data using the method-of-moments estimator
from Tripuraneni et al. [28]. We state this bound for use in subsequent results but refer the reader to the
supplement for the conditions required on public data in order to achieve this bound.
Theorem 5.2 ([28], Theorem 3, simplified). Let A = (α1,...,αt)

⊤ be the public task matrix, ν =

σk

(
A⊤A

t

)
, and κ̄ =

tr(A⊤A
t )

kν be the average condition number. If an equal number of samples is

generated from each task, and κ̄ ≤ O(1) and ν ≥ Ω( 1k ), then the error of the method-of-moments
estimator ( [28], Algorithm 1) is

sinθ(B̂,B)≤Õ
(√

dk2/n1

)
. (4)

with probability at least 1−O(n−100
1 ).

We will refer to γ ≥ sinθ(B,B̂) as an upper bound on the error of the subspace estimation oracle.
We give upper bounds with respect to γ and also instantiate the bounds with the upper bound from
Theorem 5.2.

7
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Algorithm 1 Two-phase algorithm for public-private linear regression using subspace estimation

Input: n1 public samples drawn according to (xi,yi), xi∼N (0,Id), yi=x⊤
i Bαt(i)+η, ηi∼N (0,1)

and n2 private samples where xi, ηi have the same distribution, and yi=x⊤
i Bαt+1+ηi

1: Use method-of-moments estimator ([28], Algorithm 1) to estimate B̂ using public data
2: Project private data xi to k-dimensional subspace: x′

i=x⊤
i B̂

3: Use DP-SGD variant of [57] on projected private data to estimate αt+1

Output: Parameter estimate B̂α̂t+1

5.1.3 Private linear regression in d dimensions

We use in our analysis a known upper bound for private linear regression in d-dimensions. Theorem 5.3
states an informal result from [57] that upper bounds the excess risk for a variant of DP-SGD [15] (see
Appendix B for more details). Furthermore, results from [58] imply that this upper bound is tight.
Theorem 5.3 (Corollary 11 from [57], simplified). Suppose we haven2 i.i.d. datapoints (xi,yi), where
xi∼N (0,Id) and yi=x⊤

i w+ϵi, and ϵi∼(0,σ2). Given sufficient private samples n2, there exists an
(ε,δ) private estimate ŵpriv such that, with high probability:

L(ŵpriv)−L(w) ≲ dσ2

n2

(
1+Õ

(
d log(1/δ)

n2ε2

))
. (5)

5.2 Private transfer learning for a single task

Algorithm. Our proposed algorithm (Algorithm 1) first projects x into the estimated subspace
B̂pub, i.e., x 7→ B̂⊤

pubx, and then runs private linear regression in the k-dimensional subspace. This
is analogous to linear probing in our experiments, which first uses the public encoder to compute a
low-dimensional feature representation of the data and then learns a linear model using the features.
While full finetuning of the model is also a common paradigm in the transfer learning literature, we point
to [19] which shows that when the feature representation is sufficiently informative, linear probing
outperforms finetuning under differential privacy – a result that supports our empirical findings.

The following theorem states that Algorithm 1 achieves a rate that matches optimal rates for private
linear regression in k-dimensions, up to the subspace estimation error γ.
Theorem 5.4 (single-task private transfer upper bound). Assume we have access to a subspace
estimation oracle that solely uses public samples to provide estimate B̂pub for the unknown subspaceB
of a private task defined by the pair (B,αt+1) in (2). Further, the estimate satisfies sinθ(B̂pub,B)≤γ.
Given n2 i.i.d. samples from the distribution of this private task, Algorithm 1 outputs an estimate
B̂pubα̂t+1 that is (ε,δ)-differentially private, and with high probability incurs a risk of:

L(B̂pubα̂t+1)−L(Bαt+1) (6)

≤ Õ
(
∥αt+1∥22(γ

2+1)
)
Õ

(
1

n100
2

+
k

n2
+
k2log(1/δ)

n2
2ε

2

)
+γ2. (7)

Proof sketch. The proof nearly follows from existing bounds on subspace estimation and private linear
regression. The key difficulty is that regression on the input x∼N (0,Id) projected into the estimated
subspace B̂pub still leaves the residual that does not lie in B̂pub, which can be treated as a noise term
if we can show that the residual is independent of the projected x. We can show this because B̂pub

is orthogonal to B̂⊥
pub (spans null space of B̂pub), so under the i.i.d. Gaussian assumption on x, the

residual is independent of the projected x. As a result, we obtain the private linear regression rate in k
dimensions with a variance of 1+γ2 rather than 1 and an additive γ2 bias.

Discussion. From Theorem 5.4, we can break down the errors into an unavoidable bias due to the
subspace estimation error (dependent only on the number of public samples) and the subsequent linear
regression error due to privacy. For a subspace estimation error γ we require n1 ≥ dk2

γ2 . Given this
inevitable error we can hope to achieve an accuracy of err+ γ2 where err is the additional linear
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regression error and sinθ (B,B̂pub)≤γ. This requires approximately:

n2 ≥ k

err
+

k

ε
√
err

(8)

samples. That is, if the subspace estimation error is zero then we achieve the rate of private linear
regression in k dimensions, and consequently optimal non-private rates when ϵ→∞.

5.3 Lower bound for two-phase estimator

In the previous subsection, we proved an upper bound on the single-task transfer for row-level (ε,δ)-DP
private algorithm, when the publicly estimated subspace B̂pub is γ accurate. In this section, we show
that our upper bound is tight among algorithms for our problem that search for solutions within a fixed
subspace.

In particular, we analyze the lowest possible transfer error achieved by any (ε,δ)-DP algorithm that: (i)
takes as input private dataset S of n2 i.i.d. samples from task αt+1, γ-accurate public estimate B̂pub,
and (ii) outputs an estimate in the column space of B̂pub. In Theorem 5.5, we present a lower bound on
the risk suffered by any algorithm in such a class.
Theorem 5.5 (Two-stage single-task private transfer lower bound). Let M be an (ε,δ)-DP private
algorithm where ε∈(0,1), δ<1/n1+ω, ω>0, that takes as input: (i) publicly estimated subspace B̂pub

from an oracle that only uses public samples; and (ii) a dataset S of n2 private samples. For any such
M , there exists a private problem instance given by the pair (B,αt+1)whereB∈Grk,d(R),αt+1∈Rk,
sin θ(B,B̂pub)≤ γ, and ∥Bαt+1∥2 ≤ 1, such that for S sampled i.i.d. from this instance using the
model in (2), we have:

EMES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂pub)
⊤x)2 (9)

= Ω

((
k2

n2
2ε

2
+

k

n2

)
(σ2+γ2)+γ2

)
. (10)

Proof Sketch. Our proof relies mainly on tracing attacks in [59, 58], but our analysis additionally needs
to handle the misspecification of the subspace B which influences the construction of the worst case
problem instance. When we project inputs x 7→B̂⊤

pubx, we can show that the projected samples can now
be treated as i.i.d. samples from a k-dimensional linear regression model with independent noise. For a
fixed B̂pub, any choice of B,αt+1 affects both the scaling of the noise (∝∥(I−B̂pubB̂

⊤
pub)Bαt+1∥22),

and the direction of the regression vector, based on how much of the true parameter Bαt+1 is captured
in given subspace B̂pub. To handle this, we first construct subclasses of the adversary, where each
subclass fixes the norm of ∥B̂⊤

pubBαt+1∥2. Then, we lower bound the minimax risk over this subclass
by via a Bayes risk which we further lower bound by constructing a tracing adversary.

We show that there exists a prior π overBαt+1 where the probability of the intersection of the following
two events is very low: (i) small estimation error EπL(M(S,B̂pub)), and (ii) small success rate for the
tracing adversary to infer the membership of some element in S . Since, M has to be (ϵ,δ) private, this
reults in a Bayes risk lower bound.

Discussion. Our lower bound for the class of two-stage algorithms matches our upper bound in
Theorem 5.4. This implies that our Algorithm 1 is optimal when B̂pub is the estimate given by the
optimal subspace estimation oracle over public samples. When we use Algorithm 1 from [28], the
estimation error matches lower bounds (Theorem 5 in [28]) upto a factor of

√
k.

5.4 Simulated results

Finally, we complement the results in this section through a simulated empirical study matching the
setup described in Section 5.1.

Setup. We simulate n1 samples (xi,yi) from t=100 public tasks where the true dimension d=25
but the underlying subspace B has rank 5. As baselines, we compare against nonprivate linear
regression, DP-SGD without a subspace estimate, and DP-SGD initialized with the true subspace B,
and compare against DP-SGD initialized with the subspace estimated using the method-of-moments
estimator [28]. We use the Google Tensorflow implementation of DP-SGD for private learning [60].
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Figure 4: Empirical verification of setup described in
Section 5.1.

We used a grid search of hyperparameters to set
the clipping norm to 0.5, learning rate to 0.1, and
used 50 epochs of training for DP-SGD. We use
the RDP accountant to set ε=1.1 and δ=1e−5.

Our results are shown in Figure 4. We ob-
serve that, as expected, private training from
scratch has high error, and additional public data
(n1=500 vs n1=2000) improves performance,
reducing the ℓ2 parameter error close to that of
using DP-SGD with the true underlying subspace
B (matching our intuition, for example, from Fig-
ure 2). However, we also see that when perform-
ing private transfer there are diminishing returns
for this more precise subspace estimation, as the
noise introduced via private learning becomes a
dominating factor.

6 Discussion and Limitations

Our results answer questions posed by [14] positively. Empirically, we show that across three
datasets with significant shift between the public and private tasks, publicly pretrained features do
make private learning far more effective, taking models from unusable when trained from scratch to
close-to-nonprivate performance when trained privately with linear probing. In addition, we provide
a theoretical model to explain our findings, based on models of nonprivate transfer learning. Our
model supports our empirical findings, suggesting that public features should indeed reduce private
sample complexity under even extreme distribution shift when the public and private tasks share a
low-dimensional representation. Altogether, our conclusions are optimistic and provide confidence that
public data can indeed support private training even for highly sensitive tasks that cannot and should
not be used in public training. However, our linear subspace model has the clear limitation of being a
simplified model for the neural network representations used in practice. As this is a limitation shared
by literature on nonprivate transfer learning [28–34], improvements in this area would contribute to
both the private and nonprivate transfer learning literature.
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A Empirical evidence for shared subspace assumption

(a) PCam. (b) fMoW.

(c) RESISC45.

Figure 5: Eigenspectra of feature covariance matrices for features extracted from pretrained CLIP ViT-B/32
model.

It is natural to ask whether the assumption that public (pretraining) tasks and private tasks truly share a
low-dimensional subspace as we model in our theoretical analysis. In order to validate this, in figure 5,
we plot the eigenspectra of the feature covariance matrices for each of the datasets we evaluate in
Section 4. The key takeaway is that even though the three datasets are out of distribution for the
pretraining data, the extracted features are low rank. In addition, these features are effective when used
to train a linear probe (in contrast, if the subspace were misspecified, the features may be low-rank but
lead to poor results with linear probing).

B Additional definitions and assumptions

B.1 Preliminaries for Tripuraneni et al. [28]

In this section, we elaborate on the assumptions required to use algorithms from Tripuraneni et al. [28]
for subspace estimation using public data (i.e., instantiating the subspace oracle).

B.1.1 Principal angles

Our analysis requires a notion of distance between subspaces, for which we use the maximum principal
angle [61]. We give a definition here and refer the reader to [62] or [63], Appendix A, for more details.

Definition B.1 (Maximum principal angle). Let U,V ∈Rd×k be orthogonal matrices. Let U and V
be the subspaces spanned by the columns of U and V respectively. The maximum principal angle
θ∈ [0,π/2] between U and V is defined by sinθ(U,V )=∥UU⊤−V V ⊤∥=∥U⊤V⊥∥=∥V ⊤U⊥∥.

B.1.2 Task diversity assumptions

In our model each data point (xi,yi) is associated with a task αt(i) ∈Rk. We do not make distribu-
tional assumptions on these tasks, but estimating the subspace accurately requires certain diversity
assumptions on the tasks. We inherit the following assumption from [28]:
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Assumption B.2 (Task diversity and normalization). DefineA=(α1,...,αt)
⊤ and ν=σr

(
A⊤A

t

)
. The

t underlying task parameters αj satisfy ∥αj∥=Θ(1) for all j∈ [t]. Moreover, we assume ν>0.

In the following, we will also use the average condition number κ̄=
tr(A⊤A

t )
rν , and the worst-case

condition number κ=σ1

(
A⊤A

t

)
/ν, to further characterize the task diversity.

Then we have:
Theorem 5.2 ([28], Theorem 3, simplified). Let A = (α1,...,αt)

⊤ be the public task matrix, ν =

σk

(
A⊤A

t

)
, and κ̄ =

tr(A⊤A
t )

kν be the average condition number. If an equal number of samples is

generated from each task, and κ̄ ≤ O(1) and ν ≥ Ω( 1k ), then the error of the method-of-moments
estimator ( [28], Algorithm 1) is

sinθ(B̂,B)≤Õ
(√

dk2/n1

)
. (4)

with probability at least 1−O(n−100
1 ).

B.2 Estimation error bounds

We restate the full bound given by [57] for private SGD.
Theorem B.3 ([57], Corollary 11, simplified). Suppose we have data (xi,yi) such that xi∼N (0,Ik)

and yi=x⊤
i w

∗+ϵi, where ϵi∼(0,σ2). Then, assuming n2≥ Ω̃

(
k(1+

√
log(1/δ)

ε )

)
, we have:

1. Algorithm DP-AMBSSGD ([57], Algorithm 2) with parameters η=1/4k, α=

√
8log(1/δ)

ε is
(ε,δ)-DP.

2. The output ŵpriv satisfies the following risk bound:

L(ŵpriv)−L(w∗)≤
∥w∗∥22
n100
2

+
8kσ2

n2

(
1+Õ

(
klog(1/δ)

n2ε2

))
(11)

with probability 1−O(n−100
2 ).

C Technical lemmas

In this section we state or restate key lemmas that we will refer to in the following proofs.

We will use the following lemma to argue that we can project x into the estimated subspace B̂ and treat
the residual (that lies outside of B̂) as i.i.d. Gaussian noise.

Lemma C.1 (Independence of x residual). Consider orthonormal matrices B and B̂ ∈Rd×k and
α ∈ Rk. Let (x,y) be generated according to the model in Equation 2 where x ∼ N (0, Id) and
y=x⊤Bα+η. Then the projection of x into B̂, x⊤(B̂B̂⊤)Bα, is independent of the residual that lies
in the complement of B̂, i.e. x⊤(Id−B̂B̂⊤)Bα. Moreover, this residual is i.i.d. Gaussian.

Proof. We can rewrite the distribution of y |x in terms of the projection of the regression vector Bα on
to the column span of B̂, when the input x is also projected in the following way: x 7→B̂x:

y = x⊤Bα+η;

= x⊤((B̂B̂⊤)Bα+(Id−B̂B̂⊤)Bα)+η;

= x⊤(B̂B̂⊤Bα)+x⊤(Id−B̂B̂⊤)Bα+η;

= (x⊤B̂)α̂+x⊤(Id−B̂B̂⊤)Bα+η, (12)

where α̂ :=B̂⊤Bα is a k−dimensional vector in the column span of the given subspace B̂.
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Next, we note that the projection of input x in the column span of B̂ and its projection into the
corresponding null space are independent, i.e., x⊤(B̂B̂⊤) |= x⊤(Id−B̂B̂⊤). This is easy to show
since both x⊤(B̂B̂⊤) and x⊤(Id−B̂B̂⊤) are jointly Gaussian and are marginally distributed as zero
mean Gaussian random variables with their covariance:

E[(B̂B̂⊤)xx⊤(Id−B̂B̂⊤)]

=(B̂B̂⊤)E[xx⊤](Id−B̂B̂⊤)

=(B̂B̂⊤)Id(Id−B̂B̂⊤)

=B̂B̂⊤−B̂B̂⊤=0.

This implies independence of the two projections. Note that the last step in the above calculation uses
the fact that B̂⊤B̂= Ik. Since the two projections are independent, we can rewrite the conditional
distribution y |x as:

xB̂ =: x⊤B̂

y |xB̂ ∼ N ((xB̂)⊤α̂, σ̂2), where, σ̂2=σ2+∥(Id−B̂B̂⊤)Bα∥22.

Lemma C.2 ([58, 64, 65]). Let M be an (ε,δ)-differentially private algorithm with 0< ε< 1 and
δ>0. Further, let Ai=Aα̂((yi,x

B̂
i ),M(S)) and A′

i=Aα̂((yi,x
B̂),M(S ′

i)) when (yi,x
B̂
i )∈S and S ′

i

replaces (yi,xB̂
i ) with another IID draw from the same distribution. Then, for every T >0,

EAi ≤ EA′
i+2εE|A′

i|+2δT+

∫ ∞

T

P(|Ai|>t). (13)

Proof. let Z+=max(Z,0) and Z−=−min(Z,0) denote the positive and negative parts of random
variable Z respectively. We have

EAi=EA+
i −EA−

i =

∫ ∞

0

P(A+
i >t)dt−

∫ ∞

0

P(A−
i >t)dt.

For the positive part, if 0<T <∞ and 0<ε<1, we have∫ ∞

0

P(A+
i >t)dt=

∫ T

0

P(A+
i >t)dt+

∫ ∞

T

P(A+
i >t)dt

≤
∫

dtT0
(
eεP(A+

i >t)+δ
)
dt+

∫ ∞

T

P(A+
i >t)dt

≤
∫ ∞

0

P(A′
i
+
>t)dt+2ε

∫ ∞

0

P(A′
i
+
>t)dt+δT+

∫ ∞

T

P(|Ai|>t)dt.

Similarly for the negative part,∫ ∞

0

P(A−
i >t)dt=

∫ T

0

P(A−
i >t)dt+

∫ ∞

T

P(A−
i >t)dt

≥
∫ T

0

(
e−εP(A′

i
−
>t)−δ

)
dt+

∫ ∞

T

P(A−
i >t)dt

≥
∫ T

0

P(A′
i
−
>t)dt−2ε

∫ T

0

P(A′
i
−
>t)−δT+

∫ ∞

T

P(A−
i >t)dt

≥
∫ ∞

0

P(A′
i
−
>t)dt−2ε

∫ ∞

0

P(A′
i
−
>t)−δT.

It then follows that

EAi≤
∫ ∞

0

P(A′
i
+
>t)dt−

∫ ∞

0

P(A′
i
−
>t)dt+2ε

∫ ∞

0

P(|A′
i|>t)dt+2δT+

∫ ∞

T

P(|Ai|>t)dt

=EA′
i+2εE|Ai|+2δT+

∫ ∞

T

P(|Ai|>t)dt.
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Lemma C.3 (Stein’s Lemma). LetZ be distributed according to some density p(z) that is continuously
differentiable with respect to z and let h :R→R be a differentiable function such that E|h′(Z)|<∞,
then:

Eh′(Z)=E

[
−h(Z)p′(Z)

p(Z)

]
.

D Proofs for Section 5

D.1 Proof of Theorem 5.4

In this section we prove the upper bound result on the two-phase algorithm for single-task transfer
learning, which first estimates the subspace publicly, projects the inputs into the estimated subspace
and then privately performs linear regression on the projected data.

Proof. Let sinθ(B̂,B)≤h(n1) and E[(⟨α̂priv,B̂⊤x⟩−y)2]−minαE[(⟨α,B̂⊤x⟩−y)2]≤g(n2).

Let α̂=minαE[(⟨α,B̂⊤x⟩−y)2] (the best α using x projected into B̂), and let α̂priv be the output of
DP-AMBSSGD on x projected into the estimated B̂. then we have

E

[(
⟨α̂priv,B̂⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
=E

[(
⟨α̂priv,B̂⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
+E

[(
⟨α̂,B̂⊤x⟩−y

)2
]
−E

[(
⟨α̂,B̂⊤x⟩−y

)2
]
.

We can break this into two parts: we will first bound

E

[(
⟨α̂priv,B̂⊤x⟩−y

)2
]
−min

α
E

[(
⟨α,B̂⊤x⟩−y

)2
]

(14)

and then

E

[(
⟨α̂,B̂⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
. (15)

We first bound (14). Note that according to the model (2),

y=x⊤Bα∗+ϵ (16)

where ϵ is N (0,1).

However, our algorithm first projects x into the space of the estimated B̂ before performing linear
regression in the lower-dimensional space, which introduces additional error.

We can rewrite y as:

y=x⊤B̂B̂⊤Bα∗+x⊤(I−B̂B̂⊤)Bα∗+ϵ (17)

decomposing the first term into the projection into B̂ and the remaining error due to projection.

By Lemma C.1, this residual term is independent of the first term (with x projected into B̂) and ϵ.

We claim that the variance of the residual is sin(θ)2+∥α∗∥22:

Let

ϵ′=x⊤(I−B̂B̂⊤)Bα∗+ϵ (18)

=x⊤B̂⊥B̂
⊤
⊥Bα∗+ϵ (19)
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and note that the total variance is the sum of the variances because the terms are independent. Moreover,
the first term is a rescaled i.i.d. Gaussian with zero mean. Then the variance of ϵ′ is

E[(x⊤B̂⊥B̂
⊤
⊥Bα∗)⊤x⊤B̂⊥B̂

⊤
⊥Bα∗]+σ2

=E[α∗⊤B⊤B̂⊥B̂
⊤
⊥xx⊤B̂⊥B̂

⊤
⊥Bα∗]+σ2

=E[α∗⊤B⊤B̂⊥B̂
⊤
⊥Bα∗]+σ2

=sin(θ)2∥α∗∥22+σ2.

Moreover, we assume σ2=1 so we have var(ϵ′)=sin(θ)2∥α∗∥22+1.

Using the rewritten y, we can treat the new private regression problem as estimating B̂⊤Bα∗. Thus
we will instantiate g(n2) with the linear regression bound from Theorem B.3 with k dimensions and
variance σ2=sin(θ)2∥α∗∥22+1.

Now we bound the second half of the expression,

E

[(
⟨α̂,B̂⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
=E

[(
⟨α̂,B̂⊤x⟩−⟨α∗,B⊤x⟩+⟨α∗,B⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
=E

[
(⟨B̂α̂−Bα∗,x⟩)2

]
=∥B̂α̂−Bα∗∥

2

2

Finally this leaves us to bound ∥B̂α̂−Bα∗∥
2

2. We will make use of the following lemma:

Lemma D.1. Let α̂ be the (public) linear regression estimate of the task α on the projected data B̂⊤x.
Then ∥B̂α̂−Bα∗∥

2

2≤(sinθ(B,B̂))2∥Bα∗∥22.

Proof.

B̂α̂−Bα∗

=B̂(E[B̂⊤xx⊤B̂]−1)B̂⊤E[xx⊤Bα∗]−Bα∗

=B̂(E[B̂⊤xx⊤B̂]−1)B̂⊤E[xx⊤]Bα∗−Bα∗

=B̂(E[B̂⊤xx⊤B̂]−1)B̂⊤E[xx⊤](B̂B̂⊤Bα∗+(I−B̂B̂⊤)Bα∗)−Bα∗

=B̂(E[B̂⊤xx⊤B̂]−1)B̂⊤E[xx⊤]B̂B̂⊤Bα∗−Bα∗

=B̂B̂⊤Bα∗−Bα∗

=B̂B̂⊤Bα∗−BB⊤Bα∗

=(B̂B̂⊤−BB⊤)Bα∗

Then

∥B̂α̂−Bα∗∥
2

2

=(B̂B̂⊤−BB⊤)Bα∗

≤(sinθ(B,B̂))2∥Bα∗∥22

Then we have E
[(

⟨α̂,B̂⊤x⟩−y
)2

]
−E

[(
⟨α∗,B⊤x⟩−y

)2]≤h(n1)
2∥Bα∗∥22.

Putting these together gives

E

[(
⟨α̂priv,B̂⊤x⟩−y

)2
]
−E

[(
⟨α∗,B⊤x⟩−y

)2]
≤g(n2)+h(n1)

2∥Bα∗∥22
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For the generic result with γ subspace error, we substitute h(n1)=γ, or Theorem 5.2 to instantiate
the bound with the method of moments estimator [28]. Substituting B.3 for g(n2) and taking a union
bound over failure probabilities gives the result.

D.2 Proof of Theorem 5.5

Here, we prove our result lower bounding the lowest possible transfer error achieved by any (ε,δ)-DP
algorithm in our single-task transfer setting. We denote the class of two-stage algorithms of interest as
M2stg(ϵ,δ,γ). Each algorithm in our class satisfies the following:

1. The algorithm takes as input private dataset S of n2 i.i.d. samples from task αt+1, along with
a γ-accurate public estimate B̂,

2. Projects the input data point x 7→B̂⊤x for any (x,y) in the private dataset S.
3. Algorithm outputs an estimate in the column space of B̂.

Similarly, we can define a class of misspecified linear regression problem instances. We use
P2stg(d,k,γ) to denote the following class of problem instances for the private task t+1:

1. The input product distribution over (x,y) is given by the model in (2), and additionally the
noise η∼N (0,σ2).

2. Let the true regression vector be Bαt+1. A subspace B̂ is known such that: sinθ(B̂,B)≤γ.
Also, αt+1∈Rk.

3. The i.i.d. sampled dataset S from the above model satisifies: ∥x∥2≤1 for every x∈S .

In the above, both B and B̂ are d×k matrices with orthonormal columns, i.e., B,B̂∈Grk,d(R), where,
Grk,d(R) is the Grassmann manifold [66] and consists of the set of k-dimensional subspaces within an
underlying d-dimensional space. Also, for both M2stg(ϵ,δ,γ),P2stg(d,k,γ) we omit the dependence
on B̂, which is fixed. We note here that our proof works for any fixed B̂.

Now, we are ready to restate our Theorem 5.5.

Theorem 5.5 (Two-stage single-task private transfer lower bound). Let M be an (ε,δ)-DP private
algorithm where ε∈(0,1), δ<1/n1+ω, ω>0, that takes as input: (i) publicly estimated subspace B̂pub

from an oracle that only uses public samples; and (ii) a dataset S of n2 private samples. For any such
M , there exists a private problem instance given by the pair (B,αt+1)whereB∈Grk,d(R),αt+1∈Rk,
sin θ(B,B̂pub)≤ γ, and ∥Bαt+1∥2 ≤ 1, such that for S sampled i.i.d. from this instance using the
model in (2), we have:

EMES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂pub)
⊤x)2 (9)

= Ω

((
k2

n2
2ε

2
+

k

n2

)
(σ2+γ2)+γ2

)
. (10)

Proof. Given the estimate B̂, the goal is to lower bound the following minimax risk:

inf
M∈M2stg(ϵ,δ,γ)

sup
B,αt+1∈P2stg(d,k,γ)

EMES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂)⊤x)2 (20)

Let us begin by defining the class of regression vectors constiuting the set of all possible Bαt+1 that
can be realized by a problem instance in P2stg(d,k,γ). Given some rank k subspace defined by the
matrix B̂∈Grk,d(R), we define the following set of d-dimensional ℓ2 norm bounded vectors that are
γ≤1 close to given B̂:

θ(B,γ) =:
{
θ∈Rd : θ=Bαt+1 for (B,αt+1)∈P2stg(d,k,γ)

}
(21)

From the definition of the principal angles and P2stg(d,k,γ) it follows that for any θ∈θ(B,γ):

∥B̂θ∥2 ≥
√

1−γ2 ⇐⇒ ∥(Id−B̂B̂⊤)θ∥2≤γ
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We can break the above set Θ(B̂,γ) into disjoint sets: Θ(B̂,γ)=
∐

ρ∈[
√

1−γ2,1]
Θρ(B̂), where Θρ(B̂)

is defined as:

Θρ(B̂) =:
{
θ∈Θ(B̂,γ) : ∥B̂θ∥2=ρ

}
(22)

The above subclass of regression vectors results in a convenient subclass of problem instances class
P2stg(ρ). Just as we did for P2stg(d,k,γ), we can define the following minimax risk for P2stg(ρ).

inf
M ∈M2stg(ϵ,δ,γ)

sup
B,αt+1∈P2stg(ρ)

ES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂)⊤x)2. (23)

Based on the above definitions we get:

inf
M ∈M2stg(ϵ,δ,γ)

sup
B,αt+1∈P2stg(d,k,γ)

ES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂)⊤x)2 (24)

= inf
M ∈M2stg(ϵ,δ,γ)

sup
ρ∈[

√
1−γ2,1]

sup
B,αt+1∈P2stg(ρ)

ES|B,αt+1
E(x,y)|B,αt+1

(y−M(S)⊤x)2 (25)

= inf
M ∈M2stg(ϵ,δ,γ)

sup
ρ∈[

√
1−γ2,1]

sup
θ∈Θρ(B̂)

ES|θ=Bαt+1
E(x,y)|θ=Bαt+1

(y−M(S)⊤x)2 (26)

≥ sup
ρ∈[

√
1−γ2,1]

inf
M ∈M2stg(ϵ,δ,γ)

sup
θ∈Θρ(B̂)

(y−M(S)⊤x)2, (27)

where the final inequality uses inf sup≥ supinf [67]. We can do this because inf and sup are defined
over non-empty sets and the loss function remains bounded over the product space M2stg(ϵ,δ,γ)×
Θρ(B̂). The loss function is bounded because the norm of the regression vector and the input covariates
is bounded. Further, the linearly independent noise η in y (2) has finite variance.

For the next part of the proof, we focus on lower bounding the minimax risk in (23) when the adversary
is searching over the set Θρ(B̂). The lower bound for the minimax risk over this subclass is given by
two parts: (i) statistical error rate that is suffered by any non-private algorithm for which we lower
bound hypothesis testing lower bounds; and (ii) the risk suffered by any (ε,δ)-DP private estimator
which we lower bound by constructing a tracing attack. We will begin the proof for the latter part and
then plug in standard statistical risk lower bounds.

The following Lemma D.2 (proven later) states a lower bound over the class P2stg(ρ).

Lemma D.2 (Lower bound for P2stg(ρ)). For any fixed B̂ and any (ε,δ)-DP private algorithm M
(where 0<ε<1, δ<1/n1+ω for some ω>0) that belongs to class M2stg(ϵ,δ,γ), there exists a problem
instance for the transfer task in the class P2stg(ρ) such that for the B,αt+1 given by the problem
instance:

EMES|B,αt+1
E(x,y)|B,αt+1

(y−M(S,B̂)⊤x)2 = Ω

((
k2

n2
2ε

2
+

k

n2

)
(σ2+1−ρ2)+1−ρ2

)
. (28)

We can now come back to (27) and compute the supremum over ρ after plugging in the lower bound in
Lemma D.2. Since ρ≥

√
1−γ2, plugging in this value for ρ in Lemma D.2, and from the minimax risk

lower bound on P2stg(d,k,γ) in (27), we obtain the result in Theorem 5.5.

D.2.1 Proof of Lemma D.2

Proof. The proof for the subclass lower bound relies upon re-parameterizing the problem instance as a
k-dimensional linear regression in the problem, but now in the column span of B̂.

Let the worst case in instance in P2stg(ρ) be θ = Bαt+1, where ∥B̂⊤θ∥2 = ρ. We shall derive a
low-dimensional linear regression problem posed by the the unknown worst case instance θ, and the
projected inputs: x 7→B̂⊤x. Recall that the joint data distribution for private samples is given by:

x ∼ N (0, Id), (29)

y |x ∼ N (x⊤θ,σ2) (30)
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Additionally, we also recall that the learning algorithm is given n2 private i.i.d. samples from the
above distribution S =: {(xi,yi)}ni=1. In addition, it is also given a rank k matrix with orthonormal
columns: B̂∈Grk,d(R) that is close to the unknown low rank subspace B, i.e., sinθ(B̂,B)≤γ =⇒
∥(Id−B̂B̂⊤)B∥2≤γ. Next, we write each sample in S in terms of the projection of the regression
vectorBα on to the column span of B̂, when the input x is also projected in the following way: x 7→B̂x:

z ∼N (0,σ2)

y = x⊤Bα+z;

= x⊤((B̂B̂⊤)Bα+(Id−B̂B̂⊤)Bα)+z;

= x⊤(B̂B̂⊤Bα)+x⊤(Id−B̂B̂⊤)Bα+z;

= (x⊤B̂)α̂+x⊤(Id−B̂B̂⊤)Bα+z, (31)

where α̂ :=B̂⊤Bα is a k−dimensional vector in the column span of the given subspace B̂.

For any output M(S,B̂) for an algorithm in M2stg(ϵ,δ,γ), from the independence of the two projec-
tions: B̂B̂⊤x and (Id−B̂B̂⊤)x argued in Lemma C.1.:

ES|B,αE(x,y)|B,αt+1
(y−M(S,B̂)⊤x)2

=ES|B,αExEη(x
⊤B̂B̂⊤θ+x⊤(Id−B̂B̂⊤)θ+η−M(S,B̂)⊤x)2

=σ2+∥(Id−B̂B̂⊤)θ∥22+ES|B,αExEη(x
⊤B̂B̂⊤θ−M(S,B̂)⊤x)2 (32)

Since, the norm of θ in the nullspace of B̂ can be chosen without affecting the hardness of the above
rejection problem, the worst case problem instance will maximize the additive error by picking any
component along the null space (note that direction along null space does not impact the regression
error) that has the maximum norm of 1−ρ2 (recall that for any θ∈P2stg(ρ), ∥θ∥2≤ 1). Now, from
(31) it follows that the i.i.d. samples in S for the worst case instance are drawn from the following
low-dimensional linear regression model:

x ∼ N (0,Id)

xB̂ =: x⊤B̂

y |xB̂ ∼ N ((xB̂)⊤α̂, σ̂2), where, σ̂2=σ2+1−ρ2 (33)

From the above model in (33) and equivalence in (32), we have the following equality for the minimax
risk over P2stg(ρ).

inf
M ∈M2stg(ϵ,δ,γ)

sup
B,α∈P2stg(ρ)

ES|B,αE(x,y)|B,α (y−M(S,B̂)⊤x)2

= inf
M ∈M2stg(ϵ,δ,γ)

sup
α̂=B̂⊤Bα,

Bα∈P2stg(ρ)

ES|α̂Ex|α̂ (α̂⊤xB̂−M(S,B̂)⊤xB̂)+σ2+1−ρ2

= inf
M ∈M2stg(ϵ,δ,γ)

sup
α̂=B̂⊤Bα,

Bα∈P2stg(ρ)

ES|α̂∥α̂−M(S,B̂)∥22+σ2+1−ρ2, (34)

where S={(xB̂
i ,yi)}

n2
i=1 and yi= α̂⊤xB̂

i +zi, where zi∼N (0,σ2+1−ρ2).

Our main technique for proving lower bounds for the minimax risk in (34) is based on the tracing
adversary technique proposed by [59]. Next, we prove that there exists a prior over the effective
regression vector α̂, and a tracing attack that is successful in recovering an element of the i.i.d. sampled
dataset S, in expectation over the prior and the dataset. Consider the following tracing attack:

Aα̂((x
B̂ ,y),M(S,B̂)) = (y−(xB̂)⊤α̂)

k−1∑
j=1

(M(S,B̂)j−α̂j)·xB̂
j . (35)

Similar to the tracing attacks for mean estimation problems [58], Lemma D.3 proves that the attack
Aα̂((y,x

B̂), M(S)) takes large value when (xB̂ ,y) belongs to S and small value otherwise. We
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compare the attack success with estimation error, and show that whenever the estimation error is small,
the attack has to be fairly successful. Since, we are only searching over private algorithms where the
attack takes small values, this yields a lower bound on the estimation error.

The minimax lower bound stated in Lemma D.2, i.e., the lower bound for the minimax risk over subclass
P2stg(ρ) (for a fixed ρ), is given by the summation over two terms: the statistical lower bound and a
second term implied by the tracing attack sucess lower bound stated in Lemma D.3 (proven later).

Lemma D.3. For any fixed 0 < σ,
√

1−γ2 ≤ ρ ≤ 1, (B,α) satisfying sin θ(B̂,B) ≤ γ, and
∥α̂∥2=∥B̂⊤Bα∥2=ρ≤1, let (xB̂ ,y) be an i.i.d. sample (and S a dataset of n2 i.i.d. samples) drawn
from the distribution defined in (33). Then, for every (ε,δ)-differentially private estimator M that takes
as input S,B̂ and satisfies ES|B,α,σ,ρ∥M(S,B̂)−α̂∥22=o(1), for every α̂, the following are true:

1. For each i ∈ [n], let S ′
i denote the data set obtained by replacing (xB̂

i , yi) in S with an
independent copy from the distribution in (31), then EAα̂((x

B̂
i ,yi),M(S ′

i))=0 and

E |Aα̂((x
B̂
i ,yi),M(S ′

i,B̂))|≤(
√

σ2+1−ρ2)·
√
E∥M(S,B̂)−α̂∥22.

2. There exists a prior distribution of π=π(α̂) supported over α̂∈Rk such that α̂=ρ, and∑
i∈[n]

Eα̂∼πES|α̂,ρ,σAα̂((x
B̂
i ,yi),M(Si,B̂)) ≳ (σ2+1−ρ2)·(k−1).

From Lemma C.2 and from the first part of Lemma D.3,∑
i∈[n]

ES|α̂Aα̂((x
B̂
i ,yi),M(S,B̂)) ≤ 2n2ε

√
σ2+1−ρ2

√
ES|α̂∥M(S,B̂)−α̂∥22

+2n2δT+n2

∫ ∞

T

P
(
|Aα̂((x

B̂
i ,yi),M(S,B))|>t

)
.

For the tail probability term,

P
(
|Aα̂((x

B̂
i ,yi),M(S,B̂))|>t

)
=P

∣∣yi−x⊤
i α̂

∣∣∣∣∣∣∣∣
k−1∑
j=1

(M(S,B̂)j−α̂j)·xB̂
j

∣∣∣∣∣∣>t


≤P

(∣∣yi−x⊤
i α̂

∣∣∥α̂∥∥xB̂∥>t
)

≤P
(∣∣yi−x⊤

i α̂
∣∣√k>t

)
≤2exp

(
−t2

2k(σ2+1−ρ2)

)
.

By choosing T =
√
2(σ2+1−ρ2)klog(1/δ), we obtain∑

i∈[n]

ES|α̂Aα̂((x
B̂
i ,yi),M(S,B̂)) <∼ 2n2ε

√
σ2+1−ρ2

√
ES|α̂∥M(S,B̂)−α̂∥22

+O
(
n2δ

√
σ2+1−ρ2)klog(1/δ)

)
.

Now plugging in the second part of Lemma D.3 gives us

(σ2+1−ρ2)k ≤ Eπ

∑
i∈[n]

Eα̂∼π

[
ES|α̂Aα̂((x

B̂
i ,yi),M(S,B̂))

]
<∼ 2n2ε

√
σ2+1−ρ2

√
EπES|α̂∥M(S)−α̂∥22+O

(
n2δ

√
(σ2+1−ρ2)klog(1/δ)

)
.

Since δ<n−(1+ω) for ω>0, for every (ε,δ)-differentially private M we have

EπES|α̂∥M(S)−α̂∥22 ≳ (σ2+1−ρ2)
k2

n2
2ε

2
. (36)

Adding the statistical lower bound of k(σ2+1−ρ2)
n2

to the lower bound from (36), and from (34), we
complete the proof of Lemma D.2.
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D.2.2 Proof of Lemma D.3

Proof. Let us begin by looking at EAα̂((x
B̂
i ,yi),M(S ′

i,B̂)), where we use the fact that yi−(xB̂
i )

⊤α̂ is
independent of xB̂

i , and E[yi−(xB̂
i )]=0:

EAα̂((x
B̂
i ,yi),M(S ′

i,B̂))

= E

(yi−(xB̂
i )

⊤α̂)

k−1∑
j=1

(M(S
′

i ,B̂)j−α̂j)x
B̂
i,j)


=E

[
(yi−(xB̂

i )
⊤α̂)

]k−1∑
j=1

E[M(S
′

i ,B̂)−α̂j ]E[xB̂
i,j ]

=0·
k−1∑
j=1

E[M(S
′

i ,B̂)−α̂j ]E[xB̂
i,j ]=0

This proves the first claim about the expected value of the attack when the datapoint is not a part of
the training set, i.e., EAα̂((x

B̂
i ,yi),M(S ′

i))=0. Next, we look at the expected magnitude of the same
random variable and upper bound it with a term that scales with the estimation error.

E|Aα̂((x
B̂
i ,yi),M(S ′

i,B̂))|

≤
√
E(Aα̂((xB̂

i ,yi),M(S ′
i)))

2 (Jensen’s inequality)

≤

√√√√√√E


(y−(xB̂)⊤α̂)

k−1∑
j=1

(M(S,B̂)j−α̂j)·xB̂
j

2


≤
√
E
[(〈

M(S ′
i ,B̂)−α̂,(yi−(xB̂

i )
⊤α̂)xB̂

i

〉2)]
=

√
E[((yi−(xB̂

i )
⊤α̂))2 ·(M(S ′

i ,B̂)−α̂)⊤E[(xB̂
i )((x

B̂
i ))

⊤](M(S ′
i ,B̂)−α̂)] (independence)

=

√
E
[
((yi−(xB̂

i )
⊤α̂))2 ·(M(S ′

i ,B̂)−α̂)⊤Ik(M(S ′
i ,B̂)−α̂)

]
(since B̂⊤B̂=Ik)

=
√
σ2+(1−ρ2)·

√
E∥M(S ′

i ,B̂)−α̂)∥22, (independence)

where the last inequality uses the following derivation:

E
[
((yi−(xB̂

i )
⊤α̂))2

]
= σ̂2=σ2+∥(Id−B̂B̂⊤)Bα∥22
=σ2+1−ρ2

This completes the proof for the first part of the Lemma. For the second part we will begin by
constructing a convenient prior for α̂.

Note that α̂ can take any value in the column span of B̂ if the adversary has complete control over B
and α. Thus, defining a prior over α̂ would involve defining a prior over the column span of B̂ such that
∥α̂∥2=ρ. We define a sample from the prior π as a multi step procedure:

1. For all i∈ [k−1], sample ωi from the truncated Gaussian, with mean 0, variance ρ2
/(k−1), and

truncation at points −ρ/
√
k−1 and ρ/

√
k−1.

2. Set ωk=±
√

1−
∑

i∈[k−1]ω
2
i with equal probability for either sign.
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3. Now, set Bα=
∑

i∈[k]ωi ·vi, where vi is the ith column of B̂. Consequently, α̂= B̂⊤Bα=

[ω1,ω2,...,ωk]
⊤.

For the second part of the claim we need to lower bound
∑

i∈[n]Eα̂∼πE
[
Aα̂((yi,x

B̂
i ),M(S))

∣∣α̂]
which we can decompose over co-ordinates in the following way:

∑
i∈[n]

Eα̂∼πE
[
Aα̂((yi,x

B̂
i ),M(S,B̂))

∣∣α̂]

=
∑

j∈[k−1]

Eα̂∼πE

M(S,B̂)j

∑
i∈[n]

(yi−α̂⊤xB̂
i )x

B̂
i,j

∣∣α̂


=
∑

j∈[k−1]

Eα̂∼πE
[
M(S,B̂)j

∂

∂α̂j
[logp(S |B,α̂,σ)] (σ2+1−ρ2)

∣∣α̂]

=(σ2+1−ρ2)·
∑

j∈[k−1]

Eα̂∼πE
[
M(S,B̂)j

∂

∂α̂j
[logp(S |B,α̂,σ)]

∣∣α̂]

=(σ2+1−ρ2)·
∑

j∈[k−1]

Eα̂∼π
∂

∂α̂j
E
[
M(S,B̂)j

]
, (37)

where the final equation uses the log-derivative trick.

Next, we focus on Eα̂∼π

[
∂

∂α̂j
E[M(S,B̂)j ]

]
for any j ∈ [k − 1]. Recall, that for any dimen-

sion j ∈ [k − 1], the prior π draws a sample from the Gaussian N (0, ρ
2
/k−1), truncated at

−ρ/
√
k−1,ρ/

√
k−1 independently. We will now apply Stein’s Lemma (see Lemma C.3) for the term

Eα̂∼π

[
∂

∂α̂j
E[M(S,B̂)j ]

]
.

Denoting α̂−j as the set {α̂j}kj=1\{α̂j}, and πj as the marginal prior over jth dimension of α̂j , we

can lower bound Eα̂∼π

[
∂

∂α̂j
E[M(S)j ]

]
in the following way:

Eα̂∼π

[
∂

∂α̂j
E[M(S,B̂)j ]

]
=Eα̂−j

[
Eα̂j

∂

∂α̂j
ES [M(S,B̂)j ] | α̂−j

]
=Eα̂

[
−
π′
j(α̂j)

πj(α̂j)
ES [M(S,B̂)j ]

]
=Eα̂

[
−
π′
j(α̂j)

πj(α̂j)
ES [M(S,B̂)j−α̂j+α̂j ]

]
≥Eα̂

[
−α̂j

π′
j(α̂j)

πj(α̂j)

]
−Eα̂

[
|π′

j(α̂j)/πj(α̂j)|·ES [|M(S,B̂)j−α̂j |]
]

(38)

Next, we use the density of the truncated Normal:

πj(α̂j)=
exp

(
− (k−1)

2ρ2 ·α̂2
j

)
√
2πρ/

√
k−1·(Φ(1)−Φ(−1))

,

where Φ(·) is the CDF function for a standard Normal distribution. Thus,
π′
j(α̂j)

πj(α̂j)
=− (k−1)

ρ2 α̂j .
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Substituting the above and applying Cauchy-Schwarz followed by Jensen’s inequality we get,

k−1∑
j=1

Eα̂

[
|π′

j(α̂j)/πj(α̂j)|·ES [|M(S,B̂)j−α̂j |]
]

= (k−1)/ρ2 ·Eα̂

k−1∑
j=1

|α̂j |·ES [|M(S,B̂)j−α̂j |]


≤ (k−1)/ρ2 ·

√√√√√Eα̂

 ∑
j∈[k−1]

α̂2
j

·Eα̂

 ∑
j∈[k−1]

(
ES

[
M(S,B̂)j−α̂j

])2


≤ (k−1)/ρ2 ·

√
Eα̂∥α̂∥2

√
Eα̂ES∥M(S,B̂)j−α̂∥2 (39)

From directly applying the density of the truncated Normal distribution we get,

k−1∑
j=1

Eα̂

[
−α̂j

π′
j(α̂j)

πj(α̂j)

]
= (k−1)/ρ2 ·Eα̂

∑
j∈[k−1]

α̂2
j (40)

Plugging (40), (39) into (38), and using (37) we get,∑
i∈[n]

Eα̂∼πE
[
Aα̂((yi,x

B̂
i ),M(S))

∣∣α̂]

≥ (σ2+1−ρ2)
ρ2
/(k−1)

·

Eα̂∼π

k−1∑
j=1

α̂2
j−

√
Eα̂∼πES|α̂∥M(S,B̂)−α̂∥22

√
Eα̂∼π∥α̂∥22

 (41)

Note that Eα̂∼π

∑k−1
j=1 α̂

2
j =ρ2 by construction of the prior π and Eα̂∼πES|α̂∥M(S,B̂)−α̂∥22=o(1)

by assumption. Thus,
∑

i∈[n]EπES|B,B̂,α,σAα̂((x
B̂
i ,yi),M(Si,B̂)) ≳ (σ2+1−ρ2)·(k−1), which

completes the proof of the second claim in Lemma D.3.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The paper claims to provide empirical evidence and a theoretical model for the
benefits of public representations in improving private training in out-of-distribution settings.
These claims are clearly outlined in the abstract and introduction and reflect the results in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6 for a discussion of limitations.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Justification: The assumptions for the theorems are provided in Section 5.1, and the proofs
are provided in the Appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup is provided in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: We do not include our experimental code with the submission at this time but
plan to release it if the submission is published. All the packages and models we use are
open-source.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of the training and test setup are provided in Section 4.2.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because our experiments involved full training or fine-tuning of models, it was
too computationally expensive to generate error bars over multiple runs.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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cloud provider, including relevant memory and storage.
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the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: The pretrained models and datasets we use are currently publicly available and
no human subjects have been involved in our experiments. Nevertheless, we acknowledge the
blurry line between private and public data on the open web, and the potential for harmful
content to reside in publicly available datasets.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Our work contributes to the theory of differentially private learning, which
is essential to preserving user privacy under increasing amounts of data collection. Our
work has the potential benefits of making private learning more practical by incorporating
public data. However, we echo cautions pointed out in recent work [14] that care must be
taken to ensure that publicly available data does not contain sensitive information for real
deployments, and applying our techniques without such measures could inadvertently leak
sensitive information.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The method we evaluate is itself a form of a safeguard (differentially private
training). Above that, the methods do not suggest obvious new safeguards necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the OpenCLIP [52] library for models and the Opacus [54] library for
private training. We provide citations to these as well as the datasets we use in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not (yet) released any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: We do not perform any human subjects experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: We do not perform any human subjects experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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