
Rethinking Memory and Communication Costs for
Efficient Data Parallel Training of Large Language

Models

Hanxiao Zhang, Lin Ju, Chan Wu, Jinjing Huang, Youshao Xiao∗
Zhenglei Zhou, Zhiming Fan, Zhaoxin Huan, Siyuan Li, Fanzhuang Meng

Lei Liang, Xiaolu Zhang, Jun Zhou∗

Ant Group, Hangzhou, China
{zhanghanxiao.zhx,julin.jl,wuchan.wu,huangjinjing.hjj,youshao.xys,

zhouzhenglei.zzl,zhiming.fzm,zhaoxin.hzx,lisiyuan.li,mengfanzhuang.mfz,
leywar.liang,yueyin.zxl,jun.zhoujun}@antgroup.com

Abstract

Recently, various strategies for distributed training of large language models
(LLMs) have been proposed. By categorizing them into basic strategies and
composite strategies, we have discovered that existing basic strategies provide
limited options in specific scenarios, leaving considerable room for optimization in
training speed. In this paper, we rethink the impact of memory and communication
costs on the training speed of LLMs when employ data parallelism based tech-
niques. We take the impact of intra- and inter-group communication performance
disparities into account , and then propose a new set of basic strategies named
the Partial Redundancy Optimizer (PaRO). PaRO Data Parallelism (PaRO-DP)
accelerates LLM training through refined model state partitioning and tailored
training procedures. Additionally, PaRO Collective Communications (PaRO-CC)
speeds up collective communication operations by rearranging the topology. We
also propose a guideline for choosing different DP strategies based on simple quan-
titative calculations, which yields minimal ranking errors. Our experiments show
that PaRO improves the training speed of LLMs by up to 266% that of ZeRO-3
as basic DP strategies. Moreover, employing PaRO-CC independently for model
parallel strategies, such as Megatron, can also boost the training speed by 17%.

1 Introduction

Large language models (LLMs) have demonstrated extraordinary capabilities across various domains,
expanding their parameter sizes into the tens or even hundreds of billions [3, 4, 29]. To tackle the
intricate challenge of training such large models, different distributed training strategies have been
proposed.

Data Parallelism (DP) [1, 18, 34] divides the input data into multiple mini-batches, with each GPU
independently processing a mini-batch through the forward and backward passes, followed by
synchronization of the gradients. ZeRO [25] as a DP strategy, suggests partitioning model states
across multiple GPUs. This strategy facilitates a trade-off between memory and communication costs,
offering three distinct partitioning methods, known as ZeRO-1, ZeRO-2 and ZeRO-3.

Model Parallelism (MP) [23, 19], which encompasses Tensor Parallelism (TP) [27, 35, 31, 2] and
Pipeline Parallelism (PP) [13, 10], distributes the model components across multiple GPUs. For
instance, Megatron-LM [27] achieves 1D tensor parallelism by distributing the row or column

∗Corresponding Authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

28191 https://doi.org/10.52202/079017-0884



dimensions of the Transformer layers across multiple GPUs. However, the output of each layer
requires all-reduce operations to aggregate the input, which increases the cost of communication.

We classify these strategies as basic strategies for distributed training. We argue that choosing a
basic strategy essentially involves making a trade-off between memory and communication costs,
based on different model sizes and hardware configurations to achieve a faster training speed.

Beyond the traditional approach of training on the full set of model parameters, Low-Rank Adaptation
(LoRA) [12] is frequently employed in the fine-tuning of large models as a form of Parameter-Efficient
Fine-Tuning (PEFT) [21] methods. Present approaches to speed up PEFT, such as QLORA [7] and
LoRA-FA [38], leverage quantization and flash-attention [6] techniques. However, there is a lack of
discussion on the distributed training strategy for finetuning scenarios including PEFT.

Additionally, mainstream GPU clusters adopt a heterogeneous network architecture that utilizes
NVLink within machines and Remote Direct Memory Access (RDMA) between machines. Similarly,
a set of GPU machines are interconnected via a high-performance switch, whereas a training cluster
comprises multiple sets of GPU machines that need to communicate across switches [9]. In this paper,
we refer to a multi-GPU machine or a switch as a group, applicable to other heterogeneous network
scenarios as well. The constraint of inter-group communication performance being poorer than
intra-group communication performance can slow down the collective communication operations that
are commonly used in DP and MP methods. Moreover, for methods like ZeRO, the entire training
process needs to be redesigned because there is a considerable amount of communication operations
during the forward pass, backward pass, and gradient update stages.

In the analysis of various mainstream basic distributed training strategies, we consider two key
questions:

• Are there more optimal basic strategies that offer additional trade-off options for the DP
training, including suitable strategies for scenarios involving full-parameters training and
partial-parameters training, thereby accelerating the training speed?

• Is there a more optimal collective communication method that can provide more efficient
communication for DP and MP methods, thereby accelerating the training speed?

This paper addresses these questions by exploring potential basic strategies for LLM distributed
training. The main contributions of this paper are as follows:

• We systematically take into account the disparity in intra- and inter-group communication
performance when rethinking the trade-off between memory and communication costs. Our
in-depth analysis covers various scenarios involving both full-parameter training, partial-
parameter training and PEFT.

• We propose the PaRO-DP set of strategies by refined model state partitioning and tailored
training procedures. These strategies provide more options for the trade-off between memory
and communication costs, allowing for training speed improvements of up to 266% over
ZeRO in scenarios where inter-group communication performance is poor. Notably, our
proposal of a tailored training strategy for PEFT constitutes a new attempt within the field
to our knowledge.

• We propose a guideline that can be used to quantitatively select specific PaRO-DP strategies
in various scenarios where the model size and communication performance vary. The
effectiveness of this guideline has been validated via our extensive experiments.

• We propose PaRO Collective Communication (PaRO-CC) tailored for collective communi-
cation operations on clusters with performance disparities between intra- and inter-group
communications. PaRO-CC can be incorporated into most basic training strategies, as
demonstrated by a 17% improvement in a Megatron end-to-end training task. Compared
to the traditional Ring topology, PaRO-CC exhibits a 36.5% improvement in collective
communication efficiency.

Furthermore, we provide the open-source release of our code at https://github.com/
HanxiaoZhang/PaRO/tree/paro.

2

28192https://doi.org/10.52202/079017-0884

https://github.com/HanxiaoZhang/PaRO/tree/paro
https://github.com/HanxiaoZhang/PaRO/tree/paro


2 Related Work

Enhancement of Basic Strategies To enhance communication efficiency when training LLMs
on large-scale GPU clusters, especially with heterogeneous networks, several methods have been
proposed to employ group partitioning techniques to improve the basic strategy. ZeRO++[32] extends
ZeRO-3 by performing a secondary partitioning of parameters while keeping other model states
partitioned across all GPUs. This modification shifts the global all-gather operation in the backward
pass to an intra-group all-gather, reducing the volume of inter-group communication. Additionally,
ZeRO++ compresses model parameters and gradients using quantization to decrease communication
volume. MiCS[39] introduces a group partitioning strategy, whereby the GPU cluster is divided
into smaller and location-based subgroups. The model state is then partitioned within and replicated
across these subgroups. By configuring appropriate subgroup sizes, MiCS can leverage high-quality
intra-group networks and a hierarchical communication strategy to reduce communication volume
between groups. PyTorch’s official Fully Sharded Data Parallel (FSDP) provides a HYBRID_SHARD
(FSDP-hs)[40] strategy that leverages data center locality like MiCS to accelerate training and reduce
inter-group communication. These optimization approaches, which incorporate grouping strategies,
have inspired the direction of our subsequent research efforts.

Composite Strategy Combining multiple basic parallel strategies to integrate their benefits is
a common practice. These combinations include multi-dimensional hybrid parallelism and auto-
parallelism. Multi-dimensional hybrid parallelism refers to the combination of multiple parallel
strategies for computation simultaneously in distributed training. By combining these parallel
strategies judiciously, we can fully exploit the advantages of various resources to improve training
efficiency. This method is widely used in the industry for training large language models, such as
LLama[29], GLM[8], and Megatron-Turing NLG[28].

Auto-parallelism automatically selects a better or optimal parallel strategy for efficient execution
based on the given model and machine resources used. Unlike hybrid parallel methods, automatic
parallelism typically selects different basic strategies at a finer granularity, such as choosing different
basic strategies for different layers or operators of the model. There are two types of auto-parallelism:
semi-automatic and fully automatic. In semi-automatic mode, certain tensor and operator slices need
to be specified, such as Mesh-TensorFlow[26], GShard[17], and GSPMD[36]. In fully automatic
mode, the framework adaptively selects all tensors and operators to determine the best slicing strategy,
including Alpa and Unity [15, 41, 30, 22].

We argue that through dedicated design efforts, new basic strategies can be leveraged across a
spectrum of composite strategies. This paper concentrates on the enhancement of basic strategies and
refrains from comparing them directly with composite strategies.

3 PaRO Design

In the following discussion, we first delve into an analysis of the trade-off between memory and
communication costs in LLM training. Based on this, we propose the PaRO-DP solution offering
refined model state partitioning and a guideline for selecting an appropriate strategy in various
scenarios. Additionally, we introduce PaRO-CC to further optimize the collective communication
operation. Lastly, we discuss the applications of PaRO.

3.1 PaRO-DP

3.1.1 Analysis and Insights

As aforementioned, a substantial performance gap of communication exists between intra- and
inter-group networks, creating a bottleneck that impedes training efficiency. However, in data-parallel
training tasks, by allowing for an acceptable level of memory redundancy, we can reduce the need
for inter-group communication during the training process while fully leveraging high-performance
communication within groups, thus reducing the overall communication cost.

Contrasting with ZeRO, our approach augments the model states with an additional intra-group
partitioning state. For further illustration, we define three partitioning states: No partitioning (N ),
Intra-group partitioning (I) and Global partitioning (G) from coarse-grained to fine-grained, which

3

28193 https://doi.org/10.52202/079017-0884



act on three components of model states: parameter (p), gradient (g), optimizer state (os). More
specifically, I means that model states are partitioned within the group, while each group holds a
complete replica. N means that each GPU holds a replica of model states. G means that each GPU
holds a part of model states, with only one complete model state on the global scale. We introduce
the following notations to aid in the explanation. Note that, for simplification, we substitute network
performance with bandwidth here.

m: The number of GPUs in the group. n: The number of GPUs in total.
ng: The number of groups, ng = n/m. Ψ: The number of parameters.
B: Inter-group bandwidth between GPUs. Ψ′: The number of trainable parameters.
B′: Intra-group bandwidth between GPUs. s: The number of gradient accumulation.
T : The Time cost of training a mini-batch.
Pp+g+os: Partitioning strategy of p, g and os. The value combines N /I/G for each component of

model states. For example, PNIG means the strategy with no partitioning of Parameter,
intra-group partitioning of Gradient and global partitioning of Optimizer State.

In the context of gradient accumulation where one mini-batch step contains s micro-batch steps, we
analyze the communication cost of model states with different partitioning states.

• Parameter partitioning: Parameters are utilized in both forward and backward compu-
tations during each step of the micro-batch. In both global partitioning and intra-group
partitioning states, an all-gather operation is necessary to obtain all parameters of the current
layer before use. While only an intra-group all-gather is required when partitioning model
parameters within a group.

• Gradient partitioning: Gradients are computed during the backward computation and
used in the model update stage. Likewise, in both global partitioning and intra-group
partitioning states, the aggregated gradient of the corresponding local partition is obtained
through the reduce-scatter operation. Only intra-group reduce-scatter is required when
partitioning gradients within a group, which is quicker than the global reduce-scatter used in
global partitioning. Subsequently, each GPU performs local accumulation of the aggregated
gradients in every micro-batch step.

• Optimizer state partitioning: The optimizer state is utilized during the model updating
stage. If the partitioning scope of optimizer states differs from that of gradients or parameters,
communication operations will be needed before and after the optimizer step. For instance,
it requires performing an inter-group reduce-scatter of gradients before the optimizer step
and an inter-group all-gather of updated parameters after the optimizer step, when the
partitioning strategy is PIIG.

The above three levels of partitioning granularity on p, g and os bring up 27 combinations of model-
partitioning strategies, while not all strategies are effective. Employing fine-grained partitioning can
enhance memory efficiency for larger batch sizes, potentially increasing throughput, yet it also incurs
more communication costs, thereby reducing throughput. Therefore, a trade-off between memory
and communication costs should be made when selecting the appropriate model partitioning strategy.

In a mainstream training process using mixed precision and Adam optimizer[16], the memory
consumption for the parameters, gradients and optimizer states are respectively 2Ψ, 2Ψ′, and 12Ψ′

[25]. Note that in PEFT tasks, where Ψ′ ≪ Ψ, the sizes of g and os are relatively small compared to
p. This suggests that PEFT tasks should be treated differently when making the trade-off between
memory and communication costs.

In our findings, we identify a key insight: in all scenarios involving various numbers of trainable
parameters, the partitioning granularity of os should be the same as or finer than that of p and g .
Otherwise, if os is partitioned by a coarser granularity than p or g, more memory will be used without
any reduction in communication cost, compared to when os is partitioned by the same granularity of p
and g. According to this insight, we can eliminate 13 out of the 27 possible combinations mentioned
earlier and Appendix A.1.1 provides more details.

3.1.2 Implementations of PaRO-DP

Following the analysis and resulting insights, we have formulated a strategy set of 14 combinations
that constitute our proposed PaRO-DP. Specifically, DDP, ZeRO-1, ZeRO-2, ZeRO-3/FSDP, and

4

28194https://doi.org/10.52202/079017-0884



Forw
ard

B
ackw

ard
U
pdate

Group-1Group-0
GPU-0 GPU-1 GPU-2 GPU-3

Parameters

Gradients
Optimizer
states

Intra-AllGather

Inter-ReduceScatter

Forward & Release

Intra-AllGather

Backward & Release

Intra-ReduceScatter
& Accumulation

Apply gradient

Inter-AllGather

Intra-AllGather

Forward & Release

Intra-AllGather

Backward & Release

Intra-ReduceScatter
& Accumulation

Apply gradient

M
ic
ro
-b
at
ch
es

(a) Schematic of PIIG

Forw
ard

B
ackw

ard
U
pdate

Inter-ReduceScatter

Forward

Backward

Intra-ReduceScatter
& Accumulation

Apply gradient

Global-AllGather

Forward

Backward

Intra-ReduceScatter
& Accumulation

Apply gradient

M
ic
ro
-b
at
ch
es

Group-1Group-0
GPU-0 GPU-1 GPU-2 GPU-3

Parameters

Gradients

Optimizer
states

(b) Schematic of PNIG

Figure 1: The schematic of PaRO-DP is illustrated within a cluster comprising four GPUs. Each
group in the cluster consists of two GPU devices. In particular, we illustrate the computation and
communication phases of a global step that incorporates gradient accumulation. We detail the
intra- and inter-group communication by using specific prefixes for each collective communication
primitive.

MiCS are equivalent or approximately equivalent to PNNN , PNNG, PNGG, PGGG, PIII in the
PaRO-DP strategy set.

As previously mentioned, when the model states are re-partitioned in different ways, the procedures
for Forward, Backward, and Gradient Accumulation and Apply Gradient during the training process
require redesigning. Below, we provide a detailed explanation of their training processes using PIIG

and PNIG as examples. To simplify the examples, we use four GPUs and divide them into two groups
to demonstrate the training process. These approaches can be easily scaled to larger GPU clusters
and Appendix A.1 provides other solutions in detail. It includes explanations of various collective
communication operations used in the diagrams.

Figure 1(a) illustrates the schematic of PIIG, where the model parameters and gradients are intra-
group partitioned, while the optimizer states are globally partitioned. Therefore, a complete replica
of model parameters and gradients are preserved within each group. The memory cost of PIIG is
less than that of PNNG (ZeRO-1), greater than PGGG (ZeRO-3), and in most scenarios less than
PNGG (ZeRO-2), depending on the grouping situation. In the Forward and Backward stages, each
GPU gathers a complete replica of model parameters through intra-group all-gather operations. After
the backward computation, each GPU aggregates gradients from other GPUs through intra-group
reduce-scatter operations for local gradient synchronization. These gradients are temporarily stored
in each GPU group through gradient accumulation. Once the gradients of the last micro-batch are
accumulated, each GPU performs inter-group reduce-scatter operations to achieve global gradient
synchronization. Each GPU utilizes the gradient partition to update the optimizer state maintained by
itself and update model parameters. Finally, the updated model parameters of each GPU are obtained
from other groups through inter-group all-gather operations. Note that compared to ZeRO-3, PIIG

employs intra-group collective communication in place of global collective communication in the
Forward and Backward stages of each micro-batch step. This makes PIIG faster than ZeRO-3 in our
context, at the cost of additional but limited memory of parameters and gradients.

Figure 1(b) illustrates the schematic of PNIG, where the parameters of the model are not partitioned,
while the gradients are intra-group partitioned, and the optimizer states are globally partitioned. The
memory cost of PNIG is less than that of PNNG (ZeRO-1), greater than PNGG (ZeRO-2). Different

5

28195 https://doi.org/10.52202/079017-0884



from PIIG, each GPU retains complete model parameters in PNIG. Therefore, in the Forward and
Backward stages, each GPU can directly perform the computation without collecting and releasing
model parameters. The subsequent four-step computation process of PNIG is consistent with that
of PIIG. Finally, each GPU collects updated parameters via PaRO-CC all-gather operations. Note
that compared to ZeRO-2, PNIG employs intra-group collective communication in place of global
collective communication during the gradient accumulation of each micro-batch step. This makes
PNIG faster than ZeRO-2 in our context, at the cost of additional but limited memory redundancy of
gradients.

Moreover, PaRO-DP strategies show efficiency advantages over both ZeRO++ and
FSDP_HYBRID_SHARD_ZERO2 (FSDP-hsz) approaches. Notably, under equal peak memory
conditions, the global all-gather operations in the Forward stage of ZeRO++ are less efficient than
PIGG’s intra-group all-gather. Similarly, FSDP-hsz incurs additional communication costs due to the
all-gather operations of parameters in the Forward stage compared to PNII .

3.1.3 The Guideline for PaRO-DP Strategy Selection

While we propose a set of effective strategies in PaRO-DP, there remains a gap in applying a suitable
strategy from our PaRO-DP across diverse training scenarios with different Ψ and Ψ′. Therefore,
we present a guideline based on quantitative calculations. We are dedicated to identifying the
optimal partitioning states (Px) that minimize the total time cost (T ) of mini-batch training in a given
scenario, as the throughput is inversely proportional to T . The total time cost T contains the time of
communication tcomm. and the time of compute tcomp., and toverlap denoting the overlapping time
of communication and computation. It could be formalized as a optimization problem as illustrated
in Formula 1.

min
Pp+g+os

tcomm. + tcomp. − toverlap ⇒ min max
Pp+g+os

{tcomm., tcomp.} (1)

Assuming that communication and computation can be fully overlapped, T can be approximately
regarded as the maximum of tcomm. and tcomp.. Given a specific batch size, tcomp. can be straight-
forwardly determined through a single forward computation. But the time of communication is more
complex as shown in Formula 2.

tcomm. = (tparam + tgradient) ∗ s+ tupdate (2)

For each micro-batch step, there is a time cost tparam of all-gather for parameters in both the forward
and backward passes and a time cost tgradient of reduce-scatter for gradients in the backward pass.
For the last micro-batch of a mini-batch, there is a time cost, tupdate, for reduce-scatter/all-reduce of
gradients and all-gather for the updated parameters.

Therefore, the guideline implies that finding the partitioning states (Pp+g+os) in which minimizing
T , as defined by Formula 1, is the recommended strategy for the given scenario. The process of
calculation and selection is as follows, with further details in Appendix A.3:

1. Input: n, m, B, B′, Ψ, Ψ′, s and tcomp.

2. Calculate the T values for various strategies.

3. Select the strategy with the smallest T value.

3.2 PaRO-CC

Distributed training on multiple groups of GPUs using existing methods often requires global
collective communication operations. For example, ZeRO-3 uses a global all-gather to obtain
parameters of the current layer and a global reduce-scatter to synchronize gradients. Megatron-TP
uses a global all-reduce to synchronize the computation results of a split layer. Although PaRO-DP
decreases the frequency of global communication operations by redesigning the training process,
some operations remain necessary. For example, PIGG needs a global reduce-scatter to synchronize
the gradients obtained from the backward pass of each layer.

In the Ring topology, a collective communication divides a collective communication into n− 1 steps.
In each step, each GPU is responsible for sending the currently relevant data block to the next GPU in

6

28196https://doi.org/10.52202/079017-0884



Node-0

Rank-0 Rank-1

C0 C1

C0 C1 C2 C0 C1 C3

C0 C1 C2 C0 C1 C3C2C3
Intra-node all-gather

Inter-node all-gather
Rank-0 Rank-1

Rank-0 Rank-1
Node-1

C2 C3Rank-2 Rank-3

Node-0

Node-0

Node-11 Step 1

2 Step 2

Node-1

1

2

Figure 2: The communication stages of PaRO-CC. C* denotes a data chunk. Only the procedure of
all-gather operation on Node 0 is shown for brevity. In step 1, inter- and intra-node all-gather are
executed in parallel. In step 2, only inter-node all-gather is executed.

the ring. Clearly, in this process, each step includes both intra-group and inter-group communication,
leading to the speed bottleneck of each step being on the inter-group communication.

Therefore, we introduce PaRO-CC to accelerate global collective communication operations by
organizing GPUs into groups based on the network topology and rearranging the communication
topology accordingly. Groups are configured to form an outer ring, with each group further organizing
an inner ring. The operation of PaRO-CC is segmented into intra-group and inter-group parts, both of
which can utilize the Ring topology. Consequently, within a single step, communication is confined
to either intra-group or inter-group interactions, avoiding the need to address both simultaneously.
It is straightforward to ascertain that for the all-gather operation, execution of the inter-group part
should precede that of the intra-group part. Conversely, in the case of the reduce-scatter operation,
the intra-group part should be executed before the inter-group part. Additionally, during the all-gather
operation, the two parts of communication can be executed concurrently, assuming that suitable
blocking points are established to manage the flow of data. Figure 2 illustrates an example of
performing a global all-gather operation using PaRO-CC. More details about PaRO-CC can be found
in Appendix A.2.

3.3 Applications of PaRO

PaRO can be employed independently as a basic strategy, or be used together with others in a com-
posite strategy. For example, PaRO-DP can be an alternative method to data parallelism in hybrid
parallelism, e.g. 4D parallelism, when training large LLMs in heterogeneous networks [29]. It can be
orthogonally integrated with Sequence Parallelism [11, 14, 20]. At the same time, PaRO-CC can be
applied in various distributed training strategies that require global collective communication opera-
tions, to accelerate the training. Furthermore, we argue that the comprehensive PaRO-DP strategy
set provides more flexibility to complicated machine learning systems, such as distributed RLHF
systems [24, 33, 37], where each sub-model has different memory or communication requirements.

4 Experiments and Analysis

4.1 Experiment Environments

Our experimental cluster consists of up to 16 DGX nodes as 16 groups, each containing 8 Ampere
A100 SXM4 80GB GPUs. The GPUs in each node are interconnected via NVLink/NVSwitch with
a bidirectional bandwidth of up to 2400Gbps. These nodes are connected through RDMA over
Converged Ethernet (RoCE), which can provide 100Gbps of inter-node bandwidth. The software
environment includes CUDA-11.7, DeepSpeed-v0.10.0, PyTorch-v1.9.2, Megatron-LM-v2.6 and
NCCL-v2.14.3.

4.2 Experiment Settings

To evaluate the performance of PaRO-DP, we compared them with current SOTA methods, including
ZeRO, MiCS, ZeRO++, and FSDP-hsz, across different model sizes (denoted as Ψ, such as 7B and
65B) and the number of trainable parameters (Ψ′, categorized as full-parameters, partial-parameters,
and PEFT). For each scenario, we select the recommended PaRO-DP strategies based on the through-
put indicator or TPS indicator log(1/T ), as outlined by the guideline in Section 3.1.3. The strategies
of PNN∗ (ZeRO-1 as PNNG, PNNI and DDP as PNNN ) were not considered due to its inability

7

28197 https://doi.org/10.52202/079017-0884



-4.0

-2.6

-1.2

0.2

1.6

3.0

0.0

3.6

7.2

10.8

14.4

18.0

ZeRO-3 IGG IIG MiCS ZeRO-2 NIG NII

TP
S 

In
di

ca
to

r

C
om
m
un
ic
at
io
n
V
ol
um
e
(T
B
)

0.0

14.0

28.0

42.0

56.0

70.0

1.0

1.8

2.6

3.4

4.2

5.0

ZeR
O-3

IG
G IIG

MIC
S

ZeR
O-2

NIG NII

ZeR
O++

FSDP-hz

Si
ng

le
-G

PU
M

em
or

y
(G

B
)

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

ec
)

Throughput TPS Indicator Peak Memory

X X

(a) LLaMA 7B when Ψ′ = Ψ

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

3.6

7.2

10.8

14.4

18.0

ZeRO-3 IGG IIG MiCS ZeRO-2 NIG NII

TP
S 

In
di

ca
to

r

C
om
m
un
ic
at
io
n
V
ol
um
e
(T
B
)

0.0

20.0

40.0

60.0

80.0

100.0

0.0

0.1

0.2

0.3

0.4

0.5

Ze
RO
-3 IG

G IIG

Ze
RO
++

MI
CS

Ze
RO
-2

FS
DP
-hz

Si
ng

le
-G

PU
M

em
or

y
(G

B
)

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

ec
)

Throughput TPS Indicator Peak Memory

XXX XXX XXXX

(b) LLaMA 65B when Ψ′ = Ψ

-3.5

-0.7

2.1

4.9

7.7

10.5

0.0

3.6

7.2

10.8

14.4

18.0

ZeRO-3 IGG IIG MiCS ZeRO-2 NIG NII

TP
S 

In
di

ca
to

r

C
om
m
un
ic
at
io
n
V
ol
um
e
(T
B
)

0.0

7.0

14.0

21.0

28.0

35.0

0.0

3.6

7.2

10.8

14.4

18.0

ZeR
O-3

IG
G IIG

MiC
S

ZeR
O-2

NIG NII

ZeR
O++

FSDP-hz

Si
ng

le
-G

PU
M

em
or

y
(G

B
)

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

ec
)

Throughput TPS Indicator Peak Memory

X X

(c) LLaMA 7B when Ψ′ = Ψ/16

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

3.6

7.2

10.8

14.4

18.0

ZeRO-3 IGG IIG MiCS ZeRO-2 NIG NII

TP
S 

In
di

ca
to

r

C
om
m
un
ic
at
io
n
V
ol
um
e
(T
B
)

0.0

14.0

28.0

42.0

56.0

70.0

0.0

0.5

1.0

1.5

2.0

2.5

ZeRO-3 MiCS IIG ZeRO++ ZeRO-2 FSDP-hz

Si
ng

le
-G

PU
M

em
or

y
(G

B
)

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

ec
)

Throughput TPS Indicator Peak Memory

XXXXXXX

(d) LLaMA 65B when Ψ′ = Ψ/16

Figure 3: The throughput and memory usage during LLaMA training with varying trainable parame-
ters (Ψ′). The blue dashed line represents the trend of the throughput indicator, represented by the
TPS Indicator using log(1/T ), calculated based on the guideline. The cross indicates OOM.

-6.0

-4.6

-3.2

-1.8

-0.4

1.0

0.0

3.6

7.2

10.8

14.4

18.0

ZeRO-3 IGG IIG MiCS ZeRO-2 NIG NII

TP
S 

In
di

ca
to

r

C
om
m
un
ic
at
io
n
V
ol
um
e
(T
B
)

0.0

14.0

28.0

42.0

56.0

70.0

0.0

0.4

0.8

1.2

1.6

2.0

ZeRO-3 ING ZeRO++ MICS ZeRO-2 FSDP-hz

Si
ng

le
-G

PU
M

em
or

y
(G

B
)

Th
ro

ug
hp

ut
 (S

am
pl

es
/s

ec
)

Throughput TPS Indicator Peak Memory

XXX XXX XXXX

Figure 4: Throughput and Memory Usage
of training LLaMA-65B in the PEFT(Ψ′ =
3Ψ/1000) scenario.

100.0

140.0

180.0

220.0

260.0

300.0

16 32 64 96 128

Ti
m
e
(m
s)

Number of GPUs

Ring PaRO-CC

Figure 5: Collective Communication Time
(millisecond/ms) with the increasing number
of GPUs.

to run the large-scale model in our experiments. We use LLaMA-7B and LLaMA-65B [29] to
evaluate the throughput and acceleration performance across 32 GPUs within 4 DGX nodes. For
the LLaMA-65B model, we activate checkpointing to ensure successful training. The C4 corpus in
RedPajama[5] was used as the training data. During training, we set the sequence length to 512, and
the effective total batch size to 1280 (with 10 as gradient accumulation steps) in a mixed precision
training manner.

4.3 Efficiency of PaRO-DP

Incorporating group and refined partitioning, the PaRO-DP strategies adeptly distribute the volume of
inter- and intra-group communication to minimize overall communication costs. This results in a
significant boost by up to 266% in training speed, accomplished with acceptable memory increment.
The following section will describe the experimental results from various scenarios.

Full-parameters training: In this scenario (Ψ′ = Ψ), Figure 3(a) shows that the guideline recom-
mends strategies such as PNII , PIIG and PIII (MiCS), which perform better throughput than others

8

28198https://doi.org/10.52202/079017-0884



35.0

70.0

140.0

280.0

560.0

16 32 64 128

Th
ro
ug
hp
ut
(S
am
pl
es
/s
ec
)

Number of GPUs

ZeRO-2 ZeRO-3 NIG
IGG IIG

Figure 6: The throughput (samples/sec) when
increasing the scale of GPUs.

6

7

8

9

10

11

12

0 300 600 900

Lo
ss

Step

ZeRO NIG IGG IIG

Figure 7: Training convergence of PaRO against
ZeRO using LLaMA-7B.

in LLaMA-7B. The throughput of PIIG is improved by 128% than ZeRO-3, and the throughput of
PNII is improved by 67% than ZeRO-2. While in LLaMA-65B, Figure 3(b) shows the throughput of
PIIG is improved by 86% than ZeRO-3. Since LLaMA-65B requires more fine-grained partitioning,
only ZeRO-3, ZeRO++, PIGG and PIIG can perform training, while other solutions suffer from
out-of-memory (OOM) issues.

Partial-parameters training: In experiments of partial-parameters training (Ψ′ = Ψ/16), we also
reached a consistent conclusion. As shown in Figure 3(c), in LLaMA-7B, the throughput of PNIG

and PNII is increased by 15% and 21% compared to ZeRO-2. Figure 3(d) shows the throughput of
PIII (MiCS) and PIIG is improved by 264% and 266% compared with ZeRO-3 in LLaMA-65B,
and PIIG uses less memory than MiCS.

PEFT: In PEFT scenarios (Ψ′ = 3Ψ/1000) with LLaMA-65B shown as Figure 4, the throughput of
PING is improved by 44% compared to ZeRO-3.

Accuracy of the Guideline: The selection of high-throughput strategies across different scenarios
is determined by calculations based on the guideline. It chooses the strategy that owns a higher
throughput indicator, log(1/T ), compared to the baseline. The correlation between the guideline and
actual performance in these scenarios is apparent, confirming that the throughput indicator reliably
reflects the real world.

4.4 Efficiency of PaRO-CC

In the section, we performed experiments using up to 16 DGX nodes with a communication volume
of 1GB. We measured the communication time of the all-gather operation with the traditional
Ring (baseline) and PaRO-CC, shown in Figure 5. Compared with the traditional Ring, there is
a pronounced performance enhancement by 25.2%-39.7% with different cluster scales (from 16
to 128 GPUs). An additional experiment with 4 DGX nodes reveals that incorporating PaRO-CC
optimization into end-to-end training tasks using Megatron-TP results in a 17% increase in throughput,
from 129 to 152 samples/second. Therefore, PaRO-CC can significantly improve communication
efficiency by rearranging the communication topology.

4.5 Near-linear Scalability

To investigate the scalability of PaRO, we analyze the throughput of PaRO and ZeRO under varying
counts of GPUs, as depicted in Figure 6. The experiments utilized the LLaMA-7B model. Using
identical GPU resource configurations, PaRO consistently exceeded the speedup ratio of both ZeRO-2
and ZeRO-3 baselines. Notably, the speedup ratio for PIIG and PNIG from 16 to 128 GPUs are 0.92
and 0.84 respectively. These values are closer to 1, indicating near-linear scalability, compared to the
speedup ratio of 0.63 for both ZeRO-2 and ZeRO-3.

4.6 Model Convergence

In this section, we demonstrate the consistent convergence of PaRO compared to ZeRO, which
validates the correctness of our system. We used LLaMA-7B and C4 corpus in RedPajama to evaluate

9

28199 https://doi.org/10.52202/079017-0884



the convergence of PaRO with 16 GPUs. During training, we set the sequence length to 128, the
effective batch size to 1024, and the number of gradient accumulation steps to 8. The loss validation
process aims not to produce the same loss as ZeRO but to ensure identical convergence behaviours.
As shown in Figure 7, PaRO provides the same convergence as ZeRO. The vertical axis represents
the training step, but the duration per step varies with different strategies, affecting the training
throughput.

5 Conclusion

In this paper, we dive into the trade-off between memory consumption and communication costs across
various training scenarios in data parallelism training. Considering the performance gap between
intra- and inter-group networks, we introduce PaRO, a refined and flexible partition strategy set. It
contains the basic strategy, PaRO-DP, along with an effective collective communication topology,
PaRO-CC. In heterogeneous networks, PaRO’s advantages are more prominently highlighted due
to its effective adaption to the limited inter-group network, which outperforms the ZeRO-3 by up
to 266%. Furthermore, we conducted a comprehensive quantitative analysis of this trade-off and
established a guideline to assist in selecting the suitable distributed training strategy in different
scenarios.

6 Limitations and Societal Impacts

Limitations. Our method primarily focuses on data parallelism in training large language models.
To train extremely large models, it is recommended to integrate our PaRO strategy with other
parallelism techniques, such as tensor and pipeline parallelism, though this may reduce the ease of
use. Furthermore, performance improvements of our method are largely due to the efficient utilization
of heterogeneous networks, limiting its applicability in homogeneous networks.

Societal Impacts. By detailing our methodology and releasing our code, we aim to advance both
research and industrial practices in the field of large language model training. By improving training
efficiency, PaRO has the potential to reduce the environmental impact of training LLMs, which often
require dozens to thousands of GPU devices. Additionally, our PaRO strategy is the first optimized
distributed strategy for fine-tuning scenarios, especially PEFT scenarios. This enhances our social
impact by benefiting large companies and democratizing the training of LLMs using a limited number
of GPUs.

Acknowledgements

We thank the anonymous reviewers for their useful comments and suggestions, and we also thank
Shangchun Zhao for his insightful advice.

10

28200https://doi.org/10.52202/079017-0884



References
[1] Gibiansky Andrew. Bringing hpc techniques to deep learning, 2017. URL https://andrew.gibiansky.

com/blog/machine-learning/baidu-allreduce.

[2] Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. Maximizing parallelism in distributed training
for huge neural networks. CoRR, abs/2105.14450, 2021. URL https://arxiv.org/abs/2105.14450.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, et al. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, et al., editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, et al. Palm:
Scaling language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023. URL http:
//jmlr.org/papers/v24/22-1144.html.

[5] Together Computer. Redpajama: an open dataset for training large language models, October 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

[6] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mohamed, et al.,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In Alice Oh, Tristan Naumann, et al., editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/
paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html.

[8] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, et al. GLM: general language model
pretraining with autoregressive blank infilling. In Smaranda Muresan, Preslav Nakov, and Aline Villav-
icencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 320–335.
Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.26. URL
https://doi.org/10.18653/v1/2022.acl-long.26.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[10] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, et al. DAPPLE: a pipelined data parallel
approach for training large models. In Jaejin Lee and Erez Petrank, editors, PPoPP ’21: 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Virtual Event, Republic of
Korea, February 27- March 3, 2021, pages 431–445. ACM, 2021. doi: 10.1145/3437801.3441593. URL
https://doi.org/10.1145/3437801.3441593.

[11] Diandian Gu, Peng Sun, Qinghao Hu, Ting Huang, Xun Chen, Yingtong Xiong, Guoteng Wang, Qiaoling
Chen, Shangchun Zhao, Jiarui Fang, et al. Loongtrain: Efficient training of long-sequence llms with
head-context parallelism. arXiv preprint arXiv:2406.18485, 2024.

[12] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, et al. Lora: Low-rank adaptation
of large language models. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYf9.

[13] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html.

[14] Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song, et al.
Deepspeed ulysses: System optimizations for enabling training of extreme long sequence transformer
models. arXiv preprint arXiv:2309.14509, 2023.

11

28201 https://doi.org/10.52202/079017-0884

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce
https://arxiv.org/abs/2105.14450
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://github.com/togethercomputer/RedPajama-Data
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.1145/3437801.3441593
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html


[15] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep
neural networks. In Ameet Talwalkar, Virginia Smith, and Matei Zaharia, editors, Proceed-
ings of the SysML Conference 2019 (SysML 2019), Stanford, CA, USA, March 31 - April 2,
2019. mlsys.org, 2019. URL https://proceedings.mlsys.org/paper_files/paper/2019/hash/
b422680f3db0986ddd7f8f126baaf0fa-Abstract.html.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.
6980.

[17] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, et al. Gshard: Scaling
giant models with conditional computation and automatic sharding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=qrwe7XHTmYb.

[18] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, et al. Pytorch distributed:
Experiences on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, 2020. doi:
10.14778/3415478.3415530. URL http://www.vldb.org/pvldb/vol13/p3005-li.pdf.

[19] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, et al. Colossal-ai: A unified deep
learning system for large-scale parallel training. In Proceedings of the 52nd International Conference on
Parallel Processing, ICPP 2023, Salt Lake City, UT, USA, August 7-10, 2023, pages 766–775. ACM, 2023.
doi: 10.1145/3605573.3605613. URL https://doi.org/10.1145/3605573.3605613.

[20] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-infinite
context. arXiv preprint arXiv:2310.01889, 2023.

[21] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, et al. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning. In Sanmi Koyejo, S. Mo-
hamed, et al., editors, Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
0cde695b83bd186c1fd456302888454c-Abstract-Conference.html.

[22] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, et al. Galvatron: Efficient transformer
training over multiple gpus using automatic parallelism. Proc. VLDB Endow., 16(3):470–479, 2022. doi:
10.14778/3570690.3570697. URL https://www.vldb.org/pvldb/vol16/p470-miao.pdf.

[23] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, et al. Efficient
large-scale language model training on GPU clusters using megatron-lm. In Bronis R. de Supinski, Mary W.
Hall, and Todd Gamblin, editors, International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021, page 58. ACM, 2021.
doi: 10.1145/3458817.3476209. URL https://doi.org/10.1145/3458817.3476209.

[24] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, et al. Training
language models to follow instructions with human feedback. In Sanmi Koyejo, S. Mohamed,
et al., editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

[25] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations toward
training trillion parameter models. In Christine Cuicchi, Irene Qualters, and William T. Kramer, editors,
Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, page 20. IEEE/ACM,
2020. doi: 10.1109/SC41405.2020.00024. URL https://doi.org/10.1109/SC41405.2020.00024.

[26] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, et al. Mesh-
tensorflow: Deep learning for supercomputers. In Samy Bengio, Hanna M. Wallach, et al.,
editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 10435–10444, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html.

[27] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. CoRR,
abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

12

28202https://doi.org/10.52202/079017-0884

https://proceedings.mlsys.org/paper_files/paper/2019/hash/b422680f3db0986ddd7f8f126baaf0fa-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2019/hash/b422680f3db0986ddd7f8f126baaf0fa-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=qrwe7XHTmYb
http://www.vldb.org/pvldb/vol13/p3005-li.pdf
https://doi.org/10.1145/3605573.3605613
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://www.vldb.org/pvldb/vol16/p470-miao.pdf
https://doi.org/10.1145/3458817.3476209
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1109/SC41405.2020.00024
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
http://arxiv.org/abs/1909.08053


[28] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, et al. Using
deepspeed and megatron to train megatron-turing NLG 530b, A large-scale generative language model.
CoRR, abs/2201.11990, 2022. URL https://arxiv.org/abs/2201.11990.

[29] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, et al. Llama: Open
and efficient foundation language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.
13971. URL https://doi.org/10.48550/arXiv.2302.13971.

[30] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, et al. Unity: Accelerating DNN training
through joint optimization of algebraic transformations and parallelization. In Marcos K. Aguilera and
Hakim Weatherspoon, editors, 16th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 267–284. USENIX Association, 2022. URL
https://www.usenix.org/conference/osdi22/presentation/unger.

[31] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. Tesseract: Parallelize the tensor parallelism
efficiently. In Proceedings of the 51st International Conference on Parallel Processing, ICPP 2022,
Bordeaux, France, 29 August 2022 - 1 September 2022, pages 12:1–12:11. ACM, 2022. doi: 10.1145/
3545008.3545087. URL https://doi.org/10.1145/3545008.3545087.

[32] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, et al. Zero++:
Extremely efficient collective communication for giant model training, 2023. URL https://doi.org/
10.48550/arXiv.2306.10209.

[33] Youshao Xiao, Weichang Wu, Zhenglei Zhou, Fagui Mao, Shangchun Zhao, et al. An adaptive placement
and parallelism framework for accelerating RLHF training. CoRR, abs/2312.11819, 2023. doi: 10.48550/
ARXIV.2312.11819. URL https://doi.org/10.48550/arXiv.2312.11819.

[34] Youshao Xiao, Shangchun Zhao, Zhenglei Zhou, Zhaoxin Huan, Lin Ju, et al. G-meta: Distributed meta
learning in GPU clusters for large-scale recommender systems. In Ingo Frommholz, Frank Hopfgartner,
et al., editors, Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, pages 4365–4369. ACM,
2023. doi: 10.1145/3583780.3615208. URL https://doi.org/10.1145/3583780.3615208.

[35] Qifan Xu and Yang You. An efficient 2d method for training super-large deep learning models. In
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2023, St. Petersburg, FL,
USA, May 15-19, 2023, pages 222–232. IEEE, 2023. doi: 10.1109/IPDPS54959.2023.00031. URL
https://doi.org/10.1109/IPDPS54959.2023.00031.

[36] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake A. Hechtman, Yanping Huang, et al. GSPMD:
general and scalable parallelization for ML computation graphs. CoRR, abs/2105.04663, 2021. URL
https://arxiv.org/abs/2105.04663.

[37] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, et al.
Deepspeed-chat: Easy, fast and affordable RLHF training of chatgpt-like models at all scales. CoRR,
abs/2308.01320, 2023. doi: 10.48550/ARXIV.2308.01320. URL https://doi.org/10.48550/arXiv.
2308.01320.

[38] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank
adaptation for large language models fine-tuning. CoRR, abs/2308.03303, 2023. doi: 10.48550/ARXIV.
2308.03303. URL https://doi.org/10.48550/arXiv.2308.03303.

[39] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, et al. Mics: Near-linear scaling for
training gigantic model on public cloud. Proc. VLDB Endow., 16(1):37–50, 2022. doi: 10.14778/3561261.
3561265. URL https://www.vldb.org/pvldb/vol16/p37-zhang.pdf.

[40] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, et al. Pytorch FSDP: experiences
on scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848–3860, 2023. doi: 10.14778/
3611540.3611569. URL https://www.vldb.org/pvldb/vol16/p3848-huang.pdf.

[41] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, et al. Alpa: Automating
inter- and intra-operator parallelism for distributed deep learning. In Marcos K. Aguilera and Hakim
Weatherspoon, editors, 16th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 559–578. USENIX Association, 2022. URL
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin.

13

28203 https://doi.org/10.52202/079017-0884

https://arxiv.org/abs/2201.11990
https://doi.org/10.48550/arXiv.2302.13971
https://www.usenix.org/conference/osdi22/presentation/unger
https://doi.org/10.1145/3545008.3545087
https://doi.org/10.48550/arXiv.2306.10209
https://doi.org/10.48550/arXiv.2306.10209
https://doi.org/10.48550/arXiv.2312.11819
https://doi.org/10.1145/3583780.3615208
https://doi.org/10.1109/IPDPS54959.2023.00031
https://arxiv.org/abs/2105.04663
https://doi.org/10.48550/arXiv.2308.01320
https://doi.org/10.48550/arXiv.2308.01320
https://doi.org/10.48550/arXiv.2308.03303
https://www.vldb.org/pvldb/vol16/p37-zhang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin


A Appendix

A.1 Implementation of PaRO-DP

This section provides an overview of the implementation strategies within the PaRO-DP. It details the
partitioning of model states and elucidates the collective communications used during data-parallel
training. The following subsections evaluate partitioning effectiveness and proceed with in-depth
descriptions and pseudo-codes for each PaRO-DP strategy.

A.1.1 Effective Strategies of Partitioning

Table 1 presents all the combinations of model states partitioning Pp+g+os, with ticks indicating
those combinations that constitute effective solutions. The cross mark indicates the 13 strategies that
have been eliminated by the insight in Section 3.1.1.

Table 1: The 27 combinations of model states partitioning.

Strategy of Partition (Pp+g+os) Effective

NNN(DDP) ✓
NNI ✓
NNG(ZeRO-1) ✓
NIN ✗
NII ✓
NIG ✓
NGN ✗
NGI ✗
NGG(ZeRO-2) ✓
INN ✗
INI ✓
ING ✓
IIN ✗
III(MiCS) ✓

Strategy of Partition (Pp+g+os) Effective

IIG ✓
IGN ✗
IGI ✗
IGG ✓
GNN ✗
GNI ✗
GNG ✓
GIN ✗
GII ✗
GIG ✓
GGN ✗
GGI ✗
GGG(ZeRO-3) ✓

A.1.2 Collective Communication Used in PaRO-DP

We divide the data evenly into n (the number of all GPUs) blocks, and the blocks held by GPU with
different partitioning are shown as Table 2. There are some additional notations:

i: The index of the current group in all groups, 0 ≤ i < ng

j: The index of the current GPU in the group, 0 ≤ j < m

GPUi,j : The j-th GPU in the i-th group

blocks: The array with the length is n of all blocks

Table 2: The partitioned blocks of data held by GPU
Partitioning Strategy Data blocks held by GPUi,j

No partitioning (N ) blocks[0 : n]
Intra-group partitioning (I) blocks[j × ng : (j + 1)× ng]

Global partitioning (G) blocks[j × ng + i]

The following Table 3 introduces the collective communication operations used for synchronization
between blocks of different partitioning.

14

28204https://doi.org/10.52202/079017-0884



Table 3: The Collective Communication used in PaRO-DP from the perspective of a single
GPU(GPUi0,j0 ). The values (N/I/G) of Inputs/Outputs blocks refer to Tabel 2.

Collective Communication Input
blocks

Output
blocks

Participation ranks
(GPUi,j) Description

global_all_gather G N
{0 ≤ i < g,
0 ≤ j < m} optimized by PaRO-CC

global_reduce_scatter N G
{0 ≤ i < g,
0 ≤ j < m} optimized by PaRO-CC

global_all_reduce N N
{0 ≤ i < g,
0 ≤ j < m} -

intra_group_all_gather I N {i = i0, 0 ≤ j < m} -
intra_group_reduce_scatter N I {i = i0, 0 ≤ j < m} -

inter_group_all_gather G I {0 ≤ i < g, j = j0}
all-gather with j0-th GPUs
from different groups.

inter_group_reduce_scatter I G {0 ≤ i < g, j = j0}
reduce-scatter with j0-th
GPUs from different
groups.

inter_group_all_reduce I I {0 ≤ i < g, j = j0}
all-reduce with j0-th GPUs
from different groups.

A.1.3 Pseudo-code of PaRO-DP

We illustrate the PaRO-DP algorithms in this section. Each algorithm corresponds to a specific
PaRO-DP strategy.

Algorithm 1: PIIG Algorithm
Input: model, data
Output: model

1 for mini-batch in epoch do
2 for micro-batch in mini-batch do
3 for layer in model.layers() do
4 intra_group_all_gather(layer.parameters);
5 layer.forward();
6 for layer in model.reverse_layers() do
7 intra_group_all_gather(layer.parameters);
8 layer.backward();
9 intra_group_reduce_scatter(layer.gradients);

10 layer.gradients.accumulate();

11 inter_group_reduce_scatter(model.gradients);
12 optimizer.step(); // Apply gradient
13 inter_group_all_gather(model.parameters);

15

28205 https://doi.org/10.52202/079017-0884



Algorithm 2: PIGG Algorithm
Input: model, data
Output: model

1 for mini-batch in epoch do
2 for micro-batch in mini-batch do
3 for layer in model.layers() do
4 intra_group_all_gather(layer.parameters);
5 layer.forward();
6 for layer in model.reverse_layers() do
7 intra_group_all_gather(layer.parameters);
8 layer.backward();
9 global_reduce_scatter(layer.gradients);

10 layer.gradients.accumulate();

11 optimizer.step(); // Apply gradient
12 inter_group_all_gather(model.parameters);

Algorithm 3: PNIG Algorithm
Input: model, data
Output: model

1 for mini-batch in epoch do
2 for micro-batch in mini-batch do
3 for layer in model.layers() do
4 layer.forward();
5 for layer in model.reverse_layers() do
6 layer.backward();
7 intra_group_reduce_scatter(layer.gradients);
8 layer.gradients.accumulate();

9 inter_group_reduce_scatter(model.gradients);
10 optimizer.step(); // Apply gradient
11 global_all_gather(model.parameters);

Algorithm 4: PNII Algorithm
Input: model, data
Output: model

1 for mini-batch in epoch do
2 for micro-batch in mini-batch do
3 for layer in model.layers() do
4 layer.forward();
5 for layer in model.reverse_layers() do
6 layer.backward();
7 intra_group_reduce_scatter(layer.gradients);
8 layer.gradients.accumulate();

9 inter_group_all_reduce(model.gradients);
10 optimizer.step(); // Apply gradient
11 intra_group_all_gather(model.parameters);

16

28206https://doi.org/10.52202/079017-0884



Algorithm 5: PING Algorithm
Input: model, data
Output: model

1 for mini-batch in epoch do
2 for micro-batch in mini-batch do
3 for layer in model.layers() do
4 intra_group_all_gather(layer.parameters);
5 layer.forward();
6 for layer in model.reverse_layers() do
7 intra_group_all_gather(layer.parameters);
8 layer.backward();
9 layer.gradients.accumulate();

10 global_reduce_scatter(model.gradients);
11 optimizer.step(); // Apply gradient
12 inter_group_all_gather(model.parameters);

The implementations of other strategies of PaRO-DP can refer to the pseudo-code provided for the
above-mentioned strategies, with the differences being in the details of how partitions are handled,
which will not be reiterated here.

A.2 Detail of PaRO-CC

Algorithm 6 and Algorithm 7 are pseudocodes for PaRO-CC All-Gather and Reduce-Scatter. Similar
to traditional methods, in networks without NVIDIA SHARP configured, an all-reduce operation
consists of one Reduce-Scatter operation followed by one All-Gather operation.

Algorithm 6: PaRO-CC All-Gather Algorithm
Input: Number of groups ng; Number of gpus in each group m; Current

GPU index: i, j ranges from 0, 0 to ng − 1,m− 1
1 Function inter_group_part:
2 for s=0 to ng − 2 do
3 do in parallel
4 send block[(ng − s+ i) ∗m%ng + j] to GPU[(i+ 1)%ng, j];
5 receive block[(ng − s+ i− 1) ∗m%ng + j] from

GPU[(i− 1 + ng)%ng, j];
6 mark block[(ng − s+ i− 1) ∗m%ng + j] as ready;

7 Function intra_group_part:
8 do
9 select a ready data block or wait;

10 send the block to the next GPU in the inner ring;
11 receive the block from the previous CPU in the inner ring;
12 mark the received block as ready;
13 while not finished

14
15 split data into blocks as block[0..ng ∗m− 1];
16 mark block[i ∗m+ j] as ready;
17 do in parallel
18 inter_group_part;
19 intra_group_part;

17

28207 https://doi.org/10.52202/079017-0884



Algorithm 7: PaRO-CC Reduce-Scatter Algorithm
Input: Number of groups ng; Number of gpus in each group m; Current

GPU index: i, j ranges from 0, 0 to ng − 1,m− 1
1 perform reduce-scatter using inner ring;
2 perform reduce-scatter using outer ring;

A.3 Detail of the Guideline

In this section, we present a detailed explanation of the time of communication cost tcomm. calculation
formula, employing symbols that align with the definitions provided in the main text. And give an
example of the guideline based on the calculation formula.

A.3.1 Detail of the Calculation Formula

tcomm. = (tparam + tgradient) ∗ s+ tupdate

Table 4 and Table 5 show the calculation formula of tparam and tgradient for various partitioning
states.

Table 4: The calculation formula of tparam
Pp time Description

N 0
I 2 ∗Ψ/m ∗ (m− 1)/B′ intra-group all-gather parameters when forward and backward
G 2 ∗Ψ/n ∗ (n− 1)/B global all-gather parameters when forward and backward

Table 5: The calculation formula of tgradient
Pg time Description

N 0
I Ψ′/m ∗ (m− 1)/B′ intra-group reduce-scatter gradients when backward
G Ψ′/n ∗ (n− 1)/B global reduce-scatter gradients when backward

tupdate = tsyncg + tsyncp

The tupdate includes two parts: the time of synchronizing gradients (tsyncg , shown as Table 6)
required for the optimizer states step and the time of synchronizing model parameters (tsyncp , shown
as Table 7) after updated.

Table 6: The calculation formula of tsyncg
Pg Pos time Description

N N 2 ∗Ψ′/n ∗ (n− 1)/B global all-reduce gradients
N I Ψ′/n ∗ (n− 1)/B +Ψ′/m/g ∗ (g − 1)/B inter-group reduce-scatter and all-

reduce gradients
N G Ψ′/n ∗ (n− 1)/B global reduce-scatter gradients
I I 2 ∗Ψ′/m/g ∗ (g − 1)/B inter-group all-reduce gradients
I G Ψ′/m/g ∗ (g − 1)/B inter-group reduce-scatter gradients
- - 0 ohters

In light of our experimental configuration and environment, the salient parameters informing our
derived guidelines include: m = 32, n = 8, g = n/m = 4, s = 10, Ψ = 7 ∗ 1e9 or 65 ∗ 1e9,
B = 80 ∗ 1e9 (80Gbps), B′ = 2000 ∗ 1e9 (2000 Gbps), as determined through testing within our
experimental GPU cluster.

18

28208https://doi.org/10.52202/079017-0884



Table 7: The calculation formula of tsyncp
Pp Pos time Description

N I Ψ′/m ∗ (m− 1)/B′ intra-group all-gather updated parameters
N G Ψ′/n ∗ (n− 1)/B global all-gather updated parameters
I G Ψ′/m/g ∗ (g − 1)/B inter-group all-gather updated parameters
- - 0 ohters

Table 8: The Metric (1/T ) of training throughput and GPU memory of LLaMA-7B. Ψ′ = Ψ and
Ψ′ = Ψ/16 mean the different ratios of trainable parameters to model parameters.

Ψ′ = Ψ Ψ′ = Ψ/16Strategy (p/g/os)
1/T Mem(GB) 1/T Mem(GB)

NII(PaRO) 1.151 24.447 17.827 13.752
NIG(PaRO) 0.489 17.113 7.716 13.293
NGG(ZeRO-2) 0.067 15.891 1.066 13.217
INI 0.386 24.447 0.841 3.056
ING(PaRO) 0.386 17.113 0.841 2.598
III(MiCS) 0.524 13.039 0.871 2.343
IIG(PaRO) 0.524 5.704 0.871 1.884
IGG(PaRO) 0.067 4.482 0.511 1.808
GNG 0.035 15.891 0.037 1.375
GIG 0.036 4.482 0.037 0.662
GGG(ZeRO-3) 0.024 3.26 0.036 0.586

Table 9: The Metric (1/T ) of training throughput and GPU memory of LLaMA-65B. Ψ′ = Ψ,
Ψ′ = Ψ/16, and PEFT(Ψ′ = 3Ψ/1000) mean the different ratios of trainable parameters to model
parameters. − means out of GPU memory.

Ψ′ = Ψ Ψ′ = Ψ/16 Ψ′ = 3Ψ/1000Strategy (p/g/os)
1/T Mem(GB) 1/T Mem(GB) 1/T Mem(GB)

NII - - - - - -
NIG(PaRO) - - - - - -
NGG(ZeRO-2) - - - - - -
INI - - 0.091 28.376 0.098 15.77
ING - - 0.091 24.12 0.098 15.565
III(MiCS) - - 0.094 21.755 0.098 15.452
IIG(PaRO) 0.057 52.969 0.094 17.499 0.098 15.247
IGG(PaRO) 0.007 41.618 0.055 16.789 0.095 15.213
GNG - - 0.004 12.769 0.004 4.215
GIG 0.004 41.618 0.004 6.148 0.004 3.897
GGG(ZeRO-3) 0.003 30.268 0.004 5.439 0.004 3.863

The outcomes of the guidelines are presented in Table 8 and Table 9. Strategies highlighted in red
indicate recommendations, distinguished by a higher throughput indicator 1/T .

A.4 Detail of Experiments

A.4.1 Communication Performance of the Experimental Cluster

Table 10 presents the measured inter- and intra-group GPU-to-GPU communication throughput in
the experimental environment.

19

28209 https://doi.org/10.52202/079017-0884



Table 10: The Throughput of GPU to GPU communication.
GPU to GPU Size (Bytes) Duration Throughput (Gbps)

intra-node 31.74 GB 131.128 ms 2079.138
inter-node 31.74 GB 3033.485 ms 89.875

A.4.2 Results of the Experiments

Tables 11, 12, and 13 summarize the experimental results from Section 4.3, showcasing model
configurations, throughput metrics, and GPU memory utilization for full-parameter, partial-parameter,
and PEFT training scenarios. These tables offer a clear and comprehensive evaluation of the
effectiveness of PaRO-DP.

Table 11: Configuration and Result of Experiments when full-parameters training (Ψ′ = Ψ).
Model
Size Strategy (p/g/os) Config Throughput Peak

Memory

7B

GGG(ZeRO-3) {"stage": 3} 1.93 37.13
IGG(PaRO) {"paro_strategy": "IGG"} 2.84 44.76
IIG(PaRO) {"paro_strategy": "IIG"} 4.40 46.04
III(MiCS) {"stage": 3, 4.41 49.20

"mics_partition_size": 8}
NGG(ZeRO-2) {"stage": 2} 2.79 52.58
NIG(PaRO) {"paro_strategy": "NIG"} 4.44 44.06
NII(PaRO) {"paro_strategy": "NII"} 4.65 51.98
ZeRO++ {"stage": 3, 2.43 39.76

"zero_hpz_partition_size": 8}
FSDP-hz HYBRID_SHARD_ZERO2 2.86 59.15

65B

GGG(ZeRO-3) {"stage": 3} 0.21 65.56
IGG(PaRO) {"paro_strategy": "IGG"} 0.29 76.12
IIG(PaRO) {"paro_strategy": "IIG"} 0.39 76.27
ZeRO++ {"stage": 3, 0.25 77.54

"zero_hpz_partition_size": 8}

Table 12: Configuration and Result of Experiments when partial-parameters training (Ψ′ = Ψ/16).
Model
Size Strategy (p/g/os) Config Throughput Peak

Memory

7B

GGG(ZeRO-3) {"stage": 3} 4.65 10.63
IGG(PaRO) {"paro_strategy": "IGG"} 9.41 11.97
IIG(PaRO) {"paro_strategy": "IIG"} 11.11 12.14
III(MiCS) {"stage": 3, 11.59 12.62

"mics_partition_size": 8}
NGG(ZeRO-2) {"stage": 2} 11.94 18.86
NIG(PaRO) {"paro_strategy": "NIG"} 13.79 20.10
NII(PaRO) {"paro_strategy": "NII"} 14.46 19.66
ZeRO++ {"stage": 3, 4.79 12.34

"zero_hpz_partition_size": 8}
FSDP-hz HYBRID_SHARD_ZERO2 12.50 21.23

65B

GGG(ZeRO-3) {"stage": 3} 0.59 20.48
III(MiCS) {"stage": 3, 2.15 44.23

"mics_partition_size": 8}
IIG(PaRO) {"paro_strategy": "IIG"} 2.16 39.48
ZeRO++ {"stage": 3, 0.60 34.72

"zero_hpz_partition_size": 8}

20

28210https://doi.org/10.52202/079017-0884



Table 13: Configuration and Result of Experiments when PEFT (Ψ′ = 3Ψ/1000).
Model
Size Strategy (p/g/os) Config Throughput Peak

Memory

65B
GGG(ZeRO-3) {"stage": 3} 1.20 29.54
ING(PaRO) {"paro_strategy": "ING"} 1.73 47.71
ZeRO++ {"stage": 3, 1.28 44.68

"zero_hpz_partition_size": 8}

A.4.3 Maximum Throughput via Dynamic Effective Batch Size

In Section 4.3, we standardized experimental conditions with a micro_batch_size of 4 and 10
accumulation_steps, setting an effective_batch_size of 40 per GPU for a fair comparison. This section
presents the impact of dynamic effective batch size on training efficiency, specifically in the context of
full-parameter training scenario within the A100 cluster. As displayed in the Table 14, the throughput
of PaRO-NNI is 48.7% higher than that of ZeRO-1 using the same effective batch size. Additionally,
the PaRO-IIG strategy achieves a throughput of 0.62, surpassing the GGG strategy’s 0.47 by 32%, as
shown in Table 15. This demonstrates the significant effectiveness of the IIG strategy in this scenario,
which balances communication costs and memory usage, reducing inter-group communication and
consequently improving overall training throughput.

Table 14: Throughput Comparison of LLaMA-7B on 32 GPUs when full-parameters training (Ψ′ =
Ψ). The global batch size in one global step is fixed to 17280 or effective batch size per GPU is fixed
to 540. Note: MBS = micro_batch_size, AS = accumulation_steps, EBS = effective_batch_size

Strategy (p/g/os) Configuration (MBS, AS, EBS) of Single GPU
(180, 3, 540) (270, 2, 540) (540, 1, 540)

NNG (ZeRO-1) 5.908 OOM OOM
IIG 5.493 OOM OOM
NII 5.416 8.785 OOM

Table 15: Throughput Comparison of LLaMA-65B on 64 GPUs when full-parameters training
(Ψ′ = Ψ). Note: MBS = micro_batch_size, AS = accumulation_steps, EBS = effective_batch_size

Strategy (p/g/os) Configuration (MBS, AS, EBS) of Single GPU
(16, 10, 160) (20, 8, 160) (32, 5, 160) (40, 4, 160) (48, -, -)

IIG (PaRO) 0.62 0.57 OOM OOM OOM
GGG (ZeRO-3) 0.23 0.28 0.41 0.47 OOM

21

28211 https://doi.org/10.52202/079017-0884



NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections of the paper clearly state the research
objectives, methodologies, key findings, and conclusions, providing a coherent overview
of the core contributions of the work. Moreover, the paper complements these claims with
detailed experimental setups, results, and analyses that are consistent with the statements
made in the abstract and introduction, ensuring that the readers have a comprehensive
understanding of the work’s scope and contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our method primarily focuses on data parallelism in training large language
models. The PaRO strategy can be combined with tensor or pipeline parallelism techniques
in the latest hybrid parallelism manner to train extremely large language models, albeit with
the sacrifice in ease of use. Furthermore, performance improvements of our method are
largely due to the efficient utilization of heterogeneous networks, limiting its applicability in
homogeneous networks.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

22

28212https://doi.org/10.52202/079017-0884



• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper focuses on the practical implementation and evaluation of a refined
sharding strategy for large language model training, taking into account the impact of
communication and machine resources on actual throughput. We provide a detailed guideline
for selecting optimal strategies in various scenarios based on empirical data and performance
metrics. Since the throughput results are inherently dependent on the specific environmental
factors and hardware configurations, the paper does not engage in theoretical analysis or
proofs for each throughput outcome.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information necessary to reproduce the main
experimental results. Section 4 includes details on experimental setup, datasets, model
configurations, and hyperparameter selections, all of which are essential for understanding
the outcomes. Furthermore, Appendix A.4 provides specific configurations and results of
the experiments, which support the claims and conclusions made in the paper, ensuring that
other researchers can verify and replicate the findings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

23

28213 https://doi.org/10.52202/079017-0884



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code, ensuring the reproducibil-
ity of the main experimental results. We specifically provide a GitHub link that contains
detailed information about the codebase used for the experiments, which is essential for other
researchers aiming to replicate the study. This level of transparency facilitates independent
verification and promotes good scientific practice within the research community.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper meticulously details all aspects of the training and testing procedures.
Section 4 and Appendix A.4 offer comprehensive information that includes data partitioning
strategies, hyperparameter configurations, the types of optimizers used, and the rationale

24

28214https://doi.org/10.52202/079017-0884

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


behind their selection. These details are indispensable for a thorough understanding of the
experimental results and allow for the replication and verification of the findings by other
researchers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or statistical significance measures because
the experiments primarily focus on throughput measurements, which are inherently stable
and consistent when averaged over a significant number of steps (e.g., every 100 steps).
Given the nature of the experiments conducted on a dedicated cluster, the results demonstrate
high reliability, reducing the necessity for further statistical analysis to confirm the stability
of the outcomes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides a detailed account of the computational resources utilized
for each experiment. Section 4.1 meticulously describes the experimental environment
setup, including the hardware used (such as DGX nodes and Ampere A100 SXM4 80GB
GPUs), the interconnections between these components (via NVLink/NVSwitch and RoCE),
and the software environment (with versions of CUDA, DeepSpeed, PyTorch, and NCCL
specified). This level of detail equips readers with a clear understanding of the computational
requirements necessary to replicate the experimental results in a similar setup.
Guidelines:

25

28215 https://doi.org/10.52202/079017-0884



• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper strictly adheres to the NeurIPS Code of
Ethics, ensuring that all aspects of the work are conducted with integrity and responsibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper aims to enhance research and industry practices in LLM training.
By improving training efficiency, PaRO can reduce the environmental footprint of LLMs,
which typically demand numerous GPUs. Furthermore, PaRO represents the first optimized
approach for fine-tuning, particularly in PEFT scenarios, thereby increasing our social
impact by aiding large companies and democratizing LLM training with fewer GPUs.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

26

28216https://doi.org/10.52202/079017-0884

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research does not involve the release of models or data that could be
potentially misused, as it is focused on theoretical contributions and experimental findings
within a controlled environment. There are no risks of misuse associated with the presented
work, and thus, no specific safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper meticulously acknowledges and adheres to the licensing terms of all
existing assets utilized in the research, including datasets, code repositories, and models.
The authors have ensured that all assets are properly credited, and the terms of use are
explicitly stated and respected, which is in line with the best practices for academic integrity
and intellectual property rights.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce any new assets such as datasets, or models that
would require additional documentation or licensing information. The research is conducted
using established assets and does not generate new ones that need to be disseminated with
the paper.

27

28217 https://doi.org/10.52202/079017-0884

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research conducted for this paper did not involve any form of crowd-
sourcing or experimentation with human subjects. Therefore, there is no need to provide
instructions to participants, screenshots, or details regarding compensation, as the work is
based on computational experiments and analysis.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Since the research presented in the paper does not involve any human subjects,
there was no requirement to obtain Institutional Review Board (IRB) approvals or conduct
an equivalent ethical review. The study is purely technical and does not engage with human
participants, thus falling outside the scope of IRB considerations.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

28218https://doi.org/10.52202/079017-0884




