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Abstract

Alignment techniques are critical in ensuring that large language models (LLMs)
output helpful and harmless content by enforcing the LLM-generated content to
align with human preferences. However, the existence of noisy preferences (NPs),
where the responses are mistakenly labelled as chosen or rejected, could spoil the
alignment, thus making the LLMs generate useless and even malicious content.
Existing methods mitigate the issue of NPs from the loss perspective by adjusting
the alignment loss based on a clean validation dataset. Orthogonal to these loss-
oriented methods, we propose perplexity-aware correction (PerpCorrect) from
the data perspective for robust alignment which detects and corrects NPs based
on the differences between the perplexity of the chosen and rejected responses
(dubbed as PPLDiff). Intuitively, a higher PPLDiff indicates a higher probability
of the NP because a rejected/chosen response which is mistakenly labelled as
chosen/rejected is less preferable to be generated by an aligned LLM, thus having
a higher/lower perplexity. PerpCorrect works in three steps: (1) PerpCorrect aligns
a surrogate LLM using the clean validation data to make the PPLDiff able to
distinguish clean preferences (CPs) and NPs. (2) PerpCorrect further aligns the
surrogate LLM by incorporating the reliable clean training data whose PPLDiff is
extremely small and reliable noisy training data whose PPLDiff is extremely large
after correction to boost the discriminatory power. (3) Detecting and correcting
NPs according to the PPLDiff obtained by the aligned surrogate LLM to obtain
a denoised training dataset for robust alignment. Comprehensive experiments
validate that our proposed PerpCorrect can achieve state-of-the-art alignment
performance under NPs. Notably, PerpCorrect demonstrates practical utility by
requiring only a modest amount of validation data and being compatible with
various alignment techniques. Our code is available at PerpCorrect.

1 Introduction

Alignment enables the safe utilization of the remarkable capabilities acquired by large language
models (LLMs) through self-supervised learning on vast corpora [6, 24, 4]. It refers to the process of
ensuring that the contents generated by LLMs are helpful, harmless, and aligned with human values
and preferences [19]. Reinforcement Learning from Human Feedback (RLHF) [9] has emerged
as a primary technique for achieving alignment. Current technical routes [39, 40, 29] require a
reward model to simulate human preference and use it to optimize the policy model outputs with
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Figure 1: We evaluated various robust alignment methods under different proportions of noisy
preferences using the Llama2-7B model, on the Golden HH dataset. The reward accuracy of both the
vanilla DPO and PPO method significantly decreases as the proportion of noisy preferences increases.
Our method, perplexity-aware correction (PerpCorrect), outperforms both the DPO and PPO series
baselines across different proportions of noisy preferences.

Proximal Policy Optimization (PPO) [27]. Current offline techniques such as Direct Preference
Optimisation (DPO) [26], Sequence Likelihood Calibration with Human Feedback (SLiC) [38] and
Identity-Preference Optimisation (IPO) [3], could directly align LLMs without intensively training a
reward model as employed in RLHF.

Recent studies [34, 8] have shown there exist noisy preferences (NPs) that may lead to significant
degradation in alignment performance. The issue of NPs, where the label of the actually cho-
sen/rejected responses in training datasets is flipped as rejected/chosen, can arise from the biases of
annotators [34] and malicious noise injection [5]. As shown in Figure 1, when NPs are randomly
injected into the training dataset, the conventional alignment method (e.g., DPO [26] and PPO [9])
will have significantly degraded alignment performance measured by the reward accuracy. Such
performance degradation could result in the generation of useless and even malicious content [34].
Therefore, it necessitates developing robust alignment methods that can utilize datasets with NPs to
effectively align the LLMs with human preferences.

Existing robust alignment methods are proposed from the loss perspective, which adjust the alignment
loss using a clean validation dataset to mitigate the issue of NPs. In particular, the conservative
DPO (cDPO) [21] and robust-DPO (rDPO) [8] both estimate the proportion of NPs using the clean
validation data via cross-validation and then adjust the original DPO loss based on the estimated
proportion of NPs. However, Mitchell [21] and Chowdhury et al. [8] overlooked the essential
differences between noisy and clean preferences, which is critical for mitigating the issue of NPs.

To this end, we propose Perplexity-aware Correction (PerpCorrect) for robust alignment from
the data perspective by leveraging the differences between noisy and clean preferences for robust
alignment. PerpCorrect detects and corrects NPs based on the difference between the perplexity of
the chosen response and that of the rejected counterparts (dubbed as PPLDiff) obtained by an aligned
surrogate LLM using the clean validation set. If an NP is detected, PerpCorrect will correct it by
flipping the label of the rejected/chosen responses as chosen/rejected. Intuitively, rejected responses
which are mistakenly labelled as chosen have a higher perplexity since they are less consistent with
human preferences and thus have a lower probability of being generated after alignment. Therefore,
a higher value of PPLDiff indicates a higher probability of the preferences being noisy. In this
way, PerpCorrect leverages the differences between noisy and clean preferences (CPs) identified by
PPLDiff to detect NPs.

To make the PPLDiff able to distinguish CPs and NPs, PerpCorrect requires an aligned surrogate
LLM for calculating PPLDiff. The density of PPLDiff obtained on the noisy training dataset using

2

28297https://doi.org/10.52202/079017-0888



an unaligned surrogate LLM, which can be fitted as a normal distribution centered around zero
(evidenced in Figure 2a), cannot discriminate CPs and NPs. Therefore, we align a surrogate LLM
using the clean validation data. The density of PPLDiff obtained by the aligned surrogate LLM in
Figure 2b can be fitted into two distinguishable normal distributions, thus being able to differentiate
CPs and NPs.

However, there still exists a large overlap between two normal distributions after aligning only on
the clean validation dataset, which could result in an unsatisfactory accuracy of NP detection. To
this end, we iteratively align the model using more reliable clean training data with extremely low
PPLDiff (located in the green area in Figure 2c) and reliable noisy training data with extremely large
PPLDiff (located in the red area in Figure 2c) sampled from noisy training datasets. Finally, the two
normal distributions are significantly separated as shown in Figure 2d, which indicates that PPLDiff
has an enhanced discriminatory power.

Benefiting from the strong discriminatory power of PPLDiff calculated by the aligned surrogate LLM,
PerpCorrect outputs a denoised training dataset for robust alignment by first detecting NPs based on
a PPLDiff threshold and then correcting them. The data, whose PPLDiff is below a certain threshold
(i.e., the black dotted line in Figure 2d) selected as the x-coordinate of the two normal distributions’
intersection, are identified as NPs and thus corrected by flipping the response’s label. Notably, our
proposed PerpCorrect is compatible with various alignment methods as well as robust alignment
methods [21, 8] since the metric PPLDiff is agnostic to training algorithms and only requires an
arguably small number of clean validation data (~50), thus making it practical.

Comprehensive empirical results, evaluated using the Llama2-7B [32] and phi-2 [20] models on the
OpenAssistant Conversations (OASST1) [17] and Golden HH [7] datasets, validate the effectiveness
of our proposed PerpCorrect method in robustifying alignment with NPs. We empirically validate
that PerpCorrect consistently obtains state-of-the-art performance among various proportions of NPs.
Besides, we empirically demonstrate that PerpCorrect can effectively robustify various alignment
techniques and robust alignment methods, validating its compatibility.

2 Literature Review and Preliminary

In this section, we introduce the related work about LLM alignment and provide preliminaries about
the noisy preferences, perplexity, as well as various alignment methods.

2.1 LLM Alignment

In the domain of aligning LLMs with human preferences, pairwise preference methods are favored
due to their lower cognitive burden on evaluators. Traditional online alignment approaches [32,
24, 29] involve training reward models from these preferences to provide signals in reinforcement
learning. Recent offline alignment methods like Direct Preference Optimization (DPO) [26], Sequence
Likelihood Calibration (SLiC) [38], and Identify Preference Optimization (IPO) [3] streamlined this
process by directly using preference pairs to train LLMs, thus enhancing performance and reducing
computational costs. Additionally, methods like RRHF [37] align LLMs using multiple ranked
preferences, Kahneman-Tversky Optimization (KTO) [13] align LLMs using a single preference
labeled as good or bad, and Rejection Sampling Optimization (RSO) [18] address DPO’s limitation
in sampling preference pairs from the optimal policy through rejection sampling. However, NPs,
arising from the biased human feedback, can determine the alignment performance [24, 34]. Robust
alignment methods like conservative DPO (cDPO) [21], robust DPO (rDPO) [8] have been proposed
to address these issues from the loss perspective. Our approach focuses on the data perspective to
address these issues of NPs and is orthogonal to these robust alignment methods.

2.2 Preliminary

Noisy preferences (NPs). NPs refer to preference data in training datasets, whose label of the
actually chosen/rejected responses is flipped as rejected/chosen. Let D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1 be

the preference dataset consisting of N ∈ N preference data points. For each preference data point
(x, yw, yl) ∈ D, x is the prompt input to LLMs, yw is the chosen response, and yl is the rejected
response. We let D̃ = {(x(i), ỹ

(i)
w , ỹ

(i)
l )}Ni=1 be the noisy preference dataset (i.e., preference dataset
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Figure 2: We visualized the PPLDiff under the entire PerpCorrect process using Llama2-7B on
Golden HH dataset with 20% noisy preferences. We use the green dotted line to represent the normal
distribution formed by clean data, the red dotted line represents the normal distribution formed by
noisy data, and the black dotted line represents the threshold.

consisting noisy preferences) and denote preference data points that are not noisy as clean preferences
(CPs). Following Chowdhury et al. [8], we obtain the noisy preference dataset D̃ using the standard
random noise model [23] with the probability ε ∈ (0, 50%) to change the data point into noisy
preferences, i.e.

P
(x(i),ỹ

(i)
w ,ỹ

(i)
l )∼D̃

[
(x(i), ỹ(i)w , ỹ

(i)
l ) = (x(i), y

(i)
l , y(i)w )

]
= ε. (1)

Perplexity (PPL). PPL [15] measures the probability that the LLM generates a sentence. A lower
PPL of a sentence indicates that the LLM has generated this sentence with a high probability. PPL is
defined as the average negative log-likelihood of a sequence, i.e.,

PPL(s; θ) = exp(−1

t

t∑
i=1

log πθ(si|s<i)), (2)

where s is a sequence composed of t tokens and log πθ(si|s<i) denotes the log-likelihood of the i-th
token given the preceding tokens s<i calculated by an LLM πθ.

Technical details of alignment methods. There are usually three phases in RLHF pipeline [34, 26]:
(1) supervised fine-tuning (SFT); (2) reward modeling; (3) reinforcement learning (RL) optimization.
In the SFT phase, an LLM is fine-tuned via supervised learning on high-quality task-related data.
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We denote the LLM after the SFT phase as πSFT. In the reward modeling phase, the reward model
is introduced to simulate human preferences. Given a preference dataset, a reward model rω(x, y)
parameterized by ω, which takes prompt x and response y as input and outputs a real number
representing the reward score, can be optimized via minimizing the following loss function:

LR(rω,D) = −E(x,yw,yl)∼D [log σ(rω(x, yw)− rω(x, yl))] , (3)
where σ is the logistic function. In the RL optimization phase, the objective function is as follows:

max
θ

Ex∼D,y∼πθ(y|x)[rω(x, y)− β · (log πθ(y|x)− log πref(y|x))], (4)

where πθ(y|x) represents the probability that the LLM parameterized by θ > 0 generates the response
y given the prompt x, πref is a reference LLM to maintain the generation ability of the aligned model,
and β is a hyper-parameter to ensure the similarity between πθ(y | x) and πref(y | x). We take πSFT

as the reference LLM πref following Ouyang et al. [24].

Recently, offline alignment methods directly leverages preferences in preference datasets, bypassing
the need to learn a reward model in RLHF. The LLM parameters are optimized by minimizing the
following loss function:

L(πθ;πref) = E(x,yw,yl)∼D [G(x, yw, yl; θ)] , (5)
where the function G changes with the alignment method. To be specific, DPO [26] uses a BCE loss,
SLiC [38] uses a hinge loss, and IPO [3] uses a square loss:

GDPO(x, yw, yl; θ) = − log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)
, (6)

GSLiC(x, yw, yl; θ) = max
{
0, 1−

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)}
, (7)

GIPO(x, yw, yl; θ) =

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

− 1

2

)2

. (8)

To mitigate the issue of NPs, cDPO [21] and rDPO [8] adjust the DPO loss based on the estimated
proportion of NPs ε′ using a clean validation dataset Dval = {(x(i), y

(i)
w , y

(i)
l )}Nval

i=1 consisting of
Nval ∈ N clean preference data points, i.e.

GcDPO(x, ỹw, ỹl; θ) = (1− ε′)GDPO(x, ỹw, ỹl; θ) + ε′GDPO(x, ỹl, ỹw; θ), (9)

GrDPO(x, ỹw, ỹl; θ) =
(1− ε′)GDPO(x, ỹw, ỹl; θ)− ε′GDPO(x, ỹl, ỹw; θ)

1− 2ε′
. (10)

3 Perplexity-aware Correction for Robust Alignment

This section introduces Perplexity-aware Correction (PerpCorrect) for robust alignment with NPs. In
Section 3.1, we introduce a novel metric called PPLDiff and then illustrate the pipeline of PerpCorrect
to detect and correct NPs based on PPLDiff. In Section 3.2, we demonstrate how to adapt our
proposed PerpCorrect with various alignment methods to achieve robust alignment.

3.1 Perplexity-aware Correction (PerpCorrect)

In this subsection, we introduce PerpCorrect which employs a novel metric called PPLDiff as
the foundation for detecting and correcting NPs. The algorithm of PerpCorrect is described in
Algorithm 2.

PPLDiff. PPLDiff measures the difference between the PPL of chosen response and that of the
rejected response. Given a preference data point (x, ỹw, ỹl) ∈ D̃ sampled from the noisy training
dataset D̃ and an LLM πθ, PPLDiff is defined as follows:

PPLDiff(x, ỹw, ỹl; θ) = log PPL([x; ỹw]; θ)− log PPL([x; ỹl]; θ), (11)
where [x; y] indicates the concatenation of the prompt x and the response y. Intuitively, if a data point
is a clean preference, the PPL([x; ỹw]; θ) will be lower than PPL([x; ỹl]; θ) because the sequence
[x; ỹw] is more aligned with human values and thus has a higher probability of being generated by
aligned LLMs. As a result, it PPLDiff will be lower compared to NPs, which PPL([x; ỹw]; θ) is
higher than PPL([x; ỹl]; θ). This difference allows us to distinguish CPs and NPs based on PPLDiff.
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Aligning a surrogate LLM only using clean validation data. Here, we utilize a clean validation
dataset Dval to obtain an aligned surrogate LLM to make PPLDiff able to distinguish CPs and NPs.
We empirically find that the PPLDiff values of CPs and NPs calculated by an unaligned LLM in the
noisy training dataset were initially indistinguishable as shown in Figure 2a, making it impossible to
differentiate the NPs from CPs. This is because an unaligned LLM lacks the necessary preferences to
distinguish NPs and CPs.

Therefore, we introduce a surrogate LLM πθ′ parameterized by θ′ to replace the unaligned LLM and
use it for calculating PPLDiff. We optimize the surrogate LLM πθ′ using the clean validation dataset
Dval as follows:

max
θ′

E(x,yw,yl)∼Dval
[GDPO(x, yw, yl; θ

′)] . (12)

After aligning the surrogate LLM, the PPLDiff values of NPs calculated by the surrogate LLM πθ′ are
significantly increased and those of CPs are significantly decreased, forming two distinct distributions
as shown in Figure 2b. This is because the aligned surrogate LLM is trained to generate responses
that align with human preferences, enhancing its ability to distinguish between NPs and CPs based
on PPLDiff.

To separate CPs and NPs in the noisy training dataset without knowing the oracle preferences, we
leverage the Levenberg-Marquardt (LM) algorithm to find two normal distributions that fit the density
of PPLDiff calculated by the aligned surrogate LLM. Specifically, the LM algorithm returns the
constants ε̄, µ̄, σ̄ that satisfies the following condition:

h(x|ε̄, µ̄, σ̄) = (1− ε̄)fclean(x|µ̄, σ̄2) + εfnoisy(x| − µ̄, σ̄2), (13)

where f(x|µ, σ2) =
1√
2σ2π

exp(− (x− µ)2

2σ2
). (14)

Note that x is the PPLDiff value and h(x|ε̄, µ̄, σ̄) is the superposition of these two normal distribution.
We denote fclean(x|µ̄, σ̄2) as the normal distribution fitting the PPLDiff of CPs and fnoisy(x|− µ̄, σ̄2)
as the normal distribution fitting the PPLDiff of NPs since the PPLDiff of NPs is intuitively higher
than that of CPs. In this way, we can obtain two distinguishable normal distributions to separate
NPs and CPs as shown in the green and red dotted lines of Figure 2b without knowing the oracle
preferences.

Further aligning the surrogate LLM using extra reliable training data from noisy training
datasets. After aligning only using the clean validation datasets, the discriminatory power of the
PPLDiff is still far from satisfactory because of the large overlap between the two normal distributions.
Therefore, we align the surrogate LLM with more reliable training data to make the PPLDiff of CPs
and that of NPs more separable. We iteratively align the surrogate LLM πθ′ using more reliably clean
training data whose PPLDiff is extremely small and reliably noisy training data whose PPLDiff is
extremely large after correction by flipping the label of the response.

Specifically, at epoch t ∈ N, we select (t − 1) · α · |D̃| of the training data along with the clean
validation data for further alignment where α ∈ (0, 1) is the selection ratio and |D̃| = N is the
number of data points in noisy training dataset. As shown in Lines 33–45 of Algorithm 2, the selected
reliable training dataset D′

t consists of (t− 1) · α · (1− ε̄) · |D̃| reliably clean training data whose
PPLDiff values are smallest (t− 1) ·α · (1− ε̄) percent and (t− 1) ·α · ε̄ · |D̃| reliably noisy training
data after correction. Note that the reliably clean training data are the data points whose PPLDiff
values are smallest (t − 1) · α · (1 − ε̄) percent (located in the green area of Figure 2c), and the
reliably noisy training data whose PPLDiff values are largest (t− 1) · α · ε̄ percent (located in the red
area of Figure 2c) among all the training data points.

Detecting and correcting NPs based on PPLDiff to output a denoised training dataset. Based
on the PPLDiff calculated by the aligned surrogate LLM, PerpCorrect detects and corrects NPs
whose PPLDiff value is lower than a certain threshold. We take the x-coordinate of the intersection
of the two normal distributions as the threshold (the black dotted line in Figure 2d). As shown in
Lines 23–31, data points whose PPLDiff values are larger than this threshold are identified as CPs
(the green area in Figure 2d), and other data points are identified as NPs requiring correction (the red
area in Figure 2d). In this way, we can obtain a denoised training dataset for robust alignment.
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Algorithm 1 Robust Alignment via Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D̃, clean validation dataset Dval, and pre-trained LLM πθ parame-
terized by θ

2: Output: Robust alignment model πθ

3: // Stage I: Supervised fine-tuning (SFT)
4: πθ ← Supervised fine-tuned LLM πθ. (Details in Appendix C.3)
5: // Stage II: Perplexity-aware correction using the surrogate LLM
6: D̃denoised, ε′denoised ← Perplexity-aware Correction (πθ, D̃, Dval) (Details in Algorithm 2)
7: // Stage III: Alignment with denoised dataset
8: πθ ← Aligned LLM πθ using D̃denoised and ε′denoised (Details in Appendix C.3)

Further, we select an optimal denoised training dataset to further enhance the performance of
robust alignment according to the intersection area of the two normal distributions. We denote the
intersection area of two normal distributions as the estimated NP proportion of the denoised training
dataset, i.e.,

ε′PC =

∫ + inf

− inf

min{(1− ε̄)fclean(x|µ̄, σ̄2), ε̄fnoisy(x| − µ̄, σ̄2)}dx, (15)

where ε′PC calculates the ratio of noisy data points which are not detected by PerpCorrect (i.e.,
the green area enclosed by the black and red lines in Figure 2d) and the clean data points which
are mistakenly detected by PerpCorrect (i.e., the red area enclosed by the black and green lines in
Figure 2d). In this way, ε′PC can efficiently calculate the NP proportion of the denoised training
dataset. We take the denoised training dataset with the smallest ε′PC among multiple iterations as the
optimal one for robust alignment to boost alignment performance.

3.2 Robust Alignment

Here, we introduce how to adapt PerpCorrect to robustify various alignment methods and demonstrate
the algorithm of robust alignment via PerpCorrect in Algorithm 1. In general, the pipeline of the
robust alignment based on PerpCorrect contains three stages: SFT, PerpCorrect, and alignment. We
will first conduct SFT, following Christiano et al. [9], to boost the performance of a pre-trained LLM
by boosting its skills for specific tasks. Next, we will conduct PerpCorrect to detect and correct NPs
and output an optimal denoised training dataset D̃denoised the smallest ε′PC in Eq. 15. Finally, we
can obtain an aligned LLM from the SFT model using the denoised training dataset D̃denoised via
alignment (i.e., Line 8 in Algorithm 1).

Because our proposed PerpCorrect is agnostic to alignment methods and model structures, PerpCor-
rect is applicable to robustify both online alignment methods such as RLHF (PPO) [9] and offline
alignment methods including DPO [26], SLiC [38], and IPO [3]. Besides, our proposed PerpCorrect
is compatible with existing loss-oriented robust alignment methods, such as cDPO [21] and rDPO [8],
based on the estimated proportion of NPs. Note that cDPO and rDPO require conducting compu-
tationally expensive cross-validation to tune the estimated proportion of NPs. We can efficiently
estimate the proportion of NPs by utilizing the fitted normal distributions during PerpCorrect, i.e.,
ε′PC in Eq. 15. Therefore, we can combine PerpCorrect with a wide range of existing alignment
methods to achieve robust alignment with NPs.

4 Experiments

In this section, we demonstrate that our proposed PerpCorrect achieves state-of-the-art alignment
performance under different proportion of NPs and have good compatibility with other alignment
methods. In Section 4.1, PerpCorrect combined with DPO [26] achieves state-of-the-art alignment
performance than existing baselines (Section 4.1), including DPO [26], cDPO [21], and rDPO [8].
In Section 4.2, we further analyze the impact of the number of validation data and verified the
compatibility of PerpCorrect with online and offline alignment methods and robust alignment methods.
The training details and compute resources are reported in Appendix C.1.
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Table 1: Average reward accuracy of DPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset. The standard deviation of
reward accuracy is reported in Table 8.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 92.53% 82.62% 68.50% 53.15%
cDPO 96.04% 90.85% 83.23% 65.60%
rDPO 96.65% 95.22% 93.90% 90.45%

PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

Table 2: Average reward accuracy of PPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset. The standard deviation of
reward accuracy is reported in Table 9.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla PPO 96.64% 92.71% 90.21% 86.29%
cPPO 96.18% 93.63% 90.62% 88.02%
rPPO 95.92% 93.73% 92.05% 90.62%

PerpCorrect-PPO 96.38% 94.04% 93.99% 93.17%

Table 3: Average reward accuracy of DPO series
alignment methods using phi-2 on the Golden
HH dataset. The standard deviation of reward
accuracy is reported in Table 10.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 93.19% 85.57% 73.07% 54.98%
cDPO 97.21% 92.63% 81.05% 66.72%
rDPO 96.49% 95.73% 93.34% 84.55%

PerpCorrect-DPO 98.17% 97.05% 97.66% 96.39%

Table 4: Average reward accuracy of DPO series
alignment methods using phi-2 on the OASST1
dataset. The standard deviation of reward accu-
racy is reported in Table 11.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 66.94% 62.61% 58.44% 52.42%
cDPO 67.30% 61.44% 54.87% 49.21%
rDPO 63.95% 59.47% 56.45% 45.20%

PerpCorrect-DPO 71.34% 69.04% 68.27% 68.49%

Datasets. We utilize two preference datasets, namely OpenAssistant Conversations (OASST1) [17]
and Golden HH [7]. The processed OASST1 dataset comprises 17,939 training samples and 951
testing samples and the processed Golden HH dataset consists of 12,066 training samples and 654
testing samples. The description and processing details of these datasets are provided in Appendix C.2.

Models. Our evaluation leverages two distinct series of open-sourced LLMs with different parameter
sizes: Llama2-7B [32] and phi-2 [20]. We acquire the checkpoints from their official repositories on
Hugging Face. The LLMs used for PerpCorrect and those for robust alignment share the same model
structure and initialization.

Baselines. We adopt vanilla DPO [26] and two robust alignment methods, cDPO [21] and rDPO [8],
as baselines. For their detailed implementation, we utilize and adapt the transformers and TRL
libraries provided by the Hugging Face community.

Metrics. In accordance with Chowdhury et al. [8], we employ the winning rate of policy generations
against the selected preferences on the test dataset as our primary metric. This metric applies to vanilla
DPO [26], cDPO [21], rDPO [8], as well as other offline alignment methods including SLiC [38]
and IPO [3]. Additionally, we utilize the winning rate of the reward model score for the chosen
preferences on the test dataset as our metric for vanilla PPO [24], cPPO [21, 34], and rPPO [8]. These
two metrics are collectively called reward accuracy.

4.1 PerpCorrect Achieves the State-of-the-Art Robust Alignment Performance

The empirical results demonstrate that our method, PerpCorrect, achieves state-of-the-art robust
alignment performance, surpassing existing baselines such as vanilla DPO [26], cDPO [21], and
rDPO [8]. This is evident across various proportions of noisy preferences ε using different datasets
and LLMs.

Comparison using different LLMs. Tables 1 and 3 demonstrate the average reward accuracy
of the DPO series alignment methods on the Golden HH [7] dataset using Llama2-7B [32] and
phi-2 [20]. At a proportion of the NPs ε = 40%, PerpCorrect increases the reward accuracy by
41.77% (from 53.15% to 94.92%) using Llama2-7B and by 41.41% (from 54.98% to 96.39%) using
phi-2. The empirical result validates that our proposed PerpCorrect can be used on different sizes of
LLMs and achieve better alignment performance than baselines.

Comparison on different datasets. Tables 3 and 4 demonstrate the average reward accuracy of the
DPO series alignment methods on the Golden HH [7] and OASST1 [17] datasets using phi-2 [20].
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Table 5: Impact of the number of clean validation data evaluated on the Golden HH dataset using
Llama2-7B with a proportion of NPs ε = 40%.

Number 10 20 30 40 50 100 200
Reward accuracy 81.40% 88.26% 94.21% 94.21% 95.43% 95.43% 96.04%

Table 6: Average reward accuracy and improvements of the offline and robust alignment methods, as
well as those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset. The standard
deviation of reward accuracy and improvements is reported in Table 12.

Method Proportion of noisy preferences (%)
10 20 30 40

DPO 92.53% 82.62% 68.50% 53.15%
PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

∆ +4.98% +13.62% +27.03% +41.77%
SLiC 96.70% 87.75% 76.17% 58.59%

PerpCorrect-SLiC 96.95% 95.02% 95.38% 94.61%
∆ +0.25% +7.27% +19.21% +36.02%

IPO 98.07% 92.73% 79.17% 61.64%
PerpCorrect-IPO 98.73% 97.66% 97.82% 97.56%

∆ +0.66% +4.93% +18.65% +35.92%
cDPO 96.04% 90.85% 83.23% 65.60%

PerpCorrect-cDPO 98.12% 97.31% 94.97% 88.36%
∆ +2.08% +6.46% +11.74% +22.76%

rDPO 96.65% 95.22% 93.90% 90.45%
PerpCorrect-rDPO 95.99% 95.02% 94.77% 95.73%

∆ -0.66% -0.20% +0.87% +5.28%

The empirical results reveal a significant discrepancy in average reward accuracy between the more
complex OASST1 dataset and the Golden HH dataset. The performance of other robust alignment
methods is found to be unsatisfactory on the OASST1 dataset, often not surpassing the vanilla DPO.
In contrast, our method PerpCorrect consistently maintains strong alignment performance across
varying proportions of noisy preferences. In general, our method PerpCorrect can achieve better
alignment performance than baselines across different datasets.

4.2 Ablation Study

Impact of the number of clean validation data. Table 5 illustrates the impact of the number of
clean validation data points. We conducted experiments on the Golden HH dataset using Llama2-
7B with a proportion of NPs ε = 40%. The empirical results indicate that as the number of clean
validation data points increases, the performance of our method, PerpCorrect, also improves. However,
when the number is too large, the improvement in performance is not obvious, and the cost of manual
annotation significantly increases.

Compatibility with online alignment method RLHF (PPO). We adopt vanilla PPO [24],
cPPO [21, 34], and rPPO [8] as baselines. Table 2 shows the alignment performance of PPO
series alignment methods on the Golden HH [7] dataset using Llama2-7B. Although vanilla PPO
has good performance when the proportion of NPs is low, it still declines significantly when the
proportion is high. PerpCorrect maintains desirable alignment performances when the proportion
of NPs is high. Our empirical results show that PerpCorrect has desirable compatibility with online
alignment method RLHF (PPO).

Compatibility with various offline alignmet methods. Table 6 presents the average reward
accuracy and improvements of original offline alignment methods compared to those combined with
PerpCorrect. Our experiments, conducted on the Golden HH dataset using Llama2-7B, reveal that
the reward accuracy of SLiC [38] and IPO [3] both significantly decrease as the proportion of NPs
increases, similar to vanilla DPO [26]. However, our method PerpCorrect enhances their alignment
performance across different proportions of NPs. Notably, IPO combined with PerpCorrect achieves
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the best alignment performance. We conjecture the main reason is that the proportion of NPs in the
denoised dataset is very low and IPO performs better than other methods under a low proportion of
NPs. These empirical results demonstrate that our method has good compatibility with various offline
alignment methods.

Compatibility with robust alignment methods. Table 6 shows the average reward accuracy and
improvements of robust alignment methods compared to those combined with PerpCorrect. Our
method, PerpCorrect, can significantly enhance the performance of cDPO [21], and provide a modest
improvement for rDPO [8] under almost all proportion of NPs. The empirical results show that our
method has good compatibility with robust alignment methods.

5 Conclusions

This paper proposes a method called perplexity-aware correction (PerpCorrect), as an effective
approach for robust alignment with noisy preferences (NPs). PerpCorrect utilizes a surrogate LLM
to calculate a novel metric, PPLDiff, and further detects and corrects NPs from clean preferences
(CPs) based on it. PerpCorrect consists of three steps: (1) PerpCorrect aligns a surrogate LLM using
the clean validation dataset, enabling PPLDiff to distinguish between CPs and NPs. (2) PerpCorrect
enhances the discrimination power of PPLDiff by aligning the surrogate LLM with more reliable
training data. (3) PerpCorrect detects and corrects NPs from CPs based on a calculated threshold
and obtains a denoised training dataset. The paper further proposes a robust alignment pipeline,
consisting of three stages SFT, PerpCorrect, and alignment, to achieve robust alignment with NPs.
The experimental results validate that PerpCorrect achieves state-of-the-art alignment performance
and has good compatibility with other online, offline, and robust alignment methods. Therefore,
PerpCorrect can be an effective method to mitigate the impact of NPs and can be used for robust
alignment. Future research directions include: (1) Improving the time efficiency of PerpCorrect and
(2) Reducing the amount of clean validation data required to achieve the same alignment performance.

Limitations

We discuss some limitations of this work to stimulate further research in this direction. Our limitations
mainly stem from two aspects: time efficiency issues caused by multiple calculations of PPLDiff and
repeated training of a surrogate LLM, and the need for a validation dataset.

Time efficiency. Iteratively calculating the PPLDiff value for each data point and aligning a
surrogate LLM is time-consuming. Selecting reliably training data and denoising the training dataset
requires that the PPLDiff value be calculated for each data point during each epoch, which may cause
unnecessary calculations for CPs and NPs that can already be clearly distinguished. Besides, aligning
a surrogate LLM with same size as the LLM for alignment multiple times is time-consuming. The
detailed discussion is in the Appendix B.

Validation dataset. PerpCorrect requires a validation dataset for aligning a surrogate LLM. How-
ever, manually annotating a validation dataset is complex and labor-intensive in practice. As shown in
Table 5, there is a significant disparity in alignment performance when comparing the use of 10 clean
samples to 50 clean samples. Exploring how to use fewer clean samples or even no clean samples to
achieve the same or better performance is a problem worth further investigation.
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A Broader Impacts

Our proposed PerpCorrect and robust alignment pipeline offers a solution for achieving state-of-the-
art performance in robust alignment under noisy preferences. PerpCorrect is designed to effectively
reduce malicious noise in the dataset and mitigate biases introduced by human annotators, ensuring
that the trained language model (LLM) is accurately aligned with true human preferences.

Moreover, we recognize a potential risk: if malicious users exploit our method for reverse training,
they might compromise the security mechanisms of existing open-source LLMs. Existing research
has demonstrated the possibility of reverse training [36].

B Time Efficiency Analysis

The additional computational overhead is primarily attributed to PerpCorrect (Section 3.1). Table 7
presents both theoretical and empirical runtime comparisons, where X represents the theoretical time
required for Alignment (Section 3.2) or other baselines.

In theory, during the PerpCorrect process, we need to calculate PPLDiff and train the surrogate model
in each epoch. The computation time introduced by PerpCorrect is approximately T

3 that of the
Alignment or other baselines.

The calculation of PPLDiff in each epoch requires only 1
3of the time needed for robust alignment.

The primary computational load in robust alignment arises from the complexity of forwarding and
back-propagation, while the complexities of gradient updates and parameter updates are relatively
low. Additionally, back-propagation takes twice as long as forwarding. In addition, the calculation of
PPLDiff only requires forwarding.

For surrogate model training, PerpCorrect utilized data points that represented t × α of the total
dataset during epoch t. Since both t and α are small, the time required for surrogate model training
can be approximately ignored.

In practice, Our entire robust alignment pipeline (∼24 hours) takes only twice as long as the baseline
(∼12 hours). We set T = 5 and α = 2, and used the AdamW optimizer. The practical efficiency of
the PerpCorrect is due to the use of fp32 precision by the AdamW optimizer, which increases the
GPU’s calculation time during the robust alignment process.

Table 7: Comparison of theoretical and practical running times for PerpCorrect and baselines.
Stage Theoretical Running Time Practical Running Time

PerpCorrect T
3 ×X ∼12 hours

Alignment (or baselines) X ∼12 hours
Total (1 + T

3 )X ∼24 hours

C Implementation details

C.1 Training details and compute resources.

We utilized the Qlora method [11] for fine-tuning the LLMs, executed on RTX 4090 GPUs with
24 GB of memory. Hyperparameters were set as follows: lora_rank = 32, lora_dropout = 0.1,
and lora_alpha = 16. For SFT, we use the alpaca dataset [30] and set learning_rate = 2e − 4
and batch_size = 20. For our PerpCorrect stage II, we set β = 0.1, learning_rate = 1e − 3,
batch_size = 4, T = 5, and α = 0.02. For our PerpCorrect stage III and all other alignment methods,
we set β = 0.1, learning_rate = 3e−4, and batch_size = 20. Other details not mentioned, we follow
the default setting in TRL library. Each experiment, involving a specific method and proportion of
NPs, could be completed using a single RTX 4090 GPU within 24 hours on the Golden HH dataset
and within 72 hours on the OASST1 dataset.
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C.2 Description and Processing Details of the Datasets

OpenAssistant Conversations Dataset (OASST1). The original OASST1 dataset [17] is an
assistant-style conversation corpus generated and annotated by humans. It consists of over 10,000
fully annotated conversations in 35 different languages. Sileo [28] converted these conversations
into a preference dataset comprising 17,966 training samples and 952 testing samples. After filtering
out conversations with one or fewer letters, we obtained a preference dataset with 17,939 training
samples and 951 testing samples.

Golden HH. The Golden HH dataset [7] is a variant of the Anthropic Helpful and Harmless (HH)
dataset [4]. It originally contains 42,537 training samples and 2,312 testing samples as part of a
preference dataset. Each sample has two keys: one representing the prompt x and the chosen response
yw, and the other representing the prompt x and the rejected response yl. We first converted the
dataset into a triple form: prompt x, chosen response yw, and rejected response yl, retaining only
one-turn conversation data. After filtering out samples with one or fewer letters, we obtained a
preference dataset with 12,066 training samples and 654 testing samples.

C.3 Detailed Robust Alignment via Perplexity-aware Correction

Supervised Fine-Tuning (SFT). The objective of Supervised Fine-Tuning (SFT) is to enhance
the performance of a pre-trained large language model (LLM) by refining its abilities for specific
tasks. As demonstrated by prior work [9, 25, 24], this can be achieved by utilizing supervised
fine-tuning with a specialized dataset tailored to the target task. The SFT dataset is annotated with
labels, providing examples that are directly relevant to the task. Specifically, for each data point (x, y)
in the SFT dataset, x represents the prompt given to the LLM, and y represents the expected response
that the model should generate based on the prompt x. The process involves fine-tuning the LLM by
maximizing the log-likelihood of the correct responses y given the prompts x. Through this method,
the model learns to produce more accurate and task-specific outputs, thereby significantly improving
its performance on the given task.
Perplexity-aware Correction (PerpCorrect). We demonstrate the entire PerpCorrect algorithm in
Algorithm 2.
Alignment. We can achieve alignment using the denoised training dataset D̃denoised with an
estimated proportion of NPs ε′denoised. For offline alignment methods such as DPO, SLiC, and IPO,
we can directly optimize the LLM using the denoised training dataset D̃denoised based on the loss
functions defined in Eqs. 6–8. For loss-based robust alignment methods, including cDPO and rDPO,
we set ε′ = ε′denoised and then optimize the LLM using the denoised training dataset D̃denoised

according to the loss functions mentioned in Eqs. 9 and 10. For the online alignment method RLHF
(PPO), we first train a reward model using the denoised training dataset D̃denoised based on the loss
function described in Eq. 3. Subsequently, we further optimize the LLM using PPO according to the
objective function detailed in Eq. 4.

D Extended Experimental Results

D.1 Experiment Statistical Significance

Tables 8–12 demonstrates the standard deviation of the reward accuracy reported in Tables 1–4 and 6.

D.2 Average PPLDiff Values of Data from Different Datasets Calculated by Unaligned LLMs

We randomly selected 10,000 data points from each dataset and calculated PPLDiff using different
LLMs. The datasets and LLMs are downloaded from the Huggingface website. The average PPLDiff
values are reported in the Table 13.
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Table 8: Standard deviation of reward accuracy
for DPO series alignment methods using Llama2-
7B on the Golden HH dataset. The average re-
ward accuracy is reported in Table 1.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla DPO 0.81% 0.40% 2.52% 2.60%
cDPO 1.15% 0.81% 1.76% 1.64%
rDPO 0.26% 1.53% 0.95% 1.92%

PerpCorrect-DPO 0.63% 0.87% 1.73% 0.63%

Table 9: Standard deviation of reward accuracy
for PPO series alignment methods using Llama2-
7B on the Golden HH dataset. The average re-
ward accuracy is reported in Table 2.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla PPO 0.15% 1.30% 4.05% 0.77%
cPPO 0.15% 1.53% 4.61% 5.89%
rPPO 0.62% 1.38% 1.55% 5.29%

PerpCorrect-PPO 0.35% 1.15% 1.34% 1.57%

Table 10: Standard deviation of reward accuracy
for DPO series alignment methods using phi-2
on the Golden HH dataset. The average reward
accuracy is reported in Table 3.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla DPO 0.92% 0.63% 1.28% 0.98%
cDPO 0.35% 0.54% 0.49% 1.84%
rDPO 0.30% 0.15% 1.67% 7.82%

PerpCorrect-DPO 0.81% 1.27% 0.63% 1.07%

Table 11: Standard deviation of reward accuracy
for DPO series alignment methods using phi-2
on the OASST1 dataset. The average reward
accuracy is reported in Table 4.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla PPO 0.70% 1.30% 2.46% 1.64%
cPPO 0.46% 0.87% 0.56% 0.91%
rPPO 0.96% 2.29% 1.24% 6.61%

PerpCorrect-PPO 0.35% 1.89% 1.35% 1.06%

Table 12: Standard deviation of reward accuracy and improvements of the offline and robust alignment
methods, as well as those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset.
The average reward accuracy is reported in Table 6.

Method Proportion of noisy preferences (%)
10 20 30 40

DPO 0.81% 0.40% 1.28% 0.98%
PerpCorrect-DPO 0.63% 0.87% 1.73% 0.63%

∆ 0.98% 0.89% 0.97% 1.98%
SLiC 1.91% 1.33% 6.77% 8.02%

PerpCorrect-SLiC 1.76% 1.45% 1.16% 1.50%
∆ 0.63% 0.38% 5.62% 6.52%

IPO 0.84% 0.63% 3.48% 0.32%
PerpCorrect-IPO 0.32% 1.68% 0.23% 1.25%

∆ 0.98% 2.29% 3.26% 1.10%
cDPO 1.15% 0.81% 1.76% 1.64%

PerpCorrect-cDPO 0.69% 0.75% 0.81% 0.72%
∆ 0.47% 1.31% 1.85% 2.36%

rDPO 0.26% 1.53% 0.95% 1.92%
PerpCorrect-rDPO 0.63% 0.23% 1.84% 1.19%

∆ 0.84% 1.48% 2.19% 2.31%
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Table 13: Average PPLDiff values of randomly selected data points across datasets calculated by
different LLMs. "Avg." refers to the average PPLDiff value over all the datasets.

Model Dataset Avg.HH-RLHF [4] SafeRLHF [10] SHP [12] WebGPT [22]
Qwen2-1.5B [35] -0.140 -0.002 0.040 -0.018 -0.030

Qwen2-1.5B-Instruct [35] -0.149 -0.009 0.046 -0.021 -0.033
Yi-1.5-6B [1] -0.158 -0.103 0.105 -0.036 -0.048

Yi-1.5-6B-Chat [1] -0.159 -0.054 0.069 -0.040 -0.046
gemma-2-2b [31] -0.140 -0.051 0.001 -0.024 -0.053

gemma-2-2b-it [31] -0.163 -0.053 0.063 -0.028 -0.045
falcon-7b [2] -0.113 -0.001 0.037 -0.016 -0.023

falcon-7b-instruct [2] -0.121 0.021 0.039 -0.017 -0.019
Mistral-7B-v0.3 [16] -0.133 -0.045 0.048 -0.026 -0.039

Mistral-7B-Instruct-v0.3 [16] -0.201 -0.058 0.065 -0.038 -0.058
glm-4-9b [14] -0.134 -0.019 0.045 -0.027 -0.034

glm-4-9b-chat-1m [14] -0.135 -0.019 0.049 -0.028 -0.033
Llama-2-7b-hf [33] -0.133 -0.052 0.051 -0.028 -0.040

Llama-2-7b-chat-hf [33] -0.139 -0.041 0.063 -0.032 -0.037
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Algorithm 2 Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D̃, clean validation dataset Dval, LLM πθ parameterized by θ

2: Output: Denoised training dataset D̃denoised and estimated proportion of NPs ε′denoised
3: πθ′ ← πθ, D′

0 ← ∅, ε′denoised ← 1, D̃denoised ← D̃,
4: for epoch t = 0, . . ., T do
5: // Aligning the surrogate LLM
6: πθ′ ← Alignment (πθ′ , D′

t ∪ Dval)
7: // Calculating the PPLDiff values for each data point
8: Ω← ∅
9: for (x̃, ỹw, ỹl) ∈ D̃ do

10: z ← log PPL(x+ ỹw; θ
′)− log PPL(x+ ỹl; θ

′)

11: Ω← Ω ∪ {(x̃, ỹw, ỹl, z)}
12: end for
13: // Fitting PPLDiff density of noisy training dataset
14: ε̄, µ̄, σ̄ ← Fitted parameters using Levenberg-Marquard algorithm with Ω

15: // Estimating NPs proportion of the denoised training dataset
16: ε′PC ← Estimated proportion of NPs using the Eq.15 based on ε̄, µ̄, σ̄
17: // Keeping denoised training dataset with the smallest ε′denoised
18: if ε′PC < ε′denoised then
19: ε′denoised ← ε′PC

20: // Calculating the Threshold τ

21: τ ← x-coordinate of the intersection of the two normal distributions(ε̄, µ̄, σ̄)
22: // Distinguishing CPs and NPs based on the threshold τ and correcting NPs
23: D̃CPs ← ∅, D̃NPs ← ∅
24: for (x̃, ỹw, ỹl, z) ∈ Ω do
25: if z > τ then
26: D̃CPs ← D̃CPs ∪ {(x̃, ỹw, ỹl)}
27: else
28: D̃NPs ← D̃NPs ∪ {(x̃, ỹl, ỹw)}
29: end if
30: end for
31: D̃donised ← D̃CPs ∪ D̃NPs

32: end if
33: DClean ← ∅, DNoisy ← ∅
34: // Calculating the left bound τl and the right bound τr
35: τl ← (t− 1) · α · (1− ε̄) · |D̃|-th smallest PPLDiff value in Ω

36: τr ← (t− 1) · α · ε̄ · |D̃|-th largest PPLDiff value in Ω

37: // Finding extra reliable training data
38: for (x̃, ỹw, ỹl, z) ∈ Ω do
39: if z < τl then
40: DClean ← DClean ∪ {(x̃, ỹw, ỹl)}
41: end if
42: if z > τr then
43: DNoisy ← DNoisy ∪ {(x̃, ỹl, ỹw)}
44: end if
45: end for
46: D′

t+1 ← DClean ∪ DNoisy

47: end for
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our introduction covers our contributions, main methods and experimental
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the efficiency issues and data volume requirements of our method
PerpCorrect in the Conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show all the experiment detail in the Experiments section and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our code using Github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show the entire experimental details in the Experiments section and
Appendix and provide open access to the code using Github.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed sufficient information on the computer resources in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential impacts in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our robust alignment method does not have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and datasets the we used are open-sourced, and we follow their
license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our training code are open-source on GitHub.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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