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Abstract

Benchmarking vision-based driving policies is challenging. On one hand, open-
loop evaluation with real data is easy, but these results do not reflect closed-
loop performance. On the other, closed-loop evaluation is possible in simulation,
but is hard to scale due to its significant computational demands. Further, the
simulators available today exhibit a large domain gap to real data. This has
resulted in an inability to draw clear conclusions from the rapidly growing body of
research on end-to-end autonomous driving. In this paper, we present NAVSIM, a
middle ground between these evaluation paradigms, where we use large datasets
in combination with a non-reactive simulator to enable large-scale real-world
benchmarking. Specifically, we gather simulation-based metrics, such as progress
and time to collision, by unrolling bird’s eye view abstractions of the test scenes for
a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy
and environment do not influence each other. As we demonstrate empirically, this
decoupling allows open-loop metric computation while being better aligned with
closed-loop evaluations than traditional displacement errors. NAVSIM enabled
a new competition held at CVPR 2024, where 143 teams submitted 463 entries,
resulting in several new insights. On a large set of challenging scenarios, we observe
that simple methods with moderate compute requirements such as TransFuser can
match recent large-scale end-to-end driving architectures such as UniAD. Our
modular framework can potentially be extended with new datasets, data curation
strategies, and metrics, and will be continually maintained to host future challenges.
Our code is available at https://github.com/autonomousvision/navsim.

1 Introduction

Autonomous vehicles (AVs) have gained immense research interest due to their potential to change
transportation and improve traffic safety [23, 9]. This has created a large community working on the
development of AV algorithms, which map high-dimensional sensor data to desired vehicle control
outputs. Therefore, measuring and comparing the performance of AV algorithms is a crucial task.

Unfortunately, it is extremely challenging to evaluate driving performance, and the most widely-used
benchmarks today fall short in several respects: (1) the datasets used, such as nuScenes [5], were
created for perception tasks such as object detection. As such, they focus on visual diversity and
label quality instead of the relevance of the data for research on planning. Often, most frames have a
trivial solution of extrapolating the historical driving behavior, leading to “blind” driving policies that
observe only the vehicle’s past trajectory obtaining state-of-the-art performance [56, 32, 16]. (2) Due
to the fact that driving is an inherently multifaceted task where the algorithm must coordinate several
desired properties such as safety, comfort, and progress, the evaluation metric must also balance

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

28706 https://doi.org/10.52202/079017-0902

https://github.com/autonomousvision/navsim


On Road 

ADE: 1.1m ADE: 2.3m ADE: 1.0m ADE: 0.0m 

Human No Collision
On Road 

No Collision
On Road 

No Collision

NAV IM

Figure 1: NAVSIM. Traditional metrics such as the average displacement error (ADE) overlook the
multi-modality of driving. They penalize trajectories that deviate from a recorded human driving log,
even if such a trajectory is safe. Our benchmark evaluates trajectory outputs of sensor-based driving
policies with simulation-based metrics, considering collisions and map compliance.

potentially conflicting objectives. However, as shown in Fig. 1, existing metrics such as the average
displacement error (ADE) between a predicted and recorded human trajectory often misrepresent
the relative accuracy of trajectories. (3) Since driving involves interactions among multiple agents,
evaluation must ideally be interactive, e.g., in simulation. Unfortunately, existing simulators with
synthetic sensor data exhibit a significant domain gap to real-world driving. (4) Besides, the lack of
a standardized evaluation setup has led to subtle inconsistencies between metrics in existing work,
leading to unfair comparisons and inaccurate conclusions [50, 32]. Collectively, these problems
hinder progress in the development of AVs, emphasizing the need for more principled benchmarks.

In this work, we take steps towards alleviating these issues. First, we propose a strategy for sampling
interesting driving scenarios and apply it to the largest publicly-available driving dataset [26]. We
obtain, for the first time, over 100k challenging real-world driving scenarios for training and evaluating
sensor-based driving policies. We show that in these scenarios, “blind” driving policies fail to compete
with more principled sensor-based policies. Second, we draw inspiration from the literature of rule-
based planning for AVs [41, 18, 39, 16] to identify a set of diverse, efficient, and principled metrics
that cover multiple facets of the autonomous driving task. Third, we circumvent the need for
inaccurate sensor simulation with domain gaps by simplifying our simulation to a non-reactive one.
Given an observed real-world sensor input, the agent under test commits to a set of actions for a
specific time horizon. Further, these actions are assumed to not affect the future behavior of other
agents in the scene. Under this setting, it is possible to simulate the expected motion of all agents
over this time horizon in a simplified bird’s-eye-view (BEV) abstraction of the scene, and incorporate
metrics that involve interactions, as we observe in Fig. 1. Empirically, we demonstrate that our
selected metrics are well-correlated to the outcomes of closed-loop simulations. Finally, we establish
an official evaluation server on the open-source HuggingFace platform, which is free, has a low
maintenance overhead, and enables future scaling to more challenging datasets and metrics.

We combine these ideas to propose NAVSIM, a comprehensive tool for AV data curation, simulation,
and benchmarking. We instantiate standardized training and evaluation splits for NAVSIM with
the OpenScene dataset [15], though our framework can be extended to other datasets. With these
splits, we present a detailed analysis of popular end-to-end driving models previously benchmarked
either exclusively on CARLA [17] or nuScenes [5], providing the first direct comparison between
these families of approaches in an independent evaluation setting. Interestingly, we find that the
performances of the best methods developed in both settings are similar, despite a vast difference in
computational requirements for their training. Finally, we review the insights gained through the 2024
NAVSIM challenge1, hosted in conjunction with the CVPR 2024 Workshop on Foundation Models
for Autonomous Systems. For the challenge, 143 teams from 13 countries developed diverse methods
that competed on the proposed benchmark. The top methods ranged from multi-billion parameter
vision language models [45, 33, 53, 58] to more efficient and recently overlooked approaches based
on trajectory sampling and scoring [40, 20, 10], demonstrating the remarkable ability of the broader
community to advance AV research when provided with the right tools.

1https://opendrivelab.com/challenge2024/#end_to_end_driving_at_scale
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Contributions. (1) We build NAVSIM, a framework for non-reactive AV simulation, with standard-
ized protocols for training and testing, data curation tools ensuring broad accessibility, and an official
public evaluation server used for the inaugural NAVSIM challenge. (2) We develop configurable
simulation-based metrics that are well-suited for evaluating sensor-based motion planning. (3) We
reimplement a collection of end-to-end approaches for NAVSIM including TransFuser, UniAD, and
PARA-Drive, showcasing the surprising potential of simple models in our challenging scenarios.

2 Related Work

End-to-End Driving. End-to-end driving streamlines the entire stack from perception to planning
into a single optimizable network. This eliminates the need for manually designing intermediate
representations. Following pioneering work [35, 4, 27], a diverse landscape of end-to-end models
has emerged. For instance, an extensive body of end-to-end approaches focuses on closed-loop
simulators, utilizing single-frame cameras, LiDAR point clouds, or a combination of both for expert
imitation [7, 11, 36, 8, 52, 43, 44, 12, 24, 57, 22]. More recently, developing end-to-end models
on open-loop benchmarks has gained traction [20, 21, 25, 54, 32, 50]. Our work introduces a new
evaluation scheme with which we compare end-to-end models from both communities.

Closed-Loop Benchmarking with Simulation. Driving simulators allow us to evaluate autonomous
systems in a closed-loop manner and collect downstream driving statistics, including collision rates,
traffic-rule compliance, or comfort. A broad body of research conducts evaluations in simulators,
such as CARLA [17] or Metadrive [29] with sensor simulation, or nuPlan [26] and Waymax [19]
for data-driven simulation. Unfortunately, ensuring realism when simulating traffic behavior or
sensor data remains a challenging task. To simulate camera or LiDAR sensors, most established
simulators rely on graphics-based rendering methods, leading to an inherent domain gap in terms
of visual fidelity and sensor characteristics. Data-driven simulators for motion planning incorporate
traffic recordings but do not support image or LiDAR-based methods [26, 19, 13]. Data-driven
sensor simulation leverages and adapts real-world sensor data to create new simulations where the
vehicle may move differently, but the rendering quality of existing tools is subpar [1, 2, 49]. Further,
while promising image [47] or LiDAR [34] synthesis approaches exist, efficiently simulating sensors
entirely from data remains an open problem. In this work, we provide an approach for the evaluation
of real sensor data with simulation-based metrics by making a simplifying assumption that the agent
and environment do not influence each other over a short simulation horizon. Despite this strong
assumption, when benchmarking on real data, NAVSIM better reflects planning performance than
established evaluation protocols, as demonstrated through our systematic experimental analysis.

Open-Loop Benchmarking with Displacement Errors. Open-loop evaluation protocols commonly
measure displacement errors between trajectories of a recorded expert (i.e., of a human driver)
and a motion planner. However, several issues concerning evaluation with displacement errors
have surfaced recently, particularly on the nuScenes dataset [5]. Given that nuScenes does not
provide standardized planning metrics, prior work relied on independent implementations, which
led to inconsistencies when reporting or comparing results [50, 32]. Next, most planning models in
nuScenes receive the human trajectory endpoint as a discrete direction command [20, 21, 25, 32, 50],
thereby leaking ground-truth information into inputs. Moreover, about 75% of the scenarios in
nuScenes involve trivial straight driving [32], leading to simple solutions when extrapolating the
ego-motion. For instance, AD-MLP demonstrates that an MLP on the kinematic ego status (ignoring
perception completely) can achieve state-of-the-art displacement errors [56]. Such blind agents are
undeniably dangerous, which highlights a broader concern: displacement metrics are not correlated to
closed-loop driving [14, 17, 3, 16]. In this work, we address prevalent issues of nuScenes and propose
a standardized driving benchmark with challenging scenarios and an official evaluation server. We
derive a navigation goal from the lane graph instead of the human trajectory to prevent label leakage,
and propose principled simulation-based metrics as an alternative to displacement errors.

3 NAVSIM: Non-Reactive Autonomous Vehicle Simulation

NAVSIM combines the ease of use of open-loop benchmarks such as nuScenes [5] with metrics based
on closed-loop simulators such as nuPlan [26]. In the following, we give a detailed introduction to
the task and metrics that driving agents are challenged with in NAVSIM. Subsequently, we propose a
filtering method to obtain standardized train and test splits covering challenging scenes.

3
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Task description. Driving agents in NAVSIM must plan a trajectory, defined as a sequence of future
poses, over a horizon of h seconds. Their input contains streams of past frames from onboard sensors,
such as cameras, LiDAR, as well as the vehicle’s current speed, acceleration, and navigation goal,
jointly termed the ego status. For compatibility with prior work [20, 21, 25, 50], we provide the
navigation goal as a one-hot vector with three categories: left, straight, or right.

Non-Reactive Simulation. Traditional closed-loop benchmarks normally infer planners at high
frequencies, e.g., 10Hz [17, 26]. However, this requires efficient simulation of all input modalities for
the driving agent, including high-dimensional sensor streams in the case of sensor-based approaches.
To sidestep this, the core idea of NAVSIM is to evaluate driving agents using a non-reactive simulation.
This means driving agents are only queried in the initial frame of each scene. Afterwards, the planned
trajectory is kept fixed for the entire trajectory duration. Over this short horizon, no environmental
feedback is provided to the driving agent, and the NAVSIM evaluation is purely based on the initial
real-world sensor sample. This makes the agent’s task more challenging, limiting simulations to
short horizons. We select a horizon of h = 4 seconds, which has been shown in prior work to be
adequate for closed-loop planning [16]. Despite this limitation, non-reactive simulation offers a key
advantage: unlike traditional open-loop benchmarks, which mainly compare the planned trajectory to
the human driver’s trajectory in a similar setting, it enables the use of simulation outcomes to compute
metrics reflecting safety, comfort, and progress. An LQR controller [28] is applied at each simulation
iteration to calculate steering and acceleration values, and a kinematic bicycle model [37] propagates
the ego vehicle. We execute this pipeline at 10Hz over the 4s trajectory horizon. In Sec. 4.1, we
show that despite our simplifying assumption, our evaluation results in a much better alignment with
closed-loop metrics than traditional open-loop metrics achieve.

PDM Score. NAVSIM scores driving agents in two steps. First, subscores in range [0, 1] are computed
after simulation. Second, these subscores are aggregated into the PDM Score (PDMS) ∈ [0, 1]. It is
named after the Predictive Driver Model (PDM) [16], a state-of-the-art rule-based planner which uses
this scoring function to evaluate trajectory proposals during closed-loop simulation in nuPlan. The
metric is also an efficient reimplementation of the nuPlan closed-loop score metric [26]. In NAVSIM,
the PDMS can be adapted by adding or removing subscores, changing aggregation parameters, or
making subscores more challenging, e.g., by adapting their internal thresholds. It is calculated per
frame and averaged across frames. In this work, we use the following aggregation of subscores:

PDMS =

( ∏
m∈{NC,DAC}

scorem

)
︸ ︷︷ ︸

penalties

×

(∑
w∈{EP,TTC,C} weightw × scorew∑

w∈{EP,TTC,C} weightw

)
︸ ︷︷ ︸

weighted average

. (1)

Subscores are categorized by their importance as penalties or terms in a weighted average. A penalty
punishes inadmissible behavior such as collisions with a factor < 1. The weighted average aggregates
subscores for other objectives such as progress and comfort. In the following, we briefly describe
each subscore. More details can be found in the supplementary material.

Penalties. Avoiding collisions and staying on the road is imperative for motion planning as it
ensures traffic rule compliance and the safety of pedestrians and road users. Thus, failing to drive
with no collisions (NC) with road users (vehicles, pedestrians, and bicycles) or infractions with
regard to drivable area compliance (DAC) result in hard penalties of scoreNC = 0 or scoreDAC = 0
respectively. This results in a PDMS of 0 for the current scene. We ignore certain collisions that are
not considered "at-fault" in the non-reactive environment, e.g. when the ego vehicle is static. For
collisions with static objects, we apply a softer penalty of scoreNC = 0.5.

Weighted Average. The weighted average accounts for ego progress (EP), time-to-collision (TTC),
and comfort (C). The ego progress subscore scoreEP represents the agent progress along the route
center as a ratio to an approximated safe upper bound from the PDM-Closed planner [16]. PDM-
Closed obtains a possible progress value without collisions or off-road driving with a search-based
strategy based on trajectory proposals. The final ratio is clipped to [0, 1] while discarding low or
negative progress scores if the upper bound is below 5 meters. Next, the TTC subscore ensures
that driving agents respect the safety margins to other vehicles. Defaulting to a value of 1, this
subscore is set to 0 if for any simulation step within the 4s horizon, the ego-vehicle’s time-to-
collison, when projected forward with a constant velocity and heading, is less than a certain threshold.
Finally, the comfort subscore is obtained by comparing the acceleration and jerk of the trajectory to
predetermined thresholds. Following the cost weights used by the PDM-Closed planner and the 2023
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Figure 2: Filtering. (a) We consider challenging scenes where maintaining a constant velocity and
heading fails compared to the human driver. (b) Our filtering primarily removes scenes with static or
fast longitudinal movement and (c) leads to more diversity in lateral movement (log-scale).

nuPlan Challenge, we set the coefficients of the weighted average as weightEP = 5, weightTTC = 5,
and weightC = 2. We find this selection reasonable and robust to changes. For example, the top 3
ranks of the NAVSIM challenge remain identical when assigning an equal weight to the subscores.

3.1 Generating Standardized and Challenging Train and Test Splits

Dataset. The NAVSIM framework is agnostic to the choice of driving dataset. We choose Open-
Scene [15], a redistribution of nuPlan [26], the largest annotated public driving dataset. OpenScene
includes 120 hours of driving at a reduced frequency of 2Hz typically considered by end-to-end
planning algorithms, resulting in a 90% reduction of data storage requirements compared to nuPlan
from over 20 TB to 2 TB. Our agent input, based on OpenScene, comprises eight cameras, each with
a resolution of 1920× 1080 pixels, and a merged LiDAR point cloud from five sensors. The input
includes the current time-step and optionally 3 past frames, totaling 1.5s at 2Hz. In principle, any
driving dataset that provides annotated HD maps, object bounding boxes, and sensor data can be
converted into this format and thus be used with NAVSIM.

Filtering for challenging scenes. A majority of human driving data involves trivial situations such
as being stationary or straight driving at a near constant speed. These can be solved efficiently by
simple heuristics, e.g., as depicted in Fig. 2 (a), the baseline of maintaining a constant velocity
and heading achieves a PDMS of 79% on the OpenScene dataset, where human-level performance
corresponds to 91%. In NAVSIM, we propose the use of a filtered dataset to remove frames with
(1) near-trivial solutions and (2) significant annotation errors. We remove highly simplistic scenes
by detecting if the previously mentioned constant velocity agent exceeds a PDMS of 0.8. Similarly,
we remove scenes in which the human trajectory results in a PDMS of less than 0.8. This ensures
that an acceptable solution exists to these difficult scenarios and filters out noisy annotations such as
inaccurate bounding boxes. These thresholds can be adjusted based on the desired filtered dataset
size. The resulting scenarios are challenging, which is underlined by the score of the constant velocity
agent dropping to 22%, whereas the human expert achieves a score of 95%. The higher ratio of
non-trivial scenarios, such as turning, also results in endpoints being less distant longitudinally when
nonzero, and more evenly distributed laterally, as seen in Fig. 2 (b-c). We employ this filtering strategy
to provide standardized splits for training and testing, called navtrain and navtest, with 103k
and 12k samples respectively. This curated data serves as a benchmark accessible as a standalone
download option with a moderate storage demand given its large scale and diversity (450 GB).

4 Experiments

In this section, we present the results of our experiments aimed at answering the following questions:
(1) Can non-reactive open-loop simulation provide sufficient correlation to closed-loop metrics? (2)
What new conclusions do experiments on NAVSIM provide compared to prior benchmarks?
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Figure 3: Closed-Loop Alignment. (a) For each planner, we show open-loop metrics (OLS, PDMS)
together with the corresponding closed-loop score (CLS). The trendlines depicting correlations are fit
linearly to all (learned and rule-based) planners. Moreover, we analyze different (b) CLS durations d,
(c) planning frequencies f , (d) PDMS horizons h, and (e) closed-loop background agent behaviors.

4.1 Alignment Between Open-Loop and Closed-Loop Evaluation

Open-loop metrics should ideally be aligned with closed-loop metrics in their evaluation of different
driving algorithms. In this section, we benchmark a large set of planners to analyze the alignment of
closed-loop metrics with traditional distance-based open-loop metrics and the proposed PDMS.

Benchmark. Studying the relation of closed-loop and open-loop metrics necessitates access to a
fully reactive simulator. To stay compatible with the dataset, we use the nuPlan simulator [26], which
enables simulation for privileged planners with access to ground-truth perception and HD map inputs.
Similar to PDMS, nuPlan combines weighted averages and multiplied penalties in two official scores:
the open-loop score (OLS) aggregates displacement and heading errors with a multiplied miss-rate,
and the closed-loop score (CLS) implements similar metrics from Section 3. Including PDMS, all
metrics are in [0, 1] with higher scores indicating better performance.

Due to the heavy computational requirements of closed-loop simulation, we evaluate on the navmini
split. This is a new split we create for rapid testing, with 396 scenarios in total that are independent of
both navtrain and navtest but filtered using the same strategy (Section 3.1) and hence similarly
distributed. We note that nuPlan offers two kinds of background agents: reactive agents along lane
centers based on the Intelligent Driver Model (IDM) [48], and non-reactive agents replayed from the
dataset, which we employ unless otherwise stated. While reactive simulations of longer or dynamic
lengths are generally desirable, e.g. to evaluate long-term decisions, enabling this requires dedicated
solutions to long-horizon simulation that are not currently available in nuPlan [13]. Therefore, we
default to a fixed closed-loop simulation duration of d = 15s, and a planning frequency of f = 10Hz,
which are the standard closed-loop simulation settings in nuPlan [26].

Motion Planners. Open-loop metrics favor learned planners while rule-based approaches perform
well in closed-loop evaluation in nuPlan [16]. We use a combination of both planner types in this
experiment to cover different performance levels. In total, we include 37 rule-based planners with 2
constant velocity and 8 constant acceleration models, 15 IDM planners [48], and 12 PDM-Closed
variants [16] which differ in hyperparameters for trajectory generation. For learned planning, we
evaluate Urban Driver models [42] of 2 model sizes and 2 training lengths, and PlanCNN [38] models
with 15 input combinations of the BEV raster, ego status, centerline, and navigation goal. We train
all models on {25%, 50%, 100%} of navtrain and an equally sized uniformly sampled subset of
OpenScene, giving 114 learned planners. See the supplementary material for additional details.

Results. The alignment between metrics is presented in Fig. 3 (a-e). Compared to OLS, we
consistently observe better closed-loop correlation for PDMS, in terms of Spearman’s (rank) and
Pearson’s (linear) correlation coefficients. As shown in (a), PDMS can capture the closed-loop
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Figure 4: Planner-Level Alignment of Metrics. We report the correlation coefficients between open-
loop metrics (OLS, PDMS) and the closed-loop score (CLS) for the five planner types considered in
our study. The PDMS is better correlated to the CLS for every planner type.

Method Ego Stat. Image LiDAR Video NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
Constant Velocity ✓ 68.0 57.8 50.0 100 19.4 20.6
Ego Status MLP ✓ 93.0 77.3 83.6 100 62.8 65.6

LTF [12] ✓ ✓ 97.4 92.8 92.4 100 79.0 83.8
TransFuser [12] ✓ ✓ ✓ 97.7 92.8 92.8 100 79.2 84.0
UniAD [21] ✓ ✓ ✓ 97.8 91.9 92.9 100 78.8 83.4
PARA-Drive [50] ✓ ✓ ✓ 97.9 92.4 93.0 99.8 79.3 84.0

Human 100 100 100 99.9 87.5 94.8

Table 1: Navtest Benchmark. We show the no at-fault collision (NC), drivable area compliance
(DAC), time-to-collision (TTC), comfort (Comf.), and ego progress (EP) subscores, and the PDM
Score (PDMS), as percentages. Relying on the ego status is insufficient for competitive results. While
sensor agents improve, the gap to human performance highlights our benchmark’s challenges.

properties of both learned and rule-based planners, whereas distance-based open-loop metrics show
a clear misalignment. Decreasing the CLS duration in (b) from d = 15s to d = 4s further raises
the correlation of PDMS and OLS, as the simulation horizon more closely matches the open-loop
counterparts. Interestingly, we observe a higher correlation of open-loop metrics in (c) when reducing
the planning frequency to 2Hz. We expect a lower planning frequency to mitigate cumulative errors
and enhance the controller’s stability in simulation, leading to more precise trajectory execution.
Moreover, we observe an increase in correlation for longer PDMS horizons in (d), ranging from
h = 2s to h = 8s. While predicting the future motion over 8s is challenging in uncertain scenarios,
our results indicate the value of long horizons when evaluating motion planners. Lastly, replacing the
non-reactive background agents with reactive IDM vehicles during closed-loop simulation in (e) has
little effect on the correlation, possibly due to the similar difficulty of both tasks [16].

The imbalanced distribution of different types of planners in our study may introduce biases into
the overall correlations presented in Fig. 3. To address this, we visualize the individual correlations
of each planner type in Fig. 4. The correlation values vary depending on metric range and variance
of each planner type. Nevertheless, when examining each type individually, the PDMS is better
correlated to the CLS than the OLS, and is always positively correlated.

4.2 Analysis of the State of the Art in End-to-End Autonomous Driving

In this section, we benchmark a collection of end-to-end architectures, which previously achieved
state-of-the-art performance on existing open- or closed-loop benchmarks.

Methods. As a lower bound, we consider the (1) Constant Velocity baseline detailed in Section 3.1.
We include an (2) Ego Status MLP as a second "blind" agent, which leverages an MLP for trajectory
prediction given only the ego velocity, acceleration and navigation goal. As an established architecture
on CARLA, we evaluate our reimplementation of (3) TransFuser [12], which uses three cropped
and downscaled forward-facing cameras, concatenated into a 1024 × 256 image, and a rasterized
BEV LiDAR input for predicting waypoints. It performs 3D object detection and BEV semantic
segmentation as auxiliary tasks. We then consider (4) Latent TransFuser (LTF) [12], which shares

7
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Config Parameter Setting NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
A1

Default config
Seed 1 98.0 91.3 94.2 100 78.1 83.3

A2 Seed 2 97.7 92.8 92.8 100 79.2 84.0
A3 Seed 3 97.9 93.0 93.1 100 79.3 84.4

B1 Ego status Goal only 96.8 91.9 91.3 98.6 77.3 81.8
B2 Goal and velocity only 96.7 92.3 91.0 100 77.8 82.3

C1
Camera FOV

60◦ (1 camera) 96.7 90.2 90.9 100 75.8 80.3
C2 160◦ (3 cameras) 97.6 91.4 92.7 100 78.1 82.8
C3 240◦ (5 cameras) 97.8 92.5 93.0 100 79.2 84.1

D1
LiDAR range

F:16, B:16, L:16, R:16 96.9 88.3 91.2 100 74.6 79.1
D2 F:64, B:32, L:32, R:32 97.8 92.7 93.4 100 79.3 84.3
D3 F:64, B:64, L:64, R:64 96.8 90.3 91.5 100 76.5 81.0

E1 Supervision No BEV segmentation 97.4 90.5 92.2 100 77.1 81.6
E2 No 3D detection 97.8 92.7 92.9 100 79.2 84.0

Table 2: TransFuser Ablations. The default configuration, which obtains the best results, uses the
navigation goal, velocity, and acceleration as ego status inputs. Its camera FOV is around 140◦ and
LiDAR range is 32m to the front (F), back (B), left (L), and right (R). It uses both auxiliary tasks.

the same architecture as TransFuser but replaces the LiDAR input with a learned embedding, hence
requiring only camera inputs. Moreover, we provide two state-of-the-art end-to-end architectures
for open-loop trajectory prediction on nuScenes. (5) UniAD [21] incorporates a wide range of tasks,
such as mapping, tracking, motion, and occupancy prediction in a semi-sequential architecture, which
processes feature representations through several transformer decoders culminating in a trajectory
planning module. (6) PARA-Drive [50] uses the same auxiliary tasks, but parallelizes the network
architecture, such that the auxiliary task heads are trained in parallel with a shared encoder. Both
UniAD and PARA-Drive use a BEVFormer backbone [31], which encodes the eight surround-
view 1920 × 1080 camera images over four temporal frames into a BEV feature representation.
Implementation details for all methods are provided in the supplementary material.

Results. We show our results on navtest in Table 1. The Constant Velocity model is a lower
bound, as the agent is used to identify trivial driving scenes excluded from the benchmark. The Ego
Status MLP achieves a PDMS of 65.6, showing the value of the acceleration and navigation goal for
avoiding collisions and driving off-road. However, we observe a clear gap between agents relying
solely on the ego status and those considering sensor data, in contrast to results on nuScenes [32]. All
sensor agents achieve a PDMS of over 83, where TransFuser and PARA-Drive marginally perform
best, with a PDMS of 84.0. Surprisingly, the camera-only LTF achieves similar results (83.8). UniAD
reaches a PDMS of 83.4, which, together with PARA-Drive, do not surpass the performance of
TransFuser and LTF, despite the need for more demanding training, e.g., 80 GPUs for 3 days to train
PARA-Drive versus 1 GPU for 1 day for TransFuser on the navtrain split. Due to the definition
of at-fault collisions, which discard certain rear-collisions into the ego vehicle, we suspect that
surround-view cameras used by UniAD and PARA-Drive, and LiDAR input of TransFuser, are less
important than the wide-angle front camera which is the only input of LTF. The 10 PDMS discrepancy
to the human operator demonstrates that navtest poses challenges even to well-studied end-to-end
architectures. Specifically, the drivable area compliance (DAC) and ego progress (EP) subscores
remain the most challenging. Notably, EP cannot be solved purely by human imitation, given that the
maximum progress estimate used for normalization is based on a privileged rule-based motion planner.
Interestingly, all agents achieve near-perfect comfort scores, indicating that smooth acceleration and
jerk profiles are learned naturally from human imitation.

Analyzing TransFuser. In Table 2, we compare several training settings for TransFuser. For
the three training seeds in configs A1-A3, we observe a standard deviation of ± 0.56 in PDMS,
which is relatively small compared to variance among training seeds for closed-loop simulations in
CARLA [17]. Further, unlike CARLA, NAVSIM is deterministic, and we obtain identical scores
when repeating evaluations of a deterministic driving agent. Discarding velocity and acceleration
(B1) lowers PDMS by 1.5− 2.6, whereas only removing the acceleration (B2) lowers the score by
1.0− 2.1. We conclude that while TransFuser benefits from the ego status, it is not purely relying
on the kinematic state for planning. Next, only considering the front camera (C1) with a 60◦ FOV
leads to a small drop in almost all subscores, compared to our default setting of three cropped and
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concatenated images with a FOV of 140◦. However, expanding the FOV with additional cameras
does not result in substantially improved scores. Interestingly, restricting the LiDAR range to 16m
in all directions (D1), results in a score of 79, which is lower than dropping LiDAR altogether (see
LTF in Table 1). Expanding the LiDAR range to 64m in the forward direction (D2) or all directions
(D3) does not provide significant improvements. We suspect that changes in the LiDAR range overly
simplify or complicate the auxiliary 3D object detection and BEV semantic segmentation tasks, which
operate in the LiDAR coordinate frame, hindering effective imitation learning. We check the impact
of the auxiliary tasks by excluding them, where performance drops without BEV Segmentation (E1).
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Figure 5: NAVSIM Challenge.

CVPR 2024 NAVSIM Challenge. We organized the inaugu-
ral NAVSIM challenge which ran from March - May 2024.
To ensure integrity, we used a private dataset and only gave
participants access to sensor inputs, withholding all annota-
tions. Competitors could submit their agent’s trajectories to
our leaderboard, where they were simulated and scored to ob-
tain the PDMS. We received 463 submissions from 143 teams,
of which 78 submissions were made publicly visible. We sum-
marize their scores in Fig. 5, relative to the constant velocity
and TransFuser baselines from Table 1. The winning entry
extended TransFuser and learned to predict proxy subscores
for trajectory samples [30], with a sampling strategy inspired
by VADv2 [10]. These predicted subscores were weighted
alongside a human imitation score to select the output plan. While the idea of sampling and scoring
trajectories is well-known [46, 51, 55, 6, 16], it has recently been overlooked in favor of approaches
which predict a single trajectory. This result prompts a reassessment of such methods. The team that
placed second employed a vision language model (VLM) for driving, which is rapidly emerging as
a sub-field in the AV literature [45, 33, 53, 58]. Several submissions attempted to reimplement or
extend prior work on nuScenes such as UniAD [21] and VAD [25], but were unable to outperform the
TransFuser baseline by the challenge submission deadline, given the significant engineering challenge
and compute requirements. The diversity of the solutions on the leaderboard shows the potential
of NAVSIM as a framework for pushing the frontiers of autonomous driving research. We aim to
hold future competitions with more challenging data and metrics. Detailed competition results and
statistics are provided in the supplementary material.

Method PDMS ↑
TransFuser [12] 83.9± 0.4
LTF [12] 83.5± 0.6
Ego Status MLP 66.4± 0.9

Hydra-MDP [30] 91.3
Constant Velocity 20.6

Table 3: Leaderboard 1.1.

NAVSIM 1.1 Leaderboard. Due to the lasting interest af-
ter the challenge, we re-opened a public evaluation server
using navtest as the evaluation split. The leaderboard en-
courages multi-seed submissions and includes reproducibility
requirements for openly releasing code and model weights.
We populated the leaderboard with 3 training seeds of our
learned baselines, as shown in Table 3. For reference, we also
include a single seed of the 2024 challenge winner [30] and
constant velocity baseline. Further information is provided in
the supplementary material and leaderboard webpage2.

5 Discussion

We present NAVSIM, a framework for non-reactive AV simulation. We address shortcomings of
existing driving benchmarks and propose standardized but configurable simulation-based metrics for
benchmarking driving policies. For accessibility, we provide challenging scenario splits and simple
data curation methods. We show that our evaluation protocol is better aligned to closed-loop driving,
benchmark an established set of end-to-end planning baselines from CARLA and nuScenes, and
present the results of our inaugural competition. We hope that NAVSIM can serve as an accessible
toolkit for AV researchers that bridges the gap between simulated and real-world driving.

Need for Reactive Simulation. While we show improvements over displacement errors, several
aspects of driving remain unaddressed by evaluation in NAVSIM. A high PDMS does not always imply
a high CLS, since our framework does not consider reactiveness or the compounding accumulation

2https://huggingface.co/spaces/AGC2024-P/e2e-driving-navsim
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of errors in closed-loop simulation. Moreover, as in CLS, rear-end collisions into the ego vehicle
are currently not classified as "at-fault", resulting in little importance given to the scene behind the
vehicle in NAVSIM. In the future, data-driven sensor or traffic simulation could alleviate these issues,
once such methods mature and become computationally tractable. Given these limitations of the
current framework, we strongly encourage the use of graphics-based closed-loop simulators, such as
CARLA [17], as complementary benchmarks to NAVSIM when developing planning algorithms.

Simplicity of Metrics. As a starting point, NAVSIM offers both interpretable open-loop subscores
and a scalarizing function, which lets us provide a final score and ranking for participants in the
challenge. In the future, multi-objective evaluation and other aggregation functions might be required.
Moreover, closed-loop metrics also face problems, i.e., PDMS inherits several weaknesses of nuPlan’s
CLS. Both scores do not regard certain traffic rules (e.g., stop-sign or traffic light compliance) or
concepts such as transit and fuel efficiency. In the future, we aim to improve the subscore definitions
(e.g. the at-fault collision logic) and add more subscores during aggregation.

Call for Datasets. Certain limitations of the nuPlan dataset persist in NAVSIM, such as missing
classes in the label space, minor errors in camera parameters, or noise in vehicle poses and 3D
annotations. Our analysis might favor methods that are robust to such inconsistencies. In addition,
the lack of road elevation data in our representation presents a challenge for integrating scenarios
based on 3D map annotations. We aim to support more datasets in the future, and advocate for more
open dataset releases by the community for accelerating progress in autonomous driving.
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