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Abstract

Operator learning problems arise in many key areas of scientific computing where
Partial Differential Equations (PDEs) are used to model physical systems. In such
scenarios, the operators map between Banach or Hilbert spaces. In this work, we
tackle the problem of learning operators between Banach spaces, in contrast to the
vast majority of past works considering only Hilbert spaces. We focus on learning
holomorphic operators — an important class of problems with many applications.
We combine arbitrary approximate encoders and decoders with standard feedfor-
ward Deep Neural Network (DNN) architectures — specifically, those with constant
width exceeding the depth — under standard £-loss minimization. We first identify
a family of DNNS such that the resulting Deep Learning (DL) procedure achieves
optimal generalization bounds for such operators. For standard fully-connected
architectures, we then show that there are uncountably many minimizers of the
training problem that yield equivalent optimal performance. The DNN architectures
we consider are ‘problem agnostic’, with width and depth only depending on the
amount of training data m and not on regularity assumptions of the target operator.
Next, we show that DL is optimal for this problem: no recovery procedure can
surpass these generalization bounds up to log terms. Finally, we present numerical
results demonstrating the practical performance on challenging problems including
the parametric diffusion, Navier-Stokes-Brinkman and Boussinesq PDEs.

1 Introduction

Operator learning is increasingly being investigated for problems arising in computational science
and engineering. These problems are often posed in terms of Partial Differential Equations (PDEs),
which can be viewed as operators mapping function spaces to function spaces. Depending on the
requirements for well-posedness of the PDE, both the input and solution spaces are often Hilbert, or,
more generally, Banach spaces. The aim of operator learning is to efficiently capture the dynamic
behavior of these operators using surrogate models, typically based on Deep Neural Networks
(DNNs). Specifically, we want to learn

F:X>Y, XeXoFX)e, (1.1)

where ) is the PDE solution space, X represents the data supplied to the PDE, i.e., possibly multiple
functions describing initial and boundary conditions or forcing terms or, equivalently, a vector of
parameters defining such functions.
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Let 1 be a probability measure on X'. Given noisy training data
{(Xi, F(X3) + Eq) b2y (1.2)

where X1,..., X, ~iiq4. p and FE; is noise, a typical operator learning methodology consists of
three objects: an approximate encoder £y : X — R%¥, an approximate decoder Dy : R%> — ) and

aDNN N : Réx — R4, It then approximates F’ as
Fr~F:=DyoNoky. (1.3)

The encoder and decoder are either specified by the problem, learned separately from data, or
learned concurrently with N. The goal, as in all supervised learning problems, is to ensure good
generalization via the learned operator F' from as little training data m as possible.

1.1 Contributions

As noted in, e.g., [[16,166]], the theory of deep operator learning is still in its infancy. We contribute
to this growth in the following ways. We consider learning classes of holomorphic operators
(Assumption [2.2)), with arbitrary approximate encoders £x and decoders Dy. As we explain in
(see also [52] §5.2], 53] §3.4] and [41]) these operators are relevant in many applications, notably
those involving parametric PDEs. The main contributions of this work are as follows.

1. We consider operators taking values in general Banach spaces. As noted, the vast majority of
existing work (with the notable exception of [[16]) considers Hilbert spaces.

2. We consider standard feedforward DNN architectures (constant width, width exceeds depth) and
training procedures (¢2-loss minimization).

3. (Theorem We construct a family of DNNs such that any approximate minimizer of the
corresponding training problem satisfies a generalization bound that is explicit in the various error
sources: namely, an approximation error, which decays algebraically in the amount of training
data m; encoding-decoding errors, which depend on the accuracy of the learned encoders and
decoders; an optimization error, and; a sampling error, which depends on the noise E; in @D

4. These DNN architectures are problem agnostic; they depend on m only. In particular, the
architectures are completely independent on the regularity assumptions of target operator.

5. (Theorem [3.2)) We show that training problems based on any family of fully-connected DNNs
possess uncountably many minimizers that achieve the same generalization bounds.

6. (Theorems 3.113.2) We provide bounds in both the L?-and L;°-norms that hold in high probability,
rather than just expectation.

7. (Theorems [.TH4.2) We show that the generalization bound is optimal with respect to m: no
learning procedure (not necessarily DL-based) can achieve better rates in m up to log terms.

8. Finally, we present a series of experiments demonstrating the efficacy of DL on challenging
problems such as the parametric diffusion, Navier-Stokes-Brinkman and Boussinesq PDEs, the
latter two of which involve operators whose codomains are Banach, as opposed to Hilbert, spaces.

1.2 Relation to previous work

Approximating an operator between function spaces with training data obtained through numerical
PDE:s solves presents a formidable challenge. Nevertheless, in recent years, significant advances
have been made through the development of DL techniques, leading to the field of operator learning
[LLSL 1405 514 1531 1561 1581 1601 162) 169, 183, 93| [103]. These approaches often leverage intricate DNN
architectures to approximate the complex mappings inherent in physical modelling scenarios. Many
works have also focused on the practical aspects of operator learning in real-world applications
[13] 124} 35137, 1421145148149, 159, 61} 164, 165, [70L [73, [77, 180, 1811, 184}, 1961 198101}, (104, [105].

On the theoretical side, universal approximation theorems for operator learning have been developed
in [50} 155,168} 169] and elsewhere. Such bounds are typically not quantitative in the size of the DNN
needed to achieve a certain error. For this, one typically either restricts to specific operators (e.g.,
certain PDEs) or imposes regularity conditions. One such assumption is Lipschitz regularity — see
[LO; (161 155, 166l I87]] and references therein. However, learning Lipschitz operators suffers from a
curse of parametric complexity [54]], meaning that algebraic rates may not be achievable. Another
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common assumption is holomorphy. While stronger, it is, as noted, very relevant to operator learning
problems involving parametric PDEs. Quantitative approximation results for holomorphic operators
have been shown in [26, 31,141,155, 71] and elsewhere.

However, these works do not consider the generalization error, i.e., the error incurred when learning
the approximation from the finite training data (T.2). This is particularly important in applica-
tions of operator learning where data is obtained through expensive numerical PDE solves, since such
problems are highly data-starved. Several works have tackled this question from the perspective of
statistical learning theory and nonparametric estimation [[16} 55 [66], but only for Lipschitz operators.
As observed in [6] §9.5], this approach generally leads to a best O(m~'/2) decay of the LZ-norm
error with respect to m. Theorem 4.1 shows that such a rate is strictly suboptimal for learning the
classes of holomorphic operators we consider. Our generalization bounds in Theorems [3.1}j3.2] do not
use such techniques, and yield near-optimal rates in both the L?- and L°°-norms. See also [30] for
some related work in this direction for reduced-order modelling with convolutional autoencoders.

Our work is inspired by recent research on learning holomorphic, Banach-valued functions [2, |5,
6]. We extend both these works, in particular, [3]], to learning holomorphic operators. We also
significantly improve the error decay rates in [5] with respect to m and show they can be achieved
using substantially smaller DNNs with standard training (i.e., #2-loss minimization). See Remarks

Our theoretical guarantees fall into the category of encoder-decoder-nets [52l], which
includes the well-known PCA-Net [10] and DeepONet [68] frameworks. As in other recent works
(161 30. 155, 66]], in Theorems [3.1}j3.2] we assume the encoder-decoder pair (Ex, Dy) in (T3) have

been learned, and focus on the generalization error when training the DNN .

2 Notation, assumptions, setup and examples

2.1 Notation

Let (X, |lx) and (), ] - |l)) be Banach spaces and ; be a probability measure on X'. Let

(V"I - ly~) be the dual of Y and B(Y*) be its unit ball. The Bochner and Pettis LP-norms of
a (strongly and weakly, respectively) measurable operator F' : X — ) are defined as

1/p
Pl = ([ 1FOO15 au00)

1/p
Wl = s ([ wrrancn) .

y*€B(Y*)

respectively, for 1 < p < oo, and analogously for p = oo (see, e.g., [8, 44]). Notice that
|HFH|L{;(XW) < ||F“Lﬁ()(;y) for 1 < p < oo, while H|F|”L3°(X;y) = ”FHLEO(X;)))'

Throughout this work, £7(N), 0 < p < oo denotes the standard (¥ space with (quasi-)norm || - ||,.

We also define the monotone (P space ¢4, (N) as the space of all sequences z = (z;)2°; € RY whose
minimal monotone majorant Z € £7(N). Here z = (Z;)72; is defined as Z; = sup;, |2;|.

Given a (componentwise) activation function o, we consider feedforward DNNs of the form
N:R" 5 RF, 25 N(2) = Aps1 (0(AL(0(- - o(Ao(2)) ), .1)

where A; : RNVt — RNi+1 are affine maps, and Ng = n and Ny o = k. We define width(N) =
max{Ni,...,Np+1} and depth(N) = L. We denote a class of DNNs of the form (2.1)) with a
fixed architecture (i.e., fixed activation function, depth and widths) as N, and write width(/\/ ) =
max{Ni,...,Np1} and depth(N) = L.

2.2 Assumptions and setup
Let F': X — ) be the unknown operator we seek to learn and
Ex X 5 R¥ Dy :RW™ 5 X, & :Y R Dy :RY 5

be approximate encoders and decoders for X and ), respectively. As mentioned, we assume that
these maps have already been learned, and focus on the training of the DNN N in (1.3). Our main
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results allow for arbitrary encoders and decoders (subject to the assumptions detailed below), and
provide generalization bounds that are explicit in these terms: specifically, they depend on how well
each encoder-decoder pair approximates the respective identity map on X or ).

In order to formulate the precise notion holomorphy for the operator F', we require the following.

Let D = [~1,1]Y and g be the uniform probability measure on D. Given p > 1, we define the
Bernstein ellipse E(p) = {(z+27")/2: 2 € C, 1 < |z| < p} C C, and, for convenience, we let
E(1) = [-1,1]. Next, for p = (p;)ien > 1, we define the Bernstein polyellipse as the product

E(p) = E(pr) x E(p2) x -+~ C C.
Definition 2.1 (Holomorphic map). Lete > 0, b € ¢}(N) with b > 0. A Banach-valued function
f: D — Yis (b,e)-holomorphic if it is holomorphic in the region

R(b,e) = U {5(,)) cp>1, Z ((pj+p;1)/2=1)b; < 5} cCY b= (b))jen. (22)

See, e.g., [17,185]. As noted in [7] we can, by rescaling b, assume that ¢ = 1. For convenience, we
define the following unit ball, consisting of all such functions of norm at most one over R (b, 1):

H(b) ={f: D —V (b,1)-holomorphic : | f(z)[l,, < 1, Vx € R(b,1)}. (2.3)

Assumption 2.2. Let D = [—1,1]N and o be the uniform probability measure on D.

(A.I) There is a measurable mapping v : X — RY such that pushforward < := iy is a quasi-uniform
measure supported on D and t|g,pp(y) @ X — £°°(N) is Lipschitz with constant L, > 0.

(A.Il) The operator I has the form F = f o, where f € H(b) for some b € £},(N) and 0 < p < 1.
(All) The map Ex = L4, © DX o EX is measurable (here 14, : X — R4~ is the restriction of i, ie.,

Ly (X) = (1(X);)$*,) and the pushforward & := Exty is absolutely continuous with respect to .
(A.1V) The maps Dy and &y are linear and bounded.

Now let X, ..., X,, ~iiq. pn and consider the training data
{(X, V), c (X xY)™, whereY; =F(X;)+E; €)Y 2.4)
and E; € ) represents noise. Let A be a class of DNNs N : Rex _s R and define

F~F:=DyoNoC&y, WhereNeargmm—ZHY DyoNo&x(X)|} (25
NeN

2.3 Discussion of assumptions

‘We now discuss (A.I)-(A.IV). In §E]we describe future work on relaxing these assumptions.

(A.]) is a weak assumption. It asserts that there is a Lipschitz map ¢ under which the pushforward
of u is a quasi-uniform measure supported in D. As we discuss in Example this is notably
the case when ( is the law of some random field with an affine parametrization involving bounded
random variables — a situation that occurs frequently in parametric and stochastic PDE problems.
(A.II) describes the specific holomorphy of the operator F' — see Remark [2.4] for details. Note that we
require b € £,(N), not just b € ¢°(N). It is known [7]] that one cannot learn holomorphic functions
(and hence operators) from finite data if b € (?(N ) only (A.IID) is a relatively weak assumption. In

view of (A.I), we expect it to hold as long as the DX o€ x =~ Ly sufficiently well. Finally, (A.IV) is
a standard assumption, which holds for instance in the case of PCA-Net and DeepONet. The former

also enforces the learned encoder £ x to be linear, which is not needed in our setup. Moreover, both

approaches usually only deal with the case where both X' and ) are Hilbert spaces.

Example 2.3 (Parametric PDEs) A common operator learning problem involves learning the map
F:ae X~ u(a) €)Y, whereu(a)satisfies Fou =0 (2.6)

and F, specifies a certain PDE depending on a parameter or function a. A standard example is the
elliptic diffusion equation over a domain 2 C R™. Here a = a(x) € L*°(Q2) =: X is the diffusion
coefficient and © = wu(+; a) is the solution of the PDE

=V - (aVu(z;a)) =g, 2€Q, u(z;a) =0, z € N 2.7
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Problems such as (2.6) are ubiquitous in scientific computing, with many applications in engineering,
biology, physics, finance and beyond. In many such applications, it is common to assume that the
measure 4 on X is the law of a random field

a(z) = a(s@) = ao(-) + > _ cizidi(-), (2.8)
=1

for functions ag, ¢; € X, where the x; are random variables and ¢; > 0 are scalars that ensure that
a € L>°(Q). Under some mild assumptions, (2.8) is then the Karhunen-Loeve (KL) expansion of the
measure p. See, e.g., [91] (see also [S5, §3.5.1]). The x; are typically independent. While in some
settings, they may have infinite support, it is also common in practice to assume they range between
finite maxima and minima. After rescaling, one may therefore assume that z € D = [—1, 1]V,

Problems of this type fits into our framework. Suppose that @ = (x1,x2,...) ~ o. The measure
1 is then given as the pushforward = affjp and f : D — ) is the parametric solution map
frx e Dw— u(;a(x)) € Y. If needed, the map ¢ can be defined in a number of different ways.
Suppose, for instance, that X" is a Hilbert space, e.g., X = LQ(Q), and {¢; 2, is a Riesz system
(this holds, for instance, in the case of a KL expansion, in which case {¢; -2, 1s an orthonormal
basis). Then {¢;}5°, has a unique biorthogonal dual Riesz system {; } ;. We may therefore define
via— ({a—ao, wi>L2(Q)/CfL‘)Zl. Notice that ¢ is a bounded linear map and F'(X) = f o (X)) =
f(z) for X = a(x) ~ pu. However, evaluating ¢ is often not required for computations (see §A.1).

This example considers an affine parametrization (2.8) inducing the measure p. Note that other
parametrizations can be considered. Common examples include the quadratic a(z;x) = ap(z) +

(3222, cimii(2))” and log-transformed a(z, @) = exp (352, cirii(z)) parametrizations [17].

Remark 2.4 (Holomorphy assumption) In the previous example, the operator F' stems from the
solution map f : D — ) of a parametric PDE. The regularity of solution maps of parametric PDEs
has been intensively studied, and it is known that many such maps are (b, £)-holomorphic (hence
the resulting operator satisfies (A.I)). Consider, for instance, the affine diffusion problem (2.7)-(2-8).
Under a mild uniform ellipticity condition, the solution map of the standard weak form of the PDE
f:x €D~ ula(;x)) € HY(Q) is (b, €)-holomorphic with b = (b;)2; and b; = Cilldill Lo -
See, e.g., [3, Prop. 4.9], as well as @ Similar results are known for other parametric PDEs. This
includes parabolic PDEs, various types of nonlinear, elliptic PDEs, PDEs over parametrized domains,
parametric hyperbolic problems and parametric control problems. See [19] or [3, Chpt. 4] for reviews.

3 Main results I: upper bounds

We now present our first two main results. In these results, given an optimization problem min; f(¢),
we say that £ is a T-approximate minimizer for some 7 > 0 if f(f) < min, f(t) + 72.

Theorem 3.1 (Existence of good DNN architectures). Let m > 3, § > 0, 0 < ¢ < 1 and
L = L(m,e€) = log*(m) 4 log(1/€). Then there exists a class N of hyperbolic tangent (tanh)
DNNs N : R%** — R depending on m and € only with

width(N) < (m/L)'*0,  depth(N) < log(m/L), (3.1

such that following holds. Suppose that Assumption[2.2]holds and
dx >[m/L], L,-|Zx —Dxo §X||Lﬁ(x;x) <c-(m/L)"V?, (3.2)
where Ly : X — X is the identity map and ¢ > 0 is a universal constant. Let X1, ..., X, ~iid [

and consider the noisy training data 24) with arbitrary noise E; € Y. Then, with probability at

least 1 — €, every T-minimizer N of 2.3), where T > 0 is arbitrary, yields an approximation F that
satisfies

£ — ﬁ|||Lg(x;y) S Eapp2 + Ex 2+ Ey 2 + Eopt2 + Esamp 2, (3.3)
HF - ﬁ”[ﬁo(){;)}) ,S Eapp,oo + EX,oo + Ey,oc + Eopt,oo + Esamp,ooa (34)

and, if Y is a Hilbert space,
||F - ﬁHLi(X;y) S Eapp,2 + Ex2 + Ey 2+ Eopt2 + Esamp,2- (3.5)
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Here, the approximation error terms E,pp 4, ¢ = 2,00, are given by
Eapp,g = ay - C(b,p, &) - (m/L)9+1_1/q_1/p7 (3.6)

where ay = ||Dy o Eylly,_,y, C(b,p,§) > 0depends on'b, p and § only and 0 = 0 if Y is a Hilbert
space (as in 3.3)) or 8 = 1/2 otherwise (as in (3.3)-(3.4)). The other terms are given by

Exp=ay-L,-y/m/(Le) - |Ix — Dx o gXHLg(x;X)
Exoo=ay-L,-v/m/L- (\/ m/L-|Zx — Dx o Exllpz xx) T | Zx — Dx o SX”Lﬁo(X;X))
Eys =Ty =Dy oyl y)/Ve

Eyoo = |2y =Dy o &l oy + Vm/L- 1Ty =Dy o &yl vy

b Fgup

(3.7)
where Ty : ) — Y is the identity map and, lf||E||§y =" I Ei i,
T+27T q=2 1Ellyy/vm g =2
E = E = ’ . 3.8
opt { /m/LT L om g=o00 ) samp,q {HE”Q,)}/\/Z g =00 ( )

(Proofs of this and all other theorems are in §CH{G| of the supplemental material.) This theorem shows
that there is a family of tanh DNNs that yield provable bounds for learning holomorphic operators.
The error (3.3)-(3.5) decomposes into an approximation error (3.6), which decays algebraically in
the amount of training data m. Later, in Theorems we show that these rates are optimal when
Y is a Hilbert space, up to log factors. Next, are the encoding-decoding errors (3.7)), which depend on
how well the approximate encoder-decoder pairs (£x, Dy ) and (€y, Dy) approximate the identity
maps on X and ), respectively. Observe that these terms are increasing in m for fixed encoders
and decoders. Therefore, as one expects, the accuracy of the encoder-decoder approximations
Dy o Ex ~ Iy and Dy o &y = Iy should increase with increasing m to ensure decay to zero of the
generalization error as m — oo. The specific terms in (for ¢ = 2) are quite standard in operator
learning. See, e.g., [53,155]. When the encoders and decoders are computed via PCA, as in PCA-Net,
standard bounds can be derived for these terms [53]]. For similar analysis in the case of DeepONets,
see [53]]. Finally, the error (3.3)-(3.3) involves an optimization error Eqy, Which primarily depends
on how accurately the optimization problem (2.3) is solved (i.e., the term 7), and a sampling error
Esamp, which depends on the error in the training data (2.4).

Theorem@] allows ) to be a Banach or a Hilbert space. Overall, when ) is only a Banach space, we
obtain a weaker Li-norm bound involving the Pettis norm and, moreover, the approximation
error E,pp 4 is worse by a factor of 1/2 than when ) is a Hilbert space. (Note that one can establish
a bound for the Bochner Li—norm error when ) is a Banach space via and the inequality
I| - ||L;{(X;y) < | [[pe (,y- However, we do not believe the resulting bound is sharp). As we

discuss in Remark the discrepancies between the two cases stem from the lack of an inner
product structure and, in particular, the absence of Parseval’s identity when ) is a Banach space.

Observe that the DNN architecture in Theorem [3.1]is independent of the smoothness of the operator
being learned. We term such an architecture problem agnostic. This theorem considers tanh activations
only. However, as we discuss in Remark [D.T1] other activations can be readily used instead. Other key
facets of Theorem [3.1] are the width and depth bounds (3.T). Qualitatively, these agree with empirical
practice: namely, better performing DNNs tend to be wider than they are deep, and relatively shallow
DNNs perform well in practice (see [24] 25]] and references therein). We also see this later in §5]

On the other hand, the family \ is not fully connected. As we describe in §C.2.1] while the weights
on the final layer can be arbitrary real numbers, the weights and biases in the hidden layers come from
a finite (but large) set: they are handcrafted to approximately emulate certain multivariate orthogonal
polynomials. Since fully-connected DNNG are typically used in practice, Theorem [3.1]is essentially a
theoretical contribution. In our next result, we consider the more practical scenario of fully-connected
DNNS.

Theorem 3.2 (Fully-connected DNN architectures are good). There are universal constants
€1, Co,C3,C4 > 1 such that the following holds. Let m, §, € and L be as in Thearem@

dx > ci(m+1log(1/e)), L,-||Zx — Dy o 5»«\IL3<X;X) < ¢(8) - (m+1log(1/e)"Y%, (3.9)
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where c(8) > 0 depends on & only, consider any class N of fully-connected DNNs satisfying
(no,nrt2) = (dy,dy), Ni,...,Npp1 > ¢+ (m+log(1/e)) - (m/L)°, L > cs-log(m/L).

(3.10)
Suppose that Assumption 2.2 holds and that the pushforward < in (A.I) is the tensor-product of a
univariate probability distribution with mean zero and variance w 2 1. Let X1, ..., Xm ~iid. It

and consider 24) with arbitrary E; € Y. Then the following hold with probability at least 1 — e.

(A) Uncountably many ‘good’ minimizers. The problem [2.3) has uncountably many minimizers that
satisfy (3.3) with = 0 or 3.3) with 7 = 0 if Y is a Hilbert space. They also satisfy (3.4) with
7 = 0 and the modified right-hand side \EEaPP’OO +LEx o0+ \EEy,OO + Fopt, 00 + ﬁEsamp’oo.

(B) Good minimizers are stable. Suppose that Ex € Li° (X R and let 7, > 0 be arbitrary. Then
there is a neighbourhood of DNN parameters around the parameters of each minimizer in (A) for
which the approximation corresponding to any parameters in this neigbourhood also satisfies the
same bounds as in (A) with T = T,

(C) Good minimizers can be far apart in parameter space. For sufficiently large m, there are at least
(m/(caL))?°™ minimizers satisfying the bounds in (A) such that, for any two such minimizers,
their parameters satisfy ||0'|| = ||0]| and |0’ — 0] 2 1.

This theorem states that DL with fully-connected DNN architectures of sufficient width and depth
(3-10) can succeed, since there are minimizers that yield the optimal bounds of Theorem[3.1] Such
minimizers are uncountably many in number (A), stable to perturbations (B) and many of them
(exponentially in m) have sufficiently distinct and nonvanishing/nonexploding parameters (C). This
theorem does not imply that a/l minimizers are ‘good” — an issue we discuss further in §6|— but our
numerical results in §5|suggest that (approximate) minimizers obtained through training do, at least
for the experiments considered, achieve the rates specified in Theorem|3.1

4 Main results II: lower bounds

We now show that the various approximation errors are nearly optimal. For this, we ignore the
encoding-decoding, optimization and sampling errors and proceed as follows. Let C'(X’; )) be the
Banach space of continuous operators. We term an (adaptive) sampling map as any map

L:CX,Y)= Y™, Fe LF)=(F(X:)i,, “4.n

where X; € X, Xy = X5(F(X;)) € X potentially depends on the previous evaluation F'(X1),
X3 = X3(F(X4), F(X2)) € X, and so forth. Next, we term a reconstruction map as any map
R : Y™ — L2(X;)). Given this, we let H(b,1) = {F = fow: f € H(b)} and define
0m(b) = inf sup |[|[FF—RoL(F)| ) 4.2)
LR Fet(be) Li(xy)
where the infimum is taken over all such £ and R. In other words, 6, (b) measures how well one can
learn holomorphic operators using arbitrary training data and an arbitrary reconstruction procedure.

Theorem 4.1 (Optimal L? error rates). Suppose that (A.I) holds. Then, for any 0 < p < 1 there is a
constant c¢(p) > 0 such that the following hold.

(i) For eachm € N, thereis a b € (5 (N), b> 0, ||b]|,, 4 = 1 such that 0,,(b) > c(p) - m!/2=1/p,

Cml/2Vp
log2/?(2m)’

(ii) Thereisa b € (3 (N), b > 0, |[b]|,, \y = 1 such that 0,,,(b) > c(p) Vm € N.

This theorem shows that the error £, 2 in Theorems [3.1}{3.2]is optimal, up to log terms, whenever

Y is a Hilbert space: there does not exist a reconstruction map surpasses the rate m'/2=1/? for
learning holomorphic operators. Note that this result applies not only to DL-based procedures, but
any procedure that learns such operators from m samples. Another consequence of this result is that
adaptive sampling, i.e., active learning, is of no benefit. As shown by Theorems [3.1}j3.2} the optimal
rate m'/271/? can, up to log terms, be achieved through inactive learning, i.e., i.i.d. sampling from .

Theorem considers L2-norm. For the L°°-norm, we present a somewhat weaker result. Let

ém(b) = i%f{EXIuHH,XmNN sup ”F - R({Xla F(XZ)})HLOC(X,)})}a 4.3)
FeH(b,e) "

27731 https://doi.org/10.52202/079017-0871



where the infimum is taken over all reconstruction maps R : (X' x V)™ — L7°(X;)) only.

Theorem 4.2 (Optimal L error rates). Suppose that (A.1) holds and that the pushforward < is the
tensor-product of a univariate probability distribution with mean zero and variance w 2, 1. Then, for
any 0 < p < 1 there is a constant ¢(p) > 0 such that the following hold.

(i) For eachm € N, thereis ab € (j(N), b> 0, ||b]|,, \y = 1 such that O, (b) > ¢(p) - 7{:);:;;
(ii) Thereisa b € €5 (N), b > 0, |[b]|,, \y = 1 such that O (b) > c(p) - %, Ym € N.

As with the previous theorem, this result asserts that the rate mi=1/p ig optimal in the L°°-norm
when Y is a Hilbert space. However, it is strictly weaker than Theorem [4.1] as it only considers
i.i.d. random sampling from 4, as opposed to arbitrary (adaptive) samples. Note that Theorem[.1]is
an extension of [7, Thm. 4.4]. Theorem[4.2]is new, and is of independent interest since it partially
addresses an open problem of 7] about deriving lower bounds in the L°-norm, as opposed to just

the Li-norm. See ~ for more discussion.

S Numerical experiments

We now present numerical results for DL applied to various different parametric PDE problems, as in
Example[2.3] For a full description of our experimental setup, see §AlB]

Since the main objective of this work is to examine the approximation error, we follow a standard
setup and fix the encoder and decoders for each experiment, so that £x and Dy in do not change
for different choices of N. We also set up our experiments so that encoding-decoding and
sampling errors are zero. We do this in a standard way. To ensure that Ex , = 0, we truncate
the parametric expansions (2.8)) after d terms (henceforth termed the parametric dimension) and
define the encoder £x accordingly. This means we effectively consider a parametric PDE depending
on finitely-many parameters. We use Finite Element Methods (FEMs) to both solve the PDE (for
generating training and testing data) and define the decoder Dy, (see (A.2)). To ensure that Ey, , = 0,

we compute errors with respect to the Bochner L2 (X'; J)-norm, where Y = Dy,(R%) is the FEM
discretization of ). In other words, we use the same FEM code to ienerate test data and compute the

errors as we do to construct the operator approximation F'. See §A.1|for further details.

The DNNSs in our experiments are fully-connected and of the form (2.I). We denote by o L x N

DNN a DNN N with activation function &, width N and depth L. To solve (Z.3) we use Adam [47]
with early stopping and an exponentially decaying learning rate. We train our DNN architectures for
60,000 epochs and results are averaged over a number of trials. See §A.2]for further details.

Parametric elliptic diffusion equation. Our first example is the parametric elliptic diffusion equation
(2.7). This PDE arises in many scientific computing applications, such as groundwater flow modelling,
see, e.g., [95]. We describe the full PDE and its FE discretization in @ In our experiments, we
consider both affine (B.T)) and log-transformed diffusion coefficients. The latter is particularly
useful in the groundwater flow problem as the permeability of various layers of sediment can vary
on logarithmic scales. Differing from most prior work, we consider a novel mixed variational
formulation [32]] of (2.7), which has a number of key practical benefits (see §B.3.1). In this case,
Y = L3(9) is a Hilbert space. Fig. compares the error versus the amount of training data m for
various DNN architectures for learning the solution map of this PDE in d = 4 and d = 8 parametric
dimensions with these two diffusion coefficients. We observe that architectures with the Exponential
Linear Unit (ELU) or hyperbolic tangent (tanh) activation generally outperform similar architectures
with the Rectified Linear Unit (ReLU) activation (as we discuss in Remark [D.TT] this difference is
in agreement with our theoretical analysis). Overall, the best performing DNNs appear to roughly
match the plotted rate m~!. As we explain further in this rate is precisely that predicted by
our theory. In particular, the parametric solution map (recall Remark is (b, €)-holomorphic with
b € 7, (N) for any p < 2/3, giving an effective convergent rate m'/2~1/? that is arbitrarily close to
m~!. Another important fact that we observe is that despite the parametric dimension doubling from
4 to 8, there is little change in the error behaviour.

Parametric Navier-Stokes-Brinkman equations. We next consider the parametric Navier-Stokes-
Brinkman (NSB) equations. See §B.4|and (B.14) for the full definition. Here the solution is a pair
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Figure 1: Elliptic diffusion equation. Average relative Li(z\? ; JN))—norm error versus m for different DNNs
approximating the solution operator for the elliptic diffusion equation (B.9). The first two plots use the affine
coefficient ay,q (B-I) with d = 4, 8, respectively. The rest use the log-transformed coefficient az, 4 (B-2).

Affine coeff. NSB u e L'(Q), d =1 Affine coeff. NSB ue L'(Q), d=8 LogKL coeff. NSB uc L'(Q),d =4 LogKL coeff. NSB uc L'(Q2),d =8

[F=ELU 110 DNN
e~ELU 10 x 100 DNN
U4

[=ELU 110 DN
102 fe-ELU 10 x 100 DNN
U4 v

[~=ELU 110 DN
1072 fw-ELU 10 x 100 DNN
ReLU 4 x 40 DNN

0 % 100 DNN
x 40 DNN
0 x 100 DNN

10? 10? 10" 10?

m samples m samples m samples m samples

Figure 2: NSB equations. Average relative L2 (X'; )N))-norm error versus m for different DNNs approximating
the velocity field w of the NSB problem in Qﬁ_?b See Fig. [7]for results for the pressure component p. The
diffusion coefficients a1,4, a2,4 and d = 4, 8 are as in Fig.m

(u,p), where w is the velocity field and p is the pressure. These equations describe the dynamics of a
viscous fluid flowing through porous media with random viscosity. See, e.g., [28, 43} 146,|94]. We use
a mixed variational formulation [34] to discretize the PDE. This formulation is more sophisticated
that standard variational formulations, but conveys various practical advantages. Unlike the previous
example, it leads to ) being either J = L*() for w or Y = L?(Q) for p. See §B.4.1|for details.
Fig. 2] compares a variety of DNN architectures for approximating the velocity field component
ind = 4 and d = 8 parametric dimensions. Here again we observe the ELU and tanh DNN
architectures outperform similar sized ReLLU architectures. We also observe a rate close to m~*. Note
that it is currently unknown whether this or the next example possess the same (b, £)-holomorphy
guarantee as that of the previous example. Yet we observe the same rate, and therefore conjecture
that such a property does indeed hold in these cases. Similar to the previous example, there is also no
deterioration of the rate when moving from d = 4 to d = 8.

Parametric stationary Boussinesq equation. Our final example is a parametric stationary Boussi-
nesq PDE. See and (B-T6) for the full definition. Here the solution is a triplet (u, ¢, p), where u
is the velocity field, ¢ is the temperature and p is the pressure of the solution. The Boussinesq model
arises in a variety of engineering, fluid dynamics and natural convection problems where changes in
temperature affect the velocity of a fluid [14} 22} [39]. Similar to the previous example, we consider
a fully mixed variational formulation (see , which leads to Y = L*(Q) (for u), Y = L4()
(for p)or Y = L(Q)(Q) (for p). Fig.[3|provides numerical results. Our observations are in line with
the previous two examples, with the ELU and the smaller tanh networks being most often the best
performers in this problem. Once more, the errors roughly correspond to the rate m ~! and there is no
deterioration with increasing d.

6 Conclusions and limitations

The purpose of this work was to derive near-optimal generalization bounds for learning certain
classes of holomorphic operators that arise frequently in operator learning tasks involving PDEs.
Complementing and extending previous works [26}, 31} 41} 55| [71] on the approximation of such
operators via DNNs, we showing sharp algebraic rates of convergence in m, thus confirming that
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Figure 3: Boussinesq equation. Average relative Li(X ; ¥)-norm error versus m for different DNNs approxi-
mating the temperature  of the Boussinesq problem in (B-16) (see Fig.[J]for w and p). The diffusion coefficients
a1,d,a2,q and d = 4, 8 are as in Fig. m In this example, we also consider an additional parametric dependence
in the tensor K = K describing the thermal conductivity of the fluid. See §B.5]and (B.I7).

such operators can be learned efficiently and without the curse of dimensionality. It is notable that
the sizes of the various DNNs in Theorems [3.1}3.2] also do not succumb to the so-called curse of
parametric complexity [54], since the width and depth bounds are at most algebraic in m.

We end by discussing a number of limitations. First, assumption (A.I) may not hold in some
applications. The domain D can easily be replaced by bounded hyperrectangle through rescaling and
the condition that ¢ be quasi-uniform relaxed to quasi-ultraspherical (by considering ultraspherical
polynomials). However, it is currently an open problem whether our results can be extended to the
case where (4 is Gaussian, in which case ¢ would typically be a tensor-product Gaussian measure
on RY and the relevant polynomials would be the Hermite polynomials. Second, the reader may
have noticed that the encoder £y defined in (A.III) and used to construct the approximation (2.5)
involves the pair (£x, Dx ) and the map ¢4, . This is a technical requirement — also found in other
theoretical works on operator learning — needed to obtain encoding-decoding errors of the form Ey g,
q = 2, co. It is unknown whether it can be relaxed. It is also unknown whether the assumption on ¢
in (A.III) can be relaxed. We believe this can be done, at least if the Li—norm in (3:2) is replaced by
the L;°-norm. Whether this is possible without modifying (3-2) is currently unknown.

Third, a limitation of Theorem@ is that it only asserts that some minimizers are ‘good’, not all.
Techniques from statistical learning theory can provide stronger bounds that hold for all minimizers.
Yet, as noted in §I.2] these tools typically produce slower rates of decay in m. Overcoming this
limitation — e.g., by refining these tools for the holomorphic setting or showing that the ‘good’
minimizers can indeed be obtained via standard training — is a topic of future work.

Finally, as noted, our theorems provided worse generalization bounds when ) is a Banach space than
when ) is a Hilbert space. Our numerical results in Figs. 2}{3] suggest that this factor is an artefact of
the proofs. Whether it can be removed is an interesting open problem.
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A Experimental setup

In this section, we describe our experimental setup.

A.1 Formulation of the learning problems

We first explain how all our experiments are formulated as operator learning problems. We do this in
a standard way, by first truncating the random field which generates the measure i, and then using an
FEM to discretize the output space.

All our examples follow Example (2.3) and involve operators of the form (2.6), where F, represents
a different type of PDE in each case (specifically, either an elliptic diffusion, Navier-Stokes-Brinkman
or Boussinesq PDE). We consider both affine (2.8) and log-transformed parametrizations of the
random field a(x). Thus, in general we write

a(x) =a(;x) =g (ao(') + Z Ci%@'(')) ) (A.1)

where g : R — R is a (measurable) map. In the affine case g(¢t) = 1. In the log-transformed case
g(t) = exp(t).

As discussed, since the main objective of this work is to examine the approximation error, we
set up our experiments so that encoding-decoding errors are zero. We do this as follows. First,
we fix a parametrlc dimension d and truncate the expansmn in (AI) after d terms, giving a map

: [~1,1]¢ — X and measure ;1 = agfioq, Where g, is the uniform probability measure on [—1, 1],
We then define the operator F' as F(aq(x)) = f(x) = u(-; aq(x)), where u(-; a) is the solution of
the PDE F,u = 0.

In alignment with our theorems, we focus on the in-distribution performance of the learned approx-
imation F'. This means we define the encoder only on supp(u), as Ex(X) =  when X = aq4(x)
with z € [—1,1]9. As a result, the encoding-decoding error Ex , in (3.7) satisfies Ex , = 0.

To perform our simulations, we use FEMs to solve the PDE and discretize the output space ). Let
{pi}X | C Y be a FEM basis and set dy = K. Then we define the decoder as

Dy :RE Y, Dyle ch% (A2)

and set Y = Dy, (RX) as the discretization of ).

With this in hand, we now describe the simulation of training data in general terms. First, we draw
T1,...,Tm ~iid. 04- Then, for each training sample x;, we compute Y; by using the FEM to solve
the PDE with parameter X; = a4(x;). Notice that Y; € ) in this setup.

We consider a DNN architecture with input dlmenswn ng =d and output dimension n L+2 = K.
After tramlng, we evaluate the learned approximation F= Dy o N o Ex over supp(u) as F (X)=

DyoNo&x(X)=DyoN(x)for X = ag(x) with = € [—1, 1]%. Finally, as noted, we us the same
FEM discretization to generate testing data, which allows us to measure the error with respect to

the LZ(X ; j)-norm. This effectively means that the encoding-decoding error Ey , in (3.7) satisfies
Ey o = 0as well.

A.2 Computational setup for the numerical experiments

In this work, we investigate the trade-off between the accuracy of the learned operator and the number
of samples m used in training. Our methodology is summarized as follows.

(i) Implementation. We use the open-source finite element library FEniCS, specifically version
2019.1.0 [9], and Google’s TensorFlow version 2.12.0. More information about TensorFlow can
be found at https://www.tensorflow.org/.

(ii) Hardware. We train the DNN models in single precision on the Digital Research Alliance of
Canada’s Cedar compute cluster (see https://docs.alliancecan.ca/wiki/Cedar), using
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Intel Xenon Processor ES-2683 v4 CPUs with either 125GB or 250GB per node. The setup for each
of our PDE:s is as follows. For each experiment we consider training with 14 sets of points of size
m € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500} and for 6 different architectures
(4 x 40 and 10 x 100 with ReLU, ELU, and tanh activations) over two parametric dimensions
(d =4 and d = 8) and two coefficients (a1 4 from (B.I) and az 4 from (B.2)), giving 336 DNNs to
be trained for each trial. For the Poisson PDE and Navier-Stokes-Brinkman PDEs we run 12 trials.
For the Boussinesq PDE we run 8§ trials due to the larger problem size. For the Poisson PDE, we
allocate 336 nodes with 1 x 32 core CPUs running 4 threads (totalling 1344 threads, 6.8 GB RAM
per node) each running 3 trials, taking approximately 4 hours and 15 minutes to complete. For the
Navier-Stokes-Brinkman PDE, we use the same setup allocating 9.88 GB RAM per node and the
runs take approximately 9 hours and 13 minutes for each of the two components of the solution
to complete. For the Boussinesq PDE, we allocate 336 nodes with 1 x 32 core CPUs running
4 threads per node (totaling 1344 threads, 10 GB RAM per node) each running 2 trials, taking
approximately 12 hours and 32 minutes for each of the 3 components to complete. Given this, the
total time required to reproduce the results in parallel with the above setup is approximately 60
hours or 2.5 days. Results were stored locally on the cluster and the estimated total space used
to store the data for testing and training and results from computation is approximately 50 GB.
Trained models were not retained due to space limitations on the cluster.

(iii) Choice of architectures and initialization. Based on the strategies in [1]], we fix the number of
nodes per layer N and depth L such that the ratio 8 := L/N is 8 = 0.5. In addition, we initialize
the weights and biases using the HeUniform initializer from keras setting the seed to the trial
number. We consider the Rectified Linear Unit (ReLU)

01(z) := max{0, z},

hyperbolic tangent (tanh)

e? — e %
02(2) == praTp—r

or Exponential Linear Unit (ELU)

(2) = z z >0,
93\%) = ef—1 2<0

activation functions in our experiments.

(iv) Optimizers for training and parametrization. To train the DNNs, we use the Adam optimizer
[47], incorporating an exponentially-decaying learning rate. We train our models for 60,000 epochs
or until converging to a tolerance level of €0 = 5 - 1077 in single precision. In light of the
nonmonotonic convergence behavior observed during the minimization of the nonconvex loss (see,
e.g., [1;12]]), we implement early stopping. More precisely, we save the weights and biases of the
partially trained network once the ratio between the current loss and the last checkpoint loss is
reduced below 1/8, or if the current weights and biases produce the best loss value observed in
training. We then restore these weights after training only if the loss value of the current weights is
larger than that of the saved checkpoint.

(v) Training data and design of experiments. First, we define a ‘trial’ as a complete training run for
a DNN approximating a specific function, initialized as mentioned above.

Following the setup of §A.T| we run several trials solving the problem:

Given training data {(X;,Y;)}i2; C (X x V)™, X; ~ija p, Yi=F(X;)+E; €Y,
approximate F' € Li(X V).

We generate the measurements Y; using mixed variational formulations of the parametric ellip-
tic, Navier-Stokes-Brinkman and Boussinesq PDEs discretized using FEniCS with input data
X;. The noise E; € )Y encompasses the discretization errors from numerical solution. Further
details of the discretization can be found in §B| Each of our architectures is trained across a
range of datasets with increasing sizes. This involves using a set of training data consisting
of values {(X;,Y;))}",, where m denotes the size of the training data and belongs to the set
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}. After training we calculate the testing
error for each trial and run statistics across all trials for each dataset.

(vi) Testing data and error metric. The testing data is generated similarly to the training data,
obtaining solutions at different points X; € X for¢ = 1,..., mes. However, the testing data
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{(X:,Y; = F(X;)+ E;)}2 is generated using a deterministic high-order sparse grid collocation
method [[76]]. In particular, we use sparse grid quadrature rules to compute approximations to the
Bochner norms

1/2 Mtest 1/2
Pl = ([ 1FCOI dux)) = (Z ||F<Xi>||§wi> ,
=1

where p = agqfloq is the pushforward measure defined in (A.I) and w;, @ = 1, ..., Myest, are the
quadrature weights. We use these approximations to compute the relative Li(X ; V) error

~ 1/2
(S 1R () — B )
(i
test

We use a high order isotropic Clenshaw Curtis sparse grid quadrature rule to evaluate e, as
described in [2]. This method shows superior convergence over Monte Carlo integration to evaluate
the global Bochner error. The sparse grid rule gives myest points at a level ¢ for d dimensions. We
rely on the TASMANTIAN sparse grid toolkit [88-90] for the generation of the isotropic rule to study
the generalization performance of the DNN.

(vii) Visualization. The graphs in Figs. 1-3 show the geometric mean (the main curve) and plus/minus
one (geometric) standard deviation (the shaded region). We use the geometric mean because our
errors are plotted in logarithmic scale on the y-axis. See [3 Sec. A.1] for further discussion about
this choice.

test __

1/2
M2 gy
\F(Xq,)Hﬁwq,)

B Description of the parametric PDEs used in the numerical experiments and
their discretization

In this section, we provide full details of the parametric PDEs considered in our numerical experiments.
We also describe their variational formulations and numerical solution using FEM.

B.1 Parametric coefficients

We consider two parametric coefficients of the form (A.) in our numerical experiments. Our first
coefficient is

a1(z,x) =2.62+ ijw, Vz € Q, (B.1)
; J

j=1
where z; € [—1,1], ¥j. Our second example involves a log-transformed coefficient, which is a
rescaling of an example from [[76] of a diffusion coefficient with one-dimensional (layered) spatial
dependence given by

1/2 [}

as(z,x) =exp | 1 + 21 <\/§ﬁ> + ZCjﬂj(z)zj , VzeqQ
j=2
. 2

() = sin (|j/2|mz1/B,) if jiseven
03(2): {COS(U/QJWZMBP) if jis odd ’

where z; € [—1, 1], Vj. Here we let 8. = 1/8, and 8, = max{1,25.}, 8 = B./5,.

In both cases we consider truncation of the expansion after d terms, giving the map a; 4 : [—1,1]¢ —
X, with j = 1 corresponding to (B.I) and j = 2 corresponding to (B.2). Our input samples are
then {X; = a; q4(x;)}1™, C X with z; € [—1,1]¢ drawn identically and independently from g, and
j € {1,2}. Note for the Boussinesq problem we also consider an additional parametric dependence
in the tensor K describing the thermal conductivity of the fluid. See §B.5]and (B.17).
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B.2 Relevant spaces

We require several function space definitions for the development of the mixed variation formulations
of the Poisson, Navier-Stokes-Brinkman and Boussinesq PDEs. Let  C R", n € {2, 3}, be the
physical domain of a PDE. We write LP(Q2), 1 < p < oo, for the LP-space of scalar-valued functions
with respect to the Lebesgue measure (to avoid confusion with the Bochner space Li(X V). We
denote the standard Sobolev spaces as W*?(Q) for s € R and p > 1, and write H*(Q2) when
p = 2 and s = k. Additionally, we consider the space of traces of functions in H!(£2), denoted by
H'/2(9Q), and its dual, H=/2(9Q) (see, e.g., [11} Sec. 1.2] for further details). We also define the

following closed subspace of H!(2):

lI-ll1,0

Hy(Q) = C3°(9)

Sooronll e

Here C§°(Q2) denotes the closure of C§°(€2) (i.e., the space of C°°(£2) functions with compact
support) with respect to the norm || - ||1.q, which, for any v € H(Q), is given by

1/2
lollve = {lofa+ 0l2y} where [ul1.0 == [ VollLa().

For scalar functions u and vector fields v, we use Vu and div(v) to denote their gradient and

divergence, respectively. For tensor fields o and 7, represented by (i ;)7 ;—; and (7;;)7';_1,

respectively, we define div(o) as the divergence operator div acting along the rows of o, and we
define the trace and the tensor inner-product as

n n
tI‘(O‘) = E Oiis and T :0 = E Ti,504,55
i=1 i,j=1

respectively. Furthermore, we introduce the notation LP(€2) and IL” () to represent the vectorial and
tensorial counterparts of LP(€2), respectively, and H! () and H (Q2) for the vectorial and tensorial
counterparts of H!(£2), respectively. Keeping this in mind, we introduce the Banach spaces

H(div,; Q) = {'u e L2(Q) : div(v) € L‘I(Q)},

(B.3)
H(div,; Q) := {T € L2(Q) : div(r) € Lq(Q)}
with norms
[vlladivg:0) = vllLz@) + [[div(v)|lLeq),
I7lla(divg0) = [Tlz) + [[div(T)[Le@) -

The cases of ¢ = 4/3 and ¢ = 2 appear in the mixed variational formulations of the considered PDEs,
and for the latter we simply write H(div; Q).

Often, under certain conditions, such as incompressibility conditions [33} eq.(2.4)], it is convenient to
define variants of these spaces. For example, we define

L2(Q) = {T e L2(Q) : tr(r) = o}, (B.4)

which represents the space of integrable functions with zero trace over (2. Furthermore, given the
decomposition (see, e.g., [32])
H(div,/3; Q) = Ho(divy/s; Q) @ RI, (B.5)

we may also consider

Ho(divys; Q) = {T € H(divy/s; Q) : /Qtr(f) - 0} : (B.6)
as the space of elements in H(div,/3; 2) with zero mean trace. Finally, we define
Liew(®) = {n € LX(Q): n+n" =0}, (B.7)
and the space of L?(€2) functions with zero integral over (2 as
L3(Q) = {yeL2(Q): /QV:O}. (B.8)
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B.3 The parametric diffusion equation

We now describe our first example, which is the parametric elliptic diffusion equation. Let Q C R?
be a bounded Lipschitz domain, 9 be the boundary of , f € L?(Q2) and g € H'/2(9Q). Given
€ [~1,1]¢, we consider the PDE

—div(a(z)Vu(z)) = f, inQ (B.9)
u(x) =g, ondfd

Here a(x) = a(-, ) € L>°(Q) =: X is the parametric diffusion coefficient. The terms f and g are
not parametric.

B.3.1 Mixed variational formulation

Our first step in precisely defining the problem is to identify sufficient conditions for the solution map
x — u(x) to be well-defined. To do this, we dlverge from the standard variational formulation in-
volving the space Y = H}(€2) (see Remark and instead consider a mixed variational formulation
of (B.9). Using a mixed formulation to study the solution of PDEs offers several benefits over the
standard variational formulation. One key advantage is that it allows us to introduce additional vari-
ables that can be of physical interest. Additionally, mixed formulations can naturally accommodate
different types of boundary conditions and introduce Dirichlet boundary conditions directly into the
formulation rather than imposing them on the search space. For further details on mixed formulations,
we refer to [32] and references within.

Assume that there exists 7, M > 0 such that, for all z € [—1,1]¢,
0 <7 <essinfrecna(z,®) =: amin(x) and amax(x) 1= esssup,cna(z, ) < M. (B.10)

Then the problem can be recast as a first-order system: given € [—1,1]%, find (o, u)(z) €
H(div; Q) x L2(2) such that

do(e) (0 (), ) +b(T,u(x)) = G(7), V7 € H(div; ), B.A1)
b(o,v) = F(v), YveL*Q). ’

Here d and b are the bilinear forms defined by

datay (017) = /"—; W(r, o) € H(div: Q) x H(div; ),

b(T,v) / div(T V(T,v) € H(div; Q) x L*(Q)
and the functionals G € (H(div;))" and J € (L?(f2))’ are defined by
J(v) = —/ fv, VYo eL?(Q)and G(1) = (y(7) ‘N, g)1/2,00, VT € H(div; Q). (B.12)
)

For the experiments in this work, we consider Q = (0, 1)? and f = 10. For the boundary condition,
we consider a constant value u(z, ) = 0.5 on the bottom of the boundary (0,1) x {0}, and zero
boundary conditions on the remainder of the boundary.

B.3.2 Holomorphy assumption

Consider the affine parametrization (B.I)). Setting M = 2.7 and observing that

sin(mz1j)
Z T Z 3/5~261238_262—r (B.13)

JjEN jeN
for some r < 0.00762, we deduce that (B.I0O) holds, which makes the mixed variational
formulation (B.IT) well defined, i.e., for each & € [—1,1]°, there exists a unique solution
(o,u)(x) € H(div;) x L2(2). Moreover, one can show that the parametric solution map
x — (o,u)(x) is (b, e)-holomorphic for 0 < € < 0.00762 and where b = (b;)$2, is given by
bj = ||sin(mj-) /53| oo () = 5~/2. See [14, Prop. A.3.2].
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Figure 4: The domain {2 and FE mesh for the parametric diffusion equation.
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Figure 5: The solution u(z) of the parametric Poisson problem in (B:9) for a given parameter & = (1,0,0,0)"
with affine coefficient a1,q and d = 4, using a total of K = 2622 DoF. The left plot shows the solution given by
the FEM solver. The right plot show the ELU 4 x 40 DNN approximation after 60, 000 epochs of training with
m = 500 sample points for training.

In view of this property, this example falls within our theory. Note that b € ¢}, (N) for every p < 2/3.
Thus, we expect a theoretical rate of convergence with respect to the amount of training data that is
arbitrarily close to m'/273/2 = m~1. This holomorphy result applies to the affine diffusion (B.I),
not the log-transformed diffusion (B:2). However, we expect that it is possible to extend Prop.
A.3.2] to the latter case.

B.3.3 Finite element discretization

We use so-called conforming Finite Element (FE) discretizations [18, Chp. 3]. Given a number
of Degrees of Freedom (DoF) K, this results in finite-dimensional spaces Hx C H(div;(2) and
Qx C L2(Q). Specifically, we consider a regular triangulation 7x of { made up of triangles of
minimum diameter hp;, = 0.0844 and maximum diameter hy,x = 0.1146. This corresponds to a
total number of DoF K = 2622. See Fig. [ for an illustration of the FE mesh.

Fig.[5|shows a comparison between a reference solution computed by the FEniCS FEM solver and
the approximation obtained by an ELU 4 x 40 DNN.

B.4 Parametric Navier-Stokes-Brinkman equations
We next consider a parametric model describing the dynamics of a viscous fluid through porous

media. Consider a bounded and Lipschitz physical domain Q@ C R2. Given z € [—1,1]%, we
consider the incompressible nonlinear stationary Navier-Stokes-Brinkman (NSB) equations: find
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w:[-1,1]9xQ— RZand p: [-1,1]? x Q — R such that
nu — Adiv(a(xz)e(u(x))) + (u(x) - V)u(x) + Vp(x) = f  inQ

div(u(z)) =0 inQ (B.14)
up oOon 6Qin
u =
0 on 8Qwall

(a(x)Ve(u) —pDhir =0 on 0oyt

/p=Q
Q

where A = Re™! and Re is the Reynolds number, a(x) = a(;x) € X := L>®(Q) and a :
[~1,1]¢ x Q — R* is the random viscosity of the fluid, n € R is the scaled inverse permeability
of the porous media, u is the velocity of the fluid, e(u) = %(Vu + (Vu)?) is the symmetric part
of the gradient, p is the pressure of the fluid and f : 2 — R is an external force independent of the
parameters. Here, the fourth condition imposes a zero normal Cauchy stress

(a(x)Ve(u) — pl)y =0
for the output boundary 0€2,.In addition, the incompressibility of the fluid imposes the following
compatibility condition on up:
/uD n=0 ondQi,.
r

The third condition also imposes a no-slip condition on the walls Q.1 [34} eq.(2.3)].

B.4.1 Mixed variational formulation

The analysis of the detailed mixed formulation used for this problem in the nonparametric case can
be found in [34]. Over the last decade, many works have used a mixed formulation employing a
Banach space framework, allowing one to solve different PDEs in continuum mechanics in suitable
Banach spaces. The advantage of this formulation is that no augmentation is required, the spaces are
simpler and closer to the original model, and it allows one to obtain more direct approximations of
the variables of physical interest [34} Sec. 1].

Based on the analysis in [34]], the mixed variational formulation of the parametric NSB equations
in (BT4) becomes: given = € [—1,1]%, find (u, t, o, v)(x) € L*(Q) x L2(Q) x Ho(divy,3; Q) x
2., (€) such that

3 [a@ite) s - [ o) - [@ew@ s = 0
[t@ir+ [y@ir+ [u@-divi) = rnousoe. @13

/S:;:U($)+/Qv.div(a(m))—/Qnu(g;).v _ /Qf""’

forall (v, s, 7,8) € L*(Q) x L, (Q) x Ho(divy/3; Q) x L,
of ~ is imposed by searching for v € L2(£) and setting

_ 10 ~
T {—V 0} '
Moreover, we impose the Neumann boundary condition via a Nietsche method as in [34] Sec. 5.2].
Specifically, we add

(). Numerically, the skew-symmetry

k(o +u®@u)n), ™n)sq,, =0
to the second equation where x > 1 is a large constant (e.g., £ = 10%). As usual in this formulation,
the pressure p € L2(Q) can be computed according to the post-processing formula

p= —%tr(a’ + (v ®@u)).
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Figure 6: The solution (u, p)(z) of the parametric NSB problem (B.14) for a given parameter & = (1,0,0,0) "
with affine coefficient a1,4 and d = 4, using a total of 1464 DoF for u and 244 DoF for p. The top row shows
the solution given by the FEM solver, and the bottom row shows the ELU 4 x 40 DNN approximation after
60, 000 epochs of training with m = 500 sample points. The left plots show the vector field w. The right plots
show the points of highest pressure p.

Note that above we omitted the term « for simplicity.

In our experiments, we consider approximating solutions to the parametric NSB problem with
A = 0.1, a scaled inverse permeability of = 10 + 27 + 22, an external force f = (0,—1)" and
random viscosity a; q as in (B-I)—(B:2) with j € {1,2}.

We consider the unit square © = (0, 1)? as the domain, an inlet boundary 9, = (0,1) x {1}, an
outlet boundary 9t = {1} x (0, 1) and walls 9Qwan = {0} x (0,1) U (0, 1) x {0}. For simplicity,
we use the same mesh as that of the previous example. See Fig. ] On the Neumann boundary 0yt
we consider a zero normal Cauchy stress, a Dirichlet condition up = (0.0625)~*((22 — 0.5)(1 —
22),0) on 99y, and a no-slip velocity on OQya.

Fig. [f] provides a comparison between a reference solution of the vector field w and pressure p
computed by the FEniCS FEM solver and the approximation generated by a ELU 4 x 40 DNN.

Remark B.1 (Other auxiliary variables) We report the performance of the DNNs approximating
(u,p)(x) € L*(Q) x L2(Q). Note that any solver based on the above formulation outputs several
other variables, e.g., (£, o, v)(x) € LZ(Q) x Ho(divy,3; Q) x L3, (2). One could also approximate
these auxiliary variables using DNNs. However, we restrict our experiments to (u, p) as these are the

primary variables of interest in the problem.

To conclude this discussion, in Fig. [7]we plot the numerical results for the approximation of the
pressure p in the above problem. This complements Fig. [2] which showed results for the velocity field
u. We once more observe similar results: ELU and tanh DNNs outperform ReLU DNNs, the rate of
convergence appears to be close to O(m~!) and there is no degradation with increasing parametric
dimension d.

B.5 Parametric stationary Boussinesq equation

To recap, in our first example, we considered a mixed formulation of a parametric diffusion equation
that provably satisfies the (b, €)-holomorphy assumption. Using this formulation, we considered
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LogKL coeff. NSB p € LA(Q), d = 4 LogKL coeff. NSB p € LA(Q), d =8

[ELU 1 10 DNN

[=ELU 1 10 DNN

Figure 7: The same as Fig.[2} except showing results for the pressure p.

problems with nonzero Dirichlet boundary conditions, whereas previous works [2, 19, 27] study
the more restrictive case of homogeneous Dirichlet boundary conditions, where u € H(2). In
our next example, we studied a more complicated parametric PDE, namely, the parametric NSB
equations. While this example currently lacks a holomorphy guarantee, we observe a convergence
rate that aligns with what we expect. We conjecture that the m " rate holds both for this and for even
more complicated problems. To illustrate this claim with an example, we now consider a parametric
coupled partial differential equation in three dimensions (2 C R?®) with two random coefficients
affecting different parts of the coupled problem. The nonparametric version of this problem is based
on [20].

Specifically, we consider the Boussinesq formulation in [20] that combines a parametric incompress-
ible Navier—Stokes equation with a parametric heat equation. The parametric dependence affects
both equations. The Navier—Stokes equation is affected by a parametric variable multiplying the
temperature-dependent viscosity, and the equation for heat flow is affected directly by the thermal
conductivity of the fluid. To be more precise, given & € [—1,1]%, our goal is to find the velocity
w:[—1,1]4 x Q — R2, pressure p : [~1,1]? x Q — R and temperature ¢ : [-1,1]¢ x  — Rof a
fluid such that

—div2a(z)m(p(@))e(u())) + (u(@) - V)u(z) + Vp(@) = p(z)g in,
div(u(x)) =0 inQ, (B.16)
—div(K(z)Ve(x)) + u(x) - Veo(x) =0 inQ,
=wup ondf,

Here g = (0,0, —1) T is a gravitational force and K(z) = K(-; ) € L>=(), where K : [-1,1]% x
Q) — R3*3 is a parametric uniformly-positive tensor describing the thermal conductivity of the fluid.
It is given explicitly by

: . exp(—z1) 0 0
K(z,z) = | 1.89 + ij% 0 exp(—22) 0 Yz eQ, (B.17)
97
JEN 0 0 exp(—23)

for & € [~1,1]%. The term @ : R — R is a temperature-dependent viscosity given by w(¢p) =
0.1+ exp(—¢) and the term a(z) = a(-;x) € L>°(Q), where a : [~1,1]? x  — R is a parametric
variable affecting the viscosity of the fluid. As in the previous example e(w) is the symmetric part of
Vu. Note that in this case, we have (a(z), K(x)) € X :=L>(Q) x L>°(Q).

B.5.1 Fully mixed variational formulation
The complete derivation of a fully-mixed variational formulation for the non-parametric Boussinesq

equation in Banach spaces can be found in [20, Sec. 3.1]. To make the presentation simpler we
rewrite it for the parametric case. Given x € [—1,1]¢, find (u,t,0,¢,t,6)(x) € L4(Q) x L2.(Q) x
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Ho(diV4/3; Q) X L4(Q) X L2(Q) X H(le4/37 Q) such that

f/Q'wdiv(O'(a:)) + %/Qt(m)u(w)v - /ng(a:)g v = 0
1
A?a(az)w(g&(m))tsym(m) s — 5/ﬂ(u®u)(az) s = /Qa'(:n) s
/QT t(x) +/Qu(a:) div(t) = (mv,up)r
- [ waive@) + 5 [ v@u@ i = 0 ®.18)
Q Q
t 51 = o(x)-3
[ k@i@) i3 [ el i = [ @
[ #i@) + [ pl@rdivid) = vien)r
/tr(20'+u®u)(a:) = 0,
Q

for all (v,s,7,7¢,6,7) € L*(Q) x LZ.(Q) x Ho(divy/3; Q) x L*(Q) x L2(Q) x H(divy,3; Q).
Here p € L3(9) can be recovered as

1 1
p=—=tr(20 + 2cl+ u®u), wherec= ——/ tr(u ® u). (B.19)
6 612[ Jo

As in the previous example, we omitted the term & from this equation for simplicity. For further
details on this formulation we refer to [20] and references within.

Given = € [—1,1]4, we approximate the solution (u,p,¢)(x) € (L*() x L3(2) x L4(£2)) of
(B-18) by using DNNs and study the approximation capabilities as we increase the number of training
samples m. As in the previous example (see Remark , we do not aim to approximate the other
variables (¢, 0, t,6)(x) € LE.(Q) x Ho(divy/s; Q) x L* () x H(divy/3; Q).

In our experiments, we consider the unit cube = (0, 1)3 as the domain in R3. We consider a nonzero
boundary condition up = (1, 1,0) on the bottom face of the cube OQpottom = (0,1) x (0,1) x {0},
and zero on the other faces. We set pp = exp(4(—(21 — 0.5)? — (22 — 0.5)?)) on OQpottom and
zero otherwise. For simplicity, we consider the same parametric coefficients a; 4 and as 4 given
by and (B-2), respectively. See Fig. [§|for an example of the solution (u, p, ¢)(x) for a given
x e [-1,1]%

To conclude this section, we provide a comparison of the performance of the DNN architectures in
approximating the velocity field u and pressure p for the Boussinesq PDE. This complements Fig.
which showed results for the temperature ¢. As with ¢, the convergence rate for p agrees roughly
with the rate m !, and does not appear to deteriorate with the parametric dimension d. On the other
hand, the convergence rate for the velocity field w is somewhat slower.

C Overview of the proofs

In this section, we first introduce additional notation that is needed for the proofs of the main results.
We then give a brief overview of the proofs.

C.1 Additional notation

C.1.1 Lipschitz constants

Let (X, | - [[4) and (3, ]| - [|5,) be Banach spaces, G : X — ) and B C X. We define the Lipschitz
constant as L = Lip(G; B, Y) as the smallest constant L > 0 such that

IG(X") = G(X)ly < LIX" = X, VX, X"€B.
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Figure 8: The solution (u, ¢, p)(x) to the parametric Boussinesq problem in (B:T8) for a given parameter
z = (1,0,0, 0)T with affine coefficient a1 ¢ and d = 4, using a total of 18,480 DoF for w and 528 DoF for
both ¢ and p. The top row shows the solution given by the FEM solver and the bottom row shows the 4 x 40
ELU-DNN approximation after 60, 000 epochs of training with m = 500 sample points. The left plots show
streamlines of the vector field w and their directions indicated with coloured arrows. The middle plots visualize
the temperature distribution inside the cube using coloured spheres, with the hottest region at the centre of the
cube. The right plots illustrate the points of highest pressure p.

Affine coeff. Boussinesq u € L'(2), d = 4 Affine coeff. Boussinesq u € L'(2), d =8 LogKL coeff. Boussinesq u € L*(2), d =4 LogKL coeff. Boussinesq u € L*(2), d =8
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Figure 9: The same as Fig. except showing results for the velocity field w, where ) = L*(Q), and pressure p,
where Y = L3(Q).

C.1.2 Sequence spaces

We require some notation for sequences. Let (Z, || - || ;) be a Banach space, d = N U {oo} and write

v = (v)¢_, for an arbitrary multi-index in Ng. If A C N¢ is a finite or countable set of multi-indices
and 0 < p < oo we define the space ¢P(A; Z) as the set of all Z-valued sequences ¢ = (¢, ), en for
which |[c]|,,.z < oo, where

1/
(ZVEA ||CV||Z;,;) P 0 < p < OO,

lellpz =
PE | supyen llevllz p = oo
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When (Z,] - ||z) = (R, ] - |), we just write £7(A) and || - ||,,. We also define the following:
lellyz = sup_ [[2"(e)ll,, Ve € (A; 2),
z*€B(Z*)

where z*(¢) = (2*(cu))wea € RIA for ¢ = (¢, ),ea. Notice that llelll,.= < llell,. -
Given a sequence ¢ = (¢, )pep, We write
supp(ec) ={re€A:c, #0} CA.

For d € NU {oo}, we write e;,j=1,...,d, for the canonical basis vectors in R<. We also write 0
for the multi-index of zeros and 1 for the multi-index of ones. Finally, for multi-indices v = (v)¢_,
and p = (ug)¢_,, we write v > p to mean vy, > juy, Vk and likewise for v > p.

C.1.3 Weights and weighted sequence spaces

Letd € NU{oco}, A € Nd and w = (w,),en > 0 be a sequence of nonnegative weights. We define
the weighted cardinality of a set S C A as

Sl = > wi. (C.1)
ves
Given a sequence ¢ = (¢, ), e We write
el = [suPP(€)]w-

Next, for a Banach space (Z, | - || ;) and 0 < p < 2, we define the weighted ¢ (A; Z) space as the
space of Z-valued sequences ¢ = (¢ )yea for which [|e]|,, . = < oo, where

1/p
lellpuz = wy P el -
p,u;

veEA

Notice that || - ||2,.;z coincides with the unweighted norm || - |2, z.

C.1.4 Legendre polynomials

We write { P, } nen, for the classical Legendre polynomials on [—1, 1] with normalization P, (1) = 1.
Since f_ll |P,(z)]?dx = (n + 1/2)~ %, we define the orthonormal (with respect to the uniform
probability measure) Legendre polynomials as

Yn(x) =V2n+ 1P, (z), =€ [-1,1], n € Ny.
Let D = [—1,1]Y as before,
F={v =) €Ny : [supp(v)| < oo}

be the set of multi-indices with finitely-many nonzero terms and define the multivariate Legendre
polynomials as

V(@) =[[vn)= J] vul@) YeeD v=@w)Z eF.
i€N i€supp(v)

Here, the second equality follows from the fact that ¢)g = 1. Then it is known that the set

{V,}ver C L3(D) (C2)
constitutes an orthonormal basis for LE(D) [19, §3]. For later use, we also define the sequences
u=(uy)ver, whereu, =|Vylp) = I[ Ve +1 werF, (C3)
keN
and
v = (vy)per, wherev, =ul"s YveF. (C.4)

Here & > 0 will be chosen later in the proof.
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C.1.5 Miscellaneous

Given an optimization problem min, f(t), we say that £ is a (o, 7)-approximate minimizer for some
o> land 7 > 0if f(£) < ¢ min; f(¢) + 72. (In the main paper, we consider only o = 1, but for
the proofs it is useful to allow o > 1).

Finally, for convenience, given X1, ..., X,, € X, we define the semi-norm

1 m
G gisc,e = 4| 77 Yo laEl3
i=1

of an operator G : X — ) and

1 — 5
9l disc.c =g ° Exlgisc.. = o Z llg o Ex(Xi)lly
i=1

of a function g : RN — ). Here, as in (A.III), ¢ denotes the pushforward measure & # .

C.2  Overview of the proofs
C.2.1 Theorem[3.1]

Theorems [3.113.2] are based on polynomials, and specifically, procedures for learning efficient
Legendre polynomial approximations to holomorphic operators. As observed, these results are based
on recent work on learning holomorphic, Banach-valued functions [2} 5 [6]]. See also Remark [C.T]
below.

The proof of Theorem [3.1]involves three mains steps.

(a) Formulation (§D.T)) and analysis (§D.2}{D.4) of a suitable polynomial learning procedure.
(b) Construction of a family of DNNs that approximately emulates the Legendre polynomials (§D.5).

(c) Analysis of the corresponding training problem (2.5) (§D.6HD.8).

Since our goal in this work is ‘agnostic’ DNN architectures (i.e., independent of the smoothness
of the underlying operator), in step (a) we first define a nonlinear set spanned by Legendre
polynomials with nonzero indices in certain sets of bounded weighted cardinality. This is effectively
a form of sparse polynomial approximation, and the analysis of the resulting learning procedure (D.3)
relies heavily on techniques from compressed sensing. In order to bound the encoding-decoding
error, we also require several results on Lipschitz continuity (Lemma|[D.2)) and norm equivalences
(Lemma [D.4) for multivariate polynomials.

Step (b) relies on what have now become fairly standard results in DNN approximation theory:
namely, the approximate emulation of orthogonal polynomials via DNNs of given width and depth.
We present such a result in Lemma|D.9] then use this to define the DNN family A in (D.T9).

We then analyze the DNN training problem in step (c). Using the emulation result of step (b), we
first show that any approximate minimizer N of (2.3) yields a polynomial that is also an approximate
minimizer of the polynomial training problem (D.3)) (Lemma|[D.12). We may then apply the results
shown in Step (a) to prove a generalization bound (Theorem [D.13)). Up to this point, we have not
used the holomorphy assumption. We now use this assumption to bound the various best polynomial
approximation errors that arise in the previously-derived generalization bound (§D.7). Finally, in
we put all these estimates together to complete the proof.

Remark C.1 Theorem@]is a generalization and improvement of [5, Thms. 4.1 & 4.2], which deals
with the case of learning Banach-valued functions rather than operators. Specifically, the setting of 5]
can be considered a special case of this paper where X' = ¢>°(N) and the encoding error Ex 4 = 0.
Moreover, Theorem improves the main results of [3]] in three key ways. First, the the DNN
architectures bounds are much narrower: width(N) < (m/L)™° versus width(N) < m3+log2(m)
in the latter. Second, Theoremconsiders standard training, i.e., £2-1oss minimization, whereas [J]
Thms. 4.1 & 4.2] requires regularization. Third, for Banach spaces, the error decay rate with respect
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to m is roughly doubled: E,pp2 = O(m'~'/?) in Theorem[3.1]versus O(m!/2(1=1/?)) in [3, Thm.
4.1]. Finally, Theorem @ also provides bounds in the L/°-norm, whereas the results in [5] only
consider the Li-norm.

C.2.2 Theorem[3.2]
The proof of Theorem [3.2]relies of three key steps.

(a) Using a minimizer of the polynomial training problem (D.3) to construct a family of minimizers
of the DNN training problem (2.3)).

(b) Analysis of the corresponding minimizers using the previously-derived bound for polynomial
minimizers.

(c) Using the Lipschitz continuity of DNNs to show stability of the DNN minimizer and a permutation
argument to show the existence of many parameters that lead to equally ‘good’ minimizers.

Given any minimizer of the polynomial training problem (D.3)), it is straightforward to define a DNN
with the desired generalization bound. Unfortunately, this will generally not be a minimizer of (2.3).
To achieve the aims of step (a) we proceed as follows. First, we note that a DNN will be a minimizer
if the corresponding approximation satisfies ﬁ(Xi) = }N/i, where }Nﬁ are the closest points to the Y;
from ) = Dy (R%). To achieve this, we take the existing DNN then add on a suitable number of
additional terms corresponding to the first > m order-one Legendre polynomials (§E.TI). We show
that by doing this, we can construct a DNN for which F (X;) = Y; (Lemma .

In Step (b), we first bound this DNN minimizer in terms of the polynomial minimizer plus the
contributions of these additional terms (Lemma|E.2)). The latter involves the minimal singular value
of a certain m x r matrix B, which is the matrix of the linear system that enforces the condition

F(X;) = Y;. We bound this minimal singular value in

We then use this to complete the proof of part (A) of Theorem [3.2]in §E.4] In this section, we also
complete step (c) to establish parts (B) and (C).

Remark C.2 Like Theorem[3.T} Theorem [3.2]also relies on ideas from [3]. However, [5]] does not
address fully-connected DNN architectures. To address this challenge, the proof of Theorem [3.2]
involves the technical construction described above.

C.2.3 Theorem[d.1]

Theorems @]is based on [[7, Thm. 4.4]. The basic idea is to consider a family of affine, holomorphic
operators (E4). This allows us to lower bound the quantity 6,,(b) by the so-called Gelfand width
(FI) of a certain weighted unit ball in a finite-dimensional space. Bounds for such Gelfand widths
are known, and this allows us to derive the corresponding result. The main difference between this
and [[7L Thm. 4.4] is the setup leading to the construction in (E-4).

C.2.4 Theorem

Theorems [4.2| employs similar ideas, but in a more technical manner. We consider a family of linear,
holomorphic operators (G.2)), which involves a sum over r groups of m + 1 coefficients. We restrict
to coefficients that lie in the null space of the corresponding sampling operator. Then, through a

series of inequalities, we can lower bound 6,,,(b) by a sum over 7 terms, each involving the ¢!-norms
of certain vectors in the null space of the matrix of the corresponding sampling operator (G.3). This
matrix is a subgaussian random matrix. We now use a technical estimate from [75] for vectors in the
null space of subgaussian random matrices, which shows that they cannot be ‘spiky’. Applying this
and a series of further inequalities yields the result.

D Proof of Theorem 3.1]

D.1 Formulation of an approximate polynomial training problem

Let A C F with supp(v) C {1,...,dx}, Vv € A, and write N = |A|. Let & > 0 and define the set
S=8rr={S CA:|S], <k} (D.1)
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Both A and & will be chosen later in the proof. For any Banach space (Z, || - || ;) define the space

Psiz = {ZCV\I/V:C,,GZ,SES}. (D.2)
ves
Then, given the training data (2.4), consider the problem
= |IY; = po Ex (X)) D.3
i ZH pox (X3, 03

where Y = Dy, (R%). Here and throughout the proofs, we slightly abuse notation: the polynomial
p: RY — R, whereas £y has codomain R% . However, by construction, p is independent of all
but the first d variables. Hence we may consider p as a function R% — R. This aside, if p is an
approximate minimizer of (D.3)), then we define the approximation to F’ as

FaF =poky. (D.4)

Notice that po Ex = Dy o P o Ex, where P : R4 — R ig a vector-valued polynomial, since, by
(A.IV), the map Dy, is linear. The idea exploited in this proof is to construct a class of DNNs A such
that (i) all such polynomials P are approximated by members of A/ and (ii) the polynomial training
problem (D.3) is approximated by the DNN training problem (2.5)). The first step in this analysis is
therefore to analyze the polynomial training problem (D.3)).

D.2 Supporting lemmas

We require several lemmas. The first relates the Lg°-norm of a polynomial to its Pettis LZ—norm.

Lemma D.1 (Nikolskii inequality for polynomials). Let (Z,| -||z) be any Banach space and
P = ,cs 'V, for some finite set S C F, where c,, € Z. Then

1Pl (p:2) < VISlullpllzz(p;2)-

Proof. By definition

HpHLOO(D;Z) = H|p|HL°°(D;Z) = Sup HZ*(p)HLOC(D)'
e e Z*€B(Z*) e

Fix z* € B(Z*) and write 2*(p) = > g 2" (c,) V.. By the triangle inequality and the definition
of the weights (C.3)), we have

12Ol e p) € 3@ Pullps ) = 3 w2 (@),

vesS vesS

We now apply the Cauchy—Schwarz inequality, (C.I) and Parseval’s identity to get
12 @)l oy < VIST, [0 212 = VISTull=* ()l 30y
ves

Since z* was arbitrary, we deduce that

||pHLgc(D;z)S |S]u Sup HZ ||L2(D) VIS H|p|HL2(DZ

z*€B(Z

as required. O

Next, we require the following bound on the Lipschitz constant of a multivariate polynomial.

Lemma D.2 (Lipschitz continuity for polynomials). Let (Z, || - | z) be any Banach space and
suppose thatp =y . ¢ c,'V,, for some finite S C F, where c,, € Z. Then satisfies

Lip(p; B*(N \/ Sl - |||pH|L2(D z)

where B*(N) = {x € RN : ||z||_ < 1} is the unit ball of (> (N).
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Proof. Fix z* € B(Z*)andletp = 2*(p) = > g 2*(cr)¥y =1 ), 5 GV, be the correspond-
ing scalar-valued polynomial. Let &, ' € D. Then the mean value theorem gives that

') @) = Y (] — ) g (12 + (1 - )2

i=1
for some 0 < ¢t < 1. Since B*°(N) = D, this and the fact that D is convex give that
op
8@-

') — pla)| < o' — 2] > (D.5)

i=1

L?(D).

We now consider the terms in the sum separately. Using the definition of the Legendre polynomials

(see §C.1.4), we have
E Cou, P, fz H PUJ xj).
ves Jj#i

The unnormalized Legendre polynomials satisy 1 = P, (1) = HPnHLOO([7171]) and n(n + 1)/2 =
pp(1) = ||P7,z||LOO([_171])- Hence

8@

95
H P <3l upri(v; + 1)/2.
aﬁi L?(D) ves
‘We deduce that
oo 8~
Z el I < Z \c,,|u,,ZVl (vi+1)/2.
i=1 Lg (D) ves

Now, by definition of the weights u,, and v,, (see (C.3) and (C.4)), we have

(vi+1) < H(Quj +1)=ud

jEN
and
ZV1< H 21/J+l fu
jeN
Hence

Zu,,ui(ui +1)<ud <w

i=1
Here we also used the fact that w > 1. We now apply this, the Cauchy-Schwarz inequality and
Parseval’s identity to get
[“)gcZ
=1

Substituting this into (D-3) now gives

_ _ 1.
p(x") — px)| < §Hp||L’-;(D)\/EHw/ -
We now recall that p = 2*(p) and z* € B(Z*) was arbitrary to get

Ip(z") — (@)l 2

1
5 |p||L2(D) VISl

L (D)

sup |2 (p(x') — p(x))|

z*€B(Z2*)
<5 s @l VBRle - 2.,
2*€B(Z*)
Sell a2y VIBTolle’ —
as required. O

https://doi.org/10.52202/079017-0871 27756



We now show that this result can be used to imply a norm equivalence for polynomials. For this we
first require the following lemma. Note that in this and subsequent results, we abuse notation and
write ¢ for both the measure on [—1, 1]%* defined in (A.IIT) and the measure on D = [—1, 1] defined
by tensoring this measure (corresponding to the first dx variables z1, ..., x4, ) with the uniform
measure on D\[—1,1]%* (corresponding to the remaining variables 24, 1, Tqy 12, - - -)-

Lemma D.3 (Closeness of L? norms). Let (Z, || - || ;) be any Banach space, < be the measure defined
in (A.I) and < be the measure defined in (A.11l). Suppose that f € Lf (D; 2) is Lipschitz continuous
with constant L = Lip(f; B*(N), Z) < oo and that f depends only on its first dx variables. Then
feLiD;Z)and

1£l22(p:2) =& < WFll2oizy < Wflzcoiz) +9,
where - ~
0=1L"||tdy —tdr ©Dx o EXHLﬁ(X;ZOO(N))'
Proof. Fix z* € B(Z*),let g = z*(f) € L2(D) and set
a= ||9||L3(D)7 b= HgHLf(D)'
Notice that
lg(z) — g(2’)] < [|2"]

Now, with slight abuse of notation, g(:(X)) = g(ta, (X)) due to the assumption on f. Therefore,
using this and the Cauchy—Schwarz inequality,

zlf@®) = f(@)llz < Lllx — 2", Va,z’ € BX(N).

f—§=éwmﬂ@w@@thWAMW®@)

< L/ tdn (X) = tay © Dy 0 Ex(X)| o (|g(LdX(X))| + |g(tay o D OEX)D dp(X)
D
S LHLdX - LdX o} DX o EXHL/%(X,ZOO(N)) (a + b) .
We deduce that a — b < 4. Since z* was arbitrary, we get

|Hf|HL%(D;z) = Sup HZ*(f)HL%(D) < sup HZ*(f)HL?(D) +0= |Hf|HL2(D;Z) +9,
N *€B(Z*) ° z*€B(Z*) ¥ N

which gives the upper bound. The same argument applied to b*> — a? also gives the lower bound.  [J

Lemma D.4 (Norm equivalences for polynomials). Let (Z, || - || ;) be any Banach space, s be the
measure defined in (A.1), < be the measure defined in (A.Ill) and S C F with supp(v) € {1,...,dx},
Yv € S. Suppose that

\% |S|'v ’ ||Ld;< — ldx 05/\.’ o gX”[,ﬁ()(;goo(N)) <eg¢ (D.6)
for some sufficiently small universal constant ¢ > 0. Then the norm equivalence
|||P|||L3(D;z) S H\P|||Lg(p;z) S |||P|HL§(D;Z)

holds for allp =, c, ¥V, where ¢, € Z.

ves
Proof. Combining Lemmas[D.2]and [D.3] we see that

|||p|||Lg(D;Z) —0< |||P|||L§(D;z) < H|p|HLg(D;Z) + 4,

where § = %'”meg(D;Z)V Slolltar = tax © Dx 0 Ex|l 1z (e vy < €llPllL2(p;2)/2- By (AD,
there are constants ¢; > ¢y > 0 such that

cllpllz o,y < Wpllzzp,2) < e2llpllzz(p,z)-

We now take ¢ = ¢1 /2. O
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D.3 Analysis of (D-3)

We now analyze (D.3). Our analysis relies on the following result, which shows an error bound
subject to a certain discrete metric inequality (D.7).

Lemma D.5 (Discrete metric inequality implies error bounds). Let Q : Y — )7 = Dy(RY) be a
bounded linear operator and g = ||Q|y,_, - Suppose that

1P = dllaise ¢ = amax{llp = all 2.y lIP = dll L2 o3y} VP24 € Py (D.7)
for some o > 0. Then, for any F' € Li2(X;Y), p € Ps.y and q € Ps;y, we have
IF—po 5X|||Lﬁ(X;y) <||IF-Qo F|||Lg()c;y) +a7lp-Qo quisc,<~
+mollF = qo&xll Lz vy
and
lIF'—po 5X|||Lﬁo(x;y) <|IF-Qo F|||Lio(x;y) +V2k/alp— Qo QHdisc,f

T 1ol F = g0 Exllpee (xy)-

Proof. By the triangle inequality and properties of Q, we have
IF ~ o Exlls ay
<IIF = Qo Fllys iy + D0 Ex = Q00 Exllpz iy + 120 F — Qo0 Exllpa iy,
SNE = Qo Fllz xyy +llpeEx = QogoExllLz xiy) + mall ' = g0 Exll Lz (xy)-

Now, since p,Q o g € Psfw the second term can be bounded by

llpo&x — Qoqolxllrs xgy =llp = Qodllrz(py) < o' lIp — Qo dllysc c- (D.8)
This yields the first result.
For the second result, we once more write
IF—po 5X|‘|L30(X;y) <||IF-Qo F|||Lﬁ°(X;y) +lpo€x —Qogqo 5X|||L;30(X;y)
+mo|lF —qo 5X|||Lio(x;y)-
For the second term, we use (A.III) to write
llpoéx —Qogqolxlliec iy =P — Qodll Lo (py) < P — Qo dll e (piyy-
2 (XY) = (DsY) 2 (DsY)

Notice that p — Q o ¢ is a polynomial supported in a set S with |S|,, < 2k. We now apply Lemma

[D:T]and (D.7) to obtain
llpo&x —Qogolxlle(ny) < V2P — Qo dllzpyy < V2K/allp — Qo gllgsc e (D-9)
This gives the result. O

Theorem D.6 (Error bound for polynomial minimizers). Let Q : ) — j =Dy (Rdy) be a bounded
linear operator, 1o = ||Q|ly,_,5, and suppose that (D.7) holds. Let F be as in (D.A) for some
(0, T)-approximate minimizer p of (D.3). Then

~ oc+1
I = Fll 2 (2;9) < WEF = Qo Flllz iy + =~ I1F = Qo Fllgic,,

oc+1
+10 (IF = 40 Exlliz vy + TELIF - 40 Enllc

T oc+1
—+ ——||F
ot o By
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and

\/ﬂ o+1
VRO Dyp 9o F,

£ — FHLﬁO(X;y) <|F- QOFHLﬁO(X;y) +

V2k(o +1)
+ T <||F —qgo 5X||L;o(x;y) + fmF —4qo° gXH'disc,u
L V2kT . V2k(oc+1) 1B
a ay/m g

forall g € Ps,y, where E = (E;)2, € Y™ is the (Banach-valued) vector of noise terms.

Proof. We apply the previous lemma with p = p. This gives
Il — F|||Lg(x;y) <|IF-Qo F|||Lﬁ(X;y) + Oleﬁ —Qo (JHdisc,G
+7ollF — g0 Exlla ay)
| F — FHLEO(X;JI) <|[F—Qo F”L;o(x;y) +V2k/allp— Qo q“disc,f
+7ollF —qo 5X||L;;§(X;y)~

(D.10)

Consider the second term. We have

pr Qoq”discc |||pOgX - QOqOE-XMdlscM |||F Qoqongdlscu + |||F pOEXH|d|5c

T

Consider the second term of this expression. By the triangle inequality and the facts that p is a
(o, 7)-minimizer and Q o q is feasible, we obtain

1 & . 9 1
|HF p o 8X|||d|sc,p = E Z HY; —po SX”J} + ﬁ”E”zy
=1
<o ZHY Qoqo x|} 7+ ——|Ell,y
=1 \/7 1
o+1
<of|F = Qoqofx|lgsc, + 7+ Jm 1B,y
Therefore, we get
A oc+1
Hp - Q © C]Hdisc,q~ S (U + 1)|||F - Q oqo 5X|||disc,u, + 7+ W”E| 2;y°

We now estimate the first term in this expression as follows:

I = Qo a0 Exlysey, < IF = Qo Flluse,, + 1Q0 F = Q000 Exlec,
< H|F —Qo FH|di5c,u + 7TQ|||F‘ —4go° €X|”disc,u'

Therefore, we conclude that

.« 0' +1
[p—Qo q”disc,g~ <(o+DIF = Qo F|‘|disc,u+(0+1)7"Q|HF —qge° €X|”disc,p \/> |
Combining this with (D-10) now gives the result. O
D.4 Ensuring (D.7) holds with high probability
For the proof of the next lemma and subsequent steps of the proof, we let A = {vy,...,vx} and
define the matrix N

4 (qfuj (&()ﬁ))) TN
vm ij=1
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Lemma D.7. Let0 < e < 1,0 < § < 1, k > 0 and suppose that
m>co-0 2 k- (log(eN) - log?(k/8) + log(2/€)) (D.11)

for some universal constant co > 0. Let T = {c € RV :||c||, = 1, lellg, < k}and
6, = sup {EHACH‘;' ce T} , 0. =inf {E||Ac||§ ce T} .

Then ) )
|Acll; = (0- — (1+604)c1d) llelly, Ve e RN, |lclly, < k-

with probability at least 1 — ¢, where ¢c1 > 0 is a universal constant.
Proof. The proof is based on [12| Thm. 2.13]. Since ||c||, ,, < {/llcll ,llelly < Vk, we see that

TC {c eRY : e, < \/%} .
Define the random vector X € RN by X = (U, (Ex(X)))Y, for X ~ p. Observe that
(X, e5) = W0, (Ex (X)) < wy, S0,
almost surely, by (A.IIl) and the definition of the weights. Therefore, by [12, Thm. 2.13], if
m>co-0 2 k-log(eN) -log®(k/(c16)), (D.12)
it holds that

<10 (1 + supE[{c, X)|2>

ceT

1 9 9
sup—g c, Xi)|° —El{e, X
- i 1|< )| K )

with probability at least 1 — 2 exp(—c262m/k). Here cg,c1,c2 > 0 are universal constants. Now
observe that

1 m
=Y e Xl = |Adl;,  Ele, X)[* = E(|Ac]3).
i=1

Therefore, we have shown that
|Acl2> 6 —(1+6,)c1d, VeeT,

with probability at least 1 — 2 exp(—c202m/k), provided m satisfies (D.12). To conclude the result,
we observe that (D.TT)) implies (D-12), up to a possible change in the universal constant co. Moreover,
it also implies that

2 exp(—c20°m/k) < e.

Hence we obtain the result. O

Lemma D.8. There exist universal constants cg, c1,co > 0 such that the following holds. Suppose
that
m > co- k- (log(eN) - log?(k) + log(2/€)) (D.13)

and
Vk - ||tay — tay 0Dy o Exl L2 (i < €1- (D.14)

Then (D7) holds with probability at least 1 — € and constant @ > cs.

Proof. We shall apply the previous lemma with k replaced by 2k. First, we estimate 6 and 6_. Let
c € T, with T as defined therein with 2k in place of k. Writep =, ca 'y, for the corresponding
(scalar-valued) polynomial. Then

1 m

2

|Acll, = o > IpoEx(Xi),
=1

and therefore ) )
EllAclly = llpllzz(p)-
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Since ||c||, ,, < 2k, (D.14) implies (D.6). We now apply Lemmaand the fact that ||p||L§(D) =
lefl, =1 to get

c3 <E[|Ac|3 < 4
for universal constants ¢4 > c3 > 0. Since ¢ € T was arbitrary to deduce that

C3 S 0_ S 9+ S Cq. (DlS)

We now show that (D.7) holds with the desired probability. Let p, ¢ € Pg,5; be arbitrary. Then their
difference h = p — g can be expressed as

h= Z d, W, (D.16)

veA

where d = (dy,),en € YV satisfies
g, < lldllg, < 2k

Now, this, (D.14) and Lemma|[D.4]imply that

< .

1Pl 2Dy < callllz (o)
Therefore, in order to prove (D.7), it suffices to show that [|A] 12 (p.yy S 1Al gisc,c-
Observe that
1llgise e = [[Ad]] 5y > [ Adlyy = sup |ly"(Ad)],,
y*€B(Y*)

where we recall that for a vector z = ()Y, € YV, we write y*(2) = (y*(z))Y, € RY. By

linearity, we have y*(Ad) = Ay*(d). Therefore, by Lemmal[D.7]
2 2
Hh||disc,€ = ||Ad||2;y
> swp [ Ay(d)[;

y*€B(Y*)

> sup (06— — (1+04)es0) [ly*(d)]l5
y*EB(Y*)

> (3 = (L+ca)esd)  sup  [ly"(W)l1Z2 )

y*€B(Y*)
2
= (3 = (1 + ca)es0) IAllZz (psy-

for some universal constant ¢ > 0, provided m satisfies (D.1T). We now set 6 = ¢3/(2(1 + ¢4)c5)
to get

2 2
||h||disc,5 2 03/2|||h|||L3(D;y)’

provided m satisfies (D.T1)) with this value of 6. However, this is implied by the condition (D-13).
We deduce the result. O

D.5 Construction of the DNN family \/

Recall that A C F, |A| = N is an arbitrary set and S is defined by (D.I)). In this and what follows,
we slightly abuse notation and consider a DNN N : R — R as a function RY — R which depends
on only the first d variables.

Lemma D.9 (Approximating Legendre polynomials with tanh DNNs). Let I' C A with supp(v) C
{1,...,d}, Vv €T, and m(T') = maxycr ||V|; < co. There exists a fully-connected family N, of
tanh DNNs N : R? — R with

width(N,) < m(T), depth(N,) < log(m(T)),
such that, forany 0 < 6 < 1 and v € T, there is a DNN N,, € N, with
Ny = O]l ) < 6. (D.17)

Moreover, the zero network 0 : & — 0 also belongs to N, (trivially, since tanh(0) = 0).
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Proof. We follow the argument of [S, Thm. 7.4], which is based on [79, Prop. 2.6]. Let v € T". Then
via the fundamental theorem of algebra we can write ¥,, () as a product of ||v||; numbers as

\I/V(EB) = H ]f[dz(.’lil —’f’ij).

i€supp(v) j=1

Here {r;;}/_, are the roots of the univariate Legendre polynomial P,,. We append m(I") — [|v||;
ones and write ¥, () as a product of exactly m(I") numbers. Now define the affine map

A, R R, (D.18)

so that A, (z) is the vector consisting of the values d;(x; — r;;) for j =1,...,v; and i € supp(v)
and 1 otherwise. To complete the proof, we need to construct a tanh DNN mapping R™(T) — R that

approximately multiplies these numbers. To do this, we argue as in the proof of [S, Thm. 7.4] to see
that there is a tanh DNN NV, with

width(N,) S m(T), depth(V,) < log(m(T))

that satisfies the desired bound (D.I7). Since these width and depth bounds are independent of v, we
deduce the result. O

Fix § > 0,letI' = UgsesS, d = dx and consider the corresponding family A, and DNNs N,

v € I, asserted by this lemma. For any v € I', we have v € S for some S € S, and any such S

satisfies |:S|, < k. Therefore u,z,(5+5) = v?, < k for any v € S and we deduce that

d
Ivll, < (v +1) = u2 < k649,
j=1

This implies that m(I") < k*/+€) and therefore
width(N,) < kYCH 0 depth(N,) < log(k).
With this in hand, we now define the family A/ of DNNs N : R%* — R% by

F N, T
N={(N=C NgSI 1S ={vi,....vg} €S, CeR»*F L. (D.19)
Lo ]
Here we also use the fact that |S| < | S|, < k. Notice that this family satisfies
width(A) < K76 depth(A) < log(k), (D.20)
due to the bounds for A/,,.
Now let N € N and write C = [¢1| - - - |e|x], where ¢; € R, Then
|S] |S]
DyoN = ZDy(ci)N,,i = Z ¢ilNy,, wherec; € V.
i=1 i=1

Therefore, we can associate N with the space of functions 5.3 where, for any arbitrary Banach
space (Z, [ - || z)
755;2 = {ZC,,NU tcy € Z, SGS}.
ves

We now require the following lemma, which relates the distance between a function in 753; z and the
corresponding polynomial in Pg. =.
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Lemma D.10 (Discrete norms of polynomials and their approximating DNNs). Let S C F,
(2, - Il z) be any Banach space and suppose that p = ), s c, V., where ¢,, € Z. Define

ﬁ:chN

Then
1P = Pllaisc.c < 1P = Pllpeo 0,2y < IVISHIPII L2, 2)- (D.21)

Moreover, if Z =Y, S € S and (D7) holds with o satisfying 6+/|S|w /o < 1 then

H|p|||L2 (DY) 5\/F||p”dlscc

Proof. By (A.IIl) and the definition of the /V,, we have
1P = Dllgisc,c < P — ﬁHLgo(D;z)

= sup 2% =D)L= p)
2*€B(Z*) e

< sup Z‘Z (cu)| IV NV||L°°(D)
z*€B(Z%) ,cs ¢

< dllelll.z-

We now apply the Cauchy—Schwarz inequality and Parseval’s identity to obtain

1P = Pllaise.c < 5VISllellz,z = 5VISTullpll L2 (p:2):

which gives the first result.

For the second result, we apply (D.7) with ¢ = 0 to get

H|p|HL2(D %) <a 1||p||d|scg <a! (Hp _15||disc,§ + ||15||disc,€) :
Using (D.21) and the fact that §1/|.S| /o < 1 now gives the result. O

Remark D.11 (Other activation functions) As seen in this section, a key step in our proofs is
emulating the polynomials via DNNs of quantifiable width and depth. There is an extensive literature
on this topic. See, e.g., [5} 211 123} 25 138} 157} 163} 167} 72, [78. [79, 185 [86, 92| 97]] and references
therein. The proof of Lemma- ID.9|reduces this to the task of emulating the multiplication operation
(r1,...,74) € R4+ 21 --- 14 € R via a DNN. As shown in the proof of [3, Thm. 7.4] (which is
based on [79] Prop. 2.6]), this can in turn be achieved using a binary tree of [log,(d)] DNNs that
approximately compute the multiplication of two numbers (z,y) € R? — zy € R. Further, this task
can be achieved via the identity zy = ((z + y)?> — (z — y)?)/4 by using a DNN that approximately
computes the squaring function z € R — 22 € R. To summarize, provide a DNN of quantifiable
width and depth can approximately compute the squaring function, it can also approximately emulate
the multivariate Legendre polynomials.

In view of this, we can adapt our main theorems to various other activation functions without change.
This includes Rectified Polynomial Units (RePUs), where the emulation is, in fact, exact (see, e.g.,
[57, Lem. 2.1]). It also includes the Exponential Linear Unit (ELU) used in our numerical experiments
and many others. See, for instance, Proposition 4.7 of [38]] and the ensuing discussion. Rectified
Linear Units (ReLUs) are slightly different, as in this case the depth of the DNN that performs the
approximation multiplication depends on the desired accuracy (see, e.g., [79} Prop. 2.6]). One could
modify Theorem [3.1]to consider ReLU DNNGs, with the result being a worse depth bound than that
presented for tanh DNNs.

D.6 Analysis of (2.3)

Lemma D.12 (Approximate minimizers of (2.3) yield approx1mate minimizers of (D.3)). Suppose

that (D.7] - ) holds, let N be the family of DNNs defined in and N be any (o, T)-approximate
minimizer of 2.3)). Let

DyOﬁ:Zc,,N GPSy,
ves
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where S € S and ¢, € JNJ, and define
p=> &V
ves

Then p is a (o', 7')-approximate minimizer of (D-3), where
o' <o(1+6Vk/a)

1 . (D.22)
/ A~
<7+ a0vEa (IFlp o + Sl Blay ) + 3Vl o)
Proof. Letp =) gV, € PS;)7 be arbitrary and N € A be the corresponding DNN so that

Dy oN =3}, cgcNy. Then by the triangle inequality and the fact that N is an approximate
minimizer, we have

1 « . 5
o Z 1Y;: = po&x(Xi)ll3
=1

IN

1 & ~ 2 R ~
— 3 ¥ =Dy o No&a(X)ly + 5~ Dy o Nllynes
i=1

1 « 2 5 N
<gc EZHE—’DyoNng(XZ‘)Hy—FT‘F||p_DyON||disc,€
i=1

1 & 5 R .
<o m Z [Yi—po SX(Xi)Hy +7+o0lp—Dyo ]VHdisc,g~ +p—Dyo N”disc,f-

We now apply Lemma to the last two terms, noting that | S| < |S|,, < k since S € S, to obtain

1 — .
EZHYi*pO&Y D3 < ZIIY po&x(Xi)|3
=1

+7+ 05\/E|HP|HL§(D;32) + 5\/E|||ﬁ“|L’é(D;y)'
Consider the third term. We first apply (D.7) with ¢ = 0 to get
||‘P|||L§(D;y) < Ofl”?”disc,& = Ofll\lp o 5X|||disc,p,'
We then use the triangle inequality to get

llp o Exllgisc, . < MF =P o Exllisc,e + IF llgisc,

1 m ) 1
< | =S = po Ex (X3 + I sy + ——=IE sy
= m | pox( )Hy | ”Lu (X)) mH ||2,y

Therefore, we obtain

1 <& A 9 1 & 9
E;HYi_po&\f(Xi)HySU(1+5\/%/0‘) E;Hn—posx(&)llﬁf

1 .
+00VE/a (Il eon + VBl ) + VRl 0

Since p € P 3 was arbitrary we get the result. O
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Theorem D.13 (Error bound for DNN minimizers). Let Q : ) — 37 = Dy(Rdy) be a bounded
linear operator, g = ||Q|ly,_,y, and suppose that (D.7) holds with o > ¢ and o — VE > ¢y for
suitable universal constants cg,c1 > 0. Let N be the family of DNNs defined in @and N be any
(0, T)-approximate minimizer of [2.5). Then the approximation F = Dy o No Ex satisfies

IF = Fll 2 gy S I1F = Q0 Fll 3 ey + 0lIF = Q0 Fllge,
+ 70 (I1F = g0 Exll 3 ) + ONF = 00 Exllgc,)
g
+ 7+ 0'6\/E||F”Lﬁ°(/\’;y) + ﬁHEnz;y
and
|1F - F||Lzo(x;y) SIF—Qo F”LﬁC(X;)/) +Vko||F - Qo Fllgisc,.
+ 70 (I1F = 00 &l iy + VEOIF = 00 Exllge,)

Y

ko
+ VET + 0OK||F | o (3 + s 1By

forall q € Ps;y.

Proof. Let p be as in Lemma|[D.12] Then
(17— F|||L§(X;y) <|[[F—-po 5X|||Lﬁ(x;y) +[poéx —DyoNo 5X||\Lﬁ(x;y) (D.23)
| F — F”Lﬁo(x;y) <[F—=po SX”Lzo(X;y) +poéx —DyoNo 5XHL30(X;3/)
For the second term, we have, by (A.IIT) and Lemma[D.10]

o &x =Dy oNo&xllpzny) < lPoéx =Dy oNoExllpery
=[p—Dyo NHL;O(D;y)
<|[p—Dyo NHLZO(D;J))
< 6\/E|”ﬁ|”L3(D;y)'

‘We now apply this, Lemrna Theoremand the facts that «=! < 1 and ¢’ > 1 to obtain
IF = Fll 2 (i) S IF = Qo Flll 2 () + 01 F = Qo Fllgie,,

+ 70 (IF = a0 Exll 3 ) + 0 I1F = 40 Exllgec,)

!
’ g
+7 + ﬁHE 2.y

and
|1F - F“Lﬁo(x;y) SIF-Qo F”LEO(X;J}) + \/EUIMF - Qo FlHding
+ 70 (IF = 40 Exll e ey + VRO IIF = 00 Exllgec )

k !/
+VEr %IIEIIW

for any ¢ € Ps.y, where o’ and 7’ are as in (D.22)). Due to the various assumptions, these satisfy

O' A
ﬁHEHQ;y + 5\/EH|Z’H|L§)(D;3/)'

r< <
o' So. T ST+ oOVE|Fl|px iy +

We deduce that
£ — F‘||Lg()c;y) SIE—=Qo FH|L5(X;y) +oflFF—Qo F|||disc,u

+ 70 (IF = g0 Exll s ey + ONF = 40 Exlluec,)

o R
+ 7+ 0SVE Fll ) + ﬁHEHz;y + VBl L2 by
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and
| F — F”Lff(x;y) SIF—Qo FHLfLo(;ay) + \/EU‘HF — Qo Fmdisgu
+ 70 (IF = 40 Exlle ey + VEOIF = 00 Exllae, )

Vko R
+VEr + OOk|| | oo (i3 + WHEHM + OKIIBI L2 (1)

We now bound the final term. Using Lemma [D.10] once more, in combination with the fact that
a— vk 2 1, we see that

i 1 - -
Bl 2 (pyy < m\\py © Nllgise,¢ S Py © Nlgise,¢-

1 & ~ 2 1
< EZHYi—DyONOSX(Xi)Hy‘*‘ﬁ”y\\z;y

i=1

1 — 9 1
<o E; Y = Olly + 7+ ﬁIIYHw

1
<(1+0) <|F|L§°(X;y) + \/%||E||2;y> T

Here, we also used the fact that N isan approximate minimizer in the fourth step, as well as the facts
that the zero network 0 € A and that Dy is a linear map. Plugging this into the previous expressions
now gives the result. O

D.7 Bounding the best polynomial approximation error terms

When o = 1 (as will be the case when we come to prove Theorem @, the error bounds in Theorem
involve best polynomial approximation error terms of the form

IIE — g0 Exllz i) + IF = g0 Exllysc,s I1F = a0 Exll iy + VEIIF = 40 Exllgsc
for arbitrary ¢ € Ps.y. By the triangle inequality, these are bounded by
Ea(F,q) = IF = qotll L2 (i) + IF = g0 tllgise,pa
tllgor—go&xllpz ) +lllaor = a0 Exllgise,
EnclFo0) = 1P = 0l gy + VEILF = 0 e 020
+llgot—gqo SXHLgo(X;y) +VEllgor—qo Exlldisc, -

In this section, we construct a suitable polynomial ¢ in the case where (A.II) holds and thereby derive
a bound for these term. We first require the following lemma.

Lemma D.14. Let G € L?(X;Y) and 0 < € < 1. Then the following hold.

(a) With probability at least 1 — € on the draw of the X;, we have
G gisc.pe < NGl L2 (i) / V-

(b) Suppose that m > 2rlog(2/¢) for some r > 0. Then, with probability at least 1 — € on the draw
of the X;, we have

1 asee < VE (1G] e e /VF + G 13 03 ) -

Proof. Observe that the random variable ||G H|(2:Iisc . satisfies

2 2
EMGH'disc,;L = ||G||Lﬁ(Xy)
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For (a), we use Markov’s inequality to get

2
H|G|||d|5c7ﬂ
TGz ey fe

P (11G e = 1G22 )/ VE) <

)

as required.

The proof of (b) is based on [3, Lem. 7.11]. We repeat it here for convenience. Define the random
variable Z; = ||G(X;) ||§, and observe that

E(Z;) = Ex~ulGON3 = Gl () = @

Let X; = Z; — E(Z;) so that

s 1, 18
|HG|Hdisc,u - E Z;Zl - a ZIXZ + a.

Now let b = HG”ioo(;ay) and observe that
H !

Xi < Zi < b, _Xi < E(ZZ) < b, a.s..

‘We also have
m m

> E(XD) SZ (Z2) gbiE(Zi) = abm.
=1 =1 =1

Therefore, Bernstein’s inequality for bounded random variables (see, e.g., [29, Cor. 7.31]) implies

that
1 & t2m,/2
Pl|—=) X;|>t] <2 -
(‘ng i\ = )— eXp( ab+bt/3)

for any ¢ > 0. We now set t = a + b/r and notice that af:zl;{/Qs > 3™ > Jog(2/e€). Therefore,

i <a+b/r

with probability at least 1 — e. It follows that

G goe, < V20 +0/r < V2 (Va+ /o]r)

with the same probability. Substituting the values for a and b now gives the result. O

Lemma D.15. Let ' € L7°(X;Y), q € Ps.y be arbitrary and m > 2rlog(6/¢) for some r > 0
and 0 < € < 1. Then

Ey(F.q) SIIF—qo LHLﬁO(X;y)/\/;"" [F—qo L”Lﬁ(z\’;y)
+ M|||q|||L§(D;y)||LdX ~tay oDy o gXHLg(x;em(Rdx))-
and
Beo(F.q) S0+ VEIE — g0 1l vy + VEIE = 001l 12 (g
+Ellal 2y lax = tax © Do 5X||Lg(x;eoo(Rdx))
VR VRl 2yl = 1 © Do 0 Exll e e i

with probability at least 1 — e.
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Proof. We apply part (b) of Lemma with € replaced by €/3 to the term || " — g o ¢[| . ,, and
parts (a) and (b) of Lemma with € replaced by €/3 to the term ||g o ¢ — g 0 Ex|lisc ,,- Using the
union bound, this gives that

IF—qo L”‘disc,p SIF—qo L”L,’i(;\f;y) +[|[F—qo L”Lﬁo(?{;)})/\/;
llgot—go gXlHdisc,p, Sllgor—gqo 5X||L,2L(X;y)/\ﬁ
llgor—qoExllyse, S g0t — a0 Exll e iy //VT+ a0t —qoExllps xy)
with probability at least 1 — €. This yields

By (F,q) SIIF = qotllpz iy T I1F = g0l e vy /VT
+llgot—qo &YHLg(X;y)/\/E

Ex(Fq) S+ VE/MIF = g0t ey + VE|F —qo Uz e,
+ 1+ k/r)llgor—qo 5XHL30(X;3;) +Vkllgor—qo 5X|‘L§(X;y)

with the same probability. It remains to bound the terms involving g o ¢ — g o Ex. Using (A.III),
Lemma[D.2)and the fact that ¢ depends on its first d variables only, we see that

1
lg o u(X) = g0 Ex(X)ly < 5VEllll 1z (poy)lltax (X) = Ex(X)]l-
Therefore
lgow—gqo&xlliziry) S \/qu'“Lg(D;‘y) leax = Exll 2 (e o))
lgor—qo SX”LZO(X;)}) < \/E|||QH|L3(D;3;) [ gX“LﬁO(X;ZOO(N))

Substituting this into the previous bounds and using the definition of £x from (A.III) now gives the
result. O

We are now ready to choose the polynomial q. First, we require the following technical lemma, which
shows the existence of multi-index sets of weighted cardinality k£ which achieve the desired algebraic
rates of convergence.

Lemma D.16. Let f =3, c, 'V, satisfy f € H(b) for some b € (P(N) with b > 0. Then there
are index sets Sy, So C F with |S1|v, |S2]e < k such that

le = €5, [l < C(b,p,&) - k*7HP e = es,|ly 4y < C(b,p, &) - k7P,

where C(b,p, &) > 0 depends on b, p and £ only.

Proof. We first show that ¢ € (£(F;Y). By definition of H(b) (see (Z.3)), f is holomorphic in every
Bernstein polyellipse £(p) for which p satisfies

) —1
P+ p;
p>1, Z (23 — 1) b < 1. (D.25)
Jj=1
Using [4] Lem. 5.3] (which is based on [102}, Cor. B.2.7]) with @ = 3 = 0, we get that ||CO||y <1
and
plzuk—‘rl
lewlly < H e +1), veF\{0}
welw.py PR~ 1)
v,p)

for all such p, where I(v, p) = supp(v) N {k : pr > 1}. Define the sequence dp = 1 and
—vE+1

dy=v7 i ] (;’:ﬁ(yk +1) : psatisfies (023) p, v € F\{0}.
kel(v,p)
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Using (C3)-(C4)), we see that
v, = H (2, +1)F9/2

kesupp(v)
and therefore
p;yk—‘rl
dy < H W@Vk +1)7
kel(w,p) P

for all p satisfying and some v = v(p,£) > 0. We now use [4, Lem. 5.4] to deduce that
d = (dy)ver € (P(N) with ||d||, < C(b,p,¢§) for some C (b, p,§) > 0 depending on b, p and §
only. Returning to ¢, this gives
lellpay = D vi Pllenls < Y ldu|P < C(b,p,&)P.
veF veF

Hence ¢ € (% (F;Y) with ||| < C(b,p,§), as required.

p,v;Y

The second step involves the application of the weighted Stechkin’s inequality (see [3, Lem. 3.12]).
This gives that

mln{HC— CSH%v;y : S C .F, ‘S|rv g k} = Uk(c)q,v;y g ||C||Z)7'l);3)]€1/q—1/177

for any ¢ € (p,2] and k& > 0. Applying this result with ¢ = 2 implies the existence of the set S}
(recall that || - [[5 .5y = || - [|5,3)) and applying it with ¢ = 1 implies the existence of the set Sy.  [J

‘We now define the set

MOY=Sv=w)pz e F: J[ e+ <n =0 k>npCF (D.26)
k:v#0
Notice that AH is isomorphic to an index set in NI} by the natural restriction map.

Lemma D.17. Let k > 0 and suppose that A O AH for some n € N. Let f = > ver VU, satisfy
[ € H(b) for some b € £§,(N) with b > 0. Then there exists an index set S € S such that

1 = Fsll e oy < Cb.p,€) - (K17 4t =47 (D.27)
where fg = ZVES cuVUy. Moreover, if Y is a Hilbert space, then we also have that
1f = Fsllzz(pyy < C(b,p, ) - (741/2_1/” + n1/2_1/p) : (D.28)

Here C(b,p,&) > 0is a constant depending on b, p and & only.

Proof of Lemma|D.I7} The previous lemma implies that there exist index sets S1,S> C F with
[S1]ws [S2]w < /2 such that

lle = es, oy < Cb.p,) - K277 le = €5,y uy < C(bop &) - K77
Now define S = S7 U Sy N A and notice that S C A and | S|, < |S1|» + |S2]|» < k. Hence S € S.
Since v, > u, = H\I&,HLEC(D), we have (using [5, Lem. 5.17)
If = fSHLZc(D;y) <lle— CS”Lu;y <lle— 052”1,1;;3; +lle— CA”Lu;y-
Hence, to complete the proof of the first result, we need only show that
lle = el uy < CB.p) 0! Y7

for some constant C'(b, p) > 0. First, by construction, A D Agc' contains every anchored set of size
at most n. See, e.g.. Therefore [|c — ea || .y < [[€ — €s]|; 4.y for any such set S. The result now
follows from [5, Cor. 8.2].

Now suppose that ) is a Hilbert space. Then Parseval’s identity gives that
If— fS”Lg(D-,y) =[le— CSHQ;y < lle—es, HQ;y +lle— CAHQ;y~
As before, it suffices to show that
le = eally,y < C(b,p) - n'/21P.

This follows from the same approach and [5, Cor. 8.2] once more. O
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D.8 Final arguments

We are now, finally, ready to prove Theorem@ We first consider the case where ) is a Banach
space, then treat the case where ) is a Hilbert space afterwards.

Proof of Theorem[3_1|\when Y is a Banach space. We divide the proof into a series of steps.

Step 1: Setup and DNN width/depth bounds. Let m, 9, € and L be as in the theorem statement. We
may without loss of generality assume that § < 1/5. Now let

n= [%] <dy (D.29)
and
A= AHCI7
where AH is as in (D-26). We also set
£€=1/0—-5>0 (D.30)
and m
k=2, (D.31)

where ¢ > 1 is a universal constant that will be chosen in the next step. Finally, let § = 2™ /m and
N by the tanh DNN family (D-19), where the N,, are as in Lemma[D.9]for this A and value of 4.

By and the definition of ¢ and k, we immediately see that
width(N) < (m/L)**°,  depth(N) < log(m/L).
This yields the width and depth bounds (3:1)). The rest of the proof is therefore devoted to showing

the error bounds (3:3)-(3-4).

Step 2: Ensuring (D.7) holds with probability at least 1 — €/2. A standard bound (see, e.g., the proof
of Lemma 6.4 in [5]) gives that N = |A| satisfies

log(eN) < 4log?(en) < log?(m). (D.32)

Here, in the final step we used the fact that m > 3 and L(m, ¢) > 1. This and the fact that ¢ > 1 also
implies that & < m. Therefore, the right-hand side of (D.13)) with € replaced by €/2 satisfies

co - k- (log(eN) -log?(k) + log(4/€)) < k - L(m,€). (D.33)
Hence, for sufficiently large ¢ > 1, we deduce that (D-13)) holds with €/2. Using (A.I), we see that
||de —LdXO'ZSX OgX”LZ(X;EOC(N)) SLLHIX_ﬁXOgX”LZ(X;X)7 q:2700. (D34)

Hence (D-T4) is implied by (3-2). We conclude from Lemma [D.g]that (D.7) holds with probability at
least1 —e/2and @ 2 1.

Step 3: Error analysis. Let f € H(b) be the function asserted by (A.IT) and define ¢ = fs as the
polynomial asserted by Lemma[D.17| with n as in (D-29). We also observe that

1 oo 9y = Wl e (pi) S W lpge oy S 1 (D.35)

since f € H(b). We now apply Theorem with o = 1 and use (D.31)), the definition of § and

(3-3) to see that
IE = Flll 2 ey SIE = Q0 Flllza iy + IF = Qo Fllgige
+ //TQEQ(Fﬂ q) + EOpt,Q + Esamp,Q
IF = Fll e iy S IF = Q0 Fllpc iy + VEIF = Qo Fllgie
+ Mol (F7 Q) + Fopt,co T Fsamp, 0o

(D.36)

with probability at least 1 — €/2, where E5(F, q) and Eo(F,q) are as in (D.24), Q : YV — Yy =
Dy(R%) is any bounded linear operator and g = ||Q||,, Ly
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Notice that Parseval’s identity and (D.33)) imply that
llallzs oy < WAl ey < Il oy S 1
Hence, this, the previous bounds, Lemmawith e replaced by €/4 and the union bound yield
IF = Fll 22 ey S WIEF = Qo Fllzz gy + IF = Qo Fllgic,,
70 (IF = 40 e gy /VF + IF = 40l )
+ moVk/€e||ltay — tay © Dy o gquﬁ(X;em(RdX))
+ Eopt,2 + Esamp,2
and
IF = Fll e iy S IF = Qo0 Fll e iy + VEIIF = Qo Fllge,,
1 (L VRIIF ~ g0 s gy + VEIF = 00l vy
+ 7ok||tdy — tay © Dx o §X||Li(&éw(wx))
+ 1oVE(L+ VE/7)||tay — tdy © Dx o gX”LiO(X;goo(RdX))
+ Eopt,co + Esamp,o0

with probability at least 1 — 3¢/4, for any r such that m > 2rlog(24/¢). In particular, we may
choose 7 = k due the definition of & (D.31). We next bound the discrete error ||/ — Q o F|yq. .-

Applying Lemma with e replaced by €/8 and the union bound, we see that
IF—Qo Fl”disc,u SIF—=Qo FHLﬁ(X;y)/\ﬁ
IF = Qo Fllyuey S IF = Q0 Fllys g /N7 + IF = Q0 Flla iy

with probability at least 1 — €/4, provided m > 2rlog(16/¢). In particular, we may take r = k once
more. Substituting this into the previous expressions, setting r = k throughout, using the union
bound once more and recalling (3.7), (D-31) and (D-34), we deduce that

I1E = Fll g2 iy S IF = Qo Flla (xiyy / Ve

+mg (IIF =40 Ul gy /VM/L +||F —qo L||Lﬁ(w))
+ (Wg/ay) “Ex 2+ Eopt,2 + Esamp,2

and
|F— F“Lff(X;y) SIIEF - QOF”LﬁO(X;)}) +vm/L||F — QOFHLﬁ(x;y)
+ 70 (IF =40l ey + VIIEIF = 00 el 3 3
+ (T‘-Q/ay) ’ EX,oo + Eopt,oo + Esamp,oo

with probability at least 1 — €. This holds for any bounded linear operator Q : J — Y= Dy (R%).
We now set @ = Dy o £y, which is linear and bounded by (A.IV) with 7g = [|Dy o Ey |y, = ay
by definition. Using this, we observe that

|F—Qo F||L;{(X;y) =|Zy - Dyo 5y|\1;;w(y;y)a q=2,00.
Substituting this into the previous expressions and recalling (3.7) now gives
IIF - ﬁ|||L;‘;(X;y) S ay (”F —qo L||Lgo(x;y)/\/m+ [F—qo L”L;{(X;y))
+ Ex2+ Eys2+ Fopt,2 + Feamp,2
IF = Pl iy S @ (IF = a0 tll e ey + VILIF = g0t 13 20,
+ Ex oo + Ey o0 + Eopt o0 + Esamp,oo-

(D.37)
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Step 4: Bounding the polynomial error terms. It remains to bound the error terms F' — ¢ o ¢ in (D:37).
Using (A.D), (A.II) and Lemma[D.17] we now notice that

[ —qo LHLﬁO(X;y) =f- QHLgo(D;y) S - ‘JHLZc(D;y) < C(b,p,§) - (klil/p +n171/p)-

Recall that n > k. Therefore, using this, (D:31T) and (3.6), we see that

ay (I1F = 40 Ul ey /V/MIL + IF = g0 tl 3 3 ) S a9 IF = 00 ¢l o )
Say-Cb,p,&) - (m/L)' 717

- Eapp72

and likewise for the L7°-norm bound. Combining this with (D.37) now completes the proof. O

Proof of Theorem[3.1)\when Y is a Hilbert space. The two differences in theorem statement when )/
is a Hilbert space are: (i) the L2-norm error is with respect to the stronger Bochner norm, and (ii) the
approximation error terms E,pp 4, ¢ = 2, 00, are smaller by a factor of 1/2 in the exponent (recall
(3-6)). We treat both issues separately.

For the (i), we commence with the supporting results in §D.2} First, we note that Lemmas|[D.T|and[D.2]
also hold in the Bochner L?-norm, since these results already give upper bounds involving the Pettis
L2-norm. Next, we observe that the proof of Lemmais readily adapted to yield an equivalent
result in the Bochner L2-norm with the same constant §. The same therefore applies to Lemma

We next consider the analysis of (D.3) in §D.3] If we replace (D.7) by the condition
1P = dllgise,c = vmax{]|lp — QHLZ(D;y)’ lp— Q||Lg.(D;y)}7 Vp.q € Py (D.38)

then the proof of Lemma yields the same error bounds, except with the Pettis L2-norm replaced
by the Bochner L?-norm. Theorem is likewise modified to provide a bound in the Bochner
L?-norm.

Up to this point, we have not used the fact that ) is a Hilbert space. We now need this property.
As in §D.4] the next step is to establish that (D.38) holds with high probability. Lemma [D.7]is
unchanged, therefore our focus is on Lemma We now describe the steps needed to modify
the proof of this lemma to assert (D.38) subject to the same conditions (D-13)-(D-14). First, let

{©i}* be an orthonormal basis of ) and write each coefficient c,, of the function % in (D.16) as
Cy; = E?ﬁ 1 bijp; for scalars b;;. Then it is a short exercise to write

dy
2 2 2
B llgisc.c = 1ACl5 = | AbsI5,

j=1

where b; = (b;;)~,. Since b;; = 0, Vj, whenever ¢,, = 0, this vector also satisfies [|b; ||, , < 2k.
Hence, by Lemma|[D.7)and Parseval’s identity twice,

dy
IAlfGic.c =D (0— — (1+ 01c50)[1b;]l5
j=1
N
=(0- — (14 04c59) Z l[cw, 3

i=1

2
= (0- = (1 +04¢50) ([Pl 2 (p.y)-
We now use the bounds (which are unchanged) and set § = c3/(2(1 + c4)cs5) once more to get
2 2
Hthisc,é' 2 03/2||h||L§(D;y)-
This gives the desired result.

This completes the changes needed in order to analyze the polynomial training problem (D.3). We
next consider the DNN training problem (2.3). §D.3|remains unchanged. After reviewing their proofs,
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we see that Lemma [D.12]and Theorem [D.13]both hold with Pettis norms replaced by Bochner norms
whenever holds instead of (D.7). Finally, we also observe that Lemma[D.T5]also holds with
Pettis norms replaced by Bochner norms, both in the bound and in the definition of E5(F, q)
and E(F, q).

Having completed the changes needed in all the preparatory results, we now follow the same steps as
above in the Banach space case. Steps 1 and 2 are unchanged. For Step 3, we go through and replace
Pettis norms by Bochner norms throughout. Using this, we obtain (D.37)), except with the Bochner
norm on the left-hand side in the first inequality, i.e.,

IF = Pl S @ (IF = a0l e e/ VL + IF = a0z )
+ Ex o+ Eyo+ FEopt o+ Esamp,2

IF = Flle ey S av (IF = 00 tll Lz () + VM/ZIF = g0l 13 2
+ EX;OO + Ey,oo + Eopt,oo + Esamp,oo~

(D.39)

This concludes the changes needed to address (i). To address (ii), we bound the terms F' — q o ¢.
Using (A.I), (A.I), Lemma[D.17] the fact that ) is a Hilbert space and the definitions (D.31)) and
(D:29) of k and n, we see that

|[F'—qo LHL;?(X;JJ) =|f- Q||L30(D;y) SIf- QHLZo(D;y) < Cb,p,€) - (m/L) =1/
and

1F —qotlpa vy = If = a2y SIF =l i) < Cb,p,€) - (m/L)127HP
Substituting this into (D.39) and recalling (3.6) now completes the proof. ]

Remark D.18 (Differences between the Banach and Hilbert space case) Having seen the proof,
we now summarize these differences as follows. First, the matter of whether the Pettis versus Bochner
norm can be used reduces to the choice of such norm in the discrete metric inequality (D.7). When
Y is a Banach space, we are able to establish this in terms of the Pettis norm subject to a log-linear
scaling between m and k (see Lemma@ and (D.T3)). However, when ) is also a Hilbert space,
we can establish the stronger version (D.38) of this inequality by exploiting the additional structure.
This, in short, is what leads to the stronger norm bound in this case.

Second, in the Hilbert space case, we get an improved approximation error. This stems from (D.17)
and, specifically, the fact that when ) is a Hilbert space we may use Parseval’s identity in the Bochner
space L2(D; V) to bound the L2-norm error term via (D-28). This is not possible when ) is a Banach
space, so we settle for bounding this term via instead.

E Proof of Theorem 3.2

E.1 Setup

As in let A C F with supp(v) C {1,...,dx}, Vv € A, and write N = |A|. Let S be as in
(D.0I), r € N, r > max{m, k} (its precise value will be chosen later in the proof) and define the set

I=T,U|JSCF, wherel,={e;j:i=1,...,r} (E.1)
Ses

Finally, let 0 < ¢ < 1 and consider the family V, and the tanh DNNs { N, }, cr whose existence is
implied by Lemma[D.9] We will specify A, k, r and § later in the proof.

Next, let
ﬁ = Z A
ves

be any minimizer of (D.3), where |S|, < k and define

p= Z éuN,,.

ves
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Let

m,Tr

B= Ne, 0 Ex(X3))

1
W ( ij=1"
Now, JNJ = Dy(Rdy) is a finite-dimensional subspace of the Banach space ). Hence, for any Y € )
there exists a closest point Y € ), i.e., a point satisfying

Iy =Vl =inf {|y - 2|, : 2 € I}

Given Y7,...,Y,,, let 171, e ?m € 37 be the corresponding closest points. Now define
1

m

i;i —po&r(X; ) \m
e=— (Vi-pon(xy) _ €V
and .
p=p+>» (Ble+yz)iNe,, (E.2)
1=1

where z € N(B)\{0} and y € ), [lylly = 1, are arbitrary. Note that such a z exists, since r > m
by assumption. Notice that
D= Z Ny

veSuJur,

for coefficients ¢,, € 37 Therefore, we can write

p=DyoN, (E.3)
where
F Ny, T
N =c |Musore (E4)
L 0
and C € R®*(lFJ+7) _ Finally, we define the approximation
F=DyoNoé&y (E.5)
and, for convenience,
F = ﬁ [0} SX .

E.2 Estimation of the DNN minimizer
Lemma E.1 (]V is a minimizer). If B is full rank, then
F(X) =Yy, Vi=1,...,m.
Therefore, N is a minimizer of 2.3).
Proof. Observe that
F(X;) =po&x(X;)

=po Sx(Xi) + \/;Z(B)U(BTB + yz)j

— o Ex(X,) + VF(B(Ble +y2),
=po&x(X;)+r(e)
_7.
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Here, in the penultimate step we use the facts that Byz = yBz = 0 since z € N(B) and BB = I
since 7 > m and B is full rank by assumption. This gives the first result.

For the second result, we recall that }71 is a closest point to Y; from f = Dy(Rdy ). Therefore, for
any DNN N,

1 & s 1 & ~ 2 1 & o~ 2
EZIIYé—DyoNOfx(Xi)IIyZEZIIYé—YiHy=EZHYZ-—DWNO&(XOI@
=1 =1 =1

as required. O

Lemma E.2 (Bounding F in terms of F). Suppose that (D7) holds with o > ¢ and o« — & VEk > e,
and also that

Vrlltaze = tax © Dx 0 Exll 12 (xiuoe y) < €25

where cg, c1,co > 0 are suitable universal constants. Then the approximation F' satisfies

|||F_ﬁ|”L2 @) SIF = Fllgzx
vm 1
+(1+ 5\/77)5\% <1 + \/'Fo'min(-B)> (|F||L3c(x;y) + \/mE||2;y>
V(L + 67
+m ZHY F(X ||y \FHEHQJ;

+ (1+6v7r)| =,
and

||F_FHL°;°(X;)1) 5 HF_F||L30(X;)})

VRV (14 ) (1Pl gy + =Bl )

L Vmil+9) ZHY F(X

Umin(B>

+ (14 0)Vrllzl,.

1
||y W“E||2,y

Proof. By the triangle inequality,

IE — Fll 3 iy < IE = Fll g gy + IF = Fll ey

N g - . (E.6)
IE = Fllpee vy < 1 = Fll poe (eyy + I1F = Fll oo (0,9
Consider the second term. We have
IF - ﬁ|||L;‘;(X;y) =|lp—Dyo NlHLf.(D;y) <P =Pl ey + lall Lz .y) E7)
||F - ﬁ”LﬁO(X;y) =p—Dyo NHL;C(D;J}) <|p —25||Lg°(D;y) + ||QHL§(D;JJ), |
whereq=p—p=>;_,(Ble+yz);Ne,. Lemmaand (A.III) give that
D = Blll L2 pyy = 1P = Dll L= (D) < 6\/E|”ﬁ|”L§(D;y)' (E.8)

Now consider the other term in (E.7). Define § = >_;_, (B'e + yz);Ve,. Then Lemmaand
(A.IIT) once more give that

lallz2(pyy < Mall 2oy + lla = dll 2oy < Nz oy + 0Vl cz oy

||Q||Lg°(D;y) < ||qN||Lg°(D;y) +lla— QHL?(D;)}) < H‘jHLgO(D;y) + 5\/;|||5|||L§(D;y)
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Here, we also used the fact that |I',| = r. We now apply LemmasD.1]and [D.4]and (A.III) once more
to get

|||Q|||L§(D;y) S+ 5\/;)|”(IH|L3(D;;V)3 ||CIHL;3°(D;37) S+ 5)\/;“|Q|HL§(D;)2)' (E.9)

We next analyze the term ||| ;2 .y, Lety™ € Y. Since y*((Bte+yz);) = (Bfy*(e)+y*(y)2):,
2(D;
we have
T

v (@) = _(B'y*(e) + y"(y)2)i Ve,

i=1

Hence, by Parseval’s identity,

e pyy = sup g™ ()l
L2(D;Y) s L2(D)

= sup [B'y*(e) +y*(v)zl,
y*€B(Y*)

! lly*(e)ll, + 1y (v)l] =]l
——— sup |y*(e sup  |y*(v)|||z
Omin(B) y+eB(y+) 2 eB(yY) 2

1
mme”b;y + |12l

IA

We now use the definition of e and the inequality ||e]|,,,, < |||, to obtain

. vm I & =~ 2
gl 2 (p:yy < Vrowm(B) EZ”Y’ —po&x(Xi)lly + [zl
i1

We next apply the triangle inequality and Lemma[D.T0]once more to get

~ Vm I e =~ . 2 o
Mgl 2.y < Vromm(B) EZHYi*poé'x(Xi)HerHP*P”disc,e + 2,
min i=1

_ Vm
= Vrown(B)

1 o~ . 2 R
EZIIYi—pofx(Xi)Hy+5\/EHIPHIL§<D;3;> + =l
i=1

Combining this with (E7) and (EJ9), we deduce that

S Vm .
Il — F|||Lﬁ(X;y) S (1 +0vr) l&/% <1 + m |||P|||L3(D;y) + [zl

\/m 1 mo_ A 9 1
T |\ A 2 1Y X5 + ——IIE],,
+ Froun(B) |\ m 2 [V~ P Ex (XDl + By

and

A vm .
I = Fll oo a0,y S (14 5)\/77[5\@ (1 + Jrown(B) BN 22 D3y + 121l

L i - YA i L
F Tromn(®) |\ 2 V=0 Ex(Kly + Bl | |
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It remains to bound the term ||| .2 .y, Using (D.7) and the fact that  is a minimizer of (D.3) and
that the zero polynomial is feasible for (D.3)), we get

MBIz Dy S NPllaise.c

b
Jm

IN

1 R 5
EZ”Yi*POEX(Xi)”yJF ||Y||2;y
i=1

2
< ﬁHY“z;y

2
<2 Fl pee (209 + m

Combining this with the previous bound and (E-6) now completes the proof. O

1]l

E.3 Estimation of o.,;,(B)

Recall that a matrix A € R™*" is a subgaussian random matrix if its entries are i.i.d. subgaussian
random variables with mean zero and variance one (see, e.g., [29, Def. 9.1]). The following result
can be found in, e.g., [29, Ex. 9.3].

Lemma E.3 (Smallest singular value of a subgaussian random matrix). Let A € R™*™ be a
subgaussian random matrix and o iy, be the smallest singular value of \/%A. Then, forall0 <t < 1,

P (Jmin <1-—ci/n/m— t) < 2exp(—comt?),
where c1, co > 0 are universal constants.
Lemma E.4 (Bounding o.,i, (B)). Suppose that /méd < \/w/8,

3(6+8)/2 /r _ _ o
7\/>||de — ldy ODXOgX”Lac(X £>°(N)) S L, (EIO)
2 m ’ 8
where w is the variance of the univariate probability measure as specified in Theorem[3.2|and
dx > 1 > c(m+log(2/e)) (E.1D)

for some universal constant ¢ > 1. Then, with probability at least 1 — €, the matrix B is full rank and
Umin(B> Z \/(;/4

Proof. Define the matrices

1 m,r 1 m,r
B/ = W (\Ilej (@) gX(Xi))i,jzl’ BH = W (\Ilej O ldy (Xi))i,jzl .
Then, since » > m,
Omin(B) = inf {|B"d||,:d € C™, ||d||, =1}
> 0uin(B) — (B =BT,
= Umin(B/ —||B - B/H2
> Gyin(B") ~ | B~ B'l|, ~ | B — B"|,.
Now, for any ¢ € C",
2
9 1 m T
(B~ B')cll; = - Z Z (Nej (z;) — Ve, (:B,)) ¢j
i=1 \j=1
Lo oy 2
< - 25 llelly
i=1
< md?|le]3.
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We deduce that | B — B’||, < y/mé < y/w/8. Hence
Urrlirl(B) Z Umin(B”) - \/(;/8 - HB/ - BH”Q'

Now letc € C" and p = Z;Zl ¢; Ve, be the corresponding polynomial. Then, by (A.I), (A.III) and
Lemmal[D.2}

1 — ~ ~ 2
I(B' = B")elly = |~ [po tae(X:) = potay 0 Do 0 Ex(Xy)
i=1

< Lip(p, BOO(N)>R)||LdX —ldx © Dxo 5X||LEO(X,Z°°(N))

3(6+8)/2, /r ~ o~
> f”p”Lg(D)”Lda{ — tdy © Dx °5X\|L3c(x,eec(N))
NG
?HcHz-

IN

Here, in the third step we used the fact that [T',|, = 3°*¢r, since ue, = v/3. We deduce that
|B’ — B"||, < /w/8 and therefore

Umin(B) Z Umin(B//> - \/(;/4

It remains to show that i, (B”) > /w/2 with high probability. By construction, ¥, (x) = v/3z;.
Now recall that the pushforward ¢ is a tensor-product of a univariate probability measure supported
in [—1, 1] with mean zero and variance w > 0. Therefore

INT @
(B") _\/9?\/;14,

where A = (¢(X;);/v/w);j~, € R™™. By construction, the entries of A are i.i.d. subgaussian

random variables with mean zero and variance one. Hence A is a subgaussian random matrix. We
now apply Lemma Let t = 1/4 and observe that

16
r > 4c§m, r > —log(2/e),
C2

by assumption. Therefore,

P(Jmin(B”) < \/‘;/2) < IED(‘Tmin(A/\/F) < 1/(2\/5)) <e.

This gives the result. O

E.4 Final arguments

We are now ready to complete the proof of Theorem 3.2}

Proof of Theorem[3.2] Statement (A). We divide the proof into a series of steps.
Step 1: Setup. Let m, 9, € and L be as in the theorem statement. We once more assume without loss
of generality that § < 1/5. Let n be as in and A = AN let € be as in (D.30) and

k=— E.12
— (E.12)

where ¢; > 1 is a constant that will be chosen in the next step. Let
§ =min {27 /r?, Vw/(8ym)},
where w is the variance of the univariate probability measure and
1= [ea(m +log(1/€))], (E.13)

where cg > 2 will also be chosen in the next step. Note that dx > 7 > m by assumption. Finally, let
Sbeasin (D.I), I' be as in and {N,, },cr be the corresponding family of tanh DNNs ensured

by Lemma|D.9| Finally, let ' be given by (E-5), with DNN N as in (E4).

https://doi.org/10.52202/079017-0871 27778



Step 2: Nisa minimizer. By construction,
width(N) < (k+7) - m(T), depth(N) < log(k).

If v = e;, then |||, = 1. Hence m(T") < 1 + maxges m(S) < 1+ kY/C+8) =1+ k% (see §D.5).
Using the values of k£ and r, we see that

width(N) < (m +log(1/€))(m/L)°, depth(N) < log(m/L).

Therefore, N € N is feasible for @ Lemmanow implies that Nisa minimizer, provided B
is full rank. We will show that this holds in the next step.

4] By definition of §, we have that \/md < \/w/8. Now (D.34), (ET3) and (3:9) imply that
E.10)-(E-TT) hold, the latter with € replaced by €/4. Hence Lemma [E.4]implies the result.

Step 4: Ensuring (D.T) holds with probability at least 1 — €/4. This step is very similar to Step 2 of
the proof of Theorem [3.1] The only difference comes in the estimation of N in (D-32), since now
N = |I'| < |A| + . Since m > 3, we have

log(eN) < log(e|A|(r + 1)) < log?(m) + log(m + log(1/€)).
If m < log(1/e) then
log(eN) < log*(m) + log(log(1/¢)) < log®(m) + v/log(1/e),
where in the second step we use the fact that log(t) < v/t for t > 0. Conversely, if m > log(1/¢),

then
log(eN) < log®(m) < log®(m) + /log(1/e).
Therefore, (D.33) with €/4 reads

co - k- (log(eN) - log2(k) + log(6/€)) < k - (1og2(m) <10g2(m) +/log(1 /e)) +log(1 /e))
<k- (log4(m) + log(l/e)) .
=k - L(m,e).

Hence, due to the definition of k, we get that (D.13) holds once more with probability at least 1 — €/4.
The remainder of this step is identical to Step 2 of the proof of Theorem [3.1]

Step 3: Ensuring that om;n(B) > \/w/4 with probability at least 1 — €/4. We seek to use Lemma
i

Step 5: Error analysis. We now apply Lemmato the approximation F. Since Omin(B) 2 Vw 2
1,6 < d+/r < 1andr > m, we deduce that

~ - 1
1 = Pl SUF = Flligeay + VE (1Pl ey + =18l )

+ |lzll, + ZIIY F(X ||y \FHEHQ;y
and

~ - 1
_ <IF — =
| F“L;f(X;y) SIF F||L30(X;3;) +rovk (“F”L;f()(;y) +

)

Hy f\IEsz

with probability at least 1 — ¢/2, where I = o Ex and p is the corresponding minimizer of (D.3).
We now appeal to Theorem [D.6|with o = 1 and 7 = 0, recalling that > 1 and 6v/k < 1, to get that

IE = Fll 2 vy S NE = Qo Fll 2 (iyy + I1F = Q0 Flllgisc .

+Vrllzlly + vm ZIIY F(x

+ 7o <|||F —4go 5X|||Li()(;y) +F—qo €X|”disc,u)

1
+ ﬁ”Enz;y +OVEIFl e (i)

+zl, + ZIIY F(X ||y
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and, since d+/r <1
IF = Fll e ey SIF = Q0 Fll e gy + VEIIF = Qo Fllge,,
+ 70 (I1F = g0 Exll Lz (iy) + VEIF = 00 Exllac .
Bl + VEOVEIFl o ()

1 &N~ - 2
+Vrlzlly, +vm EZHYZ’_F(Xi)”y

i=1

for any g € Ps,y and linear operator Q : Y — Y = Dy (R%) with g = | Qlly_,y- Consider the
final term. Since Y; € Y is the closest point to Y; = F(X;) + E; we have

1Yi = Yilly < |F(Xi) = Qo F(Xi)lly + [|Eilly-

We now use this, the fact that p is a minimizer and Q o q is feasible in combination with triangle
inequality to get

m

1 ) 1
ZHY F(x ||y EZHYi—QquEX(Xi)IIyHIIF— QOF\Hdisc,uﬂLﬁHEHz;y
=1
2
<||F=Qogqo 5X|Hdisc,,u +||F—Qo Fl”disc,u + ﬁHEHQ;y
2
< 7TQ|||F —4q° gXH'disc,/_L + 2|||F —Qo F|||disc,;L + ﬁ”EHZJJ

Now let f € H(b) be the function asserted by (A.Il) and ¢ = fs be the polynomial asserted by
Lemma[D.T7] Substituting this into the previous expression, recalling (D-33)) and using the definition
of §, we deduce that

I = Fll 22 iy S WEF = Qo Fllzz gy + IF = Qo Fllgc,,
+7QE2(F,q) + |12l + 27 + Esamp.2

IF = Fll e i) S IF = Q0 Fll o gy + VIlIF = Qo Fllge,,
+ 70 Eoc(F,q) + VFll2ll; + 27 + Elamp oo

with probability at least 1 — ¢/2. Here Ey(F,q) is as in (D.24), Eo(F,q) is as in with k
replaced by m and El, oo = | E |y = VL Esamp.oo

Now observe that the first bound is identical to the corresponding bound in (D-36), except with Eqpt
replaced by || z||, + 2. Following the same arguments as in Step 3 of the proof of Theorem
this gives the corresponding bound in (D:37), which is

Il — F‘”Lg()c;y) S ay (HF —4qc° LHLff(X;y)/ vm/L+|F —qo LHLi(X;y))
+ EX72 + Ey)g + ||ZH2 +27" + Esamp,2-

(E.14)

The second bound above is identical to the corresponding bound in (D:36), except with Eopt oo
replaced by /7|24 +27"™, Esamp,00 and Eo, (F, q) replaced by E

and with vk replaced by v/m. We once more follow the same arguments as in Step 3, with these
changes. This yields the corresponding version of (D:37), which is

IF = Flle ey S 0 (VEIF = 00 tl (i) + VIIE = 001l 12 )
+ Ei\’,oo + Egitoo + \/;HZHZ + 27" + Eéamp oM

and E (F, q), respectively,

amp,oc0

(E.15)

Here EY, . = LEx o and E}, ., = VLEy .
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Having done this, we then use the bounds from Step 4 of the proof of Theorem 3.1} to get
IF = Fllz2 x.y) S Bappz + B2 + By + [l + 27" + Bamp2
IF = Fll i) S Bhppoo + B oo + By oo + V71215 277 + Elapp o
where £, . = VLEpp oo

Step 6: Existence of uncountably many minimizers. Let z = (z;)i_; € N(B)\{0} be any vector
and consider z; = 61z and zo = 05z for 01,05 € [—1, 1] with §; # 5. Then these vectors define
functions p; and Py as in (E2) and DNNs N; and N; as in (E3). Suppose that Ny = Na. Then,

since Dy is linear, we have that p; = po. But then, by definition and the fact that y € Y\ {0}, we

must have
T

0= Z(Zl — ZQ)iNei = (91 — 6‘2) ZZiNei.
i=1

i=1
Suppose that 6; > 05 without loss of generality and let & € D be the vector (sign(z;))$2,. Then,
VU, (x) = v/3sign(z;) and therefore

0> (0 = 62) (V3llzll, — 6r) > (61— 02) (V3]12ll, — or) = (61 — 62) (VBll2ll, —27"/7),

since [|[Ne, = Ve, [l oo (p) < dand § < 27™ /r? by definition. We now choose z with ||z||, =
27™ [y < 27™. Note that this choice of z does not change the error bound, except for a constant. It
also yields

0> (6 —62)(v/327™ —27™) > 0
which is a contradiction. Hence N, # No. Thus, we have shown that any 0 € [—1,1] leads to a
distinct DNN minimizer that satisfies the desired bounds. We get the result.

Step 7: Modifications when Y is a Hilbert space. The modifications required when ) is a Hilbert
space are identical to those needed in the proof of Theorem 3.1] (see §D.8). We omit the details. [

Proof of Theorem[3.2) Statement (B). Let N = Ng : R% — R% be a tanh DNN, where § € R”
are the network parameters (weights and biases). Let || - || 4,). | - l(4,,) and || - [, be arbitrary

norms on R%*, R% and RP, respectively. Then, since the activation function is a Lipschitz function,
we have

[Nor () = No ()l 4,y < coll6” = 8l ) ([@]] (4, + 1),
where cg > 0 is a constant depending on 6.

Now let N = Né and F' = Dy o No Ex and consider F' = Dy o N o Ex for N = Npy. Since
Dy : R — Y is linear and therefore bounded, we have

IFC) = FOOlly < cal Dyl i, 118 = 0ll oy (IEx(X) iy + 1)
We deduce that
IF = Fllz ey < I1F = Flle ey
< CéHDJJ”(Rdy,H.H(dy))_)y”é = 0|/(p) <||5X||L;°(X;(R”’X7H~H(dx)) + 1) '
Therefore, there exists a neighbourhood around 6 for which
IF = Fll g2 i) < IF = Fllpe (i) < 7o

for all parameters 6 in the neighbourhood. The result now follows. O

Proof of Theorem[3.2) Statement (C). By construction, the DNN N defined in contains sub-
networks that compute the DNNs Ne,, ¢ = 1,...,r, which themselves are approximations to the
Legendre polynomials W.,. The construction of these subnetworks was described in the proof of
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Lemma|[D.9]as the composition of an affine map defined by the fundamental theorem of algebra and a
tanh DNN that approximately multiplies 1 (") numbers. In this specific case, we have

U, () = ;.

Therefore, the corresponding affine map (D.I8) A, : R — R™I) has a bias vector that is
all ones, except for a single entry that has value zero. We deduce that the bias vector b of the
full DNN (E.4) contains a subblock of size rm/(I") that is all ones, except for  zeroes. There are
(rmT(F)) rearrangements of this subblock, each of which leading to a bias vector b with ||b — b’|| 2> 1.
Moreover, b’ leads to the same DNN, after permuting the various weight matrices in the corresponding
way. Indeed, if P is a permutation matrix, then c(Wa 4+ b) = P‘la(PWw + Pb), since o acts
componentwise.

It remains to bound (TmT(F)) from below. We have

(rm(D) > (rm(I))" =m(D)".

T r’
By (E:13), we have that > 2m. Now, by the definition (EI) of T,
r) >
m(l') 2 maxm(S),
where S is as in (D.1)) for k as in (E.12) and A = A as in (D26) with n as in (D.29). Now consider
the set S = {le; } for some [ € N. Then
|S|o = vp = (20 + 1)°F¢ = (20 + 1)1/°.

Therefore, S € S provided (21 + 1)1/ < kandl < n. Set! = |(k® — 1)/2] and observe that | < n
since k < n and § < 1/5 by assumption. Therefore S € S. Using the definition of k, we get that

m(T) > m(S) =1 > (m/(csl))’

for all sufficiently large m. The result now follows. O

F Proof of Theorem 4.1

The proof of Theorem [4.1] will follow as a consequence of the following result. For this, we require
the following notation. Given 0 < p < 0o, s € N and a sequence ¢ = (ci);?il, we let

os(e)p =min{llc — 2|, : z € 72, |supp(2)| < s},

where supp(z) = {i € N: z; # 0} for z = (2;);en € RY.
Theorem F.1. For any 0 < p < 1 then term 0,,(b) defined in satisfies

0 (b) 2 om(b)a, VWb € (*(N), b>0,|b|, <1.

As noted, the proof of this theorem is based on [7, Thm. 4.4]. We recap the details as they will also be
needed in the proof of the next result. First, we recall some basic definitions. See [82]] or [29 Ch. 10]

for more details. Let /C be a subset of a normed space (X, || - || ). Then its Gelfand m-width is
d™(K,X) = inf{ sup ||z||,, L™ asubspace of X with codim(L™) < m} . (F.1)
zeKXNL™

An equivalent representation is

d™(K,X) = inf sup  ||lz||y, A: X — R linear ;.
zeKNKer(A)

The Gelfand width is related to the following quantity:

s (K, X) = inf {sup le — A(T(2))]| 5, T : & = R™ adaptive, A : R™ — X} ,  (F2)
ze
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where A is an arbitrary (potentially nonlinear) reconstruction map and I' is an adaptive sampling
map. By this, we mean that

'y (2)
FQ(’IvI‘l(‘T))
F(Jf) = . )
To(z,T1(2),...,Tm_1(x))
where T'; : X — Ris linear and, fori = 2,...,m, I'; : X x R~! — R is linear in its first

component.

Proof of Theorem[F1| We proceed in a series of steps.
Step 1: Setup. Define the functions
bi(x) =V3x;, xeD, i=1,2....
Notice that these functions form an orthonormal system in Lf,(D). (A.I) implies that these functions
form a Riesz system in LE(D), with Riesz constants that are < 1. Hence they have a (unique)

biorthogonal Riesz system {,;}2, C LE(D). Now define ®; = ¢; or and ¥; = 1); o ¢. Let
G € L2(X;R) be arbitrary. Then

|Gl > (GG W) s (vm) Vi) 12 (i) Yo HG W) r2 a2
2 : - 9 - o0 .
Li(iR) ” Ei:l(G’ \Iji>L2(X;R)\Iji“Li(X;R) H Zi:1<G7 \Ili>L2(X;R)LI]i”Li(X;R)
Consider the denominator. Using (A.II) and fact that the 1; form a Riesz system, we see that
D G T 2z Ui =D (G W) 2y S DG W) 2wy 2
i=1 Li(X;R) i=1 L2(D) i=1
We deduce that
||G||L2(X;]R) Z Z|<G7 \IJi>L2(X;]R)|27 VG e Li(‘va) (F3)
i=1
Now let b > 0 with b € £*(N) and I C N with |I| = N. Using [7, Lem. 5.2] we see that the function
f=e¢) ciydi € Hb), (F.4)
iel

forany y € Y, |lylly, = 1and ¢ = (¢;)ien C R with [e] < b (ie., ;| < by, Vi), where ¢ > 0 is a
universal constant.

Step 2: Reduction to a discrete problem. Let £ and R be arbitrary sampling and reconstruction maps
as in #.2). Following [7, Lem. 5.3, let F' = f o . and observe that

F(X) =y Y ciy(X)
iel
and therefore

where I' : R/l — R™ is given by
CZiGI Zz(bz(Xl)
I(z) = : :
¢ ier %®i(Xm)
due to (#1I). Notice that T is an adaptive sampling map of the form defined above. Now let
y* € B(Y*) be such that [y*(y)| = [|ylly,. Then, by (E3),

IF =R o LIF)IZ2 eiyy = Iy (F = R o LD 72 (amy

23 (F ~ R0 £(F)), i) 12 e
el
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By biorthogonality, (y*(F), ¥;) 2 (x;r) = cllyllyci = ¢+ ci, which implies that
I = R0 LIF)l 2 (x:3) R lle = Ao T(e)l,, (F.5)

where

A:R" - RY, y— Ay = <<y (R(y-y)), Vi) 2 (xm /C) el
Therefore,

L I =R Ly 2l s e AT,
€ 5L c
Suppe(ﬂi)gf
le|<b

where the infimum is taken over all adaptive sampling maps I" and reconstruction maps A. Since £
and R were arbitrary, we get

Om(b) 2 EP(B(b, 1), (R,
where B(b,I) = {z € Rl : |2;| < b;, i € I} and 3, = (RY, || - [|,,)
Step 3: Derivation of the lower bounds. The next step is identical to the proof of Theorem 4.4 in [7].
This gives (E.1). O

Proof of Theorem @1} We use Theorem|[F1] For (i), we let b = (b;)52, by defined by
bi=(2m)" VP i=1,...,2m, b; =0, i > 2m.
This sequence b € £§;(N) with [[b]|,, 4, = [|b]|,, = 1. Moreover, we have
Om(b)y = 271/Pm1/2=1/p,
For (i) we let b = (b;)2, be defined by b; = c,(ilog*(i))~'/?, where ¢, =
(X2, 1/ logZ(i)))_l/p. This sequence b € £y (N) with [[b], \, = [|b]|,, = 1. Moreover,

2m

Z (ilog?(i))~%/P > cf, -m - (2mlog?(2m))~2/?,

z:m

as required. O

G Proof of Theorem

Much as in the previous section, the proof of Theorem [#.2]is a consequence of the following result.

Theorem G.1. Suppose that the pushforward < in (A.I) is a tensor-product of a univariate probability
measure. Then the term 0,,(b) defined in @3)) satisfies

O0m(b) = apm(b)1/log(m), Vb e (H(N), b>0,]|b|, <1.

Proof of Theorem|G.1} We proceed in a similar series of steps to those of the last proof.

Step 1: Setup. Let m : N — N be a bijection that gives a nonincreasing rearrangement of b, i.e.,
br(1) = br(2) = . Now, let r € N be arbitrary and consider the index set

I=hLu---UlL, L={n((-1)(m+1)+1),...,7(I(m+1))}.
Notice that |I| = 7(m 4+ 1). Define the matrix

m,r(m+1)

A= ((L(Xi))w(j))m-’zl
and notice that we may write

m,m-+1

A=[Ar - A, where A = ((U(Xi)r(@-1)(mt1)4) ot

Let o be the one-dimensional probability measure associated with ¢. Then notice that each A; is a
random matrix whose entries are drawn i.i.d. from o. Since o is supported in [—1, 1], we deduce that
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the A; are independent subgaussian random matrices with the same distribution. Write -y for this

distribution. Let ¢1,...,¢, > 0 and E; ;, be the event
B = {3u e N(A) : lully =1, Julo < Va/m+ 1}, I=1...r @G
We will make a suitable choice of 1, ..., %, later.

Step 2: Reduction to a discrete problem. Let
C1
C={ceRl g <b,Viel,e=|:|,qeNA), I=1,...,r
Cr

Notice that any ¢ € C also satisfies ¢ € N(A). Now let f = f. be as in (F4) (we make the
dependence on c explicit now for convenience). Let x € D. Then

fe(@) = V3ey )_cia. G2)
il
We deduce that
(Fo(X:)", = V3cyAc = 0,
where F,. = f. o . This implies that

[FF—Ro ‘C(F)||LﬁC(X;y) = [|F - R({Xiao}?ll)HLzO(X;y)’
where, for convenience, we let £ : F — {X;, F(X;)}™ . Therefore,

sup  ||[F—Ro L(F)|;oe(yny = sup || Fe —RHEX;, 0L oo 7oV -
S| (Pl ) 2 590 e = ROK O ) gz ey

Now observe that Fp = 0 and 0 € C. Hence
sup [|[F'=Ro K(F)”Lff(x;y)
FeH(b,e) ¢
2 max{”R({Xi, 0}2”;1)”%0(2(;3;)7516118 ||FcHL;>;(X;y) - [IR({ X, 0}?1)”@0(2{;3})} :
c
For a > 0, the function z — max{z,a — x} is minimized at z = a/2 and takes value a/2 there. We
deduce that

1
sup  ||[F =R o LIF)||;oeix.v = =sup || Fellroorr.yy-
Lo | (Pl ey = 5900 1Fell e

Now, by (A.]),

Z cizi| = V3c||el;.

el

1Fell oo i) = fell ooy R Iell e (pi) = \/§cH S”UlP<1
z|| <

With this in hand, we conclude that

Exi,Xpop  sup [[F = R({Xi»F(Xi)};il)HLoo(X;y) ZEa,...A~ysuplc|;.
FeH(b,) " ceC

We now use the definition of C to write

Ex,,..Xp~p SUD ||F—R({XiaF(Xi)}?l1)HLgo(x;y)
FeH(b,) !

r
(G.3)
2ZEAZN»Y sup Hcl||1~
=1 cEN(Ay)
[(e1)i| <bi,Viel

Step 3: Bounding the expected error. Fix I = 1,...,r and suppose the event F; ;, defined (G.I)
occurs. Let u; be the corresponding vector and define
bﬂ'(l(m-‘rl))

u, l=1,...,7
lJwl

Cc| =
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By construction, we have that ¢; € N(A;) and |(¢;);| < b;, Vi € I;. We deduce that

aup e, > el
1=

cleN(A)) Jwil o
[(e1)il<bi, Vi
Now observe that )
L= flwlly < flwly flwll -

Therefore, we get that

bTr(l(m+1)) > bﬂ'(l(m-‘rl))(m + 1)

swp el > 2 )
cEN(Ay) ”ul”oo !
|(Cl)i|§bi,vi€h

whenever the event £ ;, occurs. Using the law of total expectation, we deduce that

br(i(m+1)) (M +1)
Ea ~ry sup ||ClH1 > m(I[(m+1))
cIEN(A) t
[(e1)i] <bi,Viel

P(Elﬂfz)

for any fixed ¢; > 0. We now appeal to [[75, Thm. 1.4]. This shows that
P(E},,) < com?exp(—t;/ca), Yt > c1log(m + 1),

where c1, co > 0 are universal constants. We may without loss of generality assume that co > ¢; > 1.
Now set t; = ¢z log(2cam?) > ¢; log(m + 1). Hence

P(E},,) <1/2.
We deduce that P(E, ;,) > 1/2 and therefore

br(itm m-+1
Ea~y sup e, > u +1))( )

clEN(A;) - 2co 10g(202m2)
[(er):|<bi Vi€,

Now observe that
bw(l(m+1))(m + ]-) > bﬂ'(l(m+1)) 4t bﬂ(l(nl+1)+771)
Substituting this into (G.3), we deduce that

1 r(m+1)+m
Ex,, Xm~p sup || —R{X;, F(X;)}Ho oY) 2 by
X S0P = RO FXDNED e 2 gy :%; e

Since r was arbitrary, we may take the limit » — co. We now use the fact that

U’m(b)l = bﬂ'(m+1) + b7r(m+2) +eee
to obtain the result. O

Proof of Theoremd.2] Using Theorem [G.1] statements (i) and (ii) are derived in exactly the same
way as in the proof of Theorem [4.1] O
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NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We thoroughly discuss the main claims made in the abstract and introduction and the
necessary assumptions to show them. Our main theoretical contributions directly address these
claims. We also have several further remarks after these results to provide further context for our
work. We also provide detailed numerical experiments showing that DNN architectures compatible
with the setup for the theoretical results actually achieve the presented rates of approximation for
challenging operator learning problems posed in Banach spaces in terms of the number of samples
needed to achieve a given tolerance.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our main assumptions and their relative strengths in detail in a separate
section, §2.3] We also end the paper with a section discussing limitations. See §6]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: We have a detailed discussion of the assumptions needed to show our theoretical
results in We provide further discussion of the results themselves in §3}{4]to place the
theoretical advancements in this work in the broader context of the operator learning literature.
We provide full proofs of our results in the supplemental material.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all of the necessary source code in the supplemental material. Further-
more, we provide a detailed discussion of the setup for the numerical experiments in of
the supplemental material. Given the code and description of the experiments, reproducing the
experiments is straightforward.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide all the necessary software to reproduce our experiments along with
instructions for running the code to generate the results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]

Justification: We specify all of the necessary hyperparameters to obtain our experimental results as
well as the optimizers used for training and the software used to generate our training and testing
data. All of these are open source, no proprietary data was used in this work.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]

Justification: We plot not just the average error over all of the trials but also the (corrected) sample
standard deviation of the transformed sample with shaded plots to provide an estimate of the
variability in the runs.
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11.

12.

13.

14.

15.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: The experimental details are provided in the Appendix §A.2] All computational
resources are reported, including the type of workers, memory requirements, storage requirements,
and time of execution.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have complied with the NeurIPS Code of Ethics in the preparation of this
manuscript. No human subject data was used to generate the results for our numerical experiments
and data-related concerns are not relevant to this work.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This work is primarily foundational, and the examples considered do not directly
impact society.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA|

Justification: This work does not release any data or models that have a high risk for misuse. All
code is open source and no proprietary data was used in this work.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The code submitted in the supplemental material to both generate the data for training
and testing our models and generate the experimental results was written by the authors. No other
code or datasets were used in the production of this work.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New code and data is included as a zip file as supplemental material.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing for our experiments and no research was conducted
with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
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Answer: [NA]

Justification: We do not use crowdsourcing for our experiments and no research was conducted
with human subjects.
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