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Abstract

Many imitation learning (IL) algorithms use inverse reinforcement learning (IRL)
to infer a reward function that aligns with the demonstrations. However, the
inferred reward function often fails to capture the underlying task objective. In
this paper, we propose a novel framework for IRL-based IL that prioritizes task
alignment over conventional data alignment. Our framework is a semi-supervised
approach that leverages expert demonstrations as weak supervision signals to
derive a set of candidate reward functions that align with the task rather than
only with the data. It adopts an adversarial mechanism to train a policy with
this set of reward functions to gain a collective validation of the policy’s ability
to accomplish the task. We provide theoretical insights into this framework’s
ability to mitigate task-reward misalignment and present a practical implementation.
Our experimental results show that our framework outperforms conventional IL
baselines in complex and transfer learning scenarios. The complete code are
available at https://github.com/zwc662/PAGAR.

1 Introduction

Inverse reinforcement learning (IRL) Ng and Russell [2000], Finn et al. [2017] has become a popular
method for imitation learning (IL), allowing policies to be trained by learning reward functions from
expert demonstrations Abbeel and Ng [2004], Ho and Ermon [2016]. Despite its widespread use,
IRL-based IL faces significant challenges that often stem from overemphasizing data alignment
rather than task alignment. For instance, reward ambiguity, where multiple reward functions can be
consistent with the expert demonstrations, makes it difficult to identify the correct reward function.
This problem persists even when there are infinite data Ng and Russell [2000], Cao et al. [2021],
Skalse et al. [2022a,b]. Additionally, limited availability of demonstrations can further exacerbate
this problem, as the data may not fully capture the nuances of the task. Misaligned reward functions
can lead to policies that optimize the wrong objectives, resulting in poor performance and even
reward hacking Hadfield-Menell et al. [2017], Amodei et al. [2016], Pan et al. [2022], a phenomenon
where the policy exploits loopholes in the inferred reward function. These challenges highlight the
limitation of exclusively pursuing data alignment in solving real-world tasks.

In light of these considerations, this paper advocates for a paradigm shift from a narrow focus on
data alignment to a broader emphasis on task alignment. Grounded in a general formalism of task
objectives, we propose identifying the task-aligned reward functions that more accurately reflect the
underlying task objectives in their policy utility spaces. Expanding on this concept, we explore the
intrinsic relationship between the task objective, reward, and expert demonstrations. This relationship
leads us to a novel perspective where expert demonstrations can serve as weak supervision signals for
identifying a set of candidate task-aligned reward functions. Under these reward functions, the expert
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achieves high -— but not necessarily optimal —- performance. The rationale is that achieving high
performance under a task-aligned reward function is often adequate for real-world applications.

Building on this premise, we leverage IRL to derive the set of candidate task-aligned reward func-
tions and propose Protagonist Antagonist Guided Adversarial Reward (PAGAR), a semi-supervised
framework designed to mitigate task-reward misalignment by training a policy with this candidate
reward set. PAGAR adopts an adversarial training mechanism between a protagonist policy and an
adversarial reward searcher, iteratively improving the policy learner to attain high performance across
the candidate reward set. This method moves beyond relying on deriving a single reward function
from data, enabling a collective validation of the policy’s similarity to expert demonstrations in terms
of effectiveness in accomplishing tasks. Experimental results show that our algorithm outperforms
baselines on complex IL tasks with limited demonstrations and in challenging transfer environments.
We summarize our contributions below.

• Introduction of Task Alignment in IRL-based IL: We present a novel perspective that shifts the
focus from data alignment to task alignment, addressing the root causes of reward misalignment in
IRL-based IL.

• Protagonist Antagonist Guided Adversarial Reward (PAGAR): We propose a new semi-supervised
framework that leverages adversarial training to improve the robustness of the learned policy.

• Practical Implementation: We present a practical implementation of PAGAR, including the
adversarial reward searching mechanism and the iterative policy-improving process. Experimental
results demonstrate superior performances in complex and transfer learning environments.

2 Related Works

IRL-based IL circumvents many challenges of traditional IL such as compounding error Ross and
Bagnell [2010], Ross et al. [2011], Zhou et al. [2020] by learning a reward function to interpret the
expert behaviors Ng et al. [1999], Ng and Russell [2000] and then learning a policy from the reward
function via reinforcement learning (RL)Sutton and Barto [2018]. However, the learned reward
function may not always align with the underlying task, leading to reward misspecification Pan et al.
[2022], Skalse and Abate [2022], reward hacking Skalse et al. [2022b], and reward ambiguity Ng and
Russell [2000], Cao et al. [2021]. The efforts on alleviating reward ambiguity include Max-Entropy
IRL Ziebart et al. [2008], Max-Margin IRL Abbeel and Ng [2004], Ratliff et al. [2006], and Bayesian
IRL Ramachandran and Amir [2007]. GAN-based methods Ho and Ermon [2016], Jeon et al. [2018],
Finn et al. [2016], Peng et al. [2019], Fu et al. [2018] use neural networks to learn reward functions
from limited demonstrations. However, these efforts that aim to address reward ambiguity fall short
of mitigating the general impact of reward misalignment which can be caused by various reasons
such as IRL making false assumptions about the relationship between expert policy and expert reward
function Skalse et al. [2022a], Hong et al. [2023]. Other attempts to mitigate reward misalignment
involve external information other than expert demonstrations Hejna and Sadigh [2023], Zhou and Li
[2018, 2022a,b]. Our work adopts the generic setting of IRL-based IL without needing additional
information. The idea of considering a reward set instead of focusing on a single reward function
is supported by Metelli et al. [2021] and Lindner et al. [2022]. However, these works target reward
ambiguity instead of reward misalignment. Our protagonist and antagonist setup is inspired by the
concept of unsupervised environment design (UED) Dennis et al. [2020]. In this paper, we develop
novel theories in the context of reward learning.

3 Preliminaries

Reinforcement Learning (RL) models the environment as a Markov Decision Process M =
⟨S,A,P, d0⟩ where S is the state space, A is the action space, P is the transition probability, d0 is
the initial state distribution. A policy π(a|s) determines the probability of an RL agent performing
an action a at state s. By successively performing actions for T steps from an initial state s(0) ∼
d0, a trajectory τ = s(0)a(0)s(1)a(1) . . . s(T ) is produced. A state-action based reward function
is a mapping r : S × A → R. The soft Q-value function of π is Qπ(s, a) = r(s, a) + γ ·

E
s′∼P(·|s,a)

[Vπ(s
′)] where γ ∈ (0, 1] is a discount factor, Vπ is the soft state-value function of π

defined as Vπ(s) := E
a∼π(·|s)

[Qπ(s, a)] + H(π(·|s)), and H(π(·|s)) is the entropy of π at state s.

2

27648https://doi.org/10.52202/079017-0869



(a) Task-Reward Alignment (b) PAGAR-Based IL

Figure 1: (a) The two bars respectively represent the policy utility spaces of a task-aligned reward
function r+ and a task-misaligned reward function r−. The white color indicates the utilities of
acceptable policies, and the blue color indicates the unacceptable ones. Within the utility space of r+,
the utilities of all acceptable policies are higher (≥ Ur+) than those of the unacceptable ones, and
the policies with utilities higher than Ur+ have higher orders than those of utilities lower than Ur+ .
Within the utility space of r−, acceptable and unacceptable policies’ utilities are mixed together,
leading to a low Ur− and an even lower Ur− . (b) IRL-based IL relies solely on IRL’s optimal reward
function r∗ which can be task-misaligned and lead to an unacceptable policy πr∗ ∈ Π\Πacc while
PAGAR-based IL learns an acceptable policy π∗ ∈ Πacc from a set RE,δ of reward functions.

The soft advantage of performing action a at state s and then following a policy π afterwards is
Aπ(s, a) = Qπ(s, a) − Vπ(s). The expected return of π under a reward function r is given as
Ur(π) = E

τ∼π
[
∑∞

t=0 γ
t · r(s(t), a(t))]. With a slight abuse of notations, we denote the entropy of

a policy as H(π) := E
τ∼π

[
∑∞

t=0 γ
t · H(π(·|s(t)))]. The standard RL learns an optimal policy by

maximizing Ur(π). The entropy regularized RL learns a soft-optimal policy by maximizing the
objective function JRL(π; r) := Ur(π) +H(π).

Inverse Reinforcement Learning (IRL) assumes that a set E = {τ1, . . . , τN} of expert demonstra-
tions are sampled from the roll-outs of the expert’s policy πE and aims to learn the expert reward func-
tion rE . IRL Ng and Russell [2000] assumes that πE is optimal under rE and learns rE by maximizing
the margin Ur(E)−max

π
Ur(π) while Maximum Entropy IRL (MaxEnt IRL) Ziebart et al. [2008]

maximizes an entropy regularized objective function JIRL(r) = Ur(E)− (max
π

Ur(π) +H(π)).

Generative Adversarial Imitation Learning (GAIL) Ho and Ermon [2016] draws a connection
between IRL and Generative Adversarial Nets (GANs) as shown in Eq.1, where a discriminator
D : S × A → [0, 1] is trained by minimizing Eq.1 so that D can accurately identify any (s, a)
generated by the agent. Meanwhile, an agent policy π is trained as a generator to maximize Eq.1 so
that D cannot discriminate τ ∼ π from τE . Adversarial inverse reinforcement learning (AIRL) Fu
et al. [2018] uses a neural-network reward function r to represent D(s, a) := π(a|s)

exp(r(s,a))+π(a|s) ,
rewrites JIRL as minimizing Eq.1, and proves that the optimal reward satisfies r∗ ≡ log πE ≡ AπE

.
By training π with r∗ until optimality, π will behave just like πE .

E
(s,a)∼π

[logD(s, a))] + E
(s,a)∼πE

[log(1−D(s, a))] (1)

4 Task-Reward Alignment

In this section, we formalize the concept of task-reward misalignment in IRL-based IL. We start by
defining a notion of task based on the framework from Abel et al. [2021].
Definition 1 (Task). Given the policy hypothesis set Π, a task (Π,⪯task,Πacc) is specified by a
partial order ⪯task over Π and a non-empty set of acceptable policies Πacc ⊆ Π such that ∀π1 ∈ Πacc

and ∀π2 /∈ Πacc, π2 ⪯task π1 always hold.

Remark: The notions of policy acceptance and order allow the definition of task to accommodate a
broad range of real-world tasks1 including the standard RL tasks (learning the optimal policy from a
reward function r): given a reward function r and a policy hypothesis set Π, the standard RL task can
be written as a tuple (Π,⪯task,Πacc) where ⪯task satisfies ∀π1, π2 ∈ Π, π1 ⪯task π2 ⇔ Ur(π1) ≤
Ur(π2), and Πacc = {π | ∀π′ ∈ Π.π′ ⪯task π} contains all the optimal policies.

1See examples in Abel et al. [2021].
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Designing reward function(s) that align with the underlying task is essential in RL. Whether a
designed reward aligns with the task hinges on how policies are ordered by the task and the utilities of
the policies under the reward function. Therefore, we define the task-reward alignment by examining
the utility spaces of the reward functions. If the acceptable policy set Πacc of the task is given, we let
Ur := min

π∈Πacc

Ur(π) be the minimal utility achieved by any acceptable policy under r.

Definition 2 (Task-Aligned Reward Functions). A reward function is a task-aligned reward function
(denoted as r+) if and only if ∀π ∈ Π\Πacc, Ur+(π) < Ur+(π). Conversely, if this condition is not
met, it is a task-misaligned reward function (denoted as r−).

The definition suggests that under a task-aligned reward function r+, all acceptable policies for the
task yield higher utilities than unacceptable ones. It also suggests that a policy is deemed acceptable
as long as its utility is greater than Ur+ for some task-aligned reward function r+, even if this policy
is not optimal. We also examine whether high utility under a reward function r suggests a higher
order under ⪯task. We define Ur := max

π∈Π
Ur(π) s.t. ∀π1, π2 ∈ Π, Ur(π1) < Ur(π) ≤ Ur(π2) ⇒

(π1 ⪯task π) ∧ (π1 ⪯task π2), which is the highest utility threshold such that any policy achieving a
higher utility than Ur has a higher order than those achieving lower utilities than Ur. In Figure 1(a)
we illustrate how Ur and Ur vary between task-aligned and misaligned reward functions.
Proposition 1. Given the policy order ⪯task of a task, for any two reward functions r1, r2, if
{π | Ur1(π) ≥ Ur1} ⊆ {π | Ur2(π) ≥ Ur2}, then there must exist policies π1 ∈ {π | Ur1(π) ≥
Ur1}, π2 ∈ {π | Ur2(π) ≥ Ur2} such that Ur1(π2) ≤ Ur1(π1) and π2 ⪯task π1 while Ur2(π2) ≥
Ur2(π1) .

This proposition implies that a high threshold Ur indicates that a high utility corresponds to a high
order in terms of ⪯task. In particular, for any task-aligned reward function r+, {π | Ur+(π) ≥
Ur+} ⊆ Πacc ≡ {π | Ur+(π) ≥ Ur+} (see proof in Appendix A.2). Thus, a small {π | Ur+(π) ≥
Ur+} leads to a large {π | Ur+(π) ∈ [Ur+ , Ur+ ]}. Hence, a task-aligned reward function r+ is more
likely to be aligned with the task if it has a wide [Ur+ , Ur+ ] and a narrow [Ur+ ,max

π∈Π
Ur+(π)].

4.1 Mitigate Task-Reward Misalignment in IRL-Based IL

In IRL-based IL, a key challenge is that the underlying task is unknown, making it difficult to assert if
a learned policy is acceptable. We denote the optimal reward function learned from the demonstration
set E as r∗, and the optimal policy under r∗ as πr∗ . When πr∗ has a poor performance under rE ,
it is considered to have a high Regret(πr∗ , rE) which is defined in Eq.2. If Regret(πr∗ , rE) >
max
π′∈Π

UrE (π
′)− UrE

, then πr∗ is unacceptable and r∗ is task-misaligned.

Regret(π, r) := max
π′∈Π

Ur(π
′)− Ur(π) (2)

Several factors can lead to a high Regret(πr∗ , rE). For instance, Viano et al. [2021] shows that when
expert demonstrations are collected in an environment whose dynamical function differs from that of
the learning environment, |Regret(πr∗ , rE)| can be positively related to the discrepancy between
those dynamical functions. Additionally, we prove in Appendix A.1 that learning from only a few
representative expert trajectories can also result in a large |Regret(πr∗ , rE)| with a high probability.

Our insight for mitigating such potential task-reward misalignment in IRL-based IL is to shift our
focus from learning an optimal policy that maximizes the intrinsic rE to learning an acceptable
policy π∗ that achieves a utility higher than Ur+ under any task-aligned reward function r+. Our
approach is to treat the expert demonstrations as weak supervision signals based on the following.
Theorem 1. Let I be an indicator function. For any k ≥

{
min
r+

∑
π∈Π I{Ur+(π) ≥ Ur+(πE)}

}
,

if π∗ satisfies
{∑

π∈Π I{Ur(π) ≥ Ur(π
∗)}

}
< |Πacc| for all r ∈ RE,k :=

{
r |

∑
π∈Π I{Ur(π) ≥

Ur(πE)} ≤ k
}

, then π∗ is an acceptable policy, i.e., π∗ ∈ Πacc. Additionally, if k < |Πacc|, such an
acceptable policy π∗ is guaranteed to exist.

The statement suggests that we can obtain an acceptable policy by training it to attain high performance
across a reward function set RE,k that includes all the reward functions where, for each reward
function at most k policies outperform the expert policy πE . The minimal value of k is determined by
all the task-aligned reward functions in the reward hypothesis set. Appendix A.2 provides the proof.

4
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How to build RE,k? Building RE,k involves setting the parameter k. If rE is a task-aligned reward
function and πE is optimal solely under rE , then the minimal k = 0, and RE,0 only contains
rE . However, relying on a singleton RE,0 equates to applying vanilla IRL, which is susceptible to
misalignment issues, as noted earlier. It is crucial to recognize that rE might not meet the task-aligned
reward function criteria specified in Definition 2, even though its optimal policy πE is acceptable. This
situation necessitates a positive k, thereby expanding RE,k beyond a single function and changing
the role of expert demonstrations from strong supervision to weak supervision. Note that we suggest
letting k ≤ |Πacc| instead of allowing k → ∞ because RE,∞ would then encompass all possible
reward functions, and it is impractical to identify a policy capable of achieving high performance
across all reward functions. Letting k ≤ |Πacc| guarantees there exists a feasible policy π∗, e.g., πE

itself. As the task alignment of each reward function typically remains unknown in IRL settings, this
paper proposes treating k as an adjustable parameter – starting with a small k and adjusting based on
empirical learning outcome, allowing for iterative refinement for alignment with task requirements.

In practice, Π can be uncountable, e.g., a Gaussian policy. Hence, we adapt the concept of k in RE,k

to a hyperparameter δ ≤ δ∗ := max
r

JIRL(r), leading us to redefine RE,k as a δ-optimal reward

function set RE,δ := {r | JIRL(r) ≥ δ}. This superlevel set includes all the reward functions under
which the optimal policies outperform the expert by at most −δ. If δ is appropriately selected such
that RE,δ includes task-aligned reward functions, we can mitigate reward misalignment by satisfying
the conditions outlined in Definition 3, which are closely related to Definition 2 and Proposition 1.
Definition 3 (Mitigation of Task-Reward Misalignment). Assuming that the reward function set
RE,δ contains task-aligned reward function r+’s, the mitigation of task-reward misalignment in
IRL-based IL is to learn a policy π∗ such that (i) (Weak Acceptance) ∀r+ ∈ RE,δ , Ur+(π

∗) ≥ Ur+ ,
or (ii) (Strong Acceptance) ∀r+ ∈ RE,δ, Ur+(π

∗) ≥ Ur+ .

While condition (i) states that π∗ is acceptable for the task, i.e., π∗ ∈ Πacc, condition (ii) further
states that π∗ have a high order in terms of ⪯task. Hence, condition (i) is weaker than (ii) because a
policy π∗ satisfying (ii) automatically satisfies (i) according to Definition 2. Given the uncertainty
in identifying which reward function is aligned, our solution is to train a policy to achieve high
utilities under all reward functions in RE,δ to satisfy the conditions in Definition 3. We explain
this approach in the following semi-supervised paradigm, PAGAR.

5 Protagonist Antagonist Guided Adversarial Reward (PAGAR)

PAGAR is an adversarial reward searching paradigm which iteratively searches for a reward function
to challenge a policy learner by incurring a high regret as defined in Eq.2. We refer to the policy to be
learned as the protagonist policy and re-write it as πP . We then introduce a second policy, dubbed
antagonist policy πA, as a proxy of the arg max

π′∈Π
Ur(π

′) for Eq.2. For each reward function r, we call

the regret of πP under r, i.e., Regret(πP , r) = max
πA∈Π

Ur(πA)−Ur(πP ), the Protagonist Antagonist

Induced Regret. We then formally define PAGAR in Definition 4.
Definition 4 (Protagonist Antagonist Guided Adversarial Reward (PAGAR)). Given a candidate
reward function set R and a protagonist policy πP , PAGAR searches for a reward function r within
R to maximize the Protagonist Antagonist Induced Regret, i.e., max

r∈R
Regret(πP , r).

PAGAR-based IL learns a policy from RE,δ by minimizing the worst-case Protagonist Antagonist
Induced Regret via MinimaxRegret(RE,δ) as defined in Eq.3 where R can be any input reward
function set and is set as R = RE,δ in PAGAR-based IL.

MinimaxRegret(R) := arg min
πP∈Π

max
r∈R

Regret(πP , r) (3)

Our subsequent discussion will focus on identifying the sufficient conditions for PAGAR-based IL to
mitigate task-reward misalignment as described in Definition 3. In particular, we consider the case
where JIRL(r) := Ur(E)−max

π
Ur(π). We use Lr to denote the Lipschitz constant of r(τ), and

WE to denote the smallest Wasserstein 1-distance W1(π,E) between τ ∼ π of any π and τ ∼ E,
i.e., WE ≜ min

π∈Π
W1(π,E). Then, we have Theorem 2.

Theorem 2 (Weak Acceptance). If the following conditions (1) (2) hold for RE,δ, then the optimal
protagonist policy πP := MinimaxRegret(RE,δ) satisfies ∀r+ ∈ RE,δ , Ur+(πP ) ≥

¯
Ur+ .

5
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(1) There exists r+ ∈ RE,δs, and max
r+∈RE,δ

{max
π∈Π

Ur+(π)− Ur+} < min
r+∈RE,δ

{Ur+ −
¯
Ur+};

(2) ∀r+ ∈ RE,δ, Lr+ · WE − δ ≤ max
π∈Π

Ur+(π) − Ur+ and ∀r− ∈ RE,δ, Lr− · WE − δ <

min
r+∈RE,δ

{Ur+ −
¯
Ur+}.

This statement shows the conditions for PAGAR-based IL to attain the ‘Weak Acceptance’ goal
described in Definition 3. The condition (1) states that the task-aligned reward functions in RE,δ

all have a high level of alignment in matching ⪯task within their high utility ranges. The condition
(2) requires that for the policy π∗ = argmin

π∈Π
W1(π,E), the performance difference between E and

π∗ is small enough under all r ∈ RE,δ. Since for each reward function r ∈ RE,δ, the performance
difference between E and the optimal policy under r is bounded by δ, condition (2) implicitly
requires that π∗ not only performs well under any task-aligned reward function r+ (thus being
acceptable in the task) but also achieve relatively low regret under task-misaligned reward function
r−. However, the larger the rage [Ur+ , Ur+ ] is across the task-aligned reward function r+, the less
strict the requirement for low regret under r− becomes. The proof can be found in Appendix A.5.
The following theorem further suggests that a δ close to its upper-bound δ∗ := max

r
JIRL(r) can

help MinimaxRegret(RE,δ) gain a better chance of finding an acceptable policy for the underlying
task and attain the ‘Strong Acceptance’ goal described in Definition 3.

Theorem 3 (Strong Acceptance). Assume that the condition (1) in Theorem 2 holds for RE,δ . If for
any r ∈ RE,δ, Lr ·WE − δ ≤ min

r+∈RE,δ

{max
π∈Π

Ur+(π)− Ur+}, then the optimal protagonist policy

πP = MinimaxRegret(RE,δ) satisfies ∀r+ ∈ RE,δ , Ur+(πP ) ≥ Ur+ .

When do these assumptions hold? The condition (1) in Theorem 2 requires all the task-aligned
reward functions in RE,δ exhibit a high level of conformity with the policy order ⪯task. Being
task-aligned already sets a strong premise for satisfying this condition. We further posit that this
condition is more easily satisfied when the task has a binary outcome, such as in reach-avoid tasks
so that the aligned and misaligned reward functions tend to have higher discrepancy than tasks with
quantitative outcomes. In the experimental section, we validate this hypothesis by evaluating tasks of
this kind. Regarding condition (2) of Theorem 2 and the assumptions of Theorem 3, which basically
require the existence of a policy with low regret across RE,δ set, it is reasonable to assume that expert
policy meets this criterion.

5.1 Comparing PAGAR-Based IL with IRL-Based IL

We illustrate the difference between IRL-based IL and PAGAR-based IRL in Fig.1(b). While IRL-
based IL aims to learn the optimal policy πr∗ under the IRL-optimal reward r∗, PAGAR-based IL
learns a policy π∗ from the reward function set RE,δ. Both PAGAR-based IL and IRL-based IL
are zero-sum games between a policy learner and a reward learner. However, while IRL-based IL
only aims to reach equilibrium at a single reward function under strong assumptions, e.g., sufficient
demonstrations, convex reward and policy spaces, etc., PAGAR-based IL can reach equilibrium with
a mixture of reward functions without those assumptions.

Proposition 2. Given arbitrary reward function set R, there exists a constant c
and a distribution Rπ over R such that MinimaxRegret(R) yields the same pol-

icy as argmax
π∈Π

{
Regret(π,r∗π)
c−Ur∗π (π) · Ur∗π

(π) + E
r∼Rπ(r)

[(1− Regret(π,r)
c−Ur(π)

) · Ur(π)]

}
where r∗π =

argmax
r∈R

Ur(π) s.t. r ∈ argmax
r′∈R

Regret(π, r′).

A detailed derivation can be found in Theorem 6 in Appendix A.4. In a nutshell, Rπ(r) is a baseline
distribution over R such that (i) c ≡ E

r∼Rπ

[Ur(π)] holds for all the π’s that do not always perform

worse than any other policy under r ∈ R, (ii) among all the Rπ’s that satisfy the condition (i), we
pick the one with the minimal c; and (iii) for any other policy π, Rπ uniformly concentrates on
argmax

r∈R
Ur(π). Note that in PAGAR-based IL, where RE,δ is used in place of arbitrary R, Rπ

is a distribution over RE,δ and r∗π is constrained to be within RE,δ. Essentially, the mixed reward
functions dynamically assign weights to r ∼ Rπ and r∗π depending on π. If π performs worse under

6
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r∗π than under many other reward functions (Ur∗π
(π) falls below c), a higher weight will be allocated

to using r∗π to train π. Conversely, if π performs better under r∗π than under many other reward
functions (c falls below Ur∗π(π)), a higher weight will be allocated to reward functions drawn from
Rπ. Furthermore, we prove in Appendix A.7 that the MinimaxRegret objective function defined
in Eq.3 is a convex optimization w.r.t the protagonist policy πP .

We also prove in Appendix A.8 that when there is no misalignment issue, i.e., under the ideal
conditions for IRL, PAGAR-based IL can either guarantee inducing the same results as IRL-based IL
with δ = max

r
JIRL(r), or guarantee inducing an acceptable πP by making max

r
JIRL(r)− δ no

greater than max
π∈Π

Ur+(π)− Ur+ for r+ ∈ RE,δ .

6 A Practical Approach to Implementing PAGAR-based IL

We solve MinimaxRegret(RE,δ), by alternating between policy learning and reward search. Based
on Eq.3, we introduce an on-and-off policy learning framework and an adversarial reward search
objective. Moreover, we embed the constraint r ∈ RE,δ into the reward search objective using IRL,
resulting in a meta-algorithm compatible with various IRL methods.

6.1 Policy Optimization with On-and-Off Policy Samples

Given an intermediate learned reward function r, we use RL to train πP to minimize the regret
min
πP

Regret(πP , r) = min
πP

{max
πA

Ur(πA)} − Ur(πP ) as indicated by Eq.3 where πA is trained to

serve as the optimal policy under r as noted in Section 5. Since we have to sample trajectories with
πA and πP , we propose to combine off-policy and on-policy samples to optimize πP so that we can
leverage the samples maximally. Off-Policy: We leverage the Theorem 1 in Schulman et al. [2015] to
derive a bound for the utility subtraction: Ur(πP )− Ur(πA) ≤

∑
s∈S

ρπA
(s)

∑
a∈A

πP (a|s)AπA
(s, a) +

C · max
s

DTV (πA(·|s), πP (·|s))2 where ρπA
(s) =

∑T
t=0 γ

tProb(s(t) = s|πA) is the discounted
visitation frequency of πA, AπA

is the advantage function without considering the entropy, and C is
some constant. Then we follow the derivation in Schulman et al. [2017], which is based on Theorem
1 in Schulman et al. [2015], to derive from the inequality an importance sampling-based objective
function JπA

(πP ; r) := Es∼πA
[min(ξ(s, a) · AπA

(s, a), clip(ξ(s, a), 1 − σ, 1 + σ) · AπA
(s, a)]

where σ is a clipping threshold, ξ(s, a) = πP (a|s)
πA(a|s) is an importance sampling rate. The details can

be found in Appendix B.1. This objective function allows us to train πP by using the trajectories
of πA. On-Policy: We also optimize πP with the standard RL objective function JRL(πP ; r)
by using the trajectories of πP itself. As a result, the objective function for optimizing πP is
max
πP∈Π

JπA
(πP ; r) + JRL(πP ; r). As for πA, we only use the standard RL objective function, i.e.,

max
πA∈Π

JRL(πA; r). Although the computational complexity equals the sum of the complexities of RL

update steps for πA and πP , these two RL update steps can be executed in parallel.

6.2 Regret Maxmization with On-and-Off Policy Samples

Given the intermediate learned protagonist and antagonist policy πP and πA, according to
MinimaxRegret in Eq.3, we need to optimize r to maximize Ur(πA) − Ur(πP ). In practice,
we found that the subtraction between the estimated Ur(πA) and Ur(πP ) can have a high variance.
To resolve this issue, we derive two reward improvement bounds to approximate this subtraction.
Theorem 4. Suppose policy π2 ∈ Π is the optimal solution for JRL(π; r). Then , the inequalities
Eq.4 and 5 hold for any policy π1 ∈ Π, where α = max

s
DTV (π1(·|s), π2(·|s)), ϵ = max

s,a
|Aπ2(s, a)|,

and ∆A(s) = E
a∼π1

[Aπ2(s, a)]− E
a∼π2

[Aπ2(s, a)].∣∣∣∣∣Ur(π1)− Ur(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγϵ

(1− γ)2
(4)∣∣∣∣∣Ur(π1)− Ur(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγ(2α+ 1)ϵ

(1− γ)2
(5)
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Algorithm 1 An Meta-Algorithm for Imitation Learning with PAGAR
Input: Expert demonstration set E, IRL objective function JIRL, loss bound δ, parameter λ ≥ 0,
initial protagonist policy πP , antagonist policy πA, reward function r, maximum iteration number N .
Output: πP

1: for iteration i = 0, 1, . . . , N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Optimize πA: estimate JRL(πA; r) with DA; update πA to maximize JRL(πA; r)
4: Optimize πP : estimate JRL(πP ; r) with DP ; estimate JπA

(πP ; r) with DA; update πA to
maximize JRL(πP ; r) + JπA

(πP ; r)
5: Optimize r: estimate JPAGAR(r;πP , πA) with DP and DA; estimate JIRL(r) with DA and

E; update r to minimize JPAGAR(r;πP , πA)+λ · (δ−JIRL(r)); then update λ to maximize
δ − JIRL(r)

6: end for
7: return πP

By letting πP be π1 and πA be π2, Theorem 4 enables us to bound Ur(πA) − Ur(πP ) by using
either only the samples of πA or only those of πP . Following Fu et al. [2018], we let r be a proxy of
Aπ2

in Eq.4 and 5. Then we derive two loss functions JR,1(r;πP , πA) and JR,2(r;πP , πA) for r
as shown in Eq.6 and 7 where C1 and C2 are constants proportional to the estimated maximum KL
divergence between πA and πP (to bound α Schulman et al. [2015]). The objective function for r
is then JPAGAR := JR,1 + JR,2. The complexity equals that of computing the reward along the
trajectories sampled from πA and πP .

JR,1(r;πP , πA) := E
τ∼πA

[∑∞
t=0 γ

t
(
ξ(s(t), a(t))− 1

)
· r(s(t), a(t))

]
+ C1 · max

(s,a)∼πA

|r(s, a)| (6)

JR,2(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

t
(
1− 1

ξ(s(t),a(t))

)
· r(s(t), a(t))

]
+ C2 · max

(s,a)∼πP

|r(s, a)| (7)

6.3 A Meta-Algorithm for Solving PAGAR-Based IL

Given an IRL objective function JIRL, we enforce the constraint r ∈ RE,δ by adding to
JPAGAR(r;πP , πA) a penalty term λ · (δ − JIRL), where λ is a Lagrangian parameter. The
resulting objective function for optimizing r becomes min

r∈R
JPAGAR(r;πP , πA)+λ · (δ−JIRL(r)).

We initialize λ with a large value to prioritize satisfying the constraint r ∈ RE,δ and update it based
on δ − JIRL (the details can be found in Appendix B.4). Algorithm 1 outlines our meta-algorithm
for PAGAR-based IL. The algorithm takes an IRL objective JIRL as an input, and alternates between
policy and reward learning. In line 3, πA is trained via RL with its own sample set DA. In line 4, we
train πP via the on-and-off policy approach in Section 6.1 with both DA and πP ’s sample set DP .
Finally, in line 5, JPAGAR is estimated from both DA and DP , while JIRL is from DA and E.

7 Experiments

The goal of our experiments is to assess whether using PAGAR-based IL can efficiently mitigate
reward misalignment under conditions that are not ideal for IRL. We present the main results below
and provide details and additional results in Appendix C.

7.1 Discrete Navigation Tasks

Benchmarks: We consider a maze navigation environment where the task objective is compatible
with Definition 1. Our benchmarks include two discrete domain tasks from the Mini-Grid environ-
ments Chevalier-Boisvert et al. [2023]: DoorKey-6x6-v0, and SimpleCrossingS9N1-v0. In both tasks,
the agent needs to interact with the environmental objects which are randomly positioned in every
episode while the agent can only observe a small, unblocked area in front of it. The default
reward, which is always zero unless the agent reaches the target, is used to evaluate the performance
of learned policies. Due to partial observability and the implicit hierarchical nature of the task,
these environments are considered challenging for RL and IL, and have been extensively used for
benchmarking curriculum RL and exploration-driven RL.

8

27654https://doi.org/10.52202/079017-0869



Baselines: We compare our approach with two standard baselines: GAIL Ho and Ermon [2016]
and VAIL Peng et al. [2019]. GAIL has been introduced in Section 3. VAIL is based on GAIL but
additionally optimizes a variational discriminator bottleneck (VDB) objective. Our approach uses
the IRL techniques behind those two baseline algorithms, resulting in two versions of Algorithm
1, denoted as PAGAR-GAIL and PAGAR-VAIL, respectively. More specifically, if the baseline
optimizes a JIRL objective, we use the same JIRL objective in Algorithm 1. Also, we extract
the reward function r from the discriminator D as mentioned in Section 3. More details are in
Appendix C.1. PPO Schulman et al. [2017] is used for policy training in GAIL, VAIL, and ours with
a replay buffer of size 2048. Additionally, we compare our algorithm with a state-of-the-art (SOTA)
IL algorithm, IQ-Learn Garg et al. [2021], which, however, is not compatible with our algorithm
because it does not explicitly optimize a reward function. The policy and the reward functions are all
approximated using convolutional networks.

(a) DoorKey-6x6
(10 demos)

(b) DoorKey-6x6
(1 demo)

(c) SimpleCrossingS9N1
(10 demos)

(d) SimpleCrossingS9N1
(1 demo)

(e) Transfer Envs (f) SimpleCrossingS9N2 (g) SimpleCrossingS9N3 (h) FourRooms

Figure 2: Comparing Algorithm 1 with baselines in partial observable navigation tasks. The suffix
after each ‘PAGAR-’ indicates which IRL technique is used in Algorithm 1. The y axis indicates the
average return per episode. The x axis indicates the number of time steps.

IL with Limited Demonstrations. By learning from 10 expert-demonstrated trajectories with high
returns, PAGAR-based IL produces high-performance policies with high sample efficiencies as
shown in Figure 2(a) and (c). Furthermore, we compare PAGAR-VAIL with VAIL by reducing the
number of demonstrations from 10 to 1. As shown in Figure 2(b) and (d), PAGAR-VAIL produces
high-performance policies with significantly higher sample efficiencies.

IL under Dynamics Mismatch. We demonstrate that PAGAR enables the agent to infer and
accomplish the objective of a task even in environments that are substantially different from the one
observed during expert demonstrations. As shown in Figure 2(e), we collect 10 expert demonstrations
from the SimpleCrossingS9N1-v0 environment. Then we apply Algorithm 1 and the baselines,
GAIL, VAIL, and IQ-learn to learn policies in SimpleCrossingS9N2-v0, SimpleCrossingS9N3-v0 and
FourRooms-v0. The results in Figure 2(f)-(g) show that PAGAR-based IL outperforms the baselines
in these challenging zero-shot settings.

Figure 3: PAGAR-GAIL
in different reward spaces

IL with Different Reward Hypothesis Sets. The foundational theories
of GAIL and AIRL indicate that different reward function hypothesis
sets can affect the equilibrium of their GAN frameworks. We study
whether choosing different reward hypothesis sets can influence the per-
formance of Algorithm 1. We compare using a Sigmoid function with
a Categorical distribution in the output layer of the discriminator net-
works in GAIL and PAGAR-GAIL. When using the Sigmoid function,
the outputs of D are not normalized, i.e.,

∑
a∈A D(s, a) ̸= 1. When

using a Categorical distribution,
∑

a∈A D(s, a) = 1. We test GAIL and
PAGAR-GAIL in DoorKey-6x6-v0 environment. As shown in Figure 3,
PAGAR-GAIL outperforms GAIL in both cases by using fewer samples.
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(a) Ant (b) Hopper (c) Walker2d (d) HalfCheetah

Figure 4: Comparing Algorithm 1 with f-IRL in continuous control tasks. ‘PAGAR-fIRL’ indicates
f-IRL is used as the inverse RL algorithm in Algorithm 1. The y axis indicates the average return per
episode. The x axis indicates the number of time steps in the environment.

RECOIL PAGAR-RECOIL
hopper-random 106.87± 2.69 111.16± 0.51
halfcheetah-random 80.84± 17.62 92.94± 0.10
walker2d-random 108.40± 0.04 108.40± 0.12
ant-random 113.34± 2.78 121± 5.86

Table 1: Offline RL results obtained by combining PAGAR with RECOIL averaged over 4 seeds.

7.2 Continuous Control Tasks

We evaluate PAGAR-based IL on continuous control tasks in both online and offline RL settings,
demonstrating its ability to improve IRL-based IL performance across different types of tasks.

Benchmarks: We use four continuous control environments from Mujoco. In the online RL setting,
both protagonist and antagonist policies are permitted to explore the environment. In the offline
RL setting, exploration by these policies is restricted. Especially, for offline RL we use the D4RL’s
‘expert’ datasets as the expert demonstrations and the ‘random’ datasets as the offline suboptimal
dataset. Policy performance is evaluated online in both settings by using the default reward function
of the environment.

Baselines: We compare PAGAR-based IL against f-IRL Ni et al. [2021] in the online RL setting and
compare with RECOIL Sikchi et al. [2024] in the offline RL setting. When comparing with f-IRL,
we use f-IRL as the IRL algorithm in Algorithm 1. When comparing with RECOIL, as RECOIL does
not directly learn the reward function but learns the Q and V functions, we develop another algorithm
for the offline RL setting to combine PAGAR with RECOIL by explicitly learning a reward function
and using the reward function and V function to represent the Q function. The details can be found in
Appendix B.4.

Results: As shown in Figure 4, PAGAR-based IL achieves equivalent performance to the baselines
with fewer iterations. Furthermore, on the Ant and Walker2d tasks, Algorithm 1 matches the
performance level of f-IRL using significantly less iterations. Additional results of PAGAR with
GAIL and VAIL across other continuous control benchmarks are provided in Appendix C.3. Table 1
further shows that when combined with RECOIL, PAGAR-based IL achieves higher performance in
most of the tasks than the baseline. These results demonstrate the broader applicability of PAGAR-
based IL in both online and offline settings and its effectiveness across different types of environments,
further reinforcing the robustness of our approach.

8 Conclusion

In this paper, we propose to prioritize task alignment over conventional data alignment in IRL-based
IL by treating expert demonstrations as weak supervision signals to derive a set of candidate reward
functions that align with the task rather than only with the data. Our PAGAR-based IL adopts an
adversarial mechanism to train a policy with this set of reward functions. Experimental results
demonstrate that our algorithm can mitigate reward misalignment in challenging environments. Our
future work will focus on employing the PAGAR paradigm to other task alignment problems.
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A Reward Design with PAGAR

This paper does not aim to resolve the ambiguity problem in IRL but provides a way to circumvent it
so that reward ambiguity does not lead to reward misalignment in IRL-based IL. PAGAR, the semi-
supervised reward design paradigm proposed in this paper, tackles this problem from the perspective
of semi-supervised reward design. But the nature of PAGAR is distinct from IRL and IL: assume that
a set of reward functions is available for some underlying task, where some of those reward functions
align with the task while others are misaligned, PAGAR provides a solution for selecting reward
functions to train a policy that successfully performs the task, without knowing which reward function
aligns with the task. Our research demonstrates that policy training with PAGAR is equivalent to
learning a policy to maximize an affine combination of utilities measured under a distribution of the
reward functions in the reward function set. With this understanding of PAGAR, we integrate it with
IL to illustrate its advantages.

A.1 Motivation: Failures in IRL-Based IL

For readers’ convenience, we put the theorem from Abel et al. [2021] here for reference.

Theorem 5. Viano et al. [2021] If the demonstration environment has a dynamics function Pdemo

different from the dynamics function P in the learning environment, the performance gap between the
policies πE and πr∗ under the ground true reward function rE satisfies | UrE (πE)− UrE (πr∗) | ≤
2·γ·max

s,a
| rE(s,a) |

(1−γ)2 ·max
s,a

DTV (P(· | s, a),Pdemo(· | s, a)).

Then, we prove that a limited number of demonstrations can also lead to the performance gap as
described in Theorem 5. Essentially, we can construct a demonstration dynamics Pdemo such that
all the state transition probability estimated in E match Pdemo with zero error. Then a similar
performance gap as that caused by dynamics mismatch can be derived.

Proposition 3. Assume that the expert demonstration contains m state-action pairs by only selecting
the optimal actions, i.e., select argmax

a
πE(a|s) at each s. Then | UrE (πE) − UrE (πr∗) | ≤

2··d·γ·max
s,a

| rE(s,a) |

(1−γ)2 where Prob(d ≥ ϵ) ≤ 2 · exp(−2 · m · ϵ2) for any ϵ ∈ [p, 1] where p =

1
γ ·

min
s,a

rE(s,a)−min
s

rE(s,argmax
a

πE(a|s))

max
s,a

rE(s,a)−min
s,a

rE(s,a) .

Proof. We translate the limited demonstration case into a dynamics mismatch case where we will
leverage the demonstrated state transitions to construct a dynamics Pdemo(· | s, a) and compare it
with P(· | s, a).
Assume that for each state-action pair s, a in E, i.e., ms,a ∈ [m], the ms,a transition instances are
(s, a, s1), (s, a, s2), . . . , (s, a, sms,a

). For each ŝ ∈ S, we let Pdemo(ŝ | s, a) = 1
ms,a

∑ms,a

i=1 I[si =
ŝ].

Then, we can view DTV (P(· | s, a),Pdemo(· | s, a)) = 1
2 ||P(· | s, a) − Pdemo(· | s, a))||1 as a

function of m independent random variables, i.e., (s1, a1), (s2, a2), . . . , (sms,a,ams,a )
, sampled

from the S domain. If one of the variables, si, is changed from ŝ to another state ŝ′ ̸= ŝ,
Pdemo(ŝ | s, a) and Pdemo(ŝ

′ | s, a) should decrease and increase by 1
ms,a

respectively. Then,
DTV (P(· | s, a),Pdemo(· | s, a)) changes at most by 1

ms,a
.

We can also view the DTV at each (s, a) ∈ E as functions of the m sampled state-action
pairs in E, with a little abuse of notations, denoted as (s1, a1), (s2, a2), . . . , (sm, am) by flat-
tening all the demonstrated trajectories. If a state-action pair, (si, ai), in one of the trajecto-
ries, is changed from (ŝ, â) to another state (ŝ′, â′), then for the state-action (si−1, ai−1) that
precedes si if si is not the initial state, DTV (P(· | s, a),Pdemo(· | s, a)) changes at most
by 1

msi−1,ai−1
which can be as large as 1 since it is possible that msi−1,ai−1 = 1. Also,

DTV (P(· | ŝ, â),Pdemo(· | ŝ, â)) and DTV (P(· | ŝ′, â′),Pdemo(· | ŝ′, â′)) change at most by
1

mŝ,â
and 1

mŝ′,â′
. Note that if mŝ′,â′ = 0, i.e., (ŝ′, â′) /∈ E, changing ŝ, â into ŝ′, â′ equiv-

alently leads to taking DTV (P(· | ŝ, â,Pdemno(· | ŝ′, â′)) into consideration when computing
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max
s,a

DTV (P(· | s, a),Pdemo(· | s, a)). And DTV (P(· | ŝ, â,Pdemno(· | ŝ′, â′)) ≤ 1− P(si+1|ŝ′,â′))
2

where si+1 is the state that succeeds si in the demonstrated trajectroy. Therefore, if changing a
state-action pair in E into another state-action pair, max

(s,a)∈E
DTV (P(· | s, a),Pdemo(· | s, a)) can be

changed as large as by 1.

According to McDiarmid’s Inequality, Prob(| max
(s,a)∈E

DTV (P(· | s, a),Pdemo(· | s, a)) −

E[ max
(s,a)∈E

DTV (P(· | s, a),Pdemo(· | s, a))]| ≥ ϵ) ≤ 2 · exp(− 2·ϵ2∑m
i=1(1)

2 ) = 2 · exp(− 2ϵ2

m ).

Note that E[max
s,a

DTV (P(· | s, a),Pdemo(· | s, a))] = 0 since the estimation is un-biased. Hence,

Prob( max
(s,a)∈E

DTV (P(· | s, a),Pdemo(· | s, a)) ≥ ϵ) ≤ 2 · exp(− 2ϵ2

m ) for (s, a) ∈ E.

For state-action pairs that are outside of E, we need to construct Pdemo at those state-action pairs such
that the action selection in E is always optimal. To start with, we let Pdemo(· | a, s) ≡ P(· | a, s) for
any state-action pairs that do not appear in E. For some state-action pairs, the states are not reached
in E. We can disregard whether πE maintains optimal at those states and focus on the states that do
appear in E. By denoting the Q-value of πE under Pdemo as Qdemo

πE
, we need to make sure that the

Qdemo
πE

(s, a′) for a′ ̸= argmax
a

πE(a|s) is no greater than Qdemo
πE

(s, argmax
a

πE(a|s)). Since the
state-actions in E may have extremely low rewards stochastic nature of P , we consider the worst
case Q-value for a∗ = argmax

a
πE(a|s) i.e., Qdemo

πE
(s, a∗) ≥ 1

1−γ ·min
s

rE(s, argmax
a

πE(a|s)).
Meanwhile, for a′ ̸= argmax

a
πE(a|s), we consider the best-case Q-value, i.e., Qdemo

πE
(s, a′) ≤

1
1−γ ·max

(s,a)
rE(s, a). We add a dummy, absorbing state s that is unreachable from any state-action

under the dynamics P and also unreachable from any demonstrated state-action under the constructed
dynamics Pdemo. But we let Pdemo(s|s, a′) > 0 if Qdemo

πE
(s, a′) > Qdemo

πE
(s, a∗). In other words,

we add probability density on transitioning from such (s, a′) to s so that Qdemo
πE

(s, a′) drops below
Qdemo

πE
(s, a∗). We denote this density as p. Then Pdemo(s|s, a′) = p and Pdemo(s

′|s, a′) =
(1− p) · P(s′|s, a′) for any other s′ ∈ S. As a result, DTV (P(· | s, a′),Pdemo(· | s, a′) = p. Note
that adding s does not affect the Q-values of the state-action pairs that appear in E. Then we aim to
find the p to ensure Qdemo

πE
(s, a′) ≤ Qdemo

πE
(s, a∗). Considering the worst-case, p · (max

s,a
rE(s, a) +

γ
1−γ · min

s,a
rE(s, a)) + (1 − p) · 1

1−γ · max
s,a

rE(s, a) ≤ 1
1−γ · min

s
rE(s, argmax

a
πE(a|s)) gives

p ≤ 1
γ ·

max
s,a

rE(s,a)−min
s

rE(s,argmax
a

πE(a|s))

max
s,a

rE(s,a)−min
s,a

rE(s,a) .

Combining the analysis on the state-action pairs that appear in E and not in E, we can conclude that
for ϵ > p, we can extend the confidence bound Prob( max

(s,a)∈E
DTV (P(· | s, a),Pdemo(· | s, a)) ≥

ϵ) ≤ 2 · exp(− 2ϵ2

m ) for (s, a) ∈ E from (s, a) ∈ E to all state-action pairs in S × A. By using a
variable d to represent max

s,a
DTV (P(· | s, a) − Pdemo(· | s, a)), we can use the conclusion drawn

from Theorem 5. Note that adding the dummy s does not affect the max
s,a

|rE(s, a)| since we let

rE(s, a) ≡ min
s,a

rE(s, a). Our proof is complete.

A.2 Task-Reward Alignment

In this section, we provide proof of the properties of the task-reward alignment concept that we define
in the main text. For readers’ convenience, we include our definition of task for reference.

Definition 1 (Task) Given the policy hypothesis set Π, a task (Π,⪯task,Πacc) is specified by a
partial order over Π and a non-empty set of acceptable policies Πacc ⊆ Π such that ∀π1 ∈ Πacc and
∀π2 /∈ Πacc, π2 ⪯task π1 always hold.

We have defined in the main text that Ur := min
π∈Πacc

Ur(π) is the lowest utility achieved by any

acceptable policies under r, and Ur := max
π∈Π

Ur(π) s.t. ∀π1, π2 ∈ Π, Ur(π1) ≤ Ur(π) ≤ Ur(π2) ⇒
(π1 ⪯task π) ∧ (π1 ⪯task π2) is the highest utility threshold such that any policy achieving a utility
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higher than Ur also has a higher order than those of which utilities are lower than Ur. We call a
reward function r a (Ur, Ur)-aligned with the task.

Lemma 1. For any task-aligned reward function r+, Ur+ ≥ Ur+ .

Proof. If Ur+ < Ur+ , then for any policy π with Ur(π) ∈ [Ur+ , Ur+), it is guaranteed that
π ∈ Π\Πacc by definition of Ur+ . Then, Ur+ is a better solution for max

π∈Π
Ur(π) s.t. ∀π1, π2 ∈

Π, Ur(π1) ≤ Ur(π) ≤ Ur(π2) ⇒ (π1 ⪯task π) ∧ (π1 ⪯task π2) than Ur+ . Hence, Ur+ ≥ Ur+

must hold.

Lemma 2. If π1 ⪯task π2 ⇔ Ur(π2) ≤ Ur(π1) holds for any π1, π2 ∈ Π, then Ur = Ur =
min
π∈Π

Ur(π).

Proof. Since the policy that has the highest order achieves the lowest utility min
π∈Π

Ur(π), no other

acceptable policy can achieve even lower utility. Hence, by definition Ur = min
π∈Π

Ur(π).

Another example is that when optimal policy under r has the lowest order in terms of ⪯task, and
the highest-order policy has the lowest utility under r, Ur = Ur. In those extreme cases, the reward
function can be considered completely misaligned. In the non-extreme cases, if a reward function r
exhibits misalignment with the task – the threshold Ur is lower than the utility of an unacceptable
policy – Ur then must be also lower than the utilities of all the acceptable policies, which forms a
lower-bound for the size of Ur.

Lemma 3. For any reward function r, if ∃π /∈ Πacc, Ur(π) ≥ Ur, then Ur ≤ Ur.

Proof. Since π /∈ Πacc and Ur(π) ≥ Ur, then ∀π′ ∈ Πacc, Ur(π
′) ≥ Ur must be true, otherwise

∃π′ ∈ Πacc, π
′ ⪯task π, which contradicts the definition of Πacc and Ur.

Lemma 4. If a reward function r has Ur ≤ Ur, r is a task-misaligned reward function.

Proof. If Ur ≤ Ur, then there must exists two policies π1, π2 where π1 ∈ Π\Πacc, Ur(π1) ∈
[Ur, Ur] and Ur(π2) ≥ Ur ∧ π2 ⪯task π1. Such π2 must not be an acceptable policy. Otherwise, it
contradicts the definition of Πacc. Hence, it must be unacceptable, leading to r being a task-misaligned
reward function.

Proposition 1 For any two reward functions r1, r2, if {π : Ur1(π) ≥ Ur1} ⊆ {π : Ur2(π) ≥ Ur2},
then there must exist a π1 ∈ {π : Ur1(π) ≥ Ur1} and a π2 ∈ {π : Ur2(π) ≥ Ur2} that satisfy
Ur1(π2) ≤ Ur1(π1) and π2 ⪯task π1 while Ur2(π1) ≤ Ur2(π2) .

Proof. According to the definition of Ur1 , ∀π1 ∈ {π : Ur2(π) ≥ Ur1} and ∀π2 ∈ {π : Ur2(π) ≥
Ur2}/{π : Ur1(π) ≥ Ur1}, Ur1(π2) ≤ Ur1(π1) and π2 ⪯task π1 must be true. Furthermore, if
for all pairs of π2 ∈ {π : Ur2(π) ≥ Ur2}/{π : Ur1(π) ≥ Ur1} and π1 ∈ {π : Ur1(π) ≥ Ur1},
Ur2(π1) > Ur2(π2) is true, then {Ur2(π) | Ur1(π) ≥ Ur1} ⊂ [Ur2 ,max

π∈Π
Ur2(π)] is a smaller

non-empty interval than [Ur2 ,max
π∈Π

Ur2(π)], contradicting the fact that Ur2 is the highest utility

threshold under r2. Hence, there must exist a π2 ∈ {π : Ur2(π) ≥ Ur2}/{π : Ur1(π) ≥ Ur1}
and a π1 ∈ {π : Ur1(π) ≥ Ur1} that satisfy Ur1(π2) ≤ Ur1(π1) and Ur2(π1) ≤ Ur2(π2) while
π2 ⪯task π1 as aforementioned.

Note that from now on, we use the notation r+ to denote task-aligned reward functions and r−

to denote task-misaligned reward functions for short. Furthermore, if a reward function r satisfies
Ur(π1) ≤ Ur(π2) ⇔ π1 ⪯task π2, we call this reward function the ground true reward function, and
denote it as rtask for simplicity. Apparently, any rtask is a task-aligned reward function, and it has
the most trivial misalignment.
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Lemma 5. Urtask
= max

π∈Π
Urtask

(π)

Proof. By definition, argmax
π∈Π

Urtask
(π) has higher order and higher utility than any other policies.

Lemma 6. If πrtask
is optimal under rtask, for any reward function r, Ur(πrtask

) ≥ Ur.

Proof. If Ur(Πacc) < Ur, then there exists a π with its utility Ur(π) ≥ Ur, thus πrtask
⪯task π,

which contradicts the assumption that πrtask
is the highest-order policy.

Furthermore, we have the following property.

Theorem 1 Let I be an indicator function. For any k ≥
{
min
r+

∑
π∈Π I{Ur+(π) ≥ Ur+(πE)}

}
, if

π∗ satisfies
{∑

π∈Π I{Ur(π) ≥ Ur(π
∗)}

}
< |Πacc| for all r ∈ RE,k :=

{
r |

∑
π∈Π I{Ur(π) ≥

Ur(πE)} ≤ k
}

, then π∗ is an acceptable policy, i.e., π∗ ∈ Πacc. Additionally, if k < |Πacc|, such an
acceptable policy π∗ is guaranteed to exist.

Proof. Since πE is an acceptable policy, there must be at least one task-aligned reward function
r+ that satisfies |{π : Ur(π) ≥ Ur(πE)}| ≤ k since k ≥ min

r+
|{π : Ur+(π) ≥ Ur+(πE)}|. The

greater k is, the more task-aligned reward functions tend to be included. If π∗ achieves |{π :
Ur+(π) ≥ Ur+(π

∗)} < |Πacc| under any task-aligned reward function r+, π∗ must be acceptable
policy. Because if π∗ is unacceptable, there must be an acceptable policy performing worse than the
unacceptable π∗ under r+, contradicting the definition of task-aligned reward function. Hence, π∗

must be acceptable policy. Furthermore, for any k ∈ [min
r+

∑
π∈Π I{Ur+(π) ≥ Ur+(πE)}, |Πacc|),

the policy πE itself satisfied
∑

π∈Π I{Ur(π) ≥ Ur(πE)} < |Πacc| for all r ∈ RE,k, which
guarantees the existence of a feasible π∗.

A.3 Semi-supervised Reward Design

Designing a reward function can be thought as deciding an ordering of policies. We adopt a concept,
called total domination, from unsupervised environment design Dennis et al. [2020], and re-interpret
this concept in the context of reward design. In this paper, we suppose that the function Ur(π) is
given to measure the performance of a policy and it does not have to be the utility function. While
the measurement of policy performance can vary depending on the free variable r, total dominance
can be viewed as an invariance regardless of such dependency.
Definition 5 (Total Domination). A policy, π1, is totally dominated by some policy π2 w.r.t a reward
function set R, if for every pair of reward functions r1, r2 ∈ R, Ur1(π1) < Ur2(π2).

If π1 totally dominate π2 w.r.t R, π2 can be regarded as being unconditionally better than π1. In other
words, the two sets {Ur(π1) | r ∈ R} and {Ur(π2) | r ∈ R} are disjoint, such that sup{Ur(π1) | r ∈
R} < inf{Ur(π2) | r ∈ R}. Conversely, if a policy π is not totally dominated by any other policy, it
indicates that for any other policy, say π2, sup{Ur(π1) | r ∈ R} ≥ inf{Ur(π2) | r ∈ R}.
Definition 6. A reward function set R aligns with an ordering ≺R among policies such that π1 ≺R π2

if and only if π1 is totally dominated by π2 w.r.t. R.

Especially, designing a reward function r is to establish an ordering ≺{r} among policies. Total
domination can be extended to policy-conditioned reward design, where the reward function r
is selected by following a decision rule ω(π) such that

∑
r∈R ω(π)(r) = 1. We let Uω(π) =∑

r∈R

ω(π)(r) · Ur(π) be an affine combination of Ur(π)’s with its coefficients specified by ω(π).

Definition 7. A policy conditioned decision rule ω is said to prefer a policy π1 to another policy π2,
which is notated as π1 ≺ω π2, if and only if Uω(π1) < Uω(π2).

Making a decision rule for selecting reward functions from a reward function set to respect the total
dominance w.r.t this reward function set is an unsupervised learning problem, where no additional
external supervision is provided. If considering expert demonstrations as a form of supervision
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and using it to constrain the set RE of reward function via IRL, the reward design becomes semi-
supervised.

A.4 Solution to the MinimaxRegret

Without loss of generality, we use R instead of RE,δ in our subsequent analysis because solving
MinimaxRegret(R) does not depend on whether there are constraints for R. In order to show such
an equivalence, we follow the same routine as in Dennis et al. [2020], and start by introducing the
concept of weakly total domination.
Definition 8 (Weakly Total Domination). A policy π1 is weakly totally dominated w.r.t a reward
function set R by some policy π2 if and only if for any pair of reward function r1, r2 ∈ R, Ur1(π1) ≤
Ur2(π2).

Note that a policy π being totally dominated by any other policy is a sufficient but not necessary
condition for π being weakly totally dominated by some other policy. A policy π1 being weakly
totally dominated by a policy π2 implies that sup{Ur(π1) | r ∈ R} ≤ inf{Ur(π2) | r ∈ R}. We
assume that there does not exist a policy π that weakly totally dominates itself, which could happen
if and only if Ur(π) is a constant. We formalize this assumption as the following.
Assumption 1. For the given reward set R and policy set Π, there does not exist a policy π such that
for any two reward functions r1, r2 ∈ R, Ur1(π) = Ur2(π).

This assumption makes weak total domination a non-reflexive relation. It is obvious that weak total
domination is transitive and asymmetric. Now we show that successive weak total domination will
lead to total domination.
Lemma 7. for any three policies π1, π2, π3 ∈ Π, if π1 is weakly totally dominated by π2, π2 is
weakly totally dominated by π3, then π3 totally dominates π1.

Proof. According to the definition of weak total domination, max
r∈R

Ur(π1) ≤ min
r∈R

Ur(π2) and

max
r∈R

Ur(π2) ≤ min
r∈R

Ur(π3). If π1 is weakly totally dominated but not totally dominated by π3, then

max
r∈R

Ur(π1) = min
r∈R

Ur(π3) must be true. However, it implies min
r∈R

Ur(π2) = max
r∈R

Ur(π2), which

violates Assumption 1. We finish the proof.

Lemma 8. For the set Π¬wtd ⊆ Π of policies that are not weakly totally dominated by any other
policy in the whole set of policies w.r.t a reward function set R, there exists a range U ⊆ R such that
for any policy π ∈ Π¬wtd, U ⊆ [min

r∈R
Ur(π),max

r∈R
Ur(π)].

Proof. For any two policies π1, π2 ∈ Π¬wtd, it cannot be true that max
r∈R

Ur(π1) = min
r∈R

Ur(π2)

nor min
r∈R

Ur(π1) = max
r∈R

Ur(π2), because otherwise one of the policies weakly totally dominates

the other. Without loss of generalization, we assume that max
r∈R

Ur(π1) > min
r∈R

Ur(π2). In this

case, max
r∈R

Ur(π2) > min
r∈R

Ur(π1) must also be true, otherwise π1 weakly totally dominates π2.

Inductively, min
π∈Π¬wtd

max
r∈R

Ur(π) > max
π∈Π¬wtd

min
r∈R

Ur(π). Letting ub = min
π∈Π¬wtd

max
r∈R

Ur(π) and

lb = max
π∈Π¬wtd

min
r∈R

Ur(π), any U ⊆ [lb, ub] shall support the assertion. We finish the proof.

Lemma 9. For a reward function set R, if a policy π ∈ Π is weakly totally dominated by some other
policy in Π and there exists a subset Π¬wtd ⊆ Π of policies that are not weakly totally dominated by
any other policy in π, then max

r∈R
Ur(π) < min

π′∈Π¬wtd

max
r∈R

Ur(π
′)

Proof. If π1 is weakly totally dominated by a policy π2 ∈ Π, then min
r∈R

Ur(π2) = max
r∈R

Ur(π).

If max
r∈R

Ur(π) ≥ min
π′∈Π¬wtd

max
r∈R

Ur(π
′), then min

r∈R
Ur(π2) ≥ min

π′∈Π¬wtd

max
r∈R

Ur(π
′), making at

least one of the policies in Π¬wtd being weakly totally dominated by π2. Hence, max
r∈R

Ur(π) <

min
π′∈Π¬wtd

max
r∈R

Ur(π
′) must be true.
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Given a policy π and a reward function r, the regret is represented as Eq.8

Regret(π, r) := max
π′

Ur(π
′)− Ur(π) (8)

Then we represent the MinimaxRegret(R) problem in Eq.9.

MinimaxRegret(R) := argmin
π∈Π

{
max
r∈R

Regret(π, r)

}
(9)

We denote as r∗π ∈ R the reward function that maximizes Ur(π) among all the r’s that achieve the
maximization in Eq.9. Formally,

r∗π ∈ argmax
r∈R

Ur(π) s.t. r ∈ argmax
r′∈R

Regret(π, r′) (10)

Then MinimaxRegret can be defined as minimizing the worst-case regret as in Eq.9. Next, we
want to show that for some decision rule ω, the set of optimal policies that maximize Uω are the
solutions to MinimaxRegret(R). Formally,

MinimaxRegret(R) = argmax
π∈Π

Uω(π) (11)

We design ω by letting ω(π) := ω(π) · δr∗π + (1 − ω(π)) · Rπ where Rπ ∈ ∆(R) is a policy
conditioned distribution over reward functions, δr∗π be a delta distribution centered at r∗π , and ω(π) is
a coefficient. We show how to design R by using the following lemma.

Lemma 10. Given that the reward function set is R, there exists a decision rule R : Π → ∆(R)
which guarantees that: 1) for any policy π that is not weakly totally dominated by any other policy in
Π, i.e., π ∈ Π¬wtd ⊆ Π, UR(π) ≡ c where c = max

π′∈Π¬wtd

min
r∈R

Ur(π
′); 2) for any π that is weakly

totally dominated by some policy but not totally dominated by any policy, UR(π) = max
r∈R

Ur(π); 3)

if π is totally dominated by some other policy, ω(π) is a uniform distribution.

Proof. Since the description of R for the policies in condition 2) and 3) are self-explanatory, we omit
the discussion on them. For the none weakly totally dominated policies in condition 1), having a con-
stant UR(π) ≡ c is possible if and only if for any policy π ∈ Π¬wed, c ∈ [min

r∈R
Ur(π

′),max
r∈R

Ur(π
′)].

As mentioned in the proof of Lemma 8, c can exist within [min
r∈R

Ur(π),max
r∈R

Ur(π)]. Hence,

c = max
π′∈Π¬wtd

min
r∈R

Ur(π
′) is a valid assignment.

Then by letting ω(π) :=
Regret(π,r∗π)
c−Ur∗π (π) , we have the following theorem.

Theorem 6. By letting ω(π) := ω(π) · δr∗π + (1− ω(π)) · Rπ with ω(π) :=
Regret(π,r∗π)
c−Ur∗π (π) and any

R that satisfies Lemma 10,

MinimaxRegret(R) = argmax
π∈Π

Uω(π) (12)

Proof. If a policy π ∈ Π is totally dominated by some other policy, since there exists another
policy with larger Uω , π cannot be a solution to argmax

π∈Π
Uω(π). Hence, there is no need for further

discussion on totally dominated policies. We discuss the none weakly totally dominated policies
and the weakly totally dominated but not totally dominated policies (shortened to "weakly totally
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dominated" from now on) respectively. First we expand argmax
π∈Π

Uω(π) as in Eq.13.

argmax
π∈Π

Uω(π)

= argmax
π∈Π

∑
r∈R

ω(π)(r) · Ur(π)

= argmax
π∈Π

Regret(π, r∗π) · Ur∗π
(π) + (UR(π)− Ur∗π

(π)−Regret(π, r∗π)) · UR(π)

c− Ur∗π
(π)

= argmax
π∈Π

(UR(π)− Ur∗π
(π)) · UR(π)− (UR(π)− Ur∗π

(π)) ·Regret(π, r∗π))

c− Ur∗π
(π)

= argmax
π∈Π

UR(π)− Ur∗π
(π)

c− Ur∗π (π)
· UR(π)−Regret(π, r∗π) (13)

1) For the none weakly totally dominated policies, since by design UR ≡ c, Eq.13 is equivalent
to arg max

π∈Π1

−Regret(π, r∗π) which exactly equals MinimaxRegret(R). Hence, the equivalence

holds among the none weakly totally dominated policies. Furthermore, if a none weakly totally
dominated policy π ∈ Π¬wtd achieves optimality in MinimaxRegret(R), its Uω(π) is also no less
than any weakly totally dominated policy. Because according to Lemma 9, for any weakly totally
dominated policy π1, its UR(π1) ≤ c, hence

UR(π)−Ur∗π (π)

c−Ur∗π (π) · UR(π1) ≤ c. Since Regret(π, r∗π) ≤
Regret(π1, r

∗
π1
), Uω(π) ≥ Uω(π1). Therefore, we can assert that if a none weakly totally dominated

policy π is a solution to MinimaxRegret(R), it is also a solution to argmax
π∈Π

Uω(π). Additionally,

to prove that if a none weakly totally dominated policy π is a solution to arg max
π′∈Π

Uω(π
′), it is also a

solution to MinimaxRegret(R), it is only necessary to prove that π achieve no larger regret than
all the weakly totally dominated policies. But we delay the proof to 2).

2) If a policy π is weakly totally dominated and is a solution to MinimaxRegret(R), we show that
it is also a solution to argmax

π∈Π
Uω(π), i.e., its Uω(π) is no less than that of any other policy.

We start by comparing with non weakly totally dominated policy. for any weakly totally
dominated policy π1 ∈ MinimaxRegret(R), it must hold true that Regret(π1, r

∗
π1
) ≤

Regret(π2, r
∗
π2
) for any π2 ∈ Π that weakly totally dominates π1. However, it also

holds that Regret(π2, r
∗
π2
) ≤ Regret(π1, r

∗
π2
) due to the weak total domination. Therefore,

Regret(π1, r
∗
π1
) = Regret(π2, r

∗
π2
) = Regret(π1, r

∗
π2
), implying that π2 is also a solution

to MinimaxRegret(R). It also implies that Ur∗π2
(π1) = Ur∗π2

(π2) ≥ Ur∗π1
(π1) due to the

weak total domination. However, by definition Ur∗π1
(π1) ≥ Ur∗π2

(π1). Hence, Ur∗π1
(π1) =

Ur∗π2
(π1) = Ur∗π2

(π2) must hold. Now we discuss two possibilities: a) there exists another pol-
icy π3 that weakly totally dominates π2; b) there does not exist any other policy that weakly
totally dominates π2. First, condition a) cannot hold. Because inductively it can be derived
Ur∗π1

(π1) = Ur∗π2
(π1) = Ur∗π2

(π2) = Ur∗π3
(π3), while Lemma 7 indicates that π3 totally dominates

π1, which is a contradiction. Hence, there does not exist any policy that weakly totally dominates π2,
meaning that condition b) is certain. We note that Ur∗π1

(π1) = Ur∗π2
(π1) = Ur∗π2

(π2) and the weak
total domination between π1, π2 imply that r∗π1

, r∗π2
∈ argmax

r∈R
Ur(π1), r∗π2

∈ argmin
r∈R

Ur(π2),

and thus min
r∈R

Ur(π2) ≤ max
π∈Π¬wtd

min
r∈R

Ur(π) = c. Again, π1 ∈ MinimaxRegret(R) makes

Regret(π1, r
∗
π) ≤ Regret(π1, r

∗
π1
) ≤ Regret(π, r∗π) not only hold for π = π2 but also for any

other policy π ∈ Π¬wtd, then for any policy π ∈ Π¬wtd, Ur∗π
(π1) ≥ Ur∗π

(π) ≥ min
r∈R

Ur(π).

Hence, Ur∗π
(π1) ≥ max

π∈Π¬wtd

min
r∈R

Ur(π) = c. Since Ur∗π
(π1) = min

r∈R
Ur(π2) as aforemen-

tioned, min
r∈R

Ur(π2) > max
π∈Π¬wtd

min
r∈R

Ur(π) will cause a contradiction. Hence, min
r∈R

Ur(π2) =

max
π∈Π¬wtd

min
r∈R

Ur(π) = c. As a result, UR(π) = Ur∗π
(π) = max

π′∈Π¬wtd

min
r∈R

Ur(π
′) = c, and

Uω(π) = c− Regret(π, r∗π) ≥ max
π′∈Π¬wtd

c− Regret(π′, r∗π′) = max
π′∈Π¬wtd

Uω(π
′). In other words,

if a weakly totally dominated policy π is a solution to MinimaxRegret(R), then its Uω(π) is no
less than that of any non weakly totally dominated policy. This also complete the proof at the end of
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1), because if a none weakly totally dominated policy π1 is a solution to argmax
π∈Π

Uω(π) but not a so-

lution to MinimaxRegret(R), then Regret(π1, r
∗
π1
) > 0 and a weakly totally dominated policy π2

must be the solution to MinimaxRegret(R). Then, Uω(π2) = c > c−Regret(π1, r
∗
π1
) = Uω(π1),

which, however, contradicts π1 ∈ argmax
π∈Π

Uω(π).

It is obvious that a weakly totally dominated policy π ∈ MinimaxRegret(R) has a Uω(π) no less
than any other weakly totally dominated policy. Because for any other weakly totally dominated
policy π1, UR(π1) ≤ c and Regret(π1, r

∗
π1
) ≤ Regret(π, r∗π), hence Uω(π1) ≤ Uω(π) according

to Eq.13.

So far we have shown that if a weakly totally dominated policy π is a solution to
MinimaxRegret(R), it is also a solution to arg max

π′∈Π
Uω(π

′). Next, we need to show that the

reverse is also true, i.e., if a weakly totally dominated policy π is a solution to argmax
π∈Π

Uω(π), it

must also be a solution to MinimaxRegret(R). In order to prove its truthfulness, we need to show
that if π /∈ MinimaxRegret(R), whether there exists: a) a none weakly totally dominated policy
π1, or b) another weakly totally dominated policy π1, such that π1 ∈ MinimaxRegret(R) and
Uω(π1) ≤ Uω(π). If neither of the two policies exists, we can complete our proof. Since it has
been proved in 1) that if a none weakly totally dominated policy achieves MinimaxRegret(R), it
also achieves arg max

π′∈Π
Uω(π

′), the policy described in condition a) does not exist. Hence, it is only

necessary to prove that the policy in condition b) also does not exist.

If such weakly totally dominated policy π1 exists, π /∈ MinimaxRegret(R) and π1 ∈
MinimaxRegret(R) indicates Regret(π, r∗π) > Regret(π1, r

∗
π1
). Since Uω(π1) ≥ Uω(π),

according to Eq.13, Uω(π1) = c − Regret(π1, r
∗
π1
) ≤ Uω(π) =

UR(π)−Ur∗π (π)

c−Ur∗π (π) · UR(π) −

Regret(π, r∗π). Thus
UR(π)−Ur∗π (π)

c−Ur∗π (π) (π) · UR ≥ c + Regret(π, r∗π) − Regret(π1, r
∗
π1
) > c, which

is impossible due to UR ≤ c. Therefore, such π1 also does not exist. In fact, this can be
reasoned from another perspective. If there exists a weakly totally dominated policy π1 with
Ur∗π1

(π1) = c = Ur∗π
(π) but π1 /∈ MinimaxRegret(R), then Regret(π, r∗π) > Regret(π1, r

∗
π1
).

It also indicates max
π′∈Π

Ur∗π
(π′) > max

π′∈Π
Ur∗π1

(π′). Meanwhile, Regret(π1, r
∗
π) := max

π′∈Π
Ur∗π

(π′) −
Ur∗π

(π1) ≤ Regret(π1, r
∗
π1
) := max

π′∈Π
Ur∗π1

(π′)−Ur∗π1
(π1) := max

r∈R
max
π′∈Π

Ur(π
′)−Ur(π1) indicates

max
π′∈Π

Ur∗π
(π′)−max

π′∈Π
Ur∗π1

(π′) ≤ Ur∗π
(π1)− Ur∗π1

(π1). However, we have proved that, for a weakly

totally dominated policy, π1 ∈ MinimaxRegret(R) indicates Ur∗π1
(π1) = max

r∈R
Ur(π1). Hence,

max
π′∈Π

Ur∗π
(π′) − max

π′∈Π
Ur∗π1

(π′) ≤ Ur∗π
(π1) − Ur∗π1

(π1) ≤ 0 and it contradicts max
π′∈Π

Ur∗π
(π′) >

max
π′∈Π

Ur∗π1
(π′). Therefore, such π1 does not exist. In summary, we have exhausted all conditions and

can assert that for any policies, being a solution to MinimaxRegret(R) is equivalent to a solution
to argmax

π∈Π
Uω(π). We complete our proof.

A.5 Collective Validation of Similarity Between Expert and Agent

In Definition 2 and our definition of Regret in Eq.2, we use the utility function Ur to measure the
performance of a policy. We now show that we can replace Ur with other functions.
Lemma 11. The solution of MinimaxRegret(RE,δ∗) does not change when Ur in
MinimaxRegret is replace with Ur(π)− f(r) where f can be arbitrary function of r.

Proof. When using Ur(π) − f(r) instead of Ur(π) to measure the policy performance, solving
MinimaxRegret(R) is to solve Eq. 14, which is the same as Eq.9.

MimimaxRegret(R) = argmax
π∈Π

min
r∈R

Regret(π, r)

= argmax
π∈Π

min
r∈R

max
π′∈Π

{Ur(π
′)− f(r)} − (Ur(π)− f(r))

= argmax
π∈Π

min
r∈R

max
π′∈Π

Ur(π
′)− Ur(π) (14)
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Lemma 11 implies that we can use the policy-expert margin Ur(π)− Ur(E) as a measurement of
policy performance. This makes the rationale of using PAGAR-based IL for collective validation of
similarity between E and π more intuitive.

A.6 Criterion for Successful Policy Learning

To analyze the sufficient conditions for MinimaxRegret to mitigate task-reward misalignment, we
start by analyzing the general properties of MinimaxRegret on arbitrary input R.
Proposition 4. If the following conditions (1) (2) hold for R, then the optimal protagonist policy
πP := MinimaxRegret(R) satisfies ∀r+ ∈ R,Ur+(πP ) ≥

¯
Ur+ .

(1) There exists r+ ∈ R, and max
r+∈R

{max
π∈Π

Ur+(π)− Ūr+} < min
r+∈R

{Ūr+ −
¯
Ur+};

(2) There exists a policy π∗ such that ∀r+ ∈ R, Ur+(π
∗) ≥ Ūr+ , and ∀r− ∈ R,

Regret(π∗, r−) < min
r+∈R

{Ūr+ −
¯
Ur+}.

Proof. Suppose the conditions are met, and a policy π1 satisfies the property described in condi-
tions 2). Then for any policy π2 ∈ MinimaxRegret(R), if π2 does not satisfy the mentioned
property, there exists a task-aligned reward function r+ ∈ R such that Ur+(π2) ≤ Ur+ . In
this case Regret(π2, r

+) = max
π∈Π

Ur+(π) − Ur+(π2) ≥ Ur+ − Ur+ ≥ min
r+′∈R

Ur+′ − Ur+′ .

However, for π1, it holds for any task-aligned reward function r̂+ ∈ R that Regret(π1, r̂
+) ≤

max
π∈Π

Ur̂+(π)−U r̂+ ≤ max
r+′∈R

{max
π∈Π

Ur+′(π)−Ur+′} < min
r+′′∈R

{Ur+′ −Ur+′} ≤ Regret(π2, r
+),

and it also holds for any misaligned reward function r− ∈ R that Regret(π1, r
−) < min

r+′∈R
{Ur+′ −

Ur+′} ≤ Regret(π2, r̂
+). Hence, Regret(π1, r

+) < Regret(π2, r
+), contradicting π2 ∈

MinimaxRegret(R). We complete the proof.

In Proposition 4, condition (1) states that the task-aligned reward functions in R all have a low extent
of misalignment while condition (2) states that there exists a π∗ that not only performs well under all
r+’s (thus being acceptable in the task) but also achieves relatively low regret under all r−’s. Note
that the more aligned the r+’s, the more forgiving the tolerance for high regret on r−. Furthermore,
Proposition 5 shows that, under a stronger condition on the existence of a policy π∗ performing well
under all reward functions in R, MinimaxRegret(R) can guarantee to induce an acceptable policy,
i.e., satisfying the condition (2) in Definition 3.
Proposition 5 (Strong Acceptance). Assume that condition (1) in Proposition 4 is satisfied. In
addition, if there exists a policy π∗ such that ∀r ∈ R, Regret(π∗, r) < max

r+∈R
{max
π∈Π

Ur+(π)− Ūr+},

then the optimal protagonist policy πP := MinimaxRegret(R) satisfies ∀r+ ∈ R, Ur+(πP ) ≥
Ūr+ .

Proof. Since max
r∈R

max
π

Ur(π) − Ur(πP ) ≤ max
r∈R

max
π

Ur(π) − Ur(π
∗) < max

r+∈R
{max
π∈Π

Ur+(π) −

Ur+}, we can conclude that for any r+ ∈ R, Ur+(πP ) ≥ Ur+ . The proof is complete.

Note that the assumptions in Proposition 4 and 5 are not trivially satisfiable for arbitrary R, e.g., if R
contains two reward functions with opposite signs, i.e., r,−r ∈ R, no policy can perform well under
both r and −r. However, in PAGAR-based IL, using RE,δ in place of arbitrary R is equivalent to
using E and δ to constrain the selection of reward functions, which can lead to additional implications.

Theorem 2. (Weak Acceptance) If the following conditions (1) (2) hold for RE,δ, then the optimal
protagonist policy πP := MinimaxRegret(RE,δ) satisfies ∀r+ ∈ RE,δ , Ur+(πP ) ≥ Ur+ .

(1) The condition (1) in Proposition 4 holds

(2) ∀r+ ∈ RE,δ, Lr+ · WE − δ ≤ max
π∈Π

Ur+(π) − Ur+ and ∀r− ∈ RE,δ, Lr− · WE − δ <

min
r+∈RE,δ

{Ur+ − Ur+}.

22

27668https://doi.org/10.52202/079017-0869



Proof. We consider Ur(π) = Eτ∼π[r(τ)]. Since WE ≜ min
π∈Π

W1(π,E) = 1
K sup

|r|L≤K

Ur(E)−Ur(π)

for any K > 0, let π∗ be the policy that achieves the minimality in WE . Then for any r+ ∈ R, the
term Lr+ ·WE − δ ≥ Lr+ · 1

Lr+
sup

|r|L≤Lr+

Ur(E)− Ur(π)− δ ≥ Ur+(E)− Ur+(π)− (Ur+(E)−

max
π′∈Π

Ur+(π
′)) = max

π′∈Π
Ur+(π

′) − Ur+(π). Hence, for all r+ ∈ R, max
π′∈Π

Ur+(π
′) − Ur+(π) <

max
π′∈Π

Ur+(π
′)−Ūr+ , i.e., Ur+(π

∗) ≥ Ūr+ . Likewise, Lr− ·WE−δ < min
r+∈RE,δ

Ur+ −Ur+ indicates

that for all r− ∈ R, max
π′∈Π

Ur+(π
′)− Ur+(π) < min

r+∈RE,δ

Ur+ − Ur+ . Then, we have recovered the

condition (2) in Proposition 4. As a result, we deliver the same guarantees in Proposition 4.

Theorem 2 delivers the same guarantee as that of Proposition 4 but differs from Proposition 4 in
that Condition (2) implicitly requires that for the policy π∗ = argmin

π∈Π
W1(π,E), the performance

difference between E and π∗ is small enough under all r ∈ RE,δ .

Theorem 3. (Strong Acceptance) Assume that the condition (1) in Theorem 4 holds for RE,δ . If for
any r ∈ RE,δ, Lr ·WE − δ ≤ min

r+∈RE,δ

{max
π∈Π

Ur+(π)− Ur+}, then the optimal protagonist policy

πP = MinimaxRegret(RE,δ) satisfies ∀r+ ∈ RE,δ , Ur+(πP ) ≥ Ur+ .

Proof. Again, we let π∗ be the policy that achieves the minimality in WE . Then, we have Lr ·WE −
δ ≥ Lr · 1

Lr
sup

| r| L≤Lr

Ur(E)−Ur(π
∗)− (Ur+(E)−max

π′∈Π
Ur+(π

′)) ≥ max
π′∈Π

Ur+(π
′)−Ur+(π

∗) for

any r ∈ RE,δ . We have recovered the condition in Proposition 5. The proof is complete.

A.7 Stationary Solutions

In this section, we show that MinimaxRegret is convex for πP .

Proposition 6. max
r∈R

Regret(πP , r) is convex in πP .

Proof. For any α ∈ [0, 1] and πP,1, πP,2, there exists a πP,3 = απP,1+(1−α)πP,2. Let r1, πA,1 and
r2, πA,2 be the optimal reward and antagonist policy for πP,1 and πP,2 Then α ·(max

r∈R
max
πA∈Π

Ur(πA)−
Ur(πP,1)) + (1 − α) · (max

r∈R
max
πA∈Π

Ur(πA) − Ur(πP,2)) = α(Ur1(πA,1) − Ur1(πP,1)) + (1 −
α)(Ur2(πA,2) − Ur2(πP,2)) ≥ α(Ur3(πA,3) − Ur3(πP,1)) + (1 − α)(Ur2(πA,3) − Ur3(πP,2)) =
Ur3(πA,3)− Ur3(πP,3). Therefore, max

r∈R
max
πA∈Π

Ur(πA)− Ur(πP ) is convex in πP .

A.8 Compare PAGAR-Based IL with IRL-Based IL

Assumption 2. max
r

JIRL(r) can reach Nash Equilibrium at an optimal reward function r∗ and its
optimal policy πr∗ .

We make this assumption only to demonstrate how PAGAR-based IL can prevent performance
degradation w.r.t IRL-based IL, which is preferred when IRL-based IL does not have a reward
misalignment issue under ideal conditions. We draw two assertions from this assumption. The first
one considers Maximum Margin IRL-based IL and shows that if using the optimal reward function
set RE,δ∗ as input to MinimaxRegret, PAGAR-based IL and Maximum Margin IRL-based IL have
the same solutions.

Proposition 7. πr∗ = MinimiaxRegret(RE,δ∗).

Proof. The reward function set RE,δ∗ and the policy set Πacc achieving Nash Equilibrium for
argmin

r∈R
JIRL(r) indicates that for any r ∈ RE,δ∗ , π ∈ Πacc, π ∈ argmax

π∈Π
Ur(π)− Ur(E). Then

Πacc will be the solution to arg max
πP∈Π

min
r∈RE,δ∗

{
max
πA∈Π

Ur(πA)− Ur(E)

}
− (Ur(πP ) − Ur(E))
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because the policies in Πacc achieve zero regret. Then Lemma 11 states that Πacc will also be the

solution to arg max
πP∈Π

min
r∈RE,δ∗

{
max
πA∈Π

Ur(πA)

}
− Ur(πP ). We finish the proof.

The proof can be found in Appendix A.6. The second assertion shows that if IRL-based IL can learn
a policy to succeed in the task, MinimaxRegret(RE,δ) with δ < δ∗ can also learn a policy that
succeeds in the task under certain condition. The proof can be found in Appendix A.6. This assertion
also suggests that the designer should select a δ smaller than δ∗ while making δ∗ − δ no greater than
the expected size of the high-order policy utility interval.

Proposition 8. If r∗ is a task-aligned reward function and δ ≥ δ∗ − (max
π∈Π

Ur∗(π) − Ur∗), the

optimal protagonist policy πP = MinimiaxRegret(RE,δ) is guaranteed to be acceptable for the
task.

Proof. If πr∗ ∈ MinimiaxRegret(RE,δ), then πr∗ can succeed in the task by definition. Now
assume that πP ̸= πr∗ . Since JIRL achieves Nash Equilibrium at r∗ and πr∗ , for any other reward
function r we have max

π∈Π
Ur(π) − Ur(πr∗) ≤ δ∗ − (Ur(E) − max

π∈Π
Ur(π)) ≤ δ∗ − δ. We also

have max
r′∈RE,δ

Regret(r′, πP ) ≤ max
r′∈RE,δ

Regret(r′, πr∗) ≤ δ∗ − δ. Furthermore, Regre(r∗, πP ) ≤

max
r′∈RE,δ

Regret(r′, πP ). Hence, Regre(r∗, πP ) ≤ δ − δ∗ ≤ max
π∈Π

Ur+(π) − Ur+ . In other words,

Ur∗(πP ) ∈ [Ur∗ ,max
π∈Π

Ur∗(π)], indicating πP can succeed in the task. The proof is complete.

A.9 Example 1

Figure 5: Left: Consider an MDP where there are two available actions a1, a2 at initial state s0.
In other states, actions make no difference: the transition probabilities are either annotated at the
transition edges or equal 1 by default. States s3 and s6 are terminal states. Expert demonstrations
are in E. Middle: x-axis indicates the MaxEnt IRL loss bound δ for RE,δ as defined in Section A.3.
The y-axis indicates the probability of the protagonist policy learned via MinimaxRegret(RE,δ)
choosing a2 at s0. The red curve shows how different δ’s lead to different protagonist policies. The
blue dashed curve is for reference, showing the optimal policy under the optimal reward learned via
MaxEnt IRL. Right: The curve shows how the MaxEnt IRL Loss changes with ω.

Example 1. Figure 5 Left shows an illustrative example of how PAGAR-based IL mitigates reward
misalignment in IRL-based IL. The task requires that a policy must visit s2 and s6 with probabilities
no less than 0.5 within 5 steps, i.e. Prob(s2 | π) ≥ 0.5 ∧ Prob(s6 | π) ≥ 0.5 where Prob(s | π) is
the probability of π generating a trajectory that contains s within the first 5 steps. It can be derived
analytically that a successful policy must choose a2 at s0 with a probability within [ 12 ,

125
188 ]. The

derivation is as follows.

The trajectories that reach s6 after choosing a2 at s0 include:
(s0, a2, s2, s6), (s0, a2, s2, s2, s6), (s0, a2, s2, s2, s2, s6). The total probability equals
Prob(s6 | π; s0, a2) = 1

5 + 1
5

2
+ 1

5

3
= 31

125 . Then the total probability of reaching s6
equals Prob(s6 | π) = (1− π(a2 | s0)) + 31

125 · π(a2 | s0). For Prob(s6 | π) to be no less than 0.5,
π(a2 | s0) must be no greater than 125

188 .
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The reward function hypothesis space is {rω | rω(s, a) = ω · r1(s, a) + (1 − ω) · r2(s, a)} where
ω ∈ [0, 1] is a parameter, r1, r2 are two features. Specifically, r1(s, a) equals 1 if s = s2 and equals
0 otherwise, and r2(s, a) equals 1 if s = s6 and equals 0 otherwise. Given the demonstrations and
the MDP, the maximum negative MaxEnt IRL loss δ∗ ≈ 2.8 corresponds to the optimal parameter
ω∗ = 1. This is computed based on Eq.6 in Ziebart et al. [2008]. The discount factor is γ = 0.99.
When computing the normalization term Z in Eq.4 of Ziebart et al. [2008], we only consider the
trajectories within 5 steps. The optimal policy under rω∗ chooses a2 at s0 with probability 1 and
reaches s6 with probability less than 0.25, thus failing to accomplish the task. The optimal protagonist
policy πP = MinimaxRegret(RE,δ) can succeed in the task as indicated by the grey dashed lines
in Figure 5 Middle. It chooses a2 at s0 with probability 1 when δ is close to its maximum δ∗. However,
πP (a2 | s2) decreases as δ decreases. It turns out that for any δ < 1.1 the optimal protagonist policy
can succeed in the task. In Figure 5 Right, we further show how the MaxEnt IRL loss changes with ω.

B Approach to Solving MinimaxRegret

In this section, we show how we derive the off-policy RL objective function for πP . Also, we
develop a series of theories that lead to two bounds of the Protagonist Antagonist Induced Regret. By
using those bounds, we formulate objective functions for solving Imitation Learning problems with
PAGAR.

B.1 Off-Policy Objective Function for Protagonist Policy Training

For reader’s convenience, we put the Theorem 1 in Schulman et al. [2015] here.
Theorem 7 (Schulman et al. [2015]). Let α = max

s
DTV (πold, πnew), and let ϵ =

max
s

Ea∼πnew
[Aπold

(s, a)], then Eq.15 holds.

Ur(πnew) ≤ Ur(πold) +
∑
s∈S

ρπold
(s)

∑
a∈A

πnew(a|s)Aπold
(s, a) +

2ϵγ

(1− γ)2
α2 (15)

where ρπold
(s) =

∑T
t=0 γ

tProb(s(t) = s|πold) is the discounted visitation frequency of πold, Aπold

is the advantage function without considering the entropy.

Algorithm 1 in Schulman et al. [2015] learns πnew by maximizing the r.h.s of the inequality Eq.15,
which only involves the trajectories and the advantage function of πold. By moving Ur(πold) from
r.h.s of Eq.15 to the left, and replacing πnew with πP and πold with πA, we obtain a bound for
Ur(πP )−Ur(πA) as mentioned in Section 6.1. The PPO in Schulman et al. [2017] further simplifies
the r.h.s of the inequality Eq.15 with a clipped importance sampling rate. We derived JπA

(πP ) by
using the same trick.

B.2 Protagonist Antagonist Induced Regret Bounds

Our theories are inspired by the on-policy policy improvement methods in Schulman et al. [2015]. The
theories in Schulman et al. [2015] are under the setting where entropy regularizer is not considered.
In our implementation, we always consider entropy regularized RL of which the objective is to learn a
policy that maximizes JRL(π; r) = Ur(π) +H(π). Also, since we use GAN-based IRL algorithms,
the learned reward function r as proved by Fu et al. [2018] is a distribution. Moreover, it is also
proved in Fu et al. [2018] that a policy π being optimal under r indicates that log π ≡ r ≡ Aπ. We
omit the proof and let the reader refer to Fu et al. [2018] for details. Although all our theories are
about the relationship between the Protagonist Antagonist Induced Regret and the soft advantage
function Aπ , the equivalence between Aπ and r allows us to use the theories to formulate our reward
optimization objective functions. To start off, we denote the reward function to be optimized as
r. Given the intermediate learned reward function r, we study the Protagonist Antagonist Induced
Regret between two policies π1 and π2.
Lemma 12. Given a reward function r and a pair of policies π1 and π2,

Ur(π1)− Ur(π2) = E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
+ E

τ∼π

[ ∞∑
t=0

γtH
(
π2(·|s(t))

)]
(16)
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Proof. This proof follows the proof of Lemma 1 in Schulman et al. [2015] where
RL is not entropy-regularized. For entropy-regularized RL, since Aπ(s, a

(t)) =
E

s′∼T (·|s,a(t))

[
r(s, a(t)) + γVπ(s

′)− Vπ(s)
]
,

E
τ∼π1

[ ∞∑
t=0

γtAπ2(s
(t), a(t))

]

= E
τ∼π1

[ ∞∑
t=0

γt
(
r(s(t+1), a(t+1)) + γVπ2

(s(t+1))− Vπ2
(s(t))

)]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))− Vπ2(s
(0))

]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

s(0)∼d0

[
Vπ2(s

(0))
]

= E
τ∼π1

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

τ∼π2

[ ∞∑
t=0

γtr(s(t), a(t)) +H
(
π2(·|s(t))

)]

= Ur(π1)− Ur(π2)− E
τ∼π2

[ ∞∑
t=0

γtH
(
π2(·|s(t))

)]
= Ur(π1)− Ur(π2)−H(π2)

Remark 1. Lemma 12 confirms that E
τ∼π

[∑∞
t=0 γ

tAπ(s
(t), a(t))

]
= Ur(π)−Ur(π)+H(π) = H(π).

We follow Schulman et al. [2015] and denote ∆A(s) = E
a∼π1(·|s)

[Aπ2
(s, a)]− E

a∼π2(·|s)
[Aπ2

(s, a)] as

the difference between the expected advantages of following π2 after choosing an action respectively
by following policy π1 and π2 at any state s. Although the setting of Schulman et al. [2015] differs
from ours by having the expected advantage E

a∼π2(·|s)
[Aπ2

(s, a)] equal to 0 due to the absence of

entropy regularization, the following definition and lemmas from Schulman et al. [2015] remain valid
in our setting.

Definition 9. Schulman et al. [2015], the protagonist policy π1 and the antagonist policy π2) are
α-coupled if they defines a joint distribution over (a, ã) ∈ A× A, such that Prob(a ̸= ã|s) ≤ α for
all s.

Lemma 13. Schulman et al. [2015] Given that the protagonist policy π1 and the antagonist policy
π2 are α-coupled, then for all state s,

|∆A(s)| ≤ 2αmax
a

|Aπ2(s, a)| (17)

Lemma 14. Schulman et al. [2015] Given that the protagonist policy π1 and the antagonist policy
π2 are α-coupled, then∣∣∣∣ E

s(t)∼π1

[
∆A(s(t))

]
− E

s(t)∼π2

[
∆A(s(t))

]∣∣∣∣ ≤ 4α(1− (1− α)t)max
s,a

|Aπ2(s, a)| (18)

Lemma 15. Given that the protagonist policy π1 and the antagonist policy π2 are α-coupled, then

E
s(t)∼π1

a(t)∼π2

[
Aπ2(s

(t), a(t))
]
− E

s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]
≤ 2(1− (1− α)t)max

(s,a)
|Aπ2

(s, a)| (19)

Proof. The proof is similar to that of Lemma 14 in Schulman et al. [2015]. Let nt be the number of
times that a(t

′) ∼ π1 does not equal a(t
′) ∼ π2 for t′ < t, i.e., the number of times that π1 and π2
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disagree before timestep t. Then for s(t) ∼ π1, we have the following.

E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

= P (nt = 0) E
s(t)∼π1
nt=0

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

+ P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

The expectation decomposes similarly for s(t) ∼ π2.

E
s(t)∼π2

a(t)∼π2

[
Aπ2(s

(t), a(t))
]

= P (nt = 0) E
s(t)∼π2

a(t)∼π2
nt=0

[
Aπ2

(s(t), a(t))
]
+ P (nt > 0) E

s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]

When computing E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2(s

(t), a(t))
]
, the terms with nt =

0 cancel each other because nt = 0 indicates that π1 and π2 agreed on all timesteps less than t. That
leads to the following.

E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]

= P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− P (nt > 0) E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2(s

(t), a(t))
]

By definition of α, the probability of π1 and π2 agreeing at timestep t′ is no less than 1− α. Hence,
P (nt > 0) ≤ 1− (1− αt)t. Hence, we have the following bound.

∣∣∣∣∣∣∣ E
s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣P (nt > 0) E
s(t)∼π1
nt>0

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− P (nt > 0) E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣∣∣

≤ P (nt > 0)


∣∣∣∣∣∣∣∣∣ E
s(t)∼π1

a(t)∼π2
nt≥0

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣ E
s(t)∼π2

a(t)∼π2
nt>0

[
Aπ2

(s(t), a(t))
]∣∣∣∣∣∣∣∣∣


≤ 2(1− (1− α)t)max

(s,a)
|Aπ2

(s, a)| (20)

The preceding lemmas lead to the proof for Theorem 4 in the main text.

Theorem 4. Suppose that π2 is the optimal policy in terms of entropy regularized RL under r.
Let α = max

s
DTV (π1(·|s), π2(·|s)), ϵ = max

s,a
|Aπ2

(s, a(t))|, and ∆A(s) = E
a∼π1

[Aπ2
(s, a)] −
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E
a∼π2

[Aπ2(s, a)]. For any policy π1, the following bounds hold.

∣∣∣∣∣Ur(π1)− Ur(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγϵ

(1− γ)2
(21)∣∣∣∣∣Ur(π1)− Ur(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆A(s(t))

]∣∣∣∣∣ ≤ 2αγ(2α+ 1)ϵ

(1− γ)2
(22)

Proof. We first leverage Lemma 12 to derive Eq.23. Note that since π2 is optimal under r, Remark 1

confirmed that H(π2) = −
∑∞

t=0 γ
t E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

.

Ur(π1)− Ur(π2)

= (Ur(π1)− Ur(π2)−H(π2)) +H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
+H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2
(s(t), a(t))

]
−

∞∑
t=0

γt E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

=

∞∑
t=0

γt E
s(t)∼π1

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]
− E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

+

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])

=

∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]
+

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])

(23)

We switch terms between Eq.23 and Ur(π1)− Ur(π2), then use Lemma 15 to derive Eq.24.

∣∣∣∣∣Ur(π1)− Ur(π2)−
∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t))

]∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]])∣∣∣∣∣

≤
∞∑
t=0

γt · 2max
(s,a)

|Aπ2
(s, a)| · (1− (1− α)t) ≤

2αγmax
(s,a)

|Aπ2
(s, a)|

(1− γ)2
(24)
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Alternatively, we can expand Ur(π2)− Ur(π1) into Eq.25. During the process, H(π2) is converted

into −
∑∞

t=0 γ
t E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

.

Ur(π1)− Ur(π2)

= (Ur(π1)− Ur(π2)−H(π2)) +H(π2)

= E
τ∼π1

[ ∞∑
t=0

γtAπ2(s
(t), a(t))

]
+H(π2)

=

∞∑
t=0

γt E
s(t)∼π1

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

+H(π2)

=

∞∑
t=0

γt E
s(t)∼π1

[
∆A(s(t)) + E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

+H(π2)

=

∞∑
t=0

γt E
s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]
− E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]
−∆A(s(t))

]
+

E
s(t)∼π1

[
∆A(s(t)) + E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

a(t)∼π2

[
Aπ2

(s(t), a(t))
]

=

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− 2 E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])

+

∞∑
t=0

γt

(
E

s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

− ( E
s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

]
)

)
(25)

We switch terms between Eq.25 and Ur(π1)− Ur(π2), then base on Lemma 14 and 15 to derive the
inequality in Eq.26.∣∣∣∣∣Ur(π1)− Ur(π2)−

∞∑
t=0

γt E
s(t)∼π2

[
∆Aπ(s

(t), a(t))
]∣∣∣∣∣

=

∣∣∣∣Ur(π1)− Ur(π2)−

∞∑
t=0

γt

(
E

s(t)∼π2

[
E

a(t)∼π1

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣

=

∣∣∣∣ ∞∑
t=0

γt

(
E

s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

])
−

∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2(s

(t), a(t))
]])∣∣∣∣

≤

∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π2

[
∆A(s(t))

]
− E

s(t)∼π1

[
∆A(s(t))

])∣∣∣∣∣+∣∣∣∣∣
∞∑
t=0

γt

(
E

s(t)∼π1

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]]

− E
s(t)∼π2

[
E

a(t)∼π2

[
Aπ2

(s(t), a(t))
]])∣∣∣∣∣

≤
∞∑
t=0

γt

(
(1− (1− α)t)(4αmax

s,a
|Aπ2

(s, a)|+ 2max
(s,a)

|Aπ2
(s, a)|)

)

≤
2αγ(2α+ 1)max

s,a
|Aπ2(s, a)|

(1− γ)2
(26)
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It is stated in Schulman et al. [2015] that max
s

DTV (π2(·|s), π1(·|s)) ≤ α. Hence, by letting

α := max
s

DTV (π2(·|s), π1(·|s)), Eq.23 and 26 still hold. Then, we have proved Theorem 4.

B.3 Objective Functions of Reward Optimization

To derive JR,1 and JR,2, we let π1 = πP and π2 = πA. Then based on Eq.21 and 22 we derive the
following upper-bounds of Ur(πP )− Ur(πA).

Ur(πP )− Ur(πA) ≤
∞∑
t=0

γt E
s(t)∼πP

[
∆A(s(t))

]
+

2αγ(2α+ 1)ϵ

(1− γ)2
(27)

Ur(πP )− Ur(πA) ≥
∞∑
t=0

γt E
s(t)∼πA

[
∆A(s(t))

]
− 2αγϵ

(1− γ)2
(28)

By our assumption that πA is optimal under r, we have AπA
≡ r Fu et al. [2018]. This equivalence

enables us to replace AπA
’s in ∆A with r. As for the 2αγ(2α+1)ϵ

(1−γ)2 and 2αγϵ
(1−γ)2 terms, since the objective

is to maximize Ur(πA)−Ur(πB), we heuristically estimate the ϵ in Eq.27 by using the samples from
πP and the ϵ in Eq.28 by using the samples from πA. As a result we have the objective functions
defined as Eq.29 and 30 where ξ1(s, a) = πP (a(t)|s(t))

πA(a(t)|s(t)) and ξ2 = πA(a(t)|s(t))
πP (a(t)|s(t)) are the importance

sampling probability ratio derived from the definition of ∆A; C1 ∝ − γα̂
(1−γ) and C2 ∝ γα̂

(1−γ) where
α̂ is either an estimated maximal KL-divergence between πA and πB since DKL ≥ D2

TV according
to Schulman et al. [2015], or an estimated maximal D2

TV depending on whether the reward function
is Gaussian or Categorical. We also note that for finite horizon tasks, we compute the average rewards
instead of the discounted accumulated rewards in Eq.30 and 29.

JR,1(r;πP , πA) := E
τ∼πA

[∑∞
t=0 γ

t
(
ξ1(s

(t), a(t))− 1
)
· r(s(t), a(t))

]
+ C1 max

(s,a)∼πA

|r(s, a)|(29)

JR,2(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

t
(
1− ξ2(s

(t), a(t))
)
· r(s(t), a(t))

]
+ C2 max

(s,a)∼πP

|r(s, a)|(30)

Beside JR,1, JR,2, we additionally use two more objective functions based on the derived bounds. W
JR,r(r;πA, πP ). By denoting the optimal policy under r as π∗, α∗ = max

s∈S
DTV (π

∗(·|s), πA(·|s),

ϵ∗ = max
(s,a(t))

|Aπ∗(s, a(t))|, and ∆A∗
A(s) = E

a∼πA

[Aπ∗(s, a)] − E
a∼π∗

[Aπ∗(s, a)], we have the fol-

lowing.

Ur(πP )− Ur(π
∗)

= Ur(πP )− Ur(πA) + Ur(πA)− Ur(π
∗)

≤ Ur(πP )− Ur(πA) +

∞∑
t=0

γt E
s(t)∼πA

[
∆A∗

A(s
(t))

]
+

2α∗γϵ∗

(1− γ)2

= Ur(πP )−
∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼πA

[
r(s(t), a(t))

]]
+

∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼πA

[
Aπ∗(s(t), a(t))

]
− E

a(t)∼π∗

[
Aπ∗(s(t), a(t))

]]
+

2α∗γϵ∗

(1− γ)2

= Ur(πP )−
∞∑
t=0

γt E
s(t)∼πA

[
E

a(t)∼π∗

[
Aπ∗(s(t), a(t))

]]
+

2α∗γϵ∗

(1− γ)2

= E
τ∼πP

[ ∞∑
t=0

γtr(s(t), a(t))

]
− E

τ∼πA

[ ∞∑
t=0

γt exp(r(s
(t), a(t)))

πA(a(t)|s(t))
r(s(t), a(t))

]
+

2α∗γϵ∗

(1− γ)2
(31)

Let ξ3 = exp(r(s(t),a(t)))
πA(a(t)|s(t)) be the importance sampling probability ratio. It is suggested in Schulman

et al. [2017] that instead of directly optimizing the objective function Eq.31, optimizing a surrogate
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objective function as in Eq.32, which is an upper-bound of Eq.31, with some small δ ∈ (0, 1) can be
much less expensive and still effective.

JR,3(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

tr(s(t), a(t))
]
−

E
τ∼πA

[∑∞
t=0 γ

t min
(
ξ3 · r(s(t), a(t)), clip(ξ3, 1− δ, 1 + δ) · r(s(t), a(t))

)]
(32)

Alternatively, we let ∆A∗
P (s) = E

a∼πP

[Aπ∗(s, a)]− E
a∼π∗

[Aπ∗(s, a)]. The according to Eq.27, we

have the following.

Ur(πP )− Ur(π
∗)

≤
∞∑
t=0

γt E
s(t)∼πP

[
∆A∗

P (s
(t))

]
+

2α∗γ(2α∗ + 1)ϵ∗

(1− γ)2

=

∞∑
t=0

γt E
s(t)∼πP

[
E

a(t)∼πP

[
Aπ∗(s(t), a(t))

]
− E

a(t)∼π∗

[
Aπ∗(s(t), a)(t)

]]
+

2α∗γ(2α∗ + 1)ϵ∗

(1− γ)2

(33)

Then a new objective function JR,4 is formulated in Eq.34 where ξ4 = exp(r(s(t),a(t)))
πP (a(t)|s(t)) .

JR,4(r;πP , πA) := E
τ∼πP

[∑∞
t=0 γ

tr(s(t), a(t))
]
−

E
τ∼πP

[∑∞
t=0 γ

t min
(
ξ4 · r(s(t), a(t)), clip(ξ4, 1− δ, 1 + δ) · r(s(t), a(t))

)]
(34)

B.4 Incorporating IRL Algorithms

Online RL Setting. In our implementation, we combine PAGAR with GAIL Ho and Ermon [2016],
VAIL Peng et al. [2019], and f-IRL Ni et al. [2021], respectively. In this section, we use JIRL to
indicate the IRL loss to be minimized in place of the notation JIRL in the main text. Accordingly, δ
is the target IRL loss.

• f-IRL. We use the FKL of f-IRL in our experiments. Since FKL is explicitly models a reward
function with a neural network, when PAGAR is combined with FKL, the meta-algorithm
Algorithm 1 can be directly implemented without changes except for letting JIRL be the
FKL loss.

• GAIL and VAIL. We take additional steps to incorporate GAN-based algorithms, as they
do not explicitly learn reward functions but instead train discriminators. When PAGAR is
combined with GAIL, the meta-algorithm Algorithm 1 becomes Algorithm 2. When PAGAR
is combined with VAIL, it becomes Algorithm 3. Both of the two algorithms are GAN-based
IRL, indicating that both algorithms use Eq.1 as the IRL objective function. In these two
cases, we use a neural network to approximate D, the discriminator in Eq.1. To get the
reward function r, we follow Fu et al. [2018] and denote r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
as mentioned in Section 1. Hence, the only difference between Algorithm 2 and Algorithm 1
is in the representation of the reward function. Regarding VAIL, since it additionally learns
a representation for the state-action pairs, a bottleneck constraint JIC(D) ≤ ic is added
where the bottleneck JIC is estimated from policy roll-outs. VAIL introduces a Lagrangian
parameter β to integrate JIC(D) − ic in the objective function. As a result its objective
function becomes JIRL(r) + β · (JIC(D)− ic). VAIL not only learns the policy and the
discriminator but also optimizes β. In our case, we utilize the samples from both protagonist
and antagonist policies to optimize β as in line 10 following Peng et al. [2019].

In our implementation, depending on the difficulty of the benchmarks, we choose to maintain λ
as a constant or update λ with the IRL loss JIRL(r) in most of the continuous control tasks. In
HalfCheetah-v2 and all the maze navigation tasks, we update λ by introducing a hyperparameter
µ. As described in the maintext, we treat δ as the target IRL loss of JIRL(r), i.e., JIRL(r) ≤ δ.
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Algorithm 2 GAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound δ, initial protagonist policy πP , antagonist
policy πA, discriminator D (representing r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
), Lagrangian parameter

λ, iteration number i = 0, maximum iteration number N
Output: πP

1: while iteration number i < N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Estimate JRL(πA; r) with DA

4: Optimize πA to maximize JRL(πA; r).
5: Estimate JRL(πP ; r) with DP ; JπA

(πP ;πA, r) with DP and DA;
6: Optimize πP to maximize JRL(πP ; r) + JπA

(πP ;πA, r).
7: Estimate JPAGAR(r;πP , πA) with DP and DA

8: Estimate JIRL(πA; r) with DA and E by following the IRL algorithm
9: Optimize D to minimize JPAGAR(r;πP , πA) + λ ·max(JIRL(r) + δ, 0)

10: end while
11: return πP

Algorithm 3 VAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound δ, initial protagonist policy πP , antagonist
policy πA, discriminator D (representing r(s, a) = log

(
πA(a|s)
D(s,a) − πA(a|s)

)
), Lagrangian parameter

λ for PAGAR, iteration number i = 0, maximum iteration number N , Lagrangian parameter β for
bottleneck constraint, bounds on the bottleneck penalty ic, learning rate µ.
Output: πP

1: while iteration number i < N do
2: Sample trajectory sets DA ∼ πA and DP ∼ πP

3: Estimate JRL(πA; r) with DA

4: Optimize πA to maximize JRL(πA; r).
5: Estimate JRL(πP ; r) with DP ; JπA

(πP ;πA, r) with DP and DA;
6: Optimize πP to maximize JRL(πP ; r) + JπA

(πP ;πA, r).
7: Estimate JPAGAR(r;πP , πA) with DP and DA

8: Estimate JIRL(πA; r) with DA and E by following the IRL algorithm
9: Estimate JIC(D) with DA,DP and E

10: Optimize D to minimize JPAGAR(r;πP , πA) + λ ·max(JIRL(r)− δ, 0) + β · JIC(D)

11: Update β := max
(
0, β − µ · (JIC(D)

3 − ic)
)

12: end while
13: return πP

In all the maze navigation tasks, we initialize λ with some constant λ0 and update λ by λ :=
λ ·exp(µ · (JIRL(r)−δ)) after every iteration. In HalfCheetah-v2, we update λ by λ := max(λ0, λ ·
exp(µ · (JIRL(r)− δ))) to avoid λ being too small. Besides, we use PPO Schulman et al. [2017] to
train all policies in Algorithm 2 and 3.

Offline RL Setting. We incorporate PAGAR with RECOIL Sikchi et al. [2024]. The original RECOIL
algorithm does not learn a reward function but learns a Q, V value functions and a policy π with
neural networks. In order to combine PAGAR with RECOIL, we made the following modification to
RECOIL:

• Instead of learning the Q value function, we explicitly learn a reward function r : S×A×S →
R, which takes the current state s, action a and the next state s′ as input, and outputs a real
number as the reward

• We use the same loss function as that for optimizing Q in RECOIL to optimize r by replacing
Q(s, a) with r(s, a, s′) + γV (s′) for every (s, a, s′) sampled from an offline dataset D. We
denote this loss function for r as JIRL(r) as in Eq.35 where S is an offline trajectory sample
set of some sub-optimal behavioral policy, dE,S

mix indicates a mixture between S and E sets,
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Algorithm 4 RECOIL w/ PAGAR
Input: Expert demonstration E, behavioral policy sample set S, reward function r, value function V ,
initial protagonist policy πP , antagonist policy πA, maximum iteration number N .
Output: πP

1: while iteration number i < N do
2: Train r using min

r
JIRL(r) + 0.001 · JPAGAR(r)

3: Train V using min
V

JV (V )

4: Train πA using max
πA

JRL(πA)

5: Train πP using max
πA

JRL(πP )

6: end while
7: return πP

and β is the mixing ratio as defined in Sikchi et al. [2024].

JIRL(r) := β
(
E(s,a,s′)∼S [r(s, a, s

′) + γV (s′)]− E(s,a,s′)∼E [r(s, a) + γV (s′)]
)
+

0.25 · E(s,a,s′)∼dE,S
mix

[
(r(s, a, s′))

2
]

(35)

• We use the same loss function for optimizing the value function V as in RECOIL to still
optimize V , except for replacing the target Q(s, a) with target r(s, a, s′) + γV (s′) for
every (s, a, s′) experience sampled from the offline dataset. Consequently, we have the loss
function for V as defined in Eq.36 where σ is a conservatism parameter defined in Sikchi
et al. [2024].

JV (V ) := E(s,a,s′)∼dE,S
mix

[
exp

(
(r(s, a, s′) + γV (s′)− V (s))/σ

)
+(

r(s, a, s′) + γV (s′)− V (s)
)]

(36)

• Instead of learning a single policy as in RECOIL, we learn a protagonist and antagonist
policies πP and πA by using the same SAC-like policy update rule as in RECOIL, except
for replacing Q(s, a) with r(s, a, s′) + γV (s′) for every (s, a, s′) experience sampled from
the offline dataset. The objective function for learning πA and πP are defined in Eq.37.

JRL(π) := E(s,a,s′)∼dE,S
mix

[
exp

(
(r(s, a, s′) + γV (s′)− V (s))

)
log π(a|s)

]
(37)

• With some heuristic, we construct a PAGAR-loss as follows.

JPAGAR(r) := E(s,a,s′)∼E

[
r(s, a, s′) · exp(clip

(
max(0, log

πP (a|s)
πA(a|s)

),−1, 1
)]

+

E(s,a,s′)∼S

[
r(s, a, s′) · exp(clip

(
min(0, log

πA(a|s)
πP (a|s)

),−1, 1
)]

(38)

• For simplicity, we multiply this PAGAR-loss JPAGAR with a fixed Lagrangian parameter
λ = 1e− 3 and add it to the aforementioned loss JIRL for optimizing r.

We summarize this RECOIL w/ PAGAR algorithm in Algorithm 4.

C Experiment Details

This section presents some details of the experiments and additional results.

C.1 Experimental Details

Hardware. All experiments are carried out on a quad-core i7-7700K processor running at 3.6 GHz
with a NVIDIA GeForce GTX 1050 Ti GPU and a 16 GB of memory. Network Architectures. Our
algorithm involves a protagonist policy πP , and an antagonist policy πA. In our implementation, the
two policies have the same structures. Each structure contains two neural networks, an actor network,
and a critic network. When associated with GAN-based IRL, we use a discriminator D to represent
the reward function as mentioned in Appendix B.4.
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• Protagonist and Antagonist policies. We prepare two versions of actor-critic networks, a
fully connected network (FCN) version, and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The FCN version, the actor and critic networks have 3 layers.
Each hidden layer has 100 neurons and a tanh activation function. The output layer output
the mean and standard deviation of the actions. In the CNN version, the actor and critic
networks share 3 convolutional layers, each having 5, 2, 2 filters, 2 × 2 kernel size, and
ReLU activation function. Then 2 FCNs are used to simulate the actor and critic networks.
The FCNs have one hidden layer, of which the sizes are 64.

• Discriminator D for PAGAR-based GAIL in Algorithm 2. We prepare two versions of
discriminator networks, an FCN version and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The FCN version has 3 linear layers. Each hidden layer
has 100 neurons and a tanh activation function. The output layer uses the Sigmoid
function to output the confidence. In the CNN version, the actor and critic networks share
3 convolutional layers, each having 5, 2, 2 filters, 2× 2 kernel size, and ReLU activation
function. The last convolutional layer is concatenated with an FCN with one hidden layer
with 64 neurons and tanh activation function. The output layer uses the Sigmoid function
as the activation function.

• Discriminator D for PAGAR-based VAIL in Algorithm 3. We prepare two versions of
discriminator networks, an FCN version and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The FCN version uses 3 linear layers to generate the mean
and standard deviation of the embedding of the input. Then a two-layer FCN takes a
sampled embedding vector as input and outputs the confidence. The hidden layer in this
FCN has 100 neurons and a tanh activation function. The output layer uses the Sigmoid
function to output the confidence. In the CNN version, the actor and critic networks share
3 convolutional layers, each having 5, 2, 2 filters, 2× 2 kernel size, and ReLU activation
function. The last convolutional layer is concatenated with a two-layer FCN. The hidden
layer has 64 neurons and uses tanh as the activation function. The output layer uses the
Sigmoid function as the activation function.

Hyperparameters The hyperparameters that appear in Algorithm 3 and 3 are summarized in Table 2
where we use N/A to indicate using δ∗, in which case we let µ = 0. Otherwise, the values of µ and δ
vary depending on the task and IRL algorithm. The parameter λ0 is the initial value of λ as explained
in Appendix B.4.

Parameter Continuous Control Domain Partially Observable Domain
Policy training batch size 64 256

Discount factor 0.99 0.99
GAE parameter 0.95 0.95

PPO clipping parameter 0.2 0.2
λ0 1e3 1e3
σ 0.2 0.2
ic 0.5 0.5
β 0.0 0.0
µ VAIL(HalfCheetah): 0.5; others: 0.0 VAIL: 1.0; GAIL: 1.0
δ VAIL(HalfCheetah): 1.0; others: N/A VAIL: 0.8; GAIL: 1.2

Table 2: Hyperparameters used in the training processes

Expert Demonstrations. Our expert demonstrations all achieve high rewards in the task. The number
of trajectories and the average trajectory total rewards are listed in Table 3.

C.2 Additional Results

Continuous Tasks with Non-Binary Outcomes We test PAGAR-based IRL in 5 Mujuco tasks where
the task objectives do not have binary outcomes. We append the results in three Mujoco benchmarks:
Walker2d-v2, HalfCheeta-v2, Hopper-v2, InvertedPendulum-v2 and Swimmer-v2 in Figure 6 and
7. Algorithm 1 performs similarly to VAIL and GAIL in those two benchmarks. The results show
that PAGAR-based IL takes fewer iterations to achieve the same performance as the baselines. In
particular, in the HalfCheetah-v2 task, Algorithm 1 achieves the same level of performance compared
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Task Number of Trajectories Average Tot.Rewards
Walker2d-v2 10 4133

HalfCheetah-v2 100 1798
Hopper-v2 100 3586

InvertedPendulum-v2 10 1000
Swimmer-v2 10 122

DoorKey-6x6-v0 10 0.92
SimpleCrossingS9N1-v0 10 0.93

Table 3: The number of demonstrated trajectories and the average trajectory rewards

Figure 6: (Left: Walker2d-v2. Right: HalfCheeta-v2) The y axis indicates the average return per
episode.

with GAIL and VAIL by using only half the numbers of iterations. IQ-learn does not perform well in
Walker2d-v2 but performs better than ours and other baselines by a large margin.

(a) Hopper-v2 (b) InvertedPendulum-v2 (c) Swimmer-v2

Figure 7: Comparing Algorithm 1 with baselines. The suffix after each ‘PAGAR-’ indicates which
IRL algorithm is utilized in Algorithm 1. The y axis is the average return per step. The x axis is
the number of iterations in GAIL, VAIL, and ours. The policy is executed between each iteration
for 2048 timesteps for sample collection. One exception is that IQ-learn updates the policy at every
timestep, making its actual number of iterations 2048 times larger than indicated in the figures.

C.3 Influence of Reward Hypothesis Space

In addition to the DoorKey-6x6-v0 environment, we also tested PAGAR-GAIL and GAIL in
SimpleCrossingS9N2-v0 environment. The results are shown in Figure 6 and 8.
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(a) MiniGrid-DoorKey-6x6-v0 (b) MiniGrid-SimpleCrossingS9N2-v0

Figure 8: Comparing Algorithm 1 with baselines. The prefix ‘protagonist_GAIL’ indicates that
the IRL algorithm utilized in Algorithm 1 is the same as in GAIL. The ‘_Sigmoid’ and ‘_Categ’
suffixes indicate whether the output layer of the discriminator is using the Sigmoid function or
Categorical distribution. The x axis is the number of sampled frames. The y axis is the average return
per episode.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the task-aligned reward function is hardly predictable in
IRL-based IL setting. As mentioned in Section 5, "How to build RE,k", it is designer’s
decision to set value for the parameter k.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Every lemma, proposition and theorem have the set of assumptions included
in them. The proves are included in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclosed all the information in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the source code in our submission, including the instructions on
how to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclosed all the information in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The curves in the plots are smoothed. They reflect how the policies’ average
returns change as the learning episodes increase.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclosed all the information in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper does not discuss and is not intended to cause significant societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

40

27686https://doi.org/10.52202/079017-0869

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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