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Abstract

Can Transformers predict new syllogisms by composing established ones? More
generally, what type of targets can be learned by such models from scratch? Recent
works show that Transformers can be Turing-complete in terms of expressivity,
but this does not address the learnability objective. This paper puts forward the
notion of globality degree of a target distribution to capture when weak learning is
efficiently achievable by regular Transformers. This measure shows a contrast with
the expressivity results of Transformers captured by TC0/TC1 classes (further
studied here), since the globality relates to correlations with the more limited NC0

class. We show here experimentally and theoretically under additional assumptions
that distributions with high globality cannot be learned efficiently. In particular,
syllogisms cannot be composed on long chains. Further, we develop scratchpad
techniques and show that: (i) agnostic scratchpads cannot break the globality barrier,
(ii) educated scratchpads can break the globality with intermediate steps, although
not all such scratchpads can generalize out-of-distribution (OOD), (iii) a notion of
‘inductive scratchpad’, that composes the prior information more efficiently, can
both break the globality barrier and improve the OOD generalization. In particular,
some of our inductive scratchpads can achieve length generalizations of up to 6×
for some arithmetic tasks depending on the input formatting.

1 Introduction

Transformers [1] have proved to have strong learning capabilities, in particular in applications with
large amounts of text, image, or audio data [2, 3]. Some reasoning capabilities are also notable in
these settings, however, the picture deteriorates when the target complexity increases, such as in tasks
involving more advanced forms of ‘reasoning’ [4, 5, 6, 7, 8, 9, 10]. While reasoning is present at all
levels of learning, it is pushed to a higher level in tasks such as logic or mathematics, where ‘learning
by seeing enough representative examples’ is precluded by the more combinatorial nature of the task.
For such tasks, combining learned concepts in order to extrapolate seems necessary, as for the length
generalization problem [11]. Current Transformer-based models exhibit difficulties learning at scale
on such tasks. Can we understand why and what is missing? We start with a specific motivational
example before expanding the discussion to more general tasks.

1.1 Syllogisms composition

Reasoning relates to the process of inferring new knowledge by composing efficiently some prior
knowledge. A basic notion of reasoning is syllogism composition, e.g., inferring a ⇒ c from a ⇒ b
and b ⇒ c. For instance, one may be given a set of implications:

task 1 has priority over task 2 x > 2 ⇒ x2 > 3
task 1 has priority over task 3 x > 2 ⇒ (x− 1)(x+ 1) > 1
task 4 has priority over task 1 4x > 17 ⇒ x > 2
task 1 has priority over task 5 x > 2 ⇒ x− x4 > 1− 2x4
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Class 1:

two disjoint cycles of length n

Class 2:

one cycle of length 2n

(a) Cycle task: binary classification to predict whether
two vertices (the red squares) are connected or not on
the above two graph topologies.
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style models with 10M, 25M, 85M parameters.

Figure 1: Illustration of the cycle task for n = 4 (left) and the complexity to learn it (right).

and without additional background information, one would like to know using logic whether

task 3 has priority over task 5? 4x > 17
?⇒ x2 > 3.

The goal here is to identify whether a syllogism can be composed1 by prior ones. Simplifying the
input format, the above correspond to identifying paths in token sequences describing the directed
edges of an underlying graph, i.e., whether there is a directed path 3 → 5 (case 1) or 4 → 2 (case 2)
using the directed edges {(1 → 2), (1 → 3), (4 → 1), (1 → 5)}.

This type of task is nontrivial for current LLMs, and we refer to Appendix I for experiments with
GPT models.2 Note that here we are not interested specifically in solving a graph-based task, but
rather in understanding when Transformers can compose and more generally how far they can do so.
We would like to identify particular measures on the data distribution (e.g., syllogisms topologies in
the above example) that capture when Transformers can efficiently learn.

1.2 Hardness of long compositions

Consider the previous syllogism composition task where implications are drawn on a graph with 24
edges drawn randomly over 24 vertices. Picking vertices at distances 1 to 4 for the connected case
and picking disconnected vertices uniformly at random lets a Transformer achieve a test accuracy of
more than 80% after about 2000 iterations. However, does this mean that the model has learned to
compose syllogisms, or has it found shortcuts, e.g., based on node degrees, to guess the implications
often enough? In Appendix B.1, we provide empirical evidence supporting the latter. Motivated by
this issue and to preclude spurious correlations, we consider the following distribution.
Definition 1 (Cycle task). For n ≥ 1, consider the binary classification task with equiprobable
classes defined by

1. Class 1: a graph uniformly drawn on 2n vertices with two disjoint cycles of length n and a
pair of vertices in disjoint cycles queried for path;

2. Class 2: a graph uniformly drawn on 2n vertices with one cycle of length 2n and a pair of
vertices at distance n queried for path.

The input of this task is the graph edge set with the queried vertices. The label is 0 if the two queried
vertices are not connected (Class 1) and 1 if they are (Class 2). See Figure 1a for an illustration.

Figure 1b shows that the learning complexity increases ‘exponentially’ as n grows using GPT2-style
Transformers of more than 10M, 25M, 85M parameters; e.g., the 10M model fails to learn for n ≥ 7
in 100k iterations. Why is that? Can a larger scale further help here?

Can a large (poly-size) Transformer learn the cycle task when n gets large? If not, why so?

A challenge for the cycle task is that there is no clear ‘low-complexity pattern’ in the input representa-
tion that indicates whether there are 1 or 2 cycles. No simple statistics based on degrees, edge counts,

1Answering ‘yes/1’ if the syllogism can be obtained by composing input ones or ‘cannot tell/0’ otherwise.
2At the time of the experiments, ChatGPT was in particular not successful at these two tasks.
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or finite motif counts that can tell if the vertices are connected or not. One has to consider at least n
edges in order to get any correlation with the presence of a path. In other words, the task requires a
‘global reasoning’ involving a ‘large’ number of input tokens and this seems hard for Transformers.

1.3 Hardness of global reasoning

As discussed, the cycle task appears to be challenging for Transformers as it requires some global
reasoning. Other tasks such as subset parities exhibit the same challenge. However the latter can be
proved to be not efficiently learnable by various regular neural networks and noisy gradient descent, as
one can get explicitly a class of functions (through orbit arguments [12, 13]) that has large statistical
dimension [14] or low cross-predictability [12, 15] (see Appendix A.4). For the cycle task, we have
a single distribution, and it is unclear how to use the invariances of Transformers to get arguments
as in [12, 13], as the input distribution is not invariant under the symmetries of the model. We thus
would like to develop a more general complexity measure that unifies why such tasks are hard for
Transformer-like models and that formalizes the notion of ‘global reasoning barrier’ when models
are trained from scratch. We also would like to understand how the scratchpad methodologies that
have proved helpful in various settings (see Section 3) can help here. This raises the questions:

(1) How can we formalize the ‘global reasoning barrier’ in general terms?
(2) Can we break the ‘global reasoning barrier’ with scratchpad methodologies?

1.4 Our contributions

We provide the following contributions:

• We introduce the notion of globality degree in Definition 2 to capture when weak learning is
efficiently achievable by Transformers. The globality degree measures the least number of tokens
required in addition to the token histogram to correlate nontrivially with the target; it is also
related in Lemma 6 to correlations with NC0 circuits, showing the contrast between learnability
and expressivity controlled by TC0/TC1 with constant/logarithmic depth [16]. It is an explicit
measure that applies to a data distribution without requiring an orbit argument to infer a class of
distributions [12, 13], giving a tight proxy for models like Transformers. We provide the following
results based on the globality degree:
– A general conjecture (Conjecture 1), backed by experimental results, that claims efficient weak

learning is achievable by a regular Transformer if and only if the globality degree is constant.
– Theorem 1 that proves the negative side of the above conjecture, the globality barrier, in an

instance of the cycle task under certain technical assumptions. (The cycle task is also put forward
in the paper as a simple benchmark to test the global reasoning capabilities of models.)

• We then switch to the use of ‘scratchpads’ to help with the globality barrier:
– Agnostic scratchpad: we extend Theorem 1 to cases where a poly-size scratchpad is used by

the Transformers, without any direct supervision of the scratchpad (i.e., the scratchpad mainly
provides additional memory/compute). This shows that efficient weak learning is still not
possible with such an agnostic scratchpad if the globality is non-constant. An educated guess
about what to learn in the scratchpad based on some target knowledge is thus required.

– Educated scratchpad: we generalize the measure of globality to the ‘autoregressive globality’ to
quantify when an educated scratchpad is able to break the globality of a task with subtasks of
lower globality. We give experimental results showing that educated scratchpads with constant
autoregressive globality allow Transformers to efficiently learn tasks that may originally have
high globality. This gives a way to measure how useful a scratchpad can be to break a target into
easier sub-targets.

– We introduce the notion of inductive scratchpad, a type of educated scratchpad that exploits
‘induction’ compared to a fully educated scratchpad and thus composes more efficiently the prior
state information. We show that when the target admits an inductive decomposition, such as
for the cycle, arithmetic, or parity tasks, the inductive scratchpad both breaks the globality and
improves the OOD generalization in contrast to fully educated scratchpads. This gives significant
length generalization on additions (from 10 to 18 or from 4 to 26 depending on the method) and
parities (from 30 to 50-55). For instance, using different methods, [17] can length generalize
from 10 to 12 digits for additions, and [11] can get roughly 10 extra bits for parities.
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2 Results on the global reasoning barrier

Prior literature. Much work in the literature has been devoted to complexity measures for the
sample/time complexity of learning. The largest portion is devoted to target classes in PAC settings,
e.g., with the VC dimension measures [18], and some to statistical query (SQ) settings with the
statistical dimension measures [14, 19]. Here, we are however interested in measures that are relevant
to (1) regular Transformers trained by (S)GD, and (2) data distribution fixed by a task. Some recent
works have studied complexity measures for (S)GD-trained neural networks. Various settings and
measures have been used, such as the noise sensitivity [20, 6, 21], the cross-predictability [12, 15],
the NTK alignment [22, 23], the INAL [24], the G-alignment [13], the information and generative
exponents [25, 26, 27] and the leap [28]; we refer to Appendix A.4 for discussions on these.

However, despite this significant body of work, finding a simple measure giving a tight proxy for
Transformer weak learning (i.e., the first non-trivial learning requirement) on a given data distribution,
remains unsettled. We next propose such a measure.

2.1 Defining globality and auto-regressive globality

We define now the notion of globality degree, which in turn will quantify the notion of globality (or
global reasoning) barrier.
Definition 2. (Globality degree) For (a sequence of) distributions D on An × A, where A is a
finite alphabet set of poly(n)-cardinality, define the globality degree of D, glob(D), as the smallest
number of variables k ∈ [n] for which there exists S, |S| = k such that

I(X[S], P̂X ;Y ) = n−O(1)

where (X,Y ) ∼ D and P̂X is the empirical measure of X (i.e., the histogram of tokens in X).
Remark 1. The globality degree, or simply globality, of a distribution measures the least number
of input tokens to attend to in order to correlate non-trivially with the label when also given the
histogram of tokens. The specific choice of the mutual information is not crucial, but one must use a
proper measure of dependency (i.e., not just linear correlations), and the mutual information can
have convenient chain rule properties. The definition can be related to correlations with NC0 circuits
(besides for the histogram requirement, see Lemma 6) and also to low-degree polynomial testing,
except that it is more general than the latter as it applies to arbitrary token space (without requiring
polynomial definitions). Finally, we require the globality to achieve an inverse-polynomial mutual
information, the weakest form relevant to weak learning with an inverse-polynomial edge, but one
may naturally define the stronger notion with a mutual information of Ω(1).

We now define the globality in the autoregressive setting.
Definition 3. (Globality degree in autoregressive setting) For D on An ×Am, define glob(D) as
the smallest integer k for which there exist sets of indices S1, . . . , Sm, |St| ≤ k for all t ∈ [m], such
that

I((X,Y<t)[St], P̂X,Y<t
;Yt) = n−O(1),

where (X,Y ) ∼ D and P̂X,Y<t
is the empirical measure of (X,Y<t).

In the auto-regressive setting, the globality is mostly relevant when weak learning gives strong
learning, in order to let the scratchpad learn each step.

As we will see in the next section, the globality degree is put forward as a tight proxy to understand
efficient weak learning of regular Transformers for arbitrary data distributions. We first present the
operational advantages of the definition, going back to the running example of the cycle task.

Attributes of glob and some examples. The globality has the attributes of being (i) a fairly explicit
measure, (ii) applicable to any data distribution on tokens without having to infer a distribution class
from the model invariances to estimate the distribution complexity, (iii) not limited to i.i.d. inputs but
any input distribution, (iv) relevant to current models of interest such as Transformers.

In particular, back to the cycle task, we have that any set of n− 1 edges have the same distribution in
Class 1 or 2, therefore the globality is at least n:
Lemma 1. We have glob(Cycle task(n)) ≥ n.

4
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As discussed in the next section, this explains why the cycle task is hard to learn. In contrast, the
example at the beginning of Section 1.2 has a much lower globality, as being connected correlates to
query nodes having large enough degrees, and thus it can be expected for the model to learn with
non-trivial accuracy (e.g., by using degree shortcuts).

2.2 Transformers require low globality: formal results

Definition 4. A neural network of input dimension n (i.e., a directed acyclic graph with n inputs)
and depth d (i.e., the longest path length from input to output) is

1. T-regular if it is a Transformer (e.g., [1, 29]) of polynomial size with Normal Gaussian i.i.d.
positional embeddings, Normal Gaussian i.i.d. weights, and bidirectional attention.

2. T-regular with s-scratchpad if we have a constant sized token alphabet Σ and a T-regular
Transformer that takes an m-sequence in Σ and outputs a probability mass function on Σ
(with well-behaved3 softmax). To compute the value of this net and scratchpad on an input
X ∈ Σn we set Xn = X and then for each m ∈ {n, . . . , n+ s− 1} draw xm+1 from the
probability distribution represented by the net’s value on Xm and set Xm+1 = Xm ◦ xm+1

(concatenation). Then, we consider xn+s to be the overall output of the net.4

Remark 2. In this paper, we focus on learnability via descent algorithms, but for the simpler question
of expressivity, one wants to know whether there is any choice of parameters for which a Transformer
can compute a target function (with limits to how precisely it can record values).
(i) In [16], the expressivity of Transformers with constant alphabet size and values recorded to
inverse-polynomial accuracy is investigated. It is shown that such a Transformer of constant depth
was limited to computing functions in TC0. Conversely, it also showed that for any TC0 function,
there is a constant-depth Transformer and instruction string such that when the Transformer is given
the instruction string and x as its input it computes the function on x. The same technique would
extend to show that with logarithmic depth, one can reach TC1 (which includes connectivity tasks).
(ii) In [30], well-behaved5 Transformers with a scratchpad are considered. It is shown that a
Transformer with a scratchpad of logarithmic length is limited to computing functions in logspace.
We tighten this to TC0 in Lemma 5 in Appendix H. On the other hand, [30] also shows that any
function in P is computable by a Transformer with a scratchpad of polynomial length.
(iii) If we allow Transformers of poly depth then we can convert any poly-sized circuit to a Transformer
by replacing each gate in the circuit with an attention head that attends to the values of the appropriate
input tokens or attention heads and performs the appropriate computation on them. That means any
function in P (including the cycle task) is computable by a Transformer of poly depth and size.

We now state the general conjecture putting forward the globality barrier for learning.
Conjecture 1. A distribution PX,Y with well-behaved6 PX is efficiently weakly7learnable by a
T-regular Transformer if and only if8PX,Y has constant globality.

Remark 3. (1) An essential property of the model for the above conjecture is that the probability
distribution of the function computed by the model is invariant under permutations of the inputs, and
if it is trained reasonably on samples drawn from a distribution drawn from a class that is symmetric
under permutations of the inputs, its distribution will retain its symmetry under permutations of
the inputs. For MLPs, we expect most of the results in this paper to apply, with the modification of

3I.e. there exists c such that for any two vectors u and u′ the total variation distance between the softmax’s
probability distributions on these vectors is at most c||u− u′||2. Note that this does still allow a softmax which
returns a specific value with probability 1 on some vectors.

4Normally when using a scratchpad we would use causal masking to make it so that we do not need to
recalculate previous entries of lists in the Transformer whenever a new entry is added to the scratchpad. We use
this one for simplicity, but we still expect all conjectures involving a scratchpad to hold when we apply causal
masking to the scratchpad, and Theorem 2 and its proof are unchanged.

5They assumed a constant alphabet size, inverse-polynomial accuracy, constant depth, causal masking,
averaging hard attention, and a projected pre-norm. We suspect that all of these requirements other than the
constant alphabet size and constant depth could be dropped without changing the results we state here.

6Conditions such as assuming that there is no value of X that is frequent enough that the model weakly
learns the function simply by memorizing the value of that input. Most distributions of interest are well-behaved
(including the cycle task). See Definition 6 in Appendix D for a formal definition and additional discussion.

7I.e., with an accuracy that improves on the trivial accuracy by at least n−c for a constant c.
8More specifically, for the converse statement (learning due to constant globality) assume that |A| is constant.
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a_0
b_1 c_2 a_3 b_0

c_1

b_2
c_3c_0a_1a_2

b_3

Figure 2: The cycle task variant used in Theorem 1: the above example is stored as
a_0>b_1;b_0>c_1;c_0>a_1;a_1>a_2;b_1>c_2;c_1>b_2;a_2>b_3;b_2>c_3;c_2>a_3;a_3>b_0;b_3>a_0;c_3>c_0;a_0?b_0?c_0

the globality not having access to the empirical measure of X , since one has additional symmetry
obtained by exchanging tokens. (2) If we were to use causal masking or a specific choice of positional
embeddings that would make it easier for the Transformer to focus on specific relevant subsets of the
inputs, one could potentially learn functions with higher globality. For instance, we would expect to
be unable to learn a function that computes the parity of some subset of log(n) input bits. However,
if we had a positional embedding that gave one value for all of the active bits and mapped other bits
to 0, then the Transformer would probably be able to learn the function in question. Likewise, causal
masking makes it so that the first few elements of any list the Transformer computes depend only on
the first few tokens, which makes it easier to learn functions that would rely on those symbols.

We prove the negative side of Conjecture 1 for a variant of the cycle task.

Theorem 1. Let G be a directed graph which consists of a cycle of length 3n with probability 2/3
and 3 cycles of length n otherwise. Next, if there are 3 cycles pick one vertex from each and if there is
one cycle pick 3 vertices that are each n edges apart. Then, label these vertices with a_0, b_0, c_0
uniformly at random. Next, number every other vertex by the distance from one of these three to it,
and for each i, label uniformly at random the vertices at distance i by a_i, b_i, and c_i. Finally, store
the edges between a_i− 1, b_i− 1, c_i− 1 and a_i, b_i, c_i in X (as described in Figure 2), and
let Y report whether a_0, b_0, c_0 are in the same cycle or not. Then if we train a T-regular neural
network on (X,Y ) generated in this manner using population9 gradient descent with polynomial
hyperparameters10 and a differentiable loss function then the network fails to weakly learn.

The proof of Theorem 1 is presented in Appendix F.

2.3 Agnostic scratchpads cannot break the globality

Next, we put forward a conjecture that agnostic scratchpads (scratchpads without direct supervision
on the scratchpad tokens) cannot break the globality barrier. See Appendix E for further discussion.

Conjecture 2. Consider training a T -regular net with an s-scratchpad to learn PX,Y on a constant-
sized alphabet by means of the following SGD algorithm. At each timestep, we draw a random sample
(X,Y ) and compute a value for the net with scratchpad on X . Let S be the resulting scratchpad and
for each i ≤ s and each σ ̸= Si, define an alternative scratchpad by setting the first i− 1 entries of
this scratchpad equal to those of S , setting its i-th entry to σ, and using the net to compute the rest of
its values. Then, regard the loss associated with setting the ith entry of the scratchpad to σ as the
loss resulting from the associated scratchpad, and use the resulting gradient to carry out one step of
SGD. Then if PX is a well-behaved probability distribution, PX,Y is efficiently weakly learnable by a
T-regular neural network with a scratchpad if and only if PX,Y has constant globality.

A natural counterpart of Theorem 1 holds for the previous conjecture (see Theorem 2). In order to
define the Transformer’s loss on any given input it takes the expectation over every possible value of
the scratchpad it might generate, and its proof is essentially identical to that of Theorem 1.

9This would also be true for batch GD with batches of size nc, c dependent on the other hyperparameters.
10I.e., either polynomial learning rate, polynomial clipping [12, 31], and weights stored using a logarithmic

number of bits of precision and random rounding: for a < b < c if b needs to be rounded to a or c then it rounds
to c with probability (b− a)/(c− a), or with polynomial learning rate, polynomial clipping and polynomial
noise added to the gradients.
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X
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Y2

Y3

Y4 = Y

min |S | : 0 ≪ I((X, Y<2)[S], ̂PX,Y<2; Y2)

Figure 3: An illustration showing how scratchpads can break the globality. The target may be
efficiently learned if each scratchpad step is of low globality given the previous ones.

3 Scratchpads to break the globality

Prior literature. It has been shown that training Transformers with the intermediate steps required
to solve a problem can enhance learning. This idea is usually referred to as providing models with
a scratchpad [32]. The improved performance due to scratchpads has been reported on a variety of
tasks including mathematical tasks and programming state evaluation [32, 11, 17]. See Appendix A
for further references.

3.1 Educated scratchpad

We now provide a quantitative understanding of how the scratchpad can help with the notion of
globality in the autoregressive setting (Definition 3). Assume that we want to learn target Y ∈ A from
input X ∈ An such that (X,Y ) ∼ D and glob(D) is high. If one can design intermediate targets
Y1, . . . , Yk ∈ A such that Yk = Y and the sequence (X,Y<i) → Yi has low globality according to
Definition 3, then one can expect to learn each step of the sequence efficiently and thus the target
at the end. In this case, the intermediate targets give the ‘educated scratchpad’ (see Figure 3 for
an illustration). We now show how designing low-globality scratchpads can help with learning by
focusing on two examples: parity functions and the cycle task.

Results for learning parities. Consider learning parity function y = f(x1, . . . , xn) = x1x2 · · ·xk

where x1, . . . , xn are drawn i.i.d. in {±1} with uniform distribution. For k ≤ n
2 , one can easily

check that the globality of this task is k as any k − 1 coordinates are independent of the output
and the histogram of the tokens does not help. Parity functions are known to be hard to learn [12].
More specifically, it has been previously shown that as k increases the parity task becomes harder
to learn to the point that parity of degree min{k, n− k} = ω(1) cannot be learned in poly(n) time
with standard poly-size neural networks under standard training assumptions [12]. Note that this is
consistent with our results, as the globality is non-constant.

Now, consider learning this task with a scratchpad that breaks down the learning with intermediate
targets y1, y2, . . . , yk such that

y1 = x1, y2 = x1x2, . . . yi = yi−1xi, . . . yk = x1x2 · · ·xk = f(x),

i.e., yi is the cumulative product of the first i bits. Note that each intermediate target yi can be
computed by using at most 2 of the previous tokens, implying the following lemma.
Lemma 2. The parity task with the cumulative product scratchpad has a globality of 2.

Transformers with such a scratchpad can in fact easily learn parity targets, see Appendix B.3.

Results for the cycle task. Consider the cycle task and a scratchpad that learns the depth-first
search (DFS) algorithm from the source query node.11 For example, consider the following input
corresponding to two cycles a, x, q and n, y, t: a>x; n>y; q>a; t>n; y>t; x>q; a?t;. In this
case, doing a DFS from node a gives a>x>q>a where the fact that we have returned to the source
node a and not seen the destination t indicates that the two nodes are not connected. Therefore, the
full scratchpad with the final answer can be designed as a>x>q>a;0. Similarly, if the two nodes were
connected the scratchpad would be a>...>t;1. One can easily check that the cycle task becomes
low-globality with the DFS scratchpad.

11For the particular graph structure of the cycle task, DFS is the same as the breadth-first search (BFS).
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Figure 4: (Left) Learning the cycle task with a scratchpad. (Right) OOD generalization for the DFS
and inductive scratchpads (see Section 3.2.1).

Lemma 3. The cycle task with the DFS scratchpad has a globality of 3.

This follows from the fact that one only needs to find the next node in the DFS path (besides the
label), which one can check with polynomial chance by checking the first edge.

In Figure 4a we show that a decoder-only Transformer with the DFS scratchpad in fact learns the
cycle task when n scales.

Remark 4. If one has full knowledge of the target function, one could break the target into sub-targets
using an educated scratchpad to keep the globality low and thus learn more efficiently (of course one
does not have to learn the target under full target knowledge, but one may still want to let a model
learn it to develop useful representations in a broader/meta-learning context). One could in theory
push this to learning any target that is poly-time computable by emulating a Turing machine in the
steps of the scratchpad to keep the overall globality low. Some works have derived results in that
direction, such as [33] for some type of linear autoregressive models, or [12] for more abstract neural
nets that emulate any Turing machine with SGD training. However, these are mostly theory-oriented
works. In practice, one may be instead interested in devising a more ‘generic’ scratchpad. In
particular, a relevant feature in many reasoning tasks is the power of induction. For instance, the
parity and cycle tasks are two examples where learning an induction step function appears useful.

3.2 Inductive Scratchpads

As discussed, scratchpads can break the global reasoning barrier with appropriate mid-steps. In this
part, however, we show that fully educated scratchpads can be sensitive to the number of reasoning
steps, translating into poor out-of-distribution (OOD) generalization. As a remedy, we put forward
the concept of inductive scratchpad which applies to various reasoning tasks as in previous sections.

3.2.1 Educated scratchpad can overfit in-distribution samples

Consider the cycle task with 24 nodes. For the test distribution, we use the normal version of the
cycle task, i.e., either two cycles of size 12 and the nodes are not connected or a single cycle of size
24 where the distance between the query nodes is 12. For the train distribution, we keep the same
number of nodes and edges (so the model does not need to rely on new positional embeddings for the
input) but break the cycles to have uneven lengths: (1) a cycle of size 6 and a cycle of size 18 when
the two nodes are not connected (the source query node is always in the cycle of size 6) or (2) a cycle
of size 24 where the nodes are at distance 6. Thus, in general, we always have 24 nodes/edges in the
graphs. However, the length of the DFS path (i.e., number of reasoning steps) is 6 at training and 12
at test. We trained our model on this version of the task with the DFS scratchpad. The results are
shown in Figure 4b. We observe that the model quickly achieves perfect accuracy on the training
distribution, yet, it fails to generalize OOD as the model overfits the scratchpad length and number of
reasoning steps. In the next part, we introduce the notion of inductive scratchpad to fix this problem.
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3.2.2 Inductive scratchpad: definition and experimental results

In a large class of reasoning tasks, one can iteratively apply an operation to some state variable
(e.g., a state array) to compute the output. This applies in particular to numerous graph algorithms
(e.g., shortest path algorithms such as BFS or Dijkstra’s algorithm), optimization algorithms (such as
genetic algorithms or gradient descent), and arithmetic tasks.

Definition 5 (Inductive tasks). Let Q be the question (input). We say that a task can be solved
inductively when there is an induction function (or a state transition function) g such that

s[1] = g(Q, ∅), s[2] = g(Q, s[1]), . . . , s[k] = g(Q, s[k − 1]),

where s[1], . . . , s[k] are the steps (or states) that are computed inductively. For example, the
steps/states could be an array or the state of an automata that is being updated. Note that the
termination is determined by the state. In the context of Transformers, one can use the generation of
the end of sequence token <EOS> to terminate.

Inductive tasks with a fully educated scratchpad can overfit proofs. The fully educated scratch-
pad for the question Q as input would be s[1];s[2];...;s[k]<EOS>, where the token <EOS> ends
the generation. However, this method may not fully utilize the fact that each state is only generated
from the last state by applying the same (set of) operation(s). In particular, s[k] typically attends to
all of the previous states. Further, the model may not be able to increase the number of induction
steps beyond what it has seen during training, as shown in Figure 4b for the cycle task.

Now we show that by using attention masking and reindexing the positions of the tokens, one can
promote the desired ‘inductive’ behavior. We call this the inductive scratchpad. As three showcases,
we demonstrate that the inductive scratchpad can improve OOD generalization on the cycle task and
length generalization on parity and addition tasks.

Inductive scratchpad implementation. The inductive scratchpad for an inductive task is similar
in format to the fully educated scratchpad but it has the following modifications: (1) tokens: two new
special tokens are used: the <START> token which separates the question from the intermediate states
and the <STATE> token (denoted # hereafter) to separate the states. Using these tokens, for an input
question Q, the format of the inductive scratchpad reads <START>s[1]#s[2]#...#s[k]<EOS>. (2)
generation: we want the model to promote induction and thus ‘forget’ all the previous states except
the last one for the new state update. I.e., we want to generate tokens of s[i+1] as if the input was
Q<START>s[i]#. To implement this, one can use attention masking and reindex positions (in order to
have a proper induction) or simply remove the previous states at each time; (3) training: when training
the scratchpad, we want the model to learn the induction function g, i.e., learning how to output
s[i+1]# from Q<START>s[i]#, which can be achieved with attention masking and reindexing the
positions. As a result, the inductive scratchpad can be easily integrated with the common language
models without changing their behavior on other tasks/data. We refer to Appendix C.2 for a detailed
description of the inductive scratchpad implementation.

Inductive scratchpad for the cycle task. The DFS scratchpad of the cycle task can be made induc-
tive by making each step of the DFS algorithm a state. E.g., for the input a>x;n>y;q>a;t>n;y>t;
x>q;a?t;, the DFS scratchpad is a>x>q>a;0<EOS>, and the inductive scratchpad becomes
<START>a#x#q#a;0<EOS> where each state tracks the current node in the DFS. In Figure 4b, we
show that the inductive scratchpad for the cycle task can generalize to more reasoning steps than what
is seen during training, and thus generalize OOD when the distance between the nodes is increased.

Length generalization for parity and addition tasks. We can use inductive scratchpads to achieve
length generalization for the parity and addition tasks. For parities, we insert random spaces between
the bits and design an inductive scratchpad based on the position of the bits and then compute the
parity iteratively. The performance of this inductive scratchpad is depicted in Figure 5a where we can
see a Transformer trained on inputs with up to 30 bits can generalize to samples with up to 50/55
bits depending on the seed. For the addition task, we propose two inductive scratchpads. (1) Random
space method that requires random spaces between the digits in the input and uses the position of
the digits to compute the addition digit-by-digit (similar to the parity). With this scratchpad, we
can generalize to numbers with 18 digits while training on numbers with up to 10 digits. (2) Shift
method that uses random tokens in the input and computes the addition digit-by-digit by shifting
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(b) Length generalization for addition where the
random space method is trained up to 10 digits and
the shift method is trained up to 4 digits.

Figure 5: Length generalization for parity and addition tasks using different random seeds. The
medians of the results are highlighted in bold.

the operands. The latter enables us to generalize from 4 to 26 digits at the cost of having a less
natural input formatting. The results for different seeds are provided in Figure 5b. See details of these
scratchpads in Appendices B.4, B.5.12 A rough comparison between the performance of different
methods for addition is given in Table 1. Note that the settings used in these works are not exactly
the same, e.g., our methods often work with smaller models and more natural input formatting. See
Appendix A.2 for a detailed comparison for both the parity and addition tasks.

Table 1: Length generalization of different methods for the addition task where our methods are
shown in bold. a → b means generalizing to b digits when trained on a digits.

Method [34] [17] [35] [36] [37] random space method shift method
Performance 8 → 9 10 → 12 40 → 50 5 → 15 40 → 65 10 → 18 4 → 26

4 Conclusion

This paper shows that for the learning objective and in contrast to expressivity results, Transformers
trained from scratch have a ‘global reasoning barrier’ quantified by the globality degree. The globality
measure has a simpler form and broader applicability range than prior measures as discussed in
Appendix A.4, it also has tighter applicability for Transformers. The measure is currently defined
for weak learning (inverse-polynomial or constant edge), and a natural next step is to consider
stronger learning requirements with notions of ‘globality leap’, e.g., expanding the current work in
the direction of [28] but for more general distributions. Investigating the role of curriculum learning
is another natural direction and we provide preliminary results here in Appendix B.2.

The globality is also defined in the autoregressive setting, to better quantify when scratchpads can
break targets into easier sub-targets. Two negative results are shown for scratchpads: agnostic
scratchpads still suffer from the globality barrier, and fully educated scratchpads can have poor OOD
generalization. This motivates the introduction of the inductive scratchpad.

The inductive scratchpad can be used for a broad range of reasoning/algorithmic tasks and can easily
be integrated into Transformers. The inductive scratchpad is independent of the number of reasoning
steps since the model only learns the induction function. Consequently, the model better generalizes
to inputs requiring different numbers of reasoning steps. This gives improvements of OOD/length
generalization for the cycle task (Figure 4b), parity (Figure 5a), and addition (Figure 5b).

Another interesting aspect is whether the model can use an inductive behavior on new tasks if it was
pre-trained on prior inductive tasks. Note that the inductive behavior of the inductive scratchpad
is only determined by two special tokens. Thus, in principle, models can generate these special
tokens and go into the inductive state for other tasks if pre-trained on inductive data. We leave the
general investigations of pre-trained models and the automated learning of more general scratchpads,
capitalizing on the measures defined here, to future works.

12Our code is available at https://github.com/aryol/inductive-scratchpad.
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A Further related literature

A.1 Reasoning capabilities of Transformers

Reasoning vs. memorization. The performance of large language models and Transformers
has been shown to improve as the model size, amount of data, and training time are increased
[38, 3]. Furthermore, it has been shown that Transformers are prone to memorizing the training data
[39, 40, 41, 42, 43]. Thus, it is natural to ask whether Transformers mostly rely on memorization
or if they in fact use memorization along with a significant degree of reasoning. Reasoning is also
essential in solving more challenging tasks such as planning and mathematics. In recent years, the
reasoning power of Transformers has been studied on synthetic reasoning tasks such as PVR [6],
LEGO [44], algorithmic tasks such as CLRS [9], and more natural settings such as solving math
problems [4, 5]. Note that reasoning tasks often have a combinatorial nature and thus an exponentially
large input space. Moreover, this input space may not lie on a low-dimensional manifold which
makes memorization approaches ineffective. For example, in arithmetic, all digit combinations are
often possible and also change the result significantly, whereas, in text, only specific combinations of
words are valid and besides changing a single word often does not change the meaning of the text
drastically. Another important criterion for reasoning is the ability to generalize to out-of-distribution
(OOD) samples and in-particular length generalization [45, 46, 47, 11, 48]. It has been observed that
simple tasks such as addition, multiplication, and parity are generally hard for Transformers both in
the in-distribution setting and more notably in the length generalization setting [11, 49].

Positional embeddings. An important component of length generalization is the positional embed-
ding of the model. It has been shown that various forms of relative positional embedding [50, 51]
including T5’s relative positional embedding [52], ALiBi [53], and Rotary [54] can yield better
length generalization performance than absolute positional embedding [55, 56, 34]. In particular, the
recent work of Kazemnejad et al. [34] evaluates different positional embeddings for decoder-only
Transformers on a benchmark of reasoning tasks where it is shown that relative positional embeddings
perform better than absolute ones. Interestingly, it is also shown that decoder-only Transformers
with no positional embedding (NoPE) can still encode positional information and in fact have better
length generalization performance than absolute/relative positional embeddings on certain tasks. The
inductive scratchpad put forward in this paper also reindexes the position of the tokens for each new
state. Using this technique, the inductive scratchpad circumvents the need for learning new positional
information as the number of reasoning steps (i.e., the number of states) increases. Nevertheless,
the inductive scratchpad can be used with both absolute and relative positional embeddings. We
further discuss the relation between the inductive scratchpad and relative positional embeddings in
Appendix C.3.

Architectural modifications. Several architectural modifications have also been proposed that can
potentially enhance the reasoning ability of Transformers on certain tasks. A line of work focuses on
adding recurrent structures to Transformers [57, 58, 59]. In particular, Universal Transformers [57],
share the weights between Transformer layers and also have a variable depth (similar to adaptive
computation time [60]) implemented using a dynamic halting mechanism. Generally scratchpads
and in particular the inductive scratchpad also share some recurrent flavor since when each token of
the scratchpad is generated, the whole input and the scratchpad tokens are given to the Transformer
again. The differences are however quite significant both on the side of supervision (e.g., scratchpads
are usually supervised) and halting mechanism (e.g., generation of <EOS> token ends the process for
scratchpad models). Another relevant architecture is the neural data router [61] where the weights are
shared among transformer layers and also copying gates and a special attention format, geometric
attention, are used. The copying gate allows some tokens not to be transformed and instead just be
copied at certain transformer layers while geometric attention induces a recency bias. The neural
data router is shown to generalize to samples with up to three more operations than what is seen
during training for simple arithmetic tasks and ListOps dataset [62]. We note that our inductive
scratchpad can also generalize to samples with a higher number of operations/reasoning steps. Note
that the neural data router approach requires the model’s depth to be (at least) equal to the maximum
number of operations, while our model does not have such limitations and can thus be trained and
tested on samples with larger numbers of operations than the neural data router approach. Moreover,
intermediate steps are supervised through the scratchpad mechanism in our approach while there is
no supervision for intermediate steps in the neural data router.
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Scratchpad and chain-of-thought. Nye et al. [32] put forward the idea of using scratchpads
by showing that training Transformers on the intermediate steps in addition to the final answer
can improve their performance on different tasks such as executing Python code, addition, and
evaluating polynomials. Similarly, in chain-of-though reasoning (CoT) [63] models are shown
step-by-step demos of problem-solving (or models generate chains of thought without any examples
as in zero-shot CoT [64], among other variants). It has been further shown that using explicit
explanations and reducing ambiguity can be proven useful as in the notion of algorithmic prompting
[65]. Lanchantin et al. [66] introduced the concept of self-notes, showing that interleaving the
intermediate reasoning steps within the question/context rather than after the question can boost the
performance of scratchpad/CoT on certain tasks. Goyal et al. [67] introduced pause tokens which act
as dummy tokens that provide models with more compute time and processing before the generation
of the true next token. On a related note, the iterative prompting method in [68] involves querying
LLMs iteratively to optimize question prompts. Further, the Select and Inference framework (SI) [69]
utilizes pre-trained LLMs as general processing modules, alternating between selection and inference
to generate interpretable reasoning steps leading to the final results.

The work of [70] studies the role of scratchpad from an expressivity point of view. Assuming TC0 ̸=
NC1, they show the existence of tasks that are not expressible by constant-depth Transformers
without scratchpad and expressible by constant-depth Transformers with scratchpad. It is further
shown that dynamic programming (DP) algorithms can be expressed by constant-depth Transformers
with scratchpad [70]. In this work, however, we used the concept of autoregressive globality to explain
why scratchpads are helpful and how to design them from the learning point of view. Further, we
introduced inductive scratchpads that are suitable for a broad range of algorithmic reasoning tasks and
can potentially generalize to more complex samples than what appears in the train distribution. We
note that inductive scratchpads are also suitable for DP algorithms thanks to their iterative structure
(the variables of the DP algorithm can be updated in each state of the inductive scratchpad). We
stress that our inductive scratchpad potentially enables models to generalize to OOD samples for
such DP algorithms and/or to work with longer scratchpads because of the attention masking which
reduces the effective context size. In concurrent research, [71] shows that a restricted class of iterative
algorithms with scratchpad (including parity task) are expressible by 2-layer Transformers. Compared
to our inductive scratchpad, [71] does not have any length generalization result.

A.2 Length generalization for parity and addition tasks

Parity and addition tasks are two essential reasoning tasks that are challenging in the setting of length
generalization where the number of bits/digits is increased. These tasks can also be hard in the
in-distribution setting if the number of bits/digits is large enough. It has been shown that certain forms
of scratchpad/chain-of-though reasoning and relative positional embedding can achieve a modest
length generalization on the parity task (around 5/10 more bits depending on the method and the
seed) [11, 34]. The RASP-L work [35] considers the parity task and can get length generalization
from 30 to 50 bits (depending on the random seed) by using ‘index hints’ which are special tokens
that come before the input bits in a specific order. For instance, an input could look like a0b0c1d1e0.
Our proposed inductive scratchpad for the parity task only requires the use of random spaces in the
question formatting and can generalize to 55 bits when trained on samples with up to 30 bits. Different
works use different input formatting, techniques, model sizes, and train/test datasets, nevertheless, a
rough comparison between different works for the parity task is given in Table 2 (learning is defined
as above 80% accuracy for the majority/median of the results for different seeds, some seeds do better
than others).

For the addition task, Lee et al. [49] use a decoder-only model similar to ours (also similar in size)
showing that generating the output in the reverse format and using scratchpads are helpful. However,
they are not able to get length generalization with their model size. Nevertheless, it has been shown
that large enough models (with more than 108 parameters) with a scratchpad can generalize to
numbers with 9/10 digits while being trained on numbers with up to 8 digits [32]. Jelassi et al. [36]
show that encoder-only models with relative positional embedding can generalize to numbers with 15
digits when they are trained on numbers with up to 5 digits. The RASP-L work [35] considers the
addition task and can get length generalization from 35/40 to 50 digits (depending on the seed) by
outputting the result in the reverse order and also using ‘index hints’ (special tokens coming before the
operands’ digits in a specific order). For instance, an example would look like a5b4 + a3b7 = b1a9.
Zhou et al. [37] further improve the latter by using FIRE relative positional embedding [72] and
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Table 2: Length generalization performance of different methods for the parity task
Work Performance Method and Assumptions

Kazemnejad et al. [34] From 8 bits to 12 bits Using NoPE (no positional embedding)

RASP-L work [35] From 30 bits to 50 bits
Using scratchpad + ‘index hints’
(special tokens before each bit in the input),
an input & output look like a0b0c1d1e0 > +c− d+

Anil et al. [11] From 8 bits to 20 bits Using large pre-trained models (128B)
+ prompting + fine-tuning + scratchpad

Our method From 30 bits to 55 bits Using random spaces in the input
(e.g., _01_10_0__1_) + inductive scratchpad

randomized position encoding [73], generalizing to numbers with 65 digits when trained on numbers
with up to 40 digits. The work of Shen et al. [17] uses a scratchpad with a recursive format for the
addition task to generalize to numbers with 12/13 digits while the training data includes numbers
with up to 10 digits. Our special case of inductive scratchpad based on shifting the numbers is similar
to their recursive scratchpad, however, [17] does not enforce any inductive structure (as achieved
with the attention masking for the inductive scratchpad) and hence [17] gets a much more limited
length generalization.

In this work, we proposed two inductive scratchpads for the addition task. The inductive scratchpad
that requires random spaces in the question can generalize to numbers with 18/20 digits when trained
on numbers with up to 10 digits. The other inductive scratchpad based on shifting the operands
at each step can generalize to numbers with up to 26 digits when trained on numbers with up to 4
digits at the cost of having a less natural question formatting. Different works use different input
formatting, techniques, model sizes, train/test distribution, and evaluation procedures, nonetheless,
a rough comparison between different works for the addition task is provided in Table 3 (reported
results correspond to the median performance given by different seeds). We believe our solutions for
both the parity and addition tasks require one of the least stringent modifications of the input and
provide a significant improvement of the length generalization performance compared to prior works
even though the models that we have used are often remarkably smaller.

Table 3: Length generalization performance of different methods for the addition task
Work Performance Method and Assumptions

Kazemnejad et al. [34] From 8 digits to 9 digits Using NoPE (no positional embedding)

Shen et al. [17] From 10 digits to 12 digits Scratchpad with recursive format

RASP-L work [35] From 40 digits to 50 digits
Reverse order of the output + ‘index hints’
(special tokens before each digit),
e.g., a5b4 + a3b7 = b1a9

Jelassi et al. [36] From 5 digits to 15 digits Encoder-only model
+ relative pos. emb. + padded inputs

Zhou et al. [37] From 40 digits to 65 digits
FIRE relative pos. emb. + randomized
position encodings + reversed output
+ index hints

Our random space method From 10 to 18 digits Inductive scratchpad + random space in
the input (e.g., 94_ + _3__1 =)

Our shift method From 4 to 26 digits Inductive scratchpad + random text before
each operand (e.g., fs$46 + ih$98)

A.3 Reasoning over graphs

Numerous reasoning tasks can be thought of as some form of rule-based logical inference or entail-
ments, over implicit or explicit graphs, where at their core sit common graph operations such as
graph connectivity checks (as in the cycle task in the present paper). Here, we review a sample of
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notable related works on logical reasoning over graphs sharing the same primary motivation as the
one behind our current work.

In recent years, several benchmarks have emerged, focusing on logical inference over diverse modali-
ties. Within the context of natural language, LogiQA [74], DROP [75] or the Cluttr benchmarking set
[76] are worth mentioning. These benchmarks assess logical relational reasoning abilities concerning
entities and relations expressed in natural language. Another example but from a different modality is
STAR [77], which focuses on situated logical reasoning over video clips. The work by Ontanon et al.
[78] introduced the LogicInference dataset for training and benchmarking sequence-to-sequence mod-
els for logical inference tasks. The work by Wang et al. [79] introduces NLGraph, a benchmarking set
for measuring LLMs’ capabilities in solving graph-based problems, including the graph connectivity
task studied in the current paper. GraphQA, as presented in the work by Fatemi et al. [80], explores
the impact of graph structure on language model prompting, while separating the impact of graph
encoding and question prompting on the final performance. The common denominator of these
studies’ results is that while language models excel as shallow reasoners, their performance in logical
reasoning deteriorates with an increase in the number of required reasoning steps [69].

On the modeling front, a group of efforts have primarily focused on baking the appropriate inductive
biases into the models for reasoning and logical inference over graphs. The work [81] proposes
architectural innovations to use both the context and external knowledge sources. [82] proposes an
end-to-end neural model for learning compositional logical rules. The Neurosymbolic approach,
presented in [83] involves performing semantic parsing on natural language input using neural
components to transform the input into discrete structures suitable for symbolic reasoning by the
logic theorem provers. Graphomer [84] extends standard Transformer architecture with a graph
reasoning inductive bias. The work of [57] combines Transformers with the inductive bias of the
recurrent models. Other works take the route of generating more data using external sources like
a Knowledge Graph [85] or extending pre-training [86]. The work in [79] evaluates LLMs’ graph
reasoning capabilities in the presence of various prompting techniques like scratchpads/CoT and their
variants. This study introduces Build-a-Graph Prompting, an instruction-based prompting method,
as well as Algorithmic Prompting, which includes references to relevant graph algorithms in the
prompts, as two approaches for enhancing LLMs in solving graph tasks in natural language.

Concurrently with our work, [87] studies the graph reasoning abilities of Transformers. They focus on
different tasks such as node count, edge count, connectivity, and shortest path. On the theoretical side,
they focus on the expressivity of Transformers. In particular, they show that log-depth Transformers
can express the graph connectivity task. This is while in our paper, we focus on learning, showing
that for hard enough distributions (i.e., distributions with high globality), regular Transformers cannot
learn the connectivity task despite being able to express it. On the empirical side, they show that
Transformers can perform well on the connectivity tasks in GraphQA dataset [80], outperforming
graph neural networks (GNNs). We note that this is not in contrast to our results. As we saw in
Section 1.2 with random graphs, if the input distribution has low globality the connectivity task can
become learnable for Transformers.

A.4 Learning measures and lower-bounds for GD

Some recent literature has studied complexity measures for (S)GD-trained neural networks. In
particular, the noise sensitivity [20, 6, 88, 21], which applies mostly to settings with i.i.d. inputs and
is known to be loose for strong learning [89, 28]; the statistical query (SQ) dimension [14, 19] and
the cross-predictability [12], which are usually defined for a class of targets/distributions rather than
a single distribution (in particular the full parity is efficiently SQ learnable since there is a single
function); the NTK alignment [22, 23] that are limited to the NTK framework; the initial alignment
(INAL) [24], which is also related to the noise-sensitivity with the advantage of depending on the
network initialization at the cost of being a more implicit measure; the information exponent [25, 26],
generative exponent [27] and leap [28], which measure when fully connected neural networks can
strongly learn target functions on i.i.d. or isotropic input distributions and sparse or single/multi-index
functions.

We now discuss the proof techniques for Theorem 1. We prove that the Transformer cannot learn
to distinguish between 1 cycle and 3 cycles by means of a statistical query argument. We find a
group of permutations that preserve the input distribution, take the orbit of the target function under
these permutations, and show that a random pair of functions in the orbit are nearly uncorrelated.
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Then we argue that that means that no function is significantly correlated with a random function in
the orbit, so the gradient is uninformative and the net fails to learn anything meaningful. The main
complication to this argument is the fact that the input distribution is fairly complicated, in contrast to
orbit arguments used in previously discussed works (e.g., for subset parities). The majority of the
symbols in the input are fixed and the rest have nontrivial dependencies. However, we get around
that by dividing the input into blocks and observing that switching the nonfixed symbols in any two
blocks leaves the overall probability distribution unchanged. This argument would largely carry over
to other cases with a sufficiently symmetric input distribution and high globality target function.

A.5 On RASP and RASP-L

In [90], the authors define a programming language, RASP, to model the types of computations
a fixed-size Transformer can compute. This is more about expressivity than learnability, but to
the degree that a Transformer will tend to learn a computation representable by a short RASP
program if there is one that achieves low loss, it does have some implications for learning. For
instance, [35] observes that Transformers tend to generalize to different input lengths on tasks that
can be represented by short RASP programs but not on other tasks. It also seems plausible that for
tasks that can be solved by short RASP programs a sufficiently small Transformer would have a
nontrivial probability of stumbling on the solution. However, we expect that randomly initialized
large Transformers would tend to mix together a large number of computations in a chaotic manner,
at least until they find some computation that they can improve their performance by focusing more
on. So, we do not expect the existence of a short RASP program solving a problem to imply that
Transformers would learn to solve it easily.

Also, RASP-L [35] is a variant of RASP that does not contain the full parity function as a short
program. Our globality theory predicts that the full parity can be learned by some regular Transformer
(in contrast to subset parities), so this also gives a nuance. Incidentally, our reason for expecting that
some regular Transformer can learn the parity is that if the Transformer is set to mostly ignore the
positional embeddings then in the first layer it will essentially average all of the inputs together. The
correct label is a function of this average and it only has n+ 1 possible values, so it seems likely that
with the right setup it would be able to memorize the appropriate response to each of them.

B Additional experiments

B.1 Implications on random graphs

Here, we further discuss the disadvantages of using random graphs as the graph distribution for the
implications task. There are two main downsides to using random graphs distribution instead of the
cycle task distribution (Definition 1):

1. The distance between nodes (i.e., the number of statements to compose) does not scale well
with the number of nodes/edges in the graph.

2. Whether two nodes are connected or not often correlates with low-complexity patterns such
as the degree of the nodes in random graphs, thus, weak learning on random graphs does not
necessarily imply that the model has truly learned to find a path between two nodes. In other
words, the model may be able to rely on shortcuts instead of solving the composition task.

In this section, we provide empirical evidence for both of the claims above.

First, we consider random graphs with n nodes and a varying number of edges e. For each pair of
(n, e), we compute the average of maximum distance and the average of the average distance in
random graphs with n nodes and e edges. (We ignore the nodes that are not connected.) The results
for n = 128 are presented in Figure 6. It can be seen that the distances in the graphs do not scale
well with the number of nodes and edges in the graph. (E.g., compare this to having distance n in the
cycle task with 2n nodes/edges.) This is because a high number of edges usually results in a very
well-connected graph and a low number of edges leads to mostly isolated edges.

Now, we move to the second claim, i.e., the model using low-complexity patterns and correlations.
As an example, we take random graphs with 24 nodes and 24 edges. In order to have a balanced
dataset with samples of mixed difficulties, we create the dataset as follows. We first sample a random
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Figure 6: The average of the maximum and average distance in directed random graphs with n = 128
nodes and a varying number of edges.
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Figure 7: Performance of a model trained on a balanced distribution of random graphs with 24 nodes
and edges where with probability 0.5 the query nodes are not connected and with probability 0.5
they are connected and their distance is uniformly selected from 1, 2, 3, 4. The validation set has
the same distribution as the training set showing that the model reaches around 80% accuracy on
in-distribution samples. Particularly, the model has perfect accuracy on connected nodes (distance
1-4) and around 60% accuracy on the nodes that are not connected. However, when we tested the
model on OOD samples (where some spurious correlations are not present) the model showed a
chance level performance. Note that these samples would be of low complexity if the model was
actually checking whether there exists a path or not.

graph with 24 nodes and edges. Then with probability 0.5 we select two nodes that are not in the
same connected component (label 0) and with probability 0.5 we choose a distance d ∈ {1, 2, 3, 4}
uniformly and we choose two nodes that have distance d (if the graph does not have any two nodes
with distance d, we sample another random graph). As a result, our dataset is balanced and 12.5%
of the samples have distance d for d ∈ {1, 2, 3, 4}. We trained our model on this dataset and we
observed that the model reaches an average accuracy of roughly 80%. The results are shown in
Figure 7. More precisely, we observed that the model has perfect accuracy when the two nodes are
connected (there is a path), and has around 60% accuracy when the two nodes are not connected (the
nodes are not in one connected component). In other words, the default behavior of the model is to
say that the nodes are connected and the model can also detect that two nodes are not connected in
60% of the cases.

To further test whether the model is truly understanding that the two nodes are not connected or it
is only relying on low-complexity correlations, we designed new data distributions and assessed
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the model’s behavior on these new distributions. The samples in the new distributions also have
24 nodes and edges so the model does not have a length generalization problem. More specifically,
for i ∈ {2, 3, 4}, we designed distribution OOD i such that each dataset is balanced and for each
sample, the two nodes are either in a cycle of size 2i with distance i or they are in two disjoint cycles
of size i. All the other nodes are also in different cycles.13 Note that these distributions are motivated
by the cycle task. For example, it is not possible for the model to merely rely on the degree of the
nodes. However, if the model uses the correct algorithm (i.e., tries to find a path) then the number
of reasoning steps (e.g., length of the BFS/DFS search) is i as the distance between the nodes is i
when they are connected and otherwise they are connected exactly to i− 1 other nodes. As it can
be seen in Figure 7, the model has 50% (random) accuracy on these distributions meaning that it is
not really checking whether there is a path between two nodes or not, even for simple examples in
OOD 2 supporting that the model is relying on correlations rather than finding a path. (In particular,
the model always outputs connected on these OOD datasets.)

We tried to further understand the behavior of this model. By sampling, we computed that one
can get an accuracy of around 82% on in-distribution samples just by outputting not-connected if
the out-degree of the source query node or the in-degree of the destination query node is zero and
connected otherwise. Further, we noticed that this predictor has a high correlation with the output
of the model. In particular, in almost all of the cases that the model predicts ‘not-connected’, the
source’s out-degree or the destination’s in-degree is zero. (The model may still misclassify some of
such samples depending on the random seed.) The latter shows that the model is indeed relying on
the degrees of the query nodes as a shortcut.

B.2 Change of distribution and curriculum learning

We have defined the cycle task such that all samples in the dataset have the same difficulty. More
specifically, if the two nodes are connected their distance is n and if they are not connected they are
each in a cycle with n vertices. Thus, it is a natural question to ask what would happen if the training
distribution included samples of varying difficulties. To investigate the answer to this question, we
use a distribution with samples of mixed difficulties for the training. Furthermore, we try curriculum
learning [91] by increasing the samples’ difficulty throughout the training.

Mixed distribution. We change the training distribution to a uniform mixture of the cycle task
distribution for sizes i = 2, . . . , n, i.e., each sample comes from the distribution of the cycle task for
size i (having 2i nodes and edges) with probability 1

n−1 . Therefore, in the mixed distribution setting,
the number of reasoning steps varies between 2 to n. As an example, we set n = 7 and train our
model with fresh samples from the mixed distribution. We assess the model’s performance on cycle
task samples of sizes 2, . . . , n = 7 (where we include both connected and disconnected cases as in
the original definition). The results are shown in Figure 8a. It can be seen that the cycle task is learned
in the order of difficulty (i.e., size). Further, note that when a mixed distribution is not used, weak
learning of the cycle task for n = 7 is not possible up to 100k iterations (see also Figure 1b), whereas
here, weak learning for n = 7 begins in the first 30k iterations. Note that this is not in contrast with
our theoretical results since including easy samples reduces the globality. Analogously, in the setting
of learning parities, it has been shown that using a biased rather than uniform distribution (which
makes the distribution simpler) can make parity targets easier to learn [92, 93].

Curriculum learning. Next, we try curriculum learning, i.e., we give samples in the order of
difficulty (size in the cycle task) to the model during training. We consider two settings: (1) a setting
in which the model has to fit samples of all difficulties and (2) a setting in which the model is allowed
to forget easier samples. In other words, in the first setting, we want the model to fit cycle task
samples of sizes 2, . . . , n while in the second setting, we only care about fitting samples of size n.
We start with the first setting which is closer to the notion of mixed distribution above. We consider
distributions D2, . . . , Dn such that distribution Di is a uniform mixture of cycle task samples of sizes
2, 3, . . . , i (e.g., Dn is the mixed distribution used for the mixed distribution setting of Figure 8a).
We start training on D2 and we change training distribution from Di to Di+1 when reaching a 95%
accuracy on Di. The results for this curriculum setting are provided in Figure 8b. Comparing this

13For example, for i = 3, distribution OOD 3 consists of graphs with 4 cycles of size 6 where the nodes are
in a single cycle and their distance is 3 and graphs with 5 cycles of sizes 3,3,6,6,6 where the query nodes are in
the two cycles of size 3.
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(a) Mixed distribution of different sizes at training
time.
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(b) Curriculum learning during training where pre-
vious samples are repeated avoiding them from
being forgotten.

Figure 8: Accuracy for cycle tasks of varying sizes where a mixed distribution (left) and curriculum
learning (right) have been used during training. It can be seen that using both a mixed distribution of
samples with different difficulties and curriculum learning can reduce the learning time.
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(a) Accuracy curves for cycle tasks of different
sizes when a curriculum is used. We can see that
in this version of the curriculum where we do not
repeat the samples, samples from the previous dis-
tribution are indeed forgotten by the model.
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(b) Average number of steps for learning the cycle
task with curriculum learning where previous sam-
ples are not repeated and allowed to be forgotten.

Figure 9: Curriculum learning based on sizes of the task used at training time. Here, samples of
smaller sizes are allowed to be forgotten. The left plot presents accuracy for different sizes for a
single run while the plot on the right presents the average number of iterations required for learning
using curriculum for different sizes.

curriculum setting to the use of mixed distribution without curriculum (Figure 8a), we can see that
curriculum learning helps the model reach a high (e.g., 80%) accuracy slightly faster. Nevertheless,
note that weak learning starts earlier in the mixed distribution setting, as the model is trained on
samples of all difficulties from the beginning. The general observation that beyond using a mixed
distribution, curriculum is helpful for learning has been previously shown both theoretically [94] and
empirically [95].

Now, we move to the second setting where we allow easier samples to be forgotten. More precisely,
we consider distributions D2, . . . , Dn such that distribution Di is the distribution of samples of the
cycle task of size i (i.e., 2i nodes and edges). Similarly, we start training on D2 and we go from Di to
Di+1 when reaching a 95% accuracy on Di. We present the accuracy curves for a single random seed
in Figure 9a. We further provide the average number of iterations required to reach 0.95% accuracy
for the cycle task of different sizes in Figure 9b. It can be seen that the time complexity for this
variant of the curriculum method is lower than the former curriculum method at the cost of forgetting
samples of smaller sizes.
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Figure 10: Learning the half-parity function (learning the parity of the first n/2 bits from the total n
bits) for different numbers of bits using a scratchpad. It can be seen that the half-parity targets can be
learned efficiently as the number of bits n grows. Note that the random seed of the experiment can
cause some variation in the number of iterations required for learning the parity.

In sum, using distributions with samples of a mixed difficulty and also curriculum learning can reduce
the learning complexity. (E.g., they made cycle task of size 7 learnable). Nevertheless, the scratchpad
approaches are still significantly more efficient (see Figure 4a).

B.3 Learning parities with scratchpad

Consider n bits x1, . . . , xn ∈ {−1,+1} with a uniform distribution over the Boolean hypercube.
As discussed in Section 3.1, learning the parity of any fixed n

2 bits is exponentially hard (e.g., an
exponential number of iterations in n if the model size is fixed). Note that the globality is n

2 in this
setting. Here, we particularly focus on learning the parity of the first n

2 bits with a scratchpad of
cumulative parities as discussed in Section 3.1. In other words, we design a scratchpad given by the
sequence

y1 = x1, y2 = x1x2, y3 = x1x2x3, . . . , yi+1 = xi+1yi, . . . , yn/2 = x1x2 · · ·xn/2,

where the autoregressive globality is 2. With this scratchpad of cumulative parities, we expect the
half-parity function to be learned efficiently. We confirm the latter empirically in Figure 10. It can
be seen that our decoder-only Transformer can efficiently learn half-parities of growing sizes (e.g.,
parity of the first 200 bits from 400 bits is the rightmost data point). We note that we have repeated
each experiment for 10 different random seeds and we observed that the number of iterations depends
on the the random seed of the experiment. Nevertheless, for all of the seeds, the parities are learned
efficiently with a low number of iterations.

B.4 Length generalization for the parity task

Here, we provide an inductive scratchpad for the parity task which makes length generalization
possible. We focus on the full parity problem, i.e., given a sequence of 0s and 1s determining whether
the number of 1s is even (output 0) or odd (output 1).

First, we explain the input data format. We fix an ambient dimension damb and also assume that we
have n ≤ damb bits. Then, we choose n random positions among damb possible ones and embed
the input in dimension damb. For the unused positions, we use a placeholder token such as a space
or, here, for better presentation, an underscore. An example for damb = 12 and n = 6 could be
_01_10_0__1_.

We design the inductive scratchpad as follows. Assuming that input has n bits we define n+ 1 states
for the inductive scratchpad. For i ≤ n, the ith state is defined as

[<pointer>]<value of the ith bit>,<parity of the first i bits>
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where <pointer> determines the position of the ith bit and <value of the ith bit> is the value
of the ith bit (which the model can learn to retrieve using the pointer) and <parity of the first
i bits> is the cumulative parity of the first i bits that can be computed using its value in the previous
state (parity of the first i − 1 bits) and the value of the ith bit. For the last state, state n + 1, we
use [damb]_,<final parity><EOS> where final parity is equal to the parity of the first n bits that
is computed in state n. So, one can easily check that this scratchpad is of low globality and each
state can be easily computed using the previous state and question. As an example consider input
_01_10_0__1_ again. The inductive scratchpad for this example can be written as

<START>[1]0,0#[2]1,1#[4]1,0#[5]0,0#[7]0,0#[10]1,1#[12]_,1<EOS>

where different states are shown by different colors. To show the length generalization ability of the
inductive scratchpad we set damb = 60. Moreover, we train on samples with up to n ≤ Ntrain = 30
bits. Particularly, we use fresh samples and generate each sample such that the number of bits
n has a uniform distribution over {1, 2, . . . , 30}. We train our base decoder-only model for 2000
iterations and we test length generalization ability for different number of bits between Ntrain = 30
and damb = 60. Results are reported in Figure 5a. As it can be seen the model generalizes well to
inputs with 50 bits. We also observed that the generalization ability on longer sequences (e.g., 55
bits) is not robust and depends on the random seed of the model.

B.5 Length generalization for the addition task

Length generalization on arithmetic tasks and particularly on addition has received a surge of interest
recently [17, 36]. In this section, we focus on length generalization on the addition task where the
model has seen the addition of numbers with up to Ntrain digits, and the model is tested on more
digits Ntest. In particular, we provide two formats for the data and scratchpad which allow the model
to length generalize.

Inductive scratchpad using random spaces. The first format is similar to our solution for the
parity length generalization problem. First, we fix an ambient dimension damb. Assume, we want
to add two operands with n ≤ damb digits. We embed the two numbers and the plus sign + in a
2damb + 1 positions. Between them, we put spaces, or for better readability underscores. Also, we
put an = at the end. For example, for x = 94, y = 31 and damb = 4 we can have 94_+_3__1=. Now
we explain the generation of the scratchpad. First, we generate a random sequence of tokens with
size damb + 2 such that it begins with ‘$’, e.g., $xgwg6 we call this text ans[0]. Now, we enter the
induction mode. For i > 0, each state in the induction mode is given by

s[i] = [<pointer to the ith digit of x>] <ith digit of x> [<pointer to the
ith digit of y>] <ith digit of y> c <current value of the carry> r

<ans[i+1]>

where x, y are the operands, the pointer is counted from zero, and ans[i+1] is computed inductively

ans[i+1] = (<ith digit of x> + <ith digit of y> + <carry from the previous
state> % 10) <ans[i][:-1]>

In other words, at each iteration, we shift the ans to the right (and lose the rightmost token). Instead,
we concatenate the ith digit of the summation to it from the left. So in general, the model has to
increase the pointers in the scratchpad, read their corresponding values, and do one summation using
them (and the carry in the previous state) at each reasoning step. The scratchpad ends when both
numbers are finished. Note that the answer is always the string to the left of $ at the end of the text.
Thus, the completed scratchpad for our example (where input is 94_+_3__1=) can be given by

$xgwg6<START>[01]4[08]1c0r5$xgwg#[00]9[05]3c1r25$xgw#[-1]_[03]_c0r125$xg<EOS>

where different states are represented in different colors. With this scratchpad format, Ntrain = 10,
and damb = 30 we can generalize to numbers with up to 18/20 digits (depending on the seed). See
the results in Figure 5b.

Inductive scratchpad using shifts. For the second solution, we also fix an ambient dimension.
damb. Assume, we want to add two operands with n ≤ damb digits. For input formatting, we first
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concatenate a $ to the left of the two operands. Next, for each operand, we generate a random text of
size damb − n and concatenate it to the left of the operands and call them x[0] and y[0]. Lastly, we
use an = to finish the question. For the scratchpad, we first generate a random text with damb + 2
tokens such that the leftmost token is $. We call this ans[0]. Also, we use a variable for keeping the
carry and we call it c which is zero at the beginning. In this format of the scratchpad, we do not use
the <START> token meaning that the input question is also treated as a state (and is forgotten by the
future states). We define each state (i ≥ 0, i = 0 corresponds to the question)

s[i] = <x[i]>+<y[i]>=ans[i]|c[i]

where x[i], y[i] are computed by a right cyclic shifts of x[i-1], y[i-1] and ans[i], c[i] are
computed using

ans[i] = (<RMD(x[i-1])>+<RMD(y[i-1])> + <c[i-1]> % 10) ans[i-1][:-1]
c[i] = 0 if (<RMD(x[i-1])>+<RMD(y[i-1])> + <c[i-1]> < 10) else 1

where RMD represents the rightmost digit operator. In other words, at each step, we shift both the
operands and the answer with the difference that operand shifts are cyclic, while for the answer we
always add one digit of the correct answer to it from the left (and lose one digit from the right). Note
that the position of the digits that we are adding always remains the same. Also, the addition is
finished when $ is the rightmost digit of both operands. When the addition is finished, we use one
more state to output the final answer (possibly using the last carry variable). For example, for n = 2
and damb = 4, fs$46+ih$98= could be an input example. In this case, the scratchpad can be written
as

$kckn|0#6fs$4+8ih$9=4$kck|1#46fs$+98ih$=44$kc|1#144$kc<EOS>

where different colors are used for different states. In the example above one can note that some part
of the s[0] is in the question and some part of it is in the scratchpad.

Note that the formatting required for the input of this scratchpad is stronger than the previous
scratchpad. However, here we can get a much stronger length generalization. By setting damb = 30
and training on numbers with up to 4 digits, we can generalize to numbers with up to 26 digits and
even 30 digits for some of the seeds (see Figure 5b).

For both addition methods, we sampled numbers with n ≤ Ntrain digits with a probability propor-
tional to n. Nevertheless, we did not observe much dependency on the distribution. Also, note that
in the design of scratchpads for both addition and parity, we have used techniques such as inserting
random spaces and embedding in a fixed dimension. We note that this is unavoidable for the input as
we have used absolute positional embedding for it. Nevertheless, we expect that by using an inductive
scratchpad along with relative positional embedding and pre-training, one would be able to achieve
the same length generalization with fewer assumptions on the format of the input.

C Experiment and implementation details

C.1 Architecture and datasets

In all of the experiments, we use GPT2-style [29] decoder-only Transformers and we train them from
scratch in an autoregressive manner with the cross-entropy loss and AdamW [96] optimizer. Our
implementation uses the PyTorch framework [97] and is mostly built on NanoGPT’s implementation
[98]. In particular, our Transformers use causal attention masking and absolute learnable positional
embeddings. For most experiments, we use a small model with 6 layers, 6 heads, and an embedding
dimension of 384 which results in a model with approximately 10M parameters.14 We only change
the size of the model in Figure 1b where we use models with 8 layers, 8 heads, and an embedding
dimension of 512 (approximately 25M parameters), and 12 layers, 12 heads, and an embedding
dimension of 768 (roughly 85M parameters).

For the cycle task, we use 1000 node names formatted like v123. For simplicity of analysis, we
regard each node name as a single token. Other than that and for the other tasks, we treat each
character as a single token.

14The exact number depends on the task and the vocabulary size of it.
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For the length generalization experiments, we realized that the performance of the model depends
on the random seed of the network. So we repeated each experiment 10 times and reported the
median of the results in the plots (along with other runs). For other experiments, we did not observe
much variation between seeds and repeated each experiment 5/10 times and reported 95% confidence
intervals. We used different Nvidia GPU devices for running our experiments including H100, A100,
and RTX4090. We approximate that the runtime for experiments presented in this paper is around
200 hours (excluding hyperparameter search).

Our code is publicly available at https://github.com/aryol/inductive-scratchpad.

C.1.1 Hyperparameter tuning and sensitivity

In general, we tried different values for the learning rate (with different schedules), batch size, dropout,
and weight decay. For different tasks, we have used the hyperparameters that were the most stable
and fast. The most significant sensitivity is to the batch size. We often find that larger batch sizes
help with the training to the point that some tasks cannot be learned with batch sizes smaller than
256.15 Also, in the length generalization experiments, we observed that the experiments are rather
sensitive to the dropout and weight decay parameters. Generally, strong regularizations can increase
the uncertainty of the models. Considering the large number of tokens in the scratchpad of the length
generalization experiments and their sensitivity, this uncertainty can increase the probability of error.
Of course, a weak regularization can also result in a worse generalization. In addition, for most of the
experiments, we used either fresh samples or a rather large number of samples as our objective is
mostly measuring the time complexity or OOD generalization. The exact value of hyperparameters
for each task is available in our code.

C.2 Implementation of the inductive scratchpad

Here we describe the implementation of the inductive scratchpad. Assume that the question and
scratchpad sequence are given by Q<START>s[1]#s[2]#...#s[k]<EOS>. Note that Q and s[i]s
can each contain a number of tokens. Moreover, note that Q can also include a part of the scratchpad
besides the question. Anything that comes before <START> acts like a permanent memory and
the model can attend to it for the generation of all states. So for example, if there is some shared
information between all states, it is more efficient to put it in the scratchpad before <START> rather
than including it in all of the states. Note that, in general, our goal is to only learn the induction
function. In other words, we want to generate tokens of the ith state s[i] as if the sequence to this
point was only Q<START>s[i-1]#. We now explain how this can be achieved during training and
generation.

First, we provide two solutions for training time. One simple way is to break the original sequence
Q<START>s[1]#s[2]#...#s[k]<EOS> into

Q<START>s[1], Q<START>#s[1]#s[2]#, . . . , Q<START>s[k-1]#s[k]<EOS>.

We also need to make sure that no loss is not computed for Q<START>s[i]# part of
Q<START>s[i]#s[i+1]# for 1 ≤ i < k which can be easily done using a loss mask. This
approach ensures that the loss is computed once for the question and each state and also each
state is generated from the previous state and the question in an identical manner. Note that all
of these operations are done once as a preprocessing step. Now, we describe a second imple-
mentation method for the train time. We first duplicate each state other than the last state, i.e.,
Q<START>s[1]#s[1]#s[2]#s[2]#...#s[k]<EOS>. Next, we group the consecutive states, rein-
dex the position of the tokens, and design attention masks and loss masks as follows:

Tokens Q<START> s[1]# s[1]# s[2]# s[2]# s[3]# . . . s[k-1]# s[k]<EOS>
Loss

1 1 0 1 0 1 · · · 0 1mask
Attention

0 1 2 3 · · · kgroup
Positional

0, 1, . . . , t− 1 t, t+ 1, . . . t, t+ 1, . . . t, t+ 1, . . . · · · t, t+ 1, . . .indices

15For some experiments, we increased the gradient accumulation steps instead of the batch size to get the
same effect with less memory consumption.
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where we have assumed that t tokens have appeared before the first state s[1]. Note that this number
may vary across samples. We can easily create an attention mask based on the attention groups. All
groups only attend to tokens in their group and tokens in group 0 (everything that comes before
<START>). Also, using the loss mask vector, we do not compute the loss for the second copy of each
state (where the loss mask is equal to zero). Also, for each state generation, we reset the positional
indices of the tokens. Using the appropriate loss mask, attention mask, and positional indices
explained above guarantees that the loss is computed exactly once for each state, and each state is
generated based on the previous state and tokens before <START> (i.e., the question Q) in an identical
manner. Note that both approaches that we discussed for the train time can be implemented easily
for conventional Transformer models. Further, they do not change Transformer models’ behavior on
non-inductive samples. Our methods also work with both absolute and relative positional embeddings.
Note that the first approach favors Transformers with a small block size (context length) and the
second approach is more suitable when the block size is large. So based on the block size, a mixture
of these two approaches can be used. In our implementation, we use the second approach as we do
not have an issue with the block size.

Now, we discuss token generation. Assume that we are generating the tokens of ith state s[i], i.e.,
Q<START>s[1]#s[2]#...s[i-1]# have already been generated. To have the inductive behavior,
we need the model to generate tokens of s[i] using only the last state and the tokens before <START>.
Similar to the training time, this is achievable through using two methods. The first method is to
change the input of the model, basically, we can give Q<START>s[i-1]# as the input to the model
when generating tokens for s[i]. Alternatively, we can keep the input intact and just use an attention
mask that prevents s[i] tokens from attending to any token other than tokens of Q<START> and
s[i-1]#. Similar to the training time, one also needs to reindex the position of tokens of s[i-1]#
and s[i]# so that they appear exactly after Q<START>. Note that it is still possible to do key-value
(KV) caching [99, 100] to increase the decoding speed. KV caching stores previous keys and values
corresponding to the previous tokens and does not compute them again at the expense of the memory.
Generally, for KV caching, we are only in trouble when going from (i− 1)th state to the ith state,
because the current keys and values of tokens of s[i-1] are computed based on s[i-2]. However,
for the generation of s[i], we only attend to s[i-1] and do not want s[i-1] to attend to any of the
previous states to conserve the inductive behavior. One solution to this problem is to compute the
key-value pairs for tokens of s[i-1] again with the correct positional indices and attention masking
once we have the transition from s[i-1] to s[i]. Alternatively, one can always cache two versions
of keys and values, one for the generation of the current state and one for the generation of the future
state.

We note that in the inductive scratchpad, all the states except the penultimate one are ignored. As
a result, the effective number of tokens is significantly reduced compared to the full scratchpad.
Consequently, the inductive scratchpad works better for longer scratchpads and models with more
limited context sizes and generally scales better.

Also, note that the inductive scratchpad can generally be used for a wide range of algorithmic tasks.
For example, consider an algorithm with a for loop that updates some variables. One can easily put
the variables of the algorithm in the state of an inductive scratchpad, and use the Transformer for
computing the values at each iteration (and also determining the halting of the loop). The inductive
scratchpad for the parity, addition, and cycle tasks all fall into this category.

C.3 Comparison with relative positional embeddings

In this section, we discuss whether it is possible to induce an inductive structure for the scratchpad
using relative positional embedding [50, 51] instead of using the explicit inductive scratchpad format
introduced in this paper. For an inductive structure to work, we want each state to be generated using
only the tokens of the previous state and the question in an identical manner for different states.

More precisely, assume that the question and scratchpad are given by
Q<START>s[1]#s[2]#...#s[k]<EOS> (one can also decide to remove <START> and # to-
kens). For simplicity, assume that the size of all states (i.e., the number of tokens in each state) is
equal to T (where we also include # if it is used). Relative positional embeddings compute the
attention between two tokens based on their distance instead of their absolute positions in the
sequence. Therefore, the attention pattern between s[i+1] and s[i] is similar to the attention
pattern between s[i] and s[i-1], and one could hope for an inductive structure to emerge.
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There are a few obstacles, however:

1. The distance between the states and question tokens increases as each state is generated.
However, in order to have an inductive structure, we want the attention pattern between
different states and the question not to change. One could think of using encoder-decoder
architectures where the question is in the encoder part and computing the cross-attention
between states and the question ignoring the positions of the state tokens in the decoder part.
However, even this approach would lose some information. I.e., the attention between the
scratchpad tokens and the question tokens cannot use the position of the scratchpad tokens
within a state.

2. Most of the relative positional embeddings [52, 53, 54] allow tokens to attend to all other
tokens. Even if one uses an attention mechanism that limits the attention to the D previous
tokens, after L transformer layers, tokens of up to distance DL can attend to each other. So
in general, it is most likely, that tokens of s[i] can attend to tokens of other states as well
as tokens of s[i-1] which hinders the inductive behavior.

3. Similarly, assume that the T th (last) token of s[i] attends to all tokens of s[i-1] including
its first token. Note that the distance between the last token of state s[i] and the first token
of state s[i-1] is 2T − 1. As a result, the first token of s[i] would also attend to all tokens
of s[i-2] except the first one in a similar manner (because the distance between the first
token of s[i] and the second token of s[i-2] is 2T − 1) which is undesirable.

Note that in the analysis above we assumed a fixed number of tokens per state. If the number of
tokens in each state varies, issues like (2) and (3) above can become more difficult to handle for
a model that only relies on relative positional embedding. To sum up, there is a minor similarity
between relative positional embeddings and the idea of induction in the scratchpad. Factors such
as pre-training and the recency bias of attention may promote inductive behavior in the model to
some extent. Nevertheless, there is no reason to think that the model can implement the inductive
behavior relying only on relative positional embeddings for a general inductive task. In general,
one can use the inductive scratchpad idea along with relative positional embedding to get better
length generalization. Note that inductive scratchpad can generalize on the number of training steps.
However, understanding an input with growing length still requires relying on relative positional
embeddings.

As an alternative solution, independent of positional embeddings being absolute or relative, one can
use special tokens <START> # without hard-coding their meaning and hope the model realizes the
meaning of these two tokens on its own and implement a soft inductive structure (same attention
masking but in a soft manner). However, such an event is also very unlikely for moderate amounts of
inductive data.

D Further discussion and specification of Conjecture 1

Definition 6 (Well-behaved distribution for Conjecture 1). Input distribution PX over alphabet An

with |A| = O(nc) is well-behaved if for X ∼ PX there is no value that X takes with probability
Ω(n−c1) for any c1 > 0, and every eigenvalue of X’s covariance matrix of the indicator functions
for the values of X’s entries has absolute value O(n−c2

∑n
i=1 Var(Xi)) for some c2 > 0.

In other words, the first requirement means that there is no value of X that is frequent enough that
allows the model to weakly learn the function simply by memorizing the value of that input. The
second rules out the possibility of an input distribution with a few important components that are easy
to notice and determine the output, such as a scenario where there are log(n) blocks of n/(2 log(n))
bits such that all of the bits in a block are always the same and the output depends only on the values
of the blocks. Other than that, many distributions of interest are well-behaved, such as the i.i.d.
measure as in [12, 25, 24, 28, 26, 27], or measures with dependencies as for the cycle task considered
in this paper.

Intuition on Conjecture 1. To see the role of the histogram, P̂X , note that if one removes positional
embeddings from a Transformer, the Transformer would become permutation invariant. In this case,
learning functions like full parity (parity of all the bits) becomes very easy as there are only n+ 1
possibilities for n bits in the eyes of a permutation invariant model. One could potentially achieve a
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similar effect to removing the positional embeddings, if one initializes positional embeddings with a
small enough (or vanishing) scale. That is the reason that P̂X needs to be included in the definition
of the globality degree. Further see Appendix F for more intuition on Conjecture 1.

E Intuition on the agnostic scratchpad

In a lot of the cases where there is a scratchpad, we assume that during training we know what the
Transformer should write in the scratchpad and just need to teach it to do so. However, this tends
to be an unrealistic assumption in practice. If we knew how to compute the appropriate scratchpad
entries from the inputs then we could just give the Transformer a prefilled scratchpad instead of
training it to write the appropriate entries in the scratchpad. Admittedly, we could have a scenario
where it is expensive for us to compute the appropriate scratchpad entries and we are hoping to teach
the Transformer to do it for us, but there is a limited middle ground between it being cheap enough
that we do not need the Transformer to compute the entries and it being too expensive to compute the
correct scratchpad entries for all the training data. The other case where we would know what the
correct scratchpad entries were during training is if the training data already came with scratchpad
entries, which could happen if our training data includes some kind of explanation, which might not
often be the case.

So, we could easily have a case where we are trying to train a Transformer with a scratchpad but do
not know what it should write in the scratchpad. In that case, it seems like the best available way
to evaluate whether an entry the model wrote in the scratchpad is right or not is to judge it based
on the end result of writing that entry. In other words, we define a loss function for entries in the
scratchpad by taking the scratchpad with that entry, extending it to a full scratchpad, and checking
if the transformer ends up giving the right answer. This is the mechanism behind the algorithm
proposed in Conjecture 2 for optimizing the network based on agnostic scratchpads.

F Proof of Theorem 1

In order to prove that a T-regular Transformer cannot learn to distinguish between the case where there
are 3 cycles and the case where there is only one, we will take advantage of the fact that the probability
distribution of the positional embeddings is invariant under permutations of the embeddings. So, if
such a Transformer could learn to solve this problem it would also be able to learn a version where
an arbitrary permutation was applied to the inputs. However, we will show that no function has a
significant correlation with a random element of the orbit of this function under reordering of its
inputs. That in turn will imply that a Transformer trained by gradient descent fails to learn anything
meaningful when trained on this function. However, before we do that we will need to consider the
setup for the theorem more carefully. The input in this problem is a series of blocks, each of which
specifies how ai−1, bi−1, and ci−1 connect to ai, bi and ci. So, each of these blocks can be viewed
as representing a permutation in S3, in which case their product will give the needed information on
the overall graph structure. We can effectively reorder these permutations by permuting the tokens in
the input. So, in order to show that permuting the tokens can completely alter the function it suffices
to show that the function taking the product of a series of permutations is largely uncorrelated to the
function taking a product of the permutations in a different order, which can be made rigorous as
follows.

Lemma 4. Let PX be the probability distribution on the subset of Sn
3 with an even number of

odd permutations and f : Sn
3 → {−2, 1} be the function such that f(X) is −2 if

∏n
i=1 Xi is

the identity and 1 otherwise. Next, select z ∈ {0, 1}⌊(n−1)/2⌋ uniformly at random. Then, let
π =

∏
i≤⌊(n−1)/2⌋:zi=1(2i− 1, 2i). In other words, π is the permutation that switches its (2i− 1)th

and (2i)th inputs if zi is 1 and leaves them otherwise. Now, let f ′(x) = f(π(x)) for all x. Then

Ez[E
2
X∼PX

[f(X) · f ′(X)]] ≤ 8 · 2−n/3

Proof. We start by considering a single pair of permutations σ, σ′ drawn uniformly and independently
from S3 and comparing σσ′ to σ′σ. At this point, it is helpful to think of σ and σ′ as function on F3

of the form ax + b with a ∈ {1,−1} and b ∈ {0, 1, 2}. If σ(x) = x + b and σ′(x) = x + b′ then
clearly σ ◦σ′ = σ′ ◦σ. However, if σ(x) = x+ b and σ′(x) = −x+ b′ then σ(σ′(x)) = −x+ b′+ b
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while σ′(σ(x)) = −x− b+ b′. The cases where σ(x) = −x+ b are similar. So, conditioned on any
fixed values of the signs of σ and σ′ in which at least one of them is odd, σσ′σ−1σ′−1 is equally
likely to be any even permutation. That means that if this holds and σ′′ is another random permutation
of a known sign then the probability distribution of (σσ′σ′′, σ′σσ′′) is the uniform distribution on
pairs of permutations of the correct sign. That in turn means that conditioned on the signs of all of
the elements of X and the value of z, the values of f(X) and f ′(X) are independent of each other
unless X2i−1 and X2i are both even permutations for every i for which zi = 1. So, for any fixed
value of z, EX∼PX

[f(X) · f ′(X)] = 2 · 4−|{i:zi=1}|. That in turn means that

Ez[E
2
X∼PX

[f(X) · f ′(X)]] = 4 · (17/32)⌊(n−1)/2⌋ ≤ 8 · 2−n/3

Corollary 1. Let PX be the probability distribution on the subset of Sn
3 with an even number

of odd permutations and f : Sn
3 → {−2, 1} be the function such that f(X) is −2 if

∏n
i=1 Xi

is the identity and 1 otherwise. Next, select z ∈ {0, 1}⌊(n−1)/2⌋ uniformly at random. Then, let
π =

∏
i≤⌊(n−1)/2⌋:zi=1(2i− 1, 2i). In other words, π is the permutation that switches its (2i− 1)th

and (2i)th inputs if zi is 1 and leaves them otherwise. Now, let f ′(x) = f(π(x)) for all x, and let
g : Sn

3 → [−1, 1] be a function. Then

Ez[E
2
X∼PX

[f ′(X) · g(X)]] ≤ 3 · 2−n/6

Proof. First of all, let (z′, π′, f ′′) be drawn from the same probability distribution as (z, π, f ′) but
independently of it. We have

Ez,z′ [E2
X∼PX

[f ′′(X) · f ′(X)]] = Ez,z′ [E2
X∼PX

[f(π′(X)) · f(π(X))]]

= Ez,z′ [E2
X∼PX

[f(x) · f(π(π′(X)))]]

≤ 8 · 2−n/3.

Using the inequality that given a fixed vector v and probability distribution over vectors Pu, Eu∼Pu [(v·
u)2] ≤ ||v||22

√
Eu,u′∼Pu

[(u · u′)2], which follows from

Eu∼Pu [(v · u)2]
= Eu∼Pu [(v ⊗ v) · (u⊗ u)]

= (v ⊗ v) · Eu∼Pu [(u⊗ u)]

≤ ||v ⊗ v||2||Eu∼Pu
[(u⊗ u)]||2

= ||v||22
√

Eu,u′∼Pu [(u · u′)2]

where u and u′ are drawn independently from Pu in the last expectation, we have

E2
z[E

2
X∼PX

[f ′(X) · g(X)]]

≤ E2
X∼PX

[
g2(X)

]
Ez,z′

[
E2
X∼PX

[f ′(X) · f ′′(X)]
]

≤ 8 · 2−n/3.

At this point, we are finally ready to prove Theorem 1 as follows.

Proof. First, observe that in the setup in Theorem 1, an input consists of a series of blocks where the
ith block specifies where the edges from ai−1, bi−1, and ci−1 go. These edges always go to ai, bi,
and ci in some order (Regarding an, bn, and cn as alternate names for a0, b0, and c0). So, each block
can be viewed as a permutation in S3. Call these permutations σ1, ..., σn. The first n− 1 of these
permutations are mutually independent, but the requirement that there be 1 or 3 cycles rather than 2
forces the last one to take on a value for which their product is even. If there are 3 cycles their product
is the identity and if there is one cycle their product is one of the other even permutations with which
it is determined by whether the vertex n edges from a0 is b0 or c0. So, the probability distribution of
σ is the uniform distribution on the subset of Sn

3 with an even number of odd permutations and the
label specifies whether or not

∏n
i=1 σi is the identity.
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The positional encodings are iid and there is no causal masking, so the probability distribution of the
Transformer is symmetric under permutations of the inputs. In particular, for an arbitrary permutation
π ∈ Sn we can move all of the letters in block i to the corresponding position in block π(i) for each i
to essentially apply this permutation to the σ. Now, let Y be the indicator function for

∏n
i=1 σi being

the identity. Then, for every select z ∈ {0, 1}⌊(n−1)/2⌋ let πz =
∏

i≤⌊(n−1)/2⌋:zi=1(2i− 1, 2i) and
Yz be the indicator function for

∏n
i=1 σπz(i) being the identity. By the symmetries of the Transformer,

it will have as hard a time learning to compute Y as it would have learned to compute Yz for any z.
Next, let Y∅ be 1 with probability 1/3 and 0 with probability 2/3, independently of X . We claim that
the probability distribution of the Transformer’s weights when it is trained on Yz will be essentially
the same as its weights when it is trained on Y∅. In order to formalize that, let Tw(x) be the output the
Transformer gives when its edge weights and positional encoding take on the values given by w on an
input of x. Next, let PW,∅,t be the probability distribution of the weights and positional embeddings
after t time steps of training on Y∅ and PW,z,t be the probability distribution of the weights and
positional embeddings after t time steps of training on Yz . For each t, PW,∅,t is symmetric under
permutations of the positional embeddings.

By the assumption on hyperparameters, we are using gradient descent with a clipped gradient with
some B polynomial in n such that if there exist (X,Y ) for which any entry of the gradient of the
loss with respect to the edge weights has absolute value higher than B it is reduced to ±B when
calculating the overall gradient. Let ()B denote this clipping operator. For any given set of edge
weights and positional embeddings w and a random z, the expected square of the difference between
the ith elements of the clipped gradient of the loss when the net is trained on Yz and the clipped
gradient of the loss when the net is trained on Y∅ is

Ez

[(
EX

[(
dL(Yz, Tw(X))

dwi

)
B

]
− EX,Y∅

[(
dL(Y∅, Tw(X))

dwi

)
B

])2
]

= Ez

[
E2
X

[
(Yz − 1/3) ·

((
dL(1, Tw(X))

dwi

)
B

−
(
dL(0, Tw(X))

dwi

)
B

)]]
≤ (1/3)2(2B)2 · 3 · 2−n/6 = (4B2/3) · 2−n/6

by the previous corollary. There are a polynomial number of weights and a small difference in
gradients results in a total variation distance between the probability distributions of the weights one
step later than is at most polynomially larger, so for any t, we have that

Ez[TV (PW,z,t+1, PW,∅,t+1)] ≤ Ez[TV (PW,z,t, PW,∅,t)] + poly(n) · 2−n/12

That in turn means that

TV (PW,0,t, PW,∅,t) = Ez[TV (PW,z,t, PW,∅,t)] = poly(n) · 2−n/12

for all t polynomial in n. Now, let y0 be chosen to minimize the value of (1/3)L(1, y0) +
(2/3)L(0, y0). Then, let L′(p, q) = min(L(p, q),max(L(1, y0), L(0, y0))) for all p and q be a
bounded version of the loss function. The previous argument shows that the expected bounded loss of
the Transformer on (X,Y ) after t training steps is within poly(n) · 2−n/12 of the expected bounded
loss of a Transformer trained on (X,Y∅) for t steps and then tested on (X,Y ) which is

Ew∼PW,∅,t [EX [L′(Y, Tw(X))]]

= Ew∼PW,∅,t [Ez[EX [L′(Y, Tw(X))]]]

= Ew∼PW,∅,t [EX,Y∅ [L
′(Y∅, Tw(X))]] + Ew∼PW,∅,t [Ez[EX,Y∅ [L

′(Y, Tw(X))− L′(Y∅, Tw(X))]]]

= Ew∼PW,∅,t [EX,Y∅ [L
′(Y∅, Tw(X))]]

+ Ew∼PW,∅,t [Ez[EX [(Y − 1/3) · (L′(1, Tw(X))− L′(0, Tw(X)))]]]

≥ Ew∼PW,∅,t [EX,Y∅ [L
′(Y∅, y0)]]

− Ew∼PW,∅,t

[√
Ez[E2

X [(Y − 1/3) · (L′(1, Tw(X))− L′(0, Tw(X)))]]

]
= EX,Y∅ [L(Y∅, y0)]−O(2−n/12)

as desired.
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Remark 5. If we used batch gradient descent with a polynomial batch size instead of full gradient
descent that would essentially add an inverse polynomial perturbation to the gradient. In the version
of this where we are storing weights and embeddings to a limited degree of precision then for a
large enough polynomial batch size the expected number of times this perturbation actually causes a
parameter to get set to a different value than it would otherwise have is O(1/n). In this case, we
could show that with probability 1 − n−ω(1) there are at most log(n) cases of a weight being set
differently than it otherwise would have as a result of the limited batch size. There are only 2O(log2(n))

choices of which weights get changed in which steps and how they are changed. For any one of these
options the expected loss is still within poly(n) · 2−n/12 of what it would be if the net was run entirely
on random labels. So, even assuming we end up with the best option the net will still have a loss that
is at best n−ω(1) better than that attained by ignoring the input and always returning y0. If instead of
having limited parameter precision we instead have inverse polynomial noise we can still make a
variant of this argument but we would need to be more careful about exactly how the net differs when
the perturbation to the gradient affects the results.

F.1 Extension to agnostic scratchpads

Theorem 1 can also be generalized to Transformers trained with agnostic scratchpads in order to get
the following.

Theorem 2. Let G be a directed graph which consists of a cycle of length 3n with probability 2/3
and 3 cycles of length n otherwise. Next, if there are 3 cycles pick one vertex from each and if there
is one cycle pick three vertices that are each n edges apart. Then, label uniformly at random these
vertices with a_0, b_0, c_0. Next, number every other vertex by the distance from one of these three
to it, and for each i, label uniformly at random the vertices at distance i by a_i, b_i, and c_i and
store in X the edges between a_i− 1, b_i− 1, c_i− 1 and a_i, b_i, c_i; i.e.

X = ⃝n−1
i=0 (a_i > e(a_i)_(i+ 1); b_i > e(b_i)_(i+ 1); c_i > e(c_i)_(i+ 1))a_0?b_0?c_0

where e(v) represents the vertex that v’s edge points to, all of the instances of i or i + 1 should
have the appropriate value substituted in and the symbols in black should be used exactly as stated.
See Figure 2 for an example. Finally, let Y report whether a_0, b_0, c_0 are in the same cycle or
not. Now, consider training a T-regular neural network with a scratchpad of polynomial length on
(X,Y ) generated in this manner. For any given (X,Y ), we will regard the net’s loss on (X,Y ) as the
expectation over all possible scratchpads that it might generate on X of the loss of its eventual output.
If we train it on (X,Y ) using population 16 gradient descent with polynomial hyperparameters 17

and a differentiable loss function then the network fails to weakly learn to compute Y .

The proof of this theorem is not meaningfully different from the proof of the previous version, but for
completeness we include it below.

Proof. First, observe that in the setup in the theorem, an input consists of a series of blocks where the
ith block specifies where the edges from ai−1, bi−1, and ci−1 go. These edges always go to ai, bi,
and ci in some order (Regarding an, bn, and cn as alternate names for a0, b0, and c0). So, each block
can be viewed as a permutation in S3. Call these permutations σ1, ..., σn. The first n− 1 of these
permutations are mutually independent, but the requirement that there be 1 or 3 cycles rather than 2
forces the last one to take on a value for which their product is even. If there are 3 cycles their product
is the identity and if there is one cycle their product is one of the other even permutations with which
it is determined by whether the vertex n edges from a0 is b0 or c0. So, the probability distribution of
σ is the uniform distribution on the subset of Sn

3 with an even number of odd permutations and the
label specifies whether or not

∏n
i=1 σi is the identity.

The positional encodings are iid and there is no causal masking of the original input, so the probability
distribution of the Transformer is symmetric under permutations of the inputs. In particular, for

16This would also be true for batch GD with batches of size nc with c chosen as a function of the other
hyperparameters.

17I.e., either polynomial learning rate, polynomial clipping [12, 31], and weights stored using a logarithmic
number of bits of precision and random rounding: for a < b < c if b needs to be rounded to a or c then it rounds
to c with probability (b− a)/(c− a), or with polynomial learning rate, polynomial clipping and polynomial
noise added to the gradients.
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an arbitrary permutation π ∈ Sn we can move all of the letters in block i to the corresponding
position in block π(i) for each i to essentially apply this permutation to the σ. Now, let Y be
the indicator function for

∏n
i=1 σi being the identity. Then, for every z ∈ {0, 1}⌊(n−1)/2⌋ let

πz =
∏

i≤⌊(n−1)/2⌋:zi=1(2i − 1, 2i) and Yz be the indicator function for
∏n

i=1 σπz(i) being the
identity. By the symmetries of the Transformer, it will have as hard a time learning to compute Y as
it would have to learn to compute Yz for any z. Next, let Y∅ be 1 with probability 1/3 and 0 with
probability 2/3, independently of X . We claim that the probability distribution of the Transformer’s
weights when it is trained on Yz will be essentially the same as its weights when it is trained on Y∅. In
order to formalize that, let Tw(x) be a random output the Transformer with scratchpad gives when its
edge weights and positional encoding take on the values given by w on an input of x. Next, let PW,∅,t
be the probability distribution of the weights and positional embeddings after t time steps of training
on Y∅ and PW,z,t be the probability distribution of the weights and positional embeddings after t
time steps of training on Yz . For each t, PW,∅,t is symmetric under permutations of the positional
embeddings.

By the assumption on hyperparameters, we are using gradient descent with a clipped gradient with
some B polynomial in n such that if there exist (X,Y ) for which any entry of the gradient of the
loss with respect to the edge weights has absolute value higher than B it is reduced to ±B when
calculating the overall gradient. Let ()B denote this clipping operator. For any given set of edge
weights and positional embeddings w and a random z, the expected square of the difference between
the ith elements of the clipped gradient of the loss when the net is trained on Yz and the clipped
gradient of the loss when the net is trained on Y∅ is

Ez

[(
EX,Tw(X)

[(
dL(Yz, Tw(X))

dwi

)
B

]
− EX,Tw(X),Y∅

[(
dL(Y∅, Tw(X))

dwi

)
B

])2
]

= Ez

[
E2
X,Tw(X)

[
(Yz − 1/3) ·

((
dL(1, Tw(X))

dwi

)
B

−
(
dL(0, Tw(X))

dwi

)
B

)]]
≤ (1/3)2(2B)2 · 3 · 2−n/6 = (4B2/3) · 2−n/6

by the previous corollary. There are a polynomial number of weights and a small difference in
gradients results in a total variation distance between the probability distributions of the weights one
step later than is at most polynomially larger, so for any t, we have that

Ez[TV (PW,z,t+1, PW,∅,t+1)] ≤ Ez[TV (PW,z,t, PW,∅,t)] + poly(n) · 2−n/12

That in turn means that

TV (PW,0,t, PW,∅,t) = Ez[TV (PW,z,t, PW,∅,t)] = poly(n) · 2−n/12

for all t polynomial in n. Now, let y0 be chosen to minimize the value of (1/3)L(1, y0) +
(2/3)L(0, y0). Then, let L′(p, q) = min(L(p, q),max(L(1, y0), L(0, y0))) for all p and q be a
bounded version of the loss function. The previous argument shows that the expected bounded loss of
the Transformer on (X,Y ) after t training steps is within poly(n) · 2−n/12 of the expected bounded
loss of a Transformer trained on (X,Y∅) for t steps and then tested on (X,Y ) which is

Ew∼PW,∅,t [EX,Tw(X)[L
′(Y, Tw(X))]]

= Ew∼PW,∅,t [Ez[EX,Tw(X)[L
′(Y, Tw(X))]]]

= Ew∼PW,∅,t [EX,Tw(X),Y∅ [L
′(Y∅, Tw(X))]]

+ Ew∼PW,∅,t [Ez,Y∅ [EX,Tw(X)[L
′(Y, Tw(X))− L′(Y∅, Tw(X))]]]

= Ew∼PW,∅,t [EX,Tw(X),Y∅ [L
′(Y∅, Tw(X))]]

+ Ew∼PW,∅,t [Ez[EX [(Y − 1/3) · (L′(1, Tw(X))− L′(0, Tw(X)))]]]

≥ Ew∼PW,∅,t [EX,Tw(X),Y∅ [L
′(Y∅, y0)]]

− Ew∼PW,∅,t

[√
Ez[E2

X,Tw(X)[(Y − 1/3) · (L′(1, Tw(X))− L′(0, Tw(X)))]]
]

= EX,Tw(X),Y∅ [L(Y∅, y0)]−O(2−n/12)

as desired.
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G Comment on Lemma 1

For S such that |S| < n, X[S] is independent of Y , since the distribution of such subsets of edges is
the same for both classes.

Let S be such that |S| = n. Let ZS be the ternary random variable that records whether there is a
cycle or an open path on S. Then,

I(X[S];Y ) = I(ZS ;Y ) (1)

since I(X[S];Y ) − I(ZS ;Y ) = H(Y |X[S]) − H(Y |ZS) and H(Y |X[S]) = H(Y |ZS) =
H(Y |X[S], ZS) since ZS contains all the information about X[S] that is dependent on Y . Hence,

I(X[S];Y ) = I(ZS ;Y ) = H(Y )−H(Y |ZS) (2)
= 1−H(Y |ZS = 1)P (ZS = 1)−H(Y |ZS = 2)P (ZS = 2)−H(Y |ZS = 0)P (ZS = 0) (3)
∼ 1− 0− (1− P (ZS ̸= 0)) = P (ZS ̸= 0). (4)

Now,

P (ZS ̸= 0) = P (∃ a cycle on S) + P (∃ an open path on S). (5)

There is a cycle on S if the graph is sampled from the two-cycle distribution and there are only two
possible choices of cycles versus

(
2n
n

)
possible selections of edges, so

P (∃ a cycle on S) = 2/

(
2n

n

)
. (6)

There is an open path on S if the graph is sampled from the one-cycle distribution and there are 2n
possible selections of such paths for

(
2n
n

)
possible selections of the edges, so

P (∃ an open path on S) = 2n/

(
2n

n

)
. (7)

Thus

P (ZS ̸= 0) = (2 + 2n)/

(
2n

n

)
∼

√
π

2
(2n)3/22−2n. (8)

Therefore, even for sets of size n, the mutual information is exponentially low, implying that glob(D)
is greater than n+ 1.

H Discussion on circuit complexity connections

One approach we can use to analyze what we can learn with different methods is to consider the
complexity class of the problems that can be solved by algorithms of a given type. Constant depth
neural nets with well-behaved activation functions and weights of size at most polynomial in the
input length are limited to computing functions in (possibly nonuniform) TC0, the class of functions
computable by polynomial-sized constant depth circuits built from AND, OR, NOT, and threshold
gates. Likewise, constant depth Transformers with polynomial-sized weights, polynomial-sized
alphabets, and attention matrices whose entries are rational with polynomial-sized numerators and
denominators are limited to computing functions in TC0.

The next circuit complexity class above TC0 is NC1, the class of functions computable by
polynomial-sized circuits of logarithmic depth that are built from AND gates on pairs of val-
ues, OR gates on pairs of values, and NOT gates. It has not been proven that NC1 ̸= TC0,
but it is suspected to be the case. Among other things, the problem of determining whether
a product of permutations in S5 is the identity permutation or some other specified even per-
mutation is NC1-complete, so TC0 circuits cannot compute it unless TC0 = NC1. Further-
more, given any permutations σ1, σ2, ..., σn ∈ S5 and random r0, ..., rn ∈ S5, it is the case that
σ1 · σ2 · ... · σn = r−1

0 (r0σ1r
−1
1 ) · ... · (rn−1σnr

−1
n )rn and (r0σ1r

−1
1 ), ..., (rn−1σnr

−1
n ) is a random

string of permutations. So, computing the product of a string of permutations is essentially as hard in
the average case as in the worst case.
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Now, one of these products of permutations can be converted to a graph as follows. First, the graph
has a set of 5 vertices representing the 5 possible inputs to the product, and another set of 5 vertices
representing the 5 possible outputs of each permutation in the product. Each vertex has an edge to
the vertex representing the value the next permutation in the product maps its value to, and there are
edges from each of the final 5 vertices to the corresponding one of the first 5 vertices. If the product
of permutations is the identity, then this graph consists of 5 cycles of length n+ 1, while otherwise it
has a smaller number of cycles. So, determining whether or not the product of permutations is the
identity can be reduced to determining which pairs of the first 5 vertices are in the same component.
Thus, if TC0 ̸= NC1 then constant-depth neural nets and Transformers cannot determine whether or
not two vertices in an arbitrary graph are in the same component with nontrivial accuracy.

On the other hand, with appropriate setup, deep neural nets, recurrent neural nets, and Transformers
with scratchpads are Turing complete. Furthermore, they can simulate a Turing machine using
resources polynomial in the number of steps the Turing machine runs for and the input length.
So, with appropriate parameters these can efficiently solve any problem that it is possible to solve
efficiently. A little more precisely, given a neural net where the input bits are 0 or 1, it is fairly easy
to set a neuron to compute an AND, OR, or NOT of one or more previous values, so any circuit can
be converted into a neural net of at most equal size. Any efficient computation can be performed by a
polynomial-sized circuit, so it can also be performed by a polynomial-sized deep neural net. Also,
given a Turing machine in a state where all entries in its tape that are more than n steps away from the
head or heads are in their initial state, there is a circuit of depth O(1) and size O(n) that computes
the next state of the Turing machine. That means that running a Turing machine for T steps on an
input of length n can be simulated by a recurrent neural net of size O(T + n) and T recurrences.
Conversely, given a neural net with a reasonable activation function and subexponential edge weights,
one can estimate the output of each neuron to within an exponentially small error in time polynomial
in the size of the net.

The topic of the capabilities of a Transformer with a scratchpad is a bit more complicated. The work
of [30] analyses the capabilities of a Transformer with a constant-sized alphabet, constant depth,
intermediate variables expressible in logarithmic numbers of bits, causal masking, and a form of
hard attention where self-attention operations always average over all previous entries that maximize
the attention score. It shows that given an input of length n and scratchpad of length T such a
Transformer can perform any computation doable in time T , and conversely that any computation
such a Transformer can perform is doable in O((T 2 + n2)polylog(T + n)) time and O(T + log(n))
space. They note that this means that a Transformer with a logarithmic length scratchpad is limited to
performing computations in logspace, while a Transformer with a scratchpad of linear length can
simulate a finite state machine, and a Transformer with a suitably long polynomial length scratchpad
can perform any computation in P .

TC0 versus logspace limitation. We now tighten the logspace result from [30].
Lemma 5. A constant-depth Transformer with intermediate values recorded to inverse-polynomial
accuracy, a logarithmic length scratchpad, and a constant alphabet size is still limited to computing
functions in TC0.

Proof. First, recall that one can compute the probability distribution of the Transformer’s output on
any given input in TC0 by a result of [16]. So, for any given partial scratchpad one can determine
the probability distribution of the Transformer’s output for the scratchpad’s next entry with a TC0

function. That means that one can find the probability that the Transformer would generate any given
scratchpad in TC0 by checking the probability that it outputs each entry when run on the previous
scratchpad entries and the original input and then multiplying them to inverse-polynomial accuracy.
There are only a polynomial number of possible strings the Transformer could write in its scratchpad,
so a TC0 circuit can check them all in parallel in order to determine how likely they each are and
then add up the contributions to the probability of each output from each possible scratchpad in order
to determine the probability distribution of the Transformer’s output.

Connection between globality degree and NC0. We next show that, putting aside the histogram
knowledge and using constant alphabet size, having low globality means having correlations with
NC0 circuits, a class of circuit weaker than TC0 by constraining the number of fan-in to be constant
(and not allowing for threshold gates).
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Lemma 6. Let PX be a probability distribution over {0, 1}n and f : {0, 1}n → {0, 1} be a function.
f correlates non-trivially with a function computable in NC0 if and only if glob(f) = On(1) when
X ∼ PX .

Proof. The NC0 functions are exactly the binary functions that only depend on a constant number
of input bits. So, for any NC0 function g, there exists a set of input bits S such that |S| = O(1) and
g(X) only depends on the restriction of X to S. That means that if f has a nontrivial correlation with
g then f(X) has a nontrivial correlation with X[S] and thus has globality at most |S| = O(1).

Now, assume that glob(f) = On(1) and choose S with |S| = O(1) such that I(X[S], f(X)) =
n−O(1). Next, define the function g′ : {0, 1}n → [0, 1] such that g′(x) = E[f(X)|X[S] = x[S]] for
all x and g : {0, 1}n → {0, 1} such that

g(x) =

{
1 if g′(x) ≥ E[f(X)]

0 otherwise

for all x ∈ {0, 1}n. This function is in NC0 because g(x) depends only on x[S]. Furthermore, the
correlation between f and g is

covar(f, g)/
√

var(f)var(g)

≥ covar(f, g)

= EX [(g(X)− E[g(X ′)])(f(X)− E[f(X ′)])]

= EX [(g(X)− E[f(X ′)])(f(X)− E[f(X ′)])]

= EX [(g(X)− E[f(X ′)])(g′(X)− E[f(X ′)])]

≥ EX

[
(g′(X)− E[f(X ′)])2

]
= n−O(1)

as desired.

I Experiments with ChatGPT

Height comparison. For n ≥ 1, we consider 3n+ 2 people having different heights. We give the
model 3n + 1 pairwise relations between the consecutive people (in order of height) in a random
order. Using this information, one can understand the order of the heights for all people by combining
the given information. We ask the model about the relation between person n+ 1 and 2n+ 2. An
example for n = 1 is

“Omar is taller than Sara. Vlad is taller than David. Farah is taller than Omar. Sara is taller than Vlad.
Is Omar taller than Vlad?"

where the answer is true. Note that to answer this question correctly one has to combine at least
n+ 1 relations. Thus, the globality of the task is always larger than n. (The exact globality would
depend on the tokenization.) We found out that ChatGPT (GPT3.5) fails at this task even for n = 1
(simplest case). Note that when working with the GPT3.5 model we used the following prompt so
that the model is able to use chain-of-thought reasoning: "You can reason if you want but make sure
to include yes/no in your answer." Interestingly, GPT4 performs much better than GPT3.5. We also
observed that it is often the case that when GPT4 answers correctly to the question, it orders people
based on their height, very similar to what we do in the scratchpad of the graph task. Motivated by
this, we tested one more setting where we prompted GPT4 with "Answer only with a yes or no." to
avoid the chain-of-thought reasoning. In this case, as expected, the model couldn’t solve the height
comparison task for n > 1. The results are shown in Figure 11.
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Figure 11: For complexity n we have 3n+ 2 people and there are n people between the two names
we query (see example above). We found out that ChatGPT(3.5) can hardly go beyond the random
baseline on this task even for n = 1 while GPT4 performs much better. However, if GPT4 does
not use CoT reasoning, its performance would be near random for n > 1. Note that we used 1000
examples for each value of n.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We distinguished what is an experimental result or theoretical result, what are
the technical assumptions that are needed for proofs and what are the conjectures that we
expect to hold more generally.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper focuses on a class of models (Transformers) with additional as-
sumptions on the initialization and non-linearities (which most people use in practice). The
conclusion section provides several limitations of the current approach as well as proposals
to consider overcoming them in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We gave detailed descriptions of the hypotheses required for the theory results
to hold.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The paper focuses on artificial data that can easily be reproduced, details of
the exact models used are provided in the appendix. Further, our code is publicly available
at https://github.com/aryol/inductive-scratchpad.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: Our code (data generation, models, and training) is publicly available at
https://github.com/aryol/inductive-scratchpad.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The appendix provides all the hyper-parameters and implementation details of
our experiments. Further specifications are visible in our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We provide confidence regions for experiments where varying the initialization
or other random parameters made a difference in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: The appendix provides all details regarding model architectures and sizes,
which are all small enough to use only a small number of GPUs. We have also provided
an estimate of the resources needed to reproduce the experiments in the paper. For the
hyper-parameter search, in one case, we used up to 128 A100s for 3 days and around 20
V100s for 15 days.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: The paper only deals with artificial data, and thus is conform in every respect
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA] .

Justification: The paper is about foundational research aiming at better understanding
reasoning capabilities and limitations of current approaches in that respect, with suggestions
on how to address them. It is not tied to any particular application or deployment. Improving
the reasoning capabilities of machine learning approaches could eventually lead to negative
purposes of course, but only in a very generic sense and not in the short term.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We used only artificial data and models that are either already open source or
small enough to not convey any risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
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Justification: The only external asset we used was to test some of our experiments on
widely available versions of GPT models from OpenAI: GPT2, ChatGPT 3.5-turbo-0125
and GPT4-turbo-2024-04-09
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: There are no new assets introduced in the paper, except the source code used to
run the experiments supporting the theory in the paper (so as to be able to reproduce them),
all of which are on artificial data, which are also provided with the source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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