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Abstract

Trajectory prediction is a crucial technology to help systems avoid traffic accidents,
ensuring safe autonomous driving. Previous methods typically use a fixed-length
and sufficiently long trajectory of an agent as observations to predict its future
trajectory. However, in real-world scenarios, we often lack the time to gather
enough trajectory points before making predictions, e.g., when a car suddenly
appears due to an obstruction, the system must make immediate predictions to
prevent a collision. This poses a new challenge for trajectory prediction systems,
requiring them to be capable of making accurate predictions based on observed
trajectories of arbitrary lengths, leading to the failure of existing methods. In
this paper, we propose a Length-agnostic Knowledge Distillation framework,
named LaKD, which can make accurate trajectory predictions, regardless of the
length of observed data. Specifically, considering the fact that long trajectories,
containing richer temporal information but potentially additional interference,
may perform better or worse than short trajectories, we devise a dynamic length-
agnostic knowledge distillation mechanism for exchanging information among
trajectories of arbitrary lengths, dynamically determining the transfer direction
based on prediction performance. In contrast to traditional knowledge distillation,
LaKD employs a unique model that simultaneously serves as both the teacher
and the student, potentially causing knowledge collision during the distillation
process. Therefore, we design a dynamic soft-masking mechanism, where we first
calculate the importance of neuron units and then apply soft-masking to them, so as
to safeguard critical units from disruption during the knowledge distillation process.
In essence, LaKD is a general and principled framework that can be naturally
compatible with existing trajectory prediction models of different architectures.
Extensive experiments on three benchmark datasets, Argoverse 1, nuScenes and
Argoverse 2, demonstrate the effectiveness of our approach.
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(a) Model performance
on Argoverse 1. (b) Model performance

on Argoverse 2. (c) Longer trajectory
performs better. (d) Shorter trajectory

performs better.

Figure 1: Figure 1(a) and Figure 1(b) show the prediction results of HiVT [60] and QCNet [59] on
the Argoverse 1 [4] and Argoverse 2 [51] datasets by using observed trajectories of different lengths,
respectively. Figure 1(c) and Figure 1(d) display scenarios where longer trajectories perform better
and shorter trajectories perform better, respectively. The red line represents the ground-truth future
trajectory. The solid green and blue lines depict the observed trajectories, while the dashed green and
blue lines illustrate the predicted trajectories.

1 Introduction

Predicting the future trajectories of dynamic agents in traffic scenarios is a critical task in autonomous
driving, enabling autonomous vehicles to make safe decisions [55, 18]. Recently, numerous learning-
based methods [60, 43, 39, 48, 50, 57, 59] have been proposed and have demonstrated their effec-
tiveness in trajectory prediction tasks. These methods typically rely on fixed-length and sufficiently
long historical trajectories as observations for accurately predicting future trajectories. However,
In real-world scenarios, there is often insufficient time to gather an adequate number of observed
trajectory points. For example, when a car suddenly appears around a corner, the trajectory prediction
model needs to immediately make predictions by utilizing a small number of observed trajectory
points to avoid collisions. This poses a new and challenging problem for trajectory prediction,
requiring models to make accurate predictions based on observed trajectories of arbitrary lengths.
However, as the number of observed trajectory points decreases, the performance of existing methods
declines significantly, as shown in Figures 1(a) and 1(b). Therefore, it is essential to investigate
models capable of handling observed trajectories of arbitrary lengths to accurately predict future
trajectories.

In this paper, we propose a new knowledge distillation framework, Length-agnostic Knowledge
Distillation, called LaKD, for trajectory prediction with observations of arbitrary lengths. Firstly,
we note that longer trajectories often contain more temporal information, which can potentially
lead to higher prediction accuracy compared to shorter trajectories. As shown in Figure 1(c), the
blue vehicle’s straight trajectory history can boost confidence in predicting continued straight paths.
However, as the number of observed trajectory points increases, additional interference might be
introduced. As depicted in Figure 1(d), despite the longer trajectory of the blue vehicle, it encompasses
significant interference, leading to less accurate predictions compared to shorter trajectories. Inspired
by this, we devise a dynamic length-agnostic knowledge distillation strategy to adaptively transfer
knowledge among trajectories of different lengths. As we know, Knowledge Distillation (KD)
techniques [2, 14] have been widely applied in various domains, including computer vision [7, 11],
natural language processing [31, 12], etc. The basic idea of traditional KD algorithms is to optimize
a smaller student model by distilling knowledge from a larger teacher model. In contrast to these
KD methods, our strategy emphasizes dynamic knowledge transfer among trajectories of varying
lengths, rather than the conventional KD of transferring knowledge from the teacher model to the
student model. Our method shares a unique encoder for all trajectories of varying lengths to learn
the latent representations of trajectories of varying lengths. It aims to distill the knowledge of ‘good’
trajectory features to ‘bad’ trajectories, with the assessment of ‘good’ or ‘bad’ trajectories based
on their prediction performance. This strategy facilitates adaptive knowledge exchange between
long and short trajectories. It aids long trajectories in filtering out interfering information and assists
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short trajectories in capturing richer temporal information, ultimately obtaining the optimal feature
representation for predicting the agent’s trajectory.

It is worth noting that utilizing a single encoder as both the teacher and student models may affect
the prediction performance of a ‘good’ trajectory when distilling from a ‘good’ trajectory to a ‘bad’
trajectory, leading to knowledge collision during the distillation process. A straightforward solution
is to train a separate encoder for each trajectory length, but this approach significantly increases
computational complexity. To address this issue, we devise a dynamic soft-masking strategy. Since
different neuron units in a neural network model usually play different roles for different input data
[37], the core idea of our strategy is to perform soft-masking on the neuron units during gradient
updates. Specifically, when training on a ‘good’ observation trajectory, the importance of the neuron
units in the network is calculated based on the gradients. Subsequently, during length-agnostic
knowledge distillation, gradients of crucial neuron units are multiplied by a lower update weight
to mitigate significant updates. Conversely, less important units’ gradients are multiplied by a
higher update weight to prioritize their updates. Through this approach, knowledge conflicts can be
effectively resolved during the knowledge distillation process.

Our contributions can be summarized as follows: (1) We propose LaKD, a length-agnostic knowledge
distillation framework for trajectory prediction with observations of any length. LaKD is plug-and-
play and compatible with existing models, enabling them to gracefully handle observed trajectories
of arbitrary lengths. (2) We design a new knowledge distillation strategy that dynamically transfers
knowledge among trajectories of varying lengths. This approach helps long trajectories filter out
interfering information and enables short trajectories to capture richer temporal details. Additionally,
we devise a dynamic soft-masking strategy to protect crucial neuron units from disruption and prevent
knowledge collision during transfer. (3) We perform extensive experiments on three widely-used
benchmark datasets, and demonstrate that LaKD significantly outperforms the baselines. Moreover,
we show the compatibility of LaKD by integrating it with different trajectory prediction models.

2 Related Works

Traditional Trajectory Prediction. Traditional trajectory prediction methods aim to predict future
trajectories of agents given sufficiently long observed trajectories. To date, many methods have
been proposed, including coordinate system based methods [50, 17], interactive behavior modeling
based methods [28, 27, 25], multimodal approaches [44, 46]. The representative works among
coordinate system based methods are pairwise-relative [60, 8, 17, 59, 57], which can simultaneous
predict trajectories for multiple agents while reducing memory consumption and inference latency.
Meanwhile, interaction behaviors play an important role in trajectory prediction. To model interactive
behaviors within scenes, methods such as Graph Neural Networks [28, 27, 22, 5, 33, 41, 42] and
attention mechanisms [39, 1, 6, 36, 32, 52, 23] are introduced. Given the substantial uncertainty
surrounding road agents, researchers are exploring diverse methods by integrating multimodal
information into predicted trajectories, such as GAN-based [29, 44, 46, 58, 16, 26, 9, 13], VAE-based
[47, 49, 21], flow-based [30, 56], and diffusion models [10, 15, 24, 35] to generate multimodal
trajectories. However, these methods generally perform well with fixed-length and sufficiently long
historical trajectories but experience a significant performance drop when the length of observable
historical trajectories varies.

Instantaneous Trajectory Prediction. Recently, significant advances have been made in instanta-
neous pedestrian trajectory prediction tasks, using very short (i.e., two frames) historical trajectories.
For example, MOE [45] introduces a unified feature extractor and a pre-training mechanism to
capture effective information from momentary observations. DTO [38] employs a knowledge distilla-
tion technique to transfer knowledge from long trajectories to short ones. BCDiff [24] develops a
bidirectional diffusion model that simultaneously generates both unobserved historical and future
trajectories. However, when confronted with input data containing varying numbers of frames, they
necessitate training a model for each case, resulting in limited generalizability and high computa-
tional complexity. In contrast to these works, we focus on studying how to perform length-agnostic
knowledge distillation to adaptively transfer knowledge among long and short trajectories, so as to
accurately predict future trajectories with observations of arbitrary lengths.
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Figure 2: Illustration of our LaKD framework. During training, we randomly mask historical
trajectories M times to generate observed trajectories of varying lengths. Subsequently, we design a
length-agnostic knowledge distillation module to dynamically transfer knowledge across trajectories
of different lengths. Finally, we devise a dynamic soft-masking mechanism during gradient updates to
effectively prevent knowledge conflicts. During inference, random masking, knowledge distillation,
and dynamic soft-masking are not implemented.

Trajectory Prediction with Complex Observations. Currently, there are limited works focusing on
complex observed trajectories for trajectory prediction. The recently proposed GC-VRNN framework
[53] facilitates the concurrent execution of incomplete trajectory completion and prediction tasks in a
unified framework. However, this model does not take into account important traffic information,
e.g., lane, making it unsuitable for vehicle trajectory prediction tasks. The FLN framework [54],
which is most closely related to our work, propagates long historical trajectory information into
medium and short trajectories to optimize the fitting of invariant features across multiple subnetworks.
However, this strategy requires maintaining three models simultaneously during training, sharply
increasing computational complexity. In addition, it is plug-and-play but can only be integrated
with Transformer based models. Moreover, this method assumes that longer observed trajectories
always contain more useful information for trajectory prediction, and transfers knowledge from
longer trajectories to shorter ones. Different from FLN, we observe that longer observed trajectories
do not necessarily contain more valuable information than shorter ones for trajectory prediction, and
thus explore a length-agnostic knowledge distillation to dynamically transfer knowledge among long
and short trajectories, enabling our method to gracefully handle observed trajectories of arbitrary
lengths.

3 Method

3.1 Problem Formulation

We denote the observed state sequence of the target agent as Xobs = {x1, x2, ..., xT }, where T
represents the observed time steps of the target agent, and it can be of arbitrary length greater than 12.
xi ∈ R2 is the location of the agent at time step i. Additionally, we define the ground-truth future
trajectories as Xgt = {xT+1, xT+2, ..., xT+F }, and the predicted future possible K trajectories as
X̂ = {(x̂k

T+1, x̂
k
T+2, ..., x̂

k
T+F )}k∈[1,K], where F denotes the length of the future trajectory. Our

objective is to develop a flexible trajectory prediction method capable of handling the case of observed
trajectories of arbitrary lengths. Given that longer trajectories contain richer temporal information
yet may also entail additional interference, their performance relative to short trajectories can vary.
Thus, we attempt to explore a length-agnostic knowledge distillation framework for dynamically
transferring knowledge among long and short trajectories, enabling long trajectories to filter out
interference and allowing short trajectories to capture richer temporal details. By doing so, we aim to
enhance the performance of trajectory prediction with observations of any lengths.

2Previous works [45, 24] have shown that when the agent has only one frame of historical trajectory data, it
cannot be predicted due to the lack of basic information such as velocity and direction.
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3.2 Overall Framework

The overall framework of the proposed LaKD is shown in Figure 2. Our framework consists of two
parts: a length-agnostic knowledge distillation mechanism and a dynamic soft-masking strategy. First,
to enhance the model’s ability to handle observed trajectories Xobs of arbitrary lengths, we propose a
length-agnostic knowledge distillation mechanism. This mechanism first evaluates the performance of
the predicted trajectories X̂, and then determines the direction of knowledge distillation accordingly.
Finally, it promotes adaptive knowledge exchange among trajectories of varying lengths, helping long
trajectories filter out interfering information and short trajectories capture richer temporal information.
However, since this strategy uses a single encoder as both the teacher and student models, it risks
causing knowledge conflicts during distillation. Therefore, we propose a dynamic soft-masking
strategy to address this issue. Specifically, When training on a ‘good’ observation trajectory, the
importance of neuron units in the network can be determined by their gradients. During length-
agnostic knowledge distillation, crucial neuron gradients are multiplied by a lower update weight to
mitigate significant updates, while less important gradients are multiplied by a higher update weight
to prioritize their updates. This strategy can effectively resolve knowledge conflicts during distillation,
such that our LaKD can effectively perform trajectory prediction based on observations of arbitrary
lengths. In essence, LaKD is a plug-and-play approach that can be easily integrated with existing
trajectory prediction models, enabling accurate predictions based on observed trajectories of varying
lengths.

3.3 Length-agnostic Knowledge Distillation

In this section, we introduce our proposed length-agnostic knowledge distillation mechanism, which
can facilitate information exchange among trajectories of different lengths, thereby enhancing the
model’s ability to handle observed trajectories of arbitrary lengths.

First, we obtain Xobs of M different lengths by performing M random masks on the same observed
trajectory, where the m-th trajectory is denoted as Xobs

m . As shown in Figure 2, these trajectories are
fed into the backbone Φ to generate the latent features Vm and predicted trajectories X̂m:

Vm = ΦE(X
obs
m ;ϕE), X̂m = ΦD(Vm;ϕD), (1)

where ΦE and ΦD denote the encoder and decoder of Φ, with parameterized by ϕE and ϕD, respec-
tively. The backbone Φ can be any trajectory prediction model, e.g., HiVT [60] and QCNet [59] used
in this paper, making our method plug-and-play.

As aforementioned, longer trajectories contain richer temporal information but may also involve
additional interference for trajectory prediction, thus we design a length-agnostic knowledge dis-
tillation strategy, where knowledge transfer can occur from longer trajectories to shorter ones, as
well as from shorter to longer trajectories. To dynamically determine the direction of knowledge
transfer, we employ the prediction performance based on different observed trajectories to find a
‘good’ trajectory, and attempts to distill the knowledge embedded in its latent features Vm to those of
‘bad’ trajectories. To measure the prediction performance, we calculate the minimum distance Dm

between the predicted trajectories X̂m and the ground-truth trajectories Xgt using the l2 norm:

Dm = min
i∈{1,2,...,k}

√√√√ T+F∑
j=T+1

∥x̂ij − xj∥2

 . (2)

During training, if the prediction performance of the current observation trajectory is worse than that
of a previous ‘good’ observation trajectory, we begin to distill knowledge from the ‘good’ trajectory
to the current trajectory. In this paper, we use the latent features as knowledge for transfer, and use
the KL divergence [20] to minimize the following distillation loss to achieve the goal:

Lkl = KL(Vm|Vgood), (3)

where Vgood represents the latent features of the ‘good’ trajectory. By Eq. (3), the features Vm

of ‘bad’ trajectories are expected to be optimized towards those of ‘good’ trajectories, i.e., Vgood.
This facilitates effective knowledge transfer from ‘good’ to ‘bad’ trajectories. It is worth noting that
different from traditional knowledge distillation optimizing a smaller student model by distilling
knowledge from a larger teacher model, we utilize a unique encoder to encode all trajectories of
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arbitrary lengths, and distill knowledge from ‘good’ trajectory to ‘bad’ one. This may lead to
knowledge collision during the distillation process, degrading the feature representation capability of
the ‘good’ trajectory. To this end, we devise a dynamic soft-masking strategy to address the issue of
knowledge collision.

3.4 Dynamic Soft-Masking

As we know, different neuron units in a neural network model typically play distinct roles for various
input data [37]. Thus, we attempt to perform soft-masking on the neuron units during gradient updates.
Specifically, when training on a ‘good’ observation trajectory, we determine the importance of the
neuron units based on their gradients. During length-agnostic knowledge distillation, the gradients of
crucial neuron units are multiplied by a lower update weight to prevent significant updates, while the
gradients of less important units are multiplied by a higher update weight to prioritize their updates.
By this strategy, knowledge conflicts can be effectively resolved during the distillation process.

Importance Score of Neuron Unit. During the training process, if the gradient of a neuron unit is
large, it indicates that changing it will have a significant impact on the result [37, 19]. Building on
this, we aim to identify which units are essential for the model to produce accurate predictions. To do
so, we first calculate the importance scores of the different units in the network as follows:

Iu =
1

B

B∑
b=1

|
∂L(X̂b,X

gt
b ))

∂gu

|, (4)

where B denotes the batch size. X̂b and Xgt
b represent the predicted trajectories and the ground-truth

trajectories, respectively. gu is introduced as a virtual parameter for calculating the importance Iu of
units, where we fix gu to 1 in the training. Iu is the importance score of the u-th neuron unit.

Since the gradients of the neuron units are usually very small, they cannot be directly applied to the
calculation of soft masking weights. Therefore, it is necessary to confine the values of importance
scores within the range [0,1]. To achieve this, we first normalize the importance scores of all units
within each layer, ensuring a mean of 0 and a standard deviation of 1. Then, we apply the Tanh
activation function to these normalized scores as:

Îu = (tanh

(
Iu − µ

σ

)
+ 1)/2, (5)

where µ represents the average importance of all units in the l-th layer, while σ denotes their variance.

Accumulation of Importance Scores. Due to the fact that different units in the model play varying
roles for trajectories of varying lengths, it is necessary to preserve the model’s ability as much as
possible during training. Therefore, during the m-th training iteration, we need to comprehensively
consider the importance of units from the previous m-1 training iterations, and employ the element-

wise maximum (EMax) operation for calculating the cumulative importance Î
(≤m−1)

u of the model
up to the (m-1)-th iteration:

Î
(≤m−1)

u = EMax({Î
(m−1)

u , Î
(≤m−2)

u }), (6)

where we set Î
(0)

u uniformly to 0.

Dynamic Soft-Masking of Units. During early training stages, when the model’s predictive
capability is initially constrained, the informativeness of unit importance scores is limited. As training
progresses, the reliability of these scores gradually improves. Therefore, we introduce a dynamic
decay coefficient ξ to control the strength of the soft-masking. The specific formulas for the decay
coefficient and the dynamic soft-masking mechanism based on the importance of units are as follows:

∇̂u = (1− Î
(≤m−1)

u ∗ ξ)⊗∇u, (7)

ξ =

{
min(Lreg ∗ γ, 1) if Lreg < 0

0 otherwise,
(8)
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where γ is a hyperparameter. Lreg represents the regression loss between the predicted trajectories
and the ground-truth trajectories, as used in HiVT [60] and QCNet [59]. ∇u and ∇̂u represent
the gradients of the units before and after soft-masking, respectively. The dynamic soft-masking
mechanism effectively addresses the issue of knowledge conflict between trajectories of different
lengths, promotes cross-length information exchange and thereby enhances the model’s ability to
predict trajectories based on observations of arbitrary lengths.

3.5 Optimization and Inference

Optimization. Following HiVT [60] and QCNet [59], we also adopt the negative log-likelihood as
the regression loss Lreg, which regresses the trajectory closest to the ground truth. In addition, We
also use the cross-entropy loss as the classification loss Lcls to optimize the trajectory prediction
model. Finally, the total loss function can be expressed as follows:

L = Lreg + αLcls + βLkl, (9)

where α and β are the hyperparameters used to balance the contributions of different loss functions.
We provide the pseudo-code of the training procedure in Appendix A.1.

Inference. After training, the model can be utilized for trajectory prediction based on observations of
arbitrary lengths. For a new observed trajectory of any length, we directly input it into the encoder
and decoder for future trajectory prediction, bypassing knowledge distillation and soft masking.

4 Experiments

4.1 Experimental Settings

Dataset. We evaluate the performance of our method on three widely used datasets: Argoverse 1 [4],
nuScenes [3] and Argoverse 2 [51]. The Argoverse 1 dataset comprises 323,557 real driving scenes
from Miami and Pittsburgh. The observation duration is 5 seconds with a sampling frequency of
10Hz. Traditional trajectory prediction approaches typically assume that the first 2 seconds represent
the historical observed trajectories, while the last 3 seconds are considered as the future ground-truth
trajectories. The nuScenes dataset comprises 32,186 training scenarios, 8,560 validation scenarios,
and 9,041 test scenarios. Each scenario spans 8 seconds, sampled at 2 Hz. Traditional trajectory
prediction approaches typically assume that the first 2 seconds (5 locations) are used as the observed
trajectory, while the last 6 seconds are designated as the future ground-truth trajectory. The Argoverse
2 dataset includes 250,000 scenes spanning across six cities. The observation duration is 11 seconds
with a sampling frequency of 10Hz. Traditional trajectory prediction approaches typically assume
that the first 5 seconds are used as historical observed trajectories, while the last 6 seconds serve as
future ground-truth trajectories. By masking trajectories on these datasets, we aim to evaluate the
effectiveness of our trajectory prediction method with observations of arbitrary lengths.

Evaluation Metrics. To comprehensively evaluate the model, we employ a set of evaluation metrics
based on the minimum Average Displacement Error (minADE), minimum Final Displacement Error
(minFDE), and Miss Rate (MR) as:

minADEK =
1

H − 1

H∑
i=2

(minADET=i
K ), (10)

minFDEK =
1

H − 1

H∑
i=2

(minFDET=i
K ), (11)

MRK =
1

H − 1

H∑
i=2

(MRT=i
K ), (12)

where H denotes the maximum number of observation points, and K represents the number of
trajectories to be predicted. T = i represents the number of observation points. We evaluate the
performance for each observation length and then average the results across all lengths to obtain the
final outcome.
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Table 1: Comparisons of different methods on Argoverse 1 and Argoverse 2, evaluated using
minADE, minFDE and MR metrics. The best results are highlighted in bold.

Dataset Methods
K=1 K=6

minADE minFDE MR minADE minFDE MR

Argoverse 1

HiVT-Orig 1.4733 3.1834 0.5267 0.7255 1.0740 0.1124
HiVT-RM 1.4189 3.0599 0.5104 0.7070 1.0447 0.1053
HiVT-DTO 1.3999 3.0262 0.5056 0.7032 1.0350 0.1039
HiVT-FLN 1.4011 3.0288 0.5051 0.7026 1.0325 0.1033

HiVT-LaKD 1.3317 2.8799 0.4901 0.6807 0.9864 0.0928

Argoverse 1

QCNet-Orig 1.1656 2.4021 0.3860 0.5791 0.7399 0.0734
QCNet-RM 1.0995 2.2550 0.3630 0.5684 0.7115 0.0703
QCNet-DTO 1.0708 2.2303 0.3563 0.5418 0.6848 0.0671
QCNet-FLN 1.0631 2.2083 0.3579 0.5411 0.6680 0.0671

QCNet-LaKD 0.9982 2.0718 0.3439 0.5240 0.6581 0.0640

nuScenes

HiVT-Orig 3.5973 8.3062 0.8518 1.5289 2.8261 0.4377
HiVT-RM 3.6580 8.4889 0.8647 1.5245 2.8068 0.4716
HiVT-DTO 3.5860 8.2556 0.8514 1.5105 2.7379 0.4350
HiVT-FLN 3.5640 8.1928 0.8488 1.5094 2.7489 0.4427

HiVT-LaKD 3.4296 7.8882 0.8369 1.4793 2.6934 0.4329

nuScenes

QCNet-Orig 4.3134 9.7857 0.8588 1.4719 2.5831 0.4600
QCNet-RM 4.1723 9.4672 0.8622 1.5255 2.6303 0.4611
QCNet-DTO 4.1447 9.4552 0.8580 1.4653 2.5798 0.4317
QCNet-FLN 4.1169 9.3639 0.8562 1.4676 2.5448 0.4344

QCNet-LaKD 4.0663 9.2524 0.8523 1.4594 2.4901 0.4023

Argoverse 2

HiVT-Orig 2.5502 6.5586 0.7455 1.0561 2.1093 0.3275
HiVT-RM 2.2848 6.0548 0.7249 0.9457 1.9283 0.2994
HiVT-DTO 2.2769 6.0548 0.7275 0.9324 1.8946 0.2903
HiVT-FLN 2.2786 6.0464 0.7240 0.9287 1.8838 0.2891

HiVT-LaKD 2.2066 5.8769 0.7161 0.9183 1.8686 0.2791

Argoverse 2

QCNet-Orig 2.1006 5.2219 0.6299 0.8339 1.3849 0.1884
QCNet-RM 1.7452 4.4404 0.5957 0.7508 1.3184 0.1671
QCNet-DTO 1.7713 4.4900 0.5979 0.7454 1.2924 0.1671
QCNet-FLN 1.6940 4.2373 0.5808 0.7370 1.2595 0.1596

QCNet-LaKD 1.6574 4.1505 0.5753 0.7258 1.2420 0.1555

Backbone and Baselines. To demonstrate the compatible ability of our LaKD, we combine it
with two representative trajectory prediction methods: HiVT [60] and QCNet [59]. To verify the
effectiveness of our method, we compare LaKD with FlexiLength Network (FLN) [54], the work
most related to ours. FLN integrates trajectory data with diverse observation lengths and attempts
to learn temporally invariant representations for future trajectory predictions. We also compare
LaKD with (DTO) [38]. DTO is initially developed for instantaneous trajectory prediction. To
ensure fairness, we modify its framework to distill from complete trajectories into arbitrary length
trajectories. Moreover, we take Orig and RM as our baselines. Orig denotes using the original
fixed-length observed trajectories as inputs for training the backbones, while RM involves randomly
masking the original observed trajectories to generate trajectories of varying lengths as inputs for
training the backbones.

Implementation Details. During training, we set M in our LaKD to 3, and both α and β to 1.
For Argoverse 1, nuScenes, and Argoverse 2, we set γ to -1, -0.65, and -1.35, respectively. The
dimensionality of the encoded latent feature Vm is set to 128. We utilize the AdamW optimizer [34],
setting the learning rate and weight decay parameters to 5e-4 and 1e-4, respectively. The batch size is
set to 32. The experiments are implemented using PyTorch [40] on the NVIDIA GeForce RTX 4090.

4.2 Results and Analysis

Performance on Trajectory Prediction with Observations of Arbitrary Lengths. We evaluate
the overall performance of our method, as listed in Table 1. Based on Table 1, our method outper-
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forms all others, particularly surpassing FLN, across all the three datasets. This demonstrates the
effectiveness of our method in predicting future trajectories from observations of varying lengths.
Moreover, our LaKD outperforms Orig, indicating the necessity of developing a trajectory prediction
method specifically designed to handle observations of varying lengths. Finally, our LaKD achieves
the best performance with various backbones, demonstrating the compatibility of our method. More
detailed results are presented in Appendix A.2.

Ablation Study. We conduct ablation studies to validate the effectiveness of our proposed compo-
nents using HiVT as the backbone on the Argoverse 1 dataset. Since the Random Masking strategy
was first presented in this paper, we also conduct ablation study to verify its effectiveness. The
results are shown in Table 2. The experiments demonstrate that as we progressively remove the
dynamic soft-masking mechanism (DSM), the Length-agnostic Knowledge Distillation (LaKD), and
the Random Masking (PM), the performance of our method gradually declines, demonstrating the
effectiveness of our proposed components. By combining these components, our method achieves
the best performance.

Table 2: Ablation study of our method on the Argoverse 1 dataset.

RM LaKD DSM
K=1 K=6

minADE minFDE MR minADE minFDE MR

1.4733 3.1834 0.5267 0.7255 1.0740 0.1124
✓ 1.4189 3.0599 0.5104 0.7070 1.0447 0.1053
✓ ✓ 1.3619 2.9511 0.5051 0.6851 0.9965 0.0948
✓ ✓ ✓ 1.3317 2.8799 0.4901 0.6807 0.9864 0.0927

Analysis of Different Mask Numbers M . We investigate the impact of different mask numbers M
in our LaKD on the trajectory prediction performance. We use HiVT [60] as the backbone, and list
the results in Table 3. Since our method involves randomly masking historical trajectories M times
in each training iteration and continues for a sufficient number of epochs, observation trajectories of
all different lengths are seen during training, regardless of the value of M . Consequently, the model’s
performance does not significantly degrade as M changes, indicating that the model is not sensitive
to M . This makes M easy to set in real-world scenarios. For our experiments, we set M = 3.

Table 3: Analysis of our method with different M on the Argoverse 1 dataset.

M
K=1 K=6

minADE minFDE MR minADE minFDE MR

2 1.3457 2.9116 0.4943 0.6808 0.9863 0.0930
3 1.3317 2.8799 0.4901 0.6807 0.9864 0.0928
4 1.3414 2.9017 0.4938 0.6814 0.9867 0.0934
5 1.3563 2.9359 0.5010 0.6851 0.9973 0.0961
6 1.3486 2.9198 0.4977 0.6878 1.0025 0.0943

Qualitative Analysis. To intuitively demonstrate the effectiveness of our LaKD, we perform a
qualitative experiment on the Argoverse 2 dataset, as shown in Figure 3. The first row features a
scenario at a T-junction where the agent is about to turn, with an observed trajectory spanning 5
points. The second row illustrates a scenario at a fork in the road, where the agent is preparing to
change lanes, with an observed trajectory of 10 points. It is observable that across different scenarios,
our method exhibits higher accuracy compared to other models.

5 Conclusion

In this paper, we propose a length-agnostic knowledge distillation framework for trajectory prediction
with observations of any length. This framework enables long trajectories to filter out interfering
information and short trajectories to capture richer temporal details. To address knowledge conflicts
during distillation, we devise a dynamic soft-masking mechanism to protect crucial neuron units
from disruption, thereby enhancing prediction performance. Extensive experiments on the Argov-
erse 1, nuScenes, and Argoverse 2 datasets demonstrate the effectiveness of our approach and its
compatibility with various trajectory prediction models.
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(a) QCNet-Orig (b) QCNet-FLN (c) QCNet-LaKD

Figure 3: Qualitative results on the Argoverse 2 dataset using (a) QCNet-Orig, (b) QCNet-FLN,
and (c) QCNet-LaKD. The observed trajectories, ground-truth trajectories and predicted trajectories
are shown in green, red and blue, respectively. Our predicted future trajectories are closer to the
ground-truth, compared to other methods.
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A Appendix

A.1 Training Procedure of LaKD

We present the training procedure for LaKD in Algorithm 1.

Algorithm 1: Training Procedure of LaKD
while Model not converges do

Sample trajectory (Xobs,Xgt) from dataset;
for m = 1 to M do

Random mask to get Xobs
m ;

Obtain predicted trajectories X̂m by Equation (1);
Compare the prediction performance of the current observation trajectory with the

previous ‘good’ observation trajectory by Equation (2), and then determine the direction
of knowledge distillation;

Carry out knowledge distillation according to Equation (3);
Calculate the total loss function L by Equation (9);
Calculate importance scores of units Iml by Equations (4) and (5);
Calculate cumulative importance I

(≤m−1)
l by Equation (6);

Constrain the gradient of units according to Equations (7) and (8);
Update parameters using the AdamW optimizer.

end
end

A.2 Additional Experimental Results

In this section, we demonstrate our model’s ability to process observed trajectories of arbitrary lengths
using three metrics: minADE, minFDE, and MR. From the figures below, our method significantly
outperforms other baselines in handling trajectory points of any length.

Figure 4: Comparison of Results Using HiVT as the backbone on the Argoverse 1 dataset.
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Figure 5: Comparison of Results Using QCNet as the backbone on the Argoverse 1 dataset.

Figure 6: Comparison of Results Using HiVT as the backbone on the nuScenes dataset.
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Figure 7: Comparison of Results Using QCNet as the backbone on the nuScenes dataset.

Figure 8: Comparison of Results Using HiVT as the backbone on the Argoverse 2 dataset.
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Figure 9: Comparison of Results Using QCNet as the backbone on the Argoverse 2 dataset.

A.3 Limitations

In this work, we aim to distill knowledge from ‘good’ trajectory to ‘bad’ trajectory for improving the
prediction performance from observations of any lengths. However, how to determine a ‘good’ or
‘bad’ trajectory is an open problem. Currently, we adopt a heuristic strategy by utilizing the distance
between the predicted trajectory and the ground-truth trajectory. More complex strategies, such as
reinforcement learning, are worth further exploration and investigation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions of the paper,
including the development and evaluation of our proposed model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We conduct a detailed analysis of the limitations of the framework proposed in
this paper in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive information necessary to reproduce the
main experimental results, ensuring transparency and replicability of the findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code as open-source as soon as the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the Section 4 and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the high cost of training, we did not perform multiple runs to compute
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computer resources in the Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms fully with the NeurIPS Code of
Ethics. We have reviewed the guidelines thoroughly and ensured that all aspects of our work
adhere to the ethical standards set forth by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive societal impacts of the work per-
formed, highlighting the benefits and advancements it can bring to the field and society at
large.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

22

28741https://doi.org/10.52202/079017-0903

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, because trajectory prediction models do not
have high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited and cited the creators or original owners of assets,
including code and papers, used in our work. We have explicitly mentioned the licenses and
terms of use for these assets and have respected them accordingly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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