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Abstract

Verbal and visual-spatial information processing are two critical subsystems that
activate different brain regions and often collaborate together for cognitive rea-
soning. Despite the rapid advancement of LLM-based reasoning, the mainstream
frameworks, such as Chain-of-Thought (CoT) and its variants, primarily focus
on the verbal dimension, resulting in limitations in tackling reasoning problems
with visual and spatial clues. To bridge the gap, we propose a novel dual-modality
reasoning framework called Vision-Augmented Prompting (VAP). Upon receiving
a textual problem description, VAP automatically synthesizes an image from the
visual and spatial clues by utilizing external drawing tools. Subsequently, VAP
formulates a chain of thought in both modalities and iteratively refines the synthe-
sized image. Finally, a conclusive reasoning scheme based on self-alignment is
proposed for final result generation. Extensive experiments are conducted across
four versatile tasks, including solving geometry problems, Sudoku, time series
prediction, and travelling salesman problem. The results validate the superiority of
VAP over existing LLMs-based reasoning frameworks.

1 Introduction

The human cognitive system is characterized by the presence of two specialized subsystems within the
working memory: the phonological loop, which processes verbal information, and the visual-spatial
sketchpad, which processes visual and spatial information [1]. Both of them play a crucial role in
problem-solving by offering qualitatively distinct strategies for comprehending and manipulating
information [2]. Recently, with the rapid advancement of LLMs, there have emerged various reasoning
frameworks, such as Chain of Thought (CoT) [3], Self-consistent CoT (CoT-SC) [4], and Tree of
Thoughts (ToT) [5]. Although these frameworks have shown impressive performance across a wide
range of NLP tasks, they primarily focus on the verbal dimension with text-only representations,
resulting in limitations in tasks that require visual and spatial interpretation (e.g., geometry problems
or grid puzzles).

In this paper, we propose a novel dual-modality reasoning approach called Vision-Augmented
Prompting (VAP) that analogizes human cognition subsystems with the assistance of multimodal
large language models (MLLMs). VAP takes textual problems as input and uses self-synthesized
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There is a circle centered at (-2.0, 
-2.0) with a radius of 2.0.
There is another circle with its 
center at (0.0, 0.0) that passes 
through (-2.0, -2.0).
There is a line segment with a 
slope of -1 that also passes 
through the point (-2.0, -2.0).

How many intersection points 
are there in this figure?

Input:

Output:
There is at least 1 intersection 
point, which is (-2, -2).

(a) With text-only input

-6 -4 -2 0 2
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-4

-2

0

2

How many intersection points 
are there in this figure?

According to the figure, there 
are 5 intersection points.

Output:

Input:

(b) Enhanced with visual input

Figure 1: An example of solving the same Geometry
Intersection Counting problem using different types of
input. Outputs are derived from GPT-4; for brevity, only
the conclusions are presented.
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Figure 2: Compare with Standard Prompt-
ing and Chain of Thoughts Prompt-
ing(CoT).

images as an additional information channel to enhance reasoning. As shown in Figure 1, we employ
the state-of-the-art GPT-4V(ision) [6] to solve a geometry problem. In this case, the model accurately
deduces the correct answer when given both image and text inputs. In contrast, it generates an
ambiguous answer with purely textual information. This example is analogous to the process of
human cognition where it is a common practice to use images to enhance comprehension when
handling geometry problems [7].

Our proposed vision-augmented prompting comprises three steps. Initially, LLMs generates a high-
level plan for the following steps, including selecting an appropriate drawing toolkit and creating
an initial image. To automate the procedure, we leverage the API documentation of external tools
as context of LLM to facilitate drawing tool selection and figure synthesis. In the second step, VAP
iteratively performs reasoning on the image, updates it, and generates an accompanying textual
thought in each iteration. This process results in a chain of thoughts in both image and text modalities,
as illustrated in Figure 2. Lastly, the final image and the chain of textual thoughts are jointly fed
to the MLLM to derive a conclusive answer. To enhance robustness, we introduce a technique
called self-alignment, where the MLLM describes the image content first, and the image channel is
discarded if the self-description fails to align with the initial high-level plan.

We conduct extensive experiments across four versatile tasks, among which VAP establishes new state-
of-the-art performance compared to other training-free LLMs-based methods. These four reasoning
tasks include: (1) Geometry Intersection Counting in the domain of geometry word problems (+5.0%
absolute accuracy gains); (2) Sudoku Puzzle as a logical reasoning task (+12.9%); (3) Time Series
Prediction as a numerical analysis task (+9.9% in reducing mean absolute error); and (4) Travelling
Salesman Problem as a classical NP-hard problem in the field of operations research (+1.8% in
reducing the optimal gap).

2 Related Work

2.1 LLMs-based Reasoning

Improving the reasoning capabilities of LLMs such as GPT-4 [8], PaLM2 [9], and LLaMA2 [10] has
been a hot topic in recent years. To achieve the goal, Chain-of-Thought (CoT) [3] breaks a reasoning
task into a series of intermediate reasoning steps. Self-consistency [4] replaces the naive greedy
decoding in CoT by sampling a diverse set of reasoning paths and selecting the most consistent
answer. Tree of Thoughts (ToT) [5] and Graph of Thoughts (GoT ) [11] further allow LLMs to
explore and combine thoughts in a structured manner. Cumulative Reasoning (CR) [12] decomposes
a reasoning task into smaller components, which are solved in a cumulative and iterative manner.
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Additionally, Chain-of-Experts [13] enhances reasoning capabilities through the collaboration of
multiple LLMs.

2.2 Multimodal Large Language Models

The emergence of Multi-modal Large Language Models (MLLMs) such as GPT-4V(ison) [6] has
fostered a new research landscape. Although the architecture of GPT-4V is not publicly available,
substantial progress has been made in the open-source domain [14, 15, 16, 17]. These works usually
fine-tune traditional text-based LLMs to align with other modalities. Similar approaches are also
adopted by multimodal chatbots [18] and multimodal universal task solvers [15, 19] for vision-related
tasks [20, 21, 22].

2.3 MLLMs-based Reasoning

According to a recent survey [23], reasoning based on MLLMs can be broadly categorized into LLM-
aided visual reasoning and multi-modal Chain-of-Thought. LLM-aided visual reasoning focuses
on solving traditional visual reasoning tasks with the assistance of LLMs. This includes tasks such
as visual question answering [24], image segmentation [25], and video question answering [26].
Some works in this category, like ViperGPT [27], VisProg [28], and LLava-Plus [29], also use
MLLMs to call external tools for enhanced reasoning, while their task settings differ from ours.
On the other hand, the multi-modal Chain-of-Thought extends traditional prompting techniques to
the multi-modal context. MM-ReAct [30] extends ReAct [31] to support multimodal data. The
Visual Chain of Thought (VCoT) [32] uses CoT with vision-language grounding to bridge the gap in
multi-step temporal reasoning. Compared with our work, VCoT is designed to bridge the logical gaps
within sequential data and facilitate temporal reasoning in tasks like visual storytelling and WikiHow
summarization.

3 Methodology

Mainstream LLMs-based reasoning frameworks, such as CoT, ToT, and GoT, only consider the
verbal domain L. To tackle more challenging problems with visual and spatial clues, we propose
vision-augmented prompting (VAP) and extend the exploration space from a single domain L to a
dual-modality domain L ∪ G , where G represents the visual-spatial domain. It relies on the external
image synthesis toolkit to automatically draw an image matching the text description of the input
problem (Section 3.1). The core challenge lies in how to effectively navigate the joint space and
maximize the success rate of problem solving, which will be presented in Section 3.2.

3.1 External Image Synthesis Toolkit

While visual-spatial information can be beneficial for reasoning as demonstrated in Figure 1, LLMs
lack the inherent ability to visualize concepts. Therefore, it is necessary to leverage external image
synthesis toolkit. Vision-augmented prompting incorporates graphic rendering tools that rely on
logical programming to render images, including Python Turtle [33] for graphical visualizations,
and Matplotlib [34] for drawing analytical figures. In addition to these third-party programmable
tools, we further integrate image generative models, such as DALL·E 3 [35], to produce images
directly from textual prompts. Consequently, we define the set of our drawing tools as ST =
{Turtle,Matplotlib,DALL·E 3}. These tools will be utilized by our method through API calls.

3.2 Procedures of Vision-Augmented Prompting

We model the problem-solving process of VAP as an iterative reasoning process. With the aid of the
image synthesis tools, VAP progressively updates the image according to the instruction provided by
the language model. To maintain a coherent reasoning trajectory, a ‘thought’ is generated on each
iteration. Subsequently, to derive the conclusive answer, the final image, the original problem, and
the trajectory of iterative thoughts are sent to the MLLM to obtain the final answer. However, we find
it challenging for LLMs to perform iterative multi-step drawing and reasoning directly due to the lack
of a global view. To overcome this limitation, we introduce a planning step, where LLMs will create
a high-level plan for subsequent steps. Furthermore, it is possible that the synthesized image could be
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Output:

Input:

Output:

Input: 
There is a circle centered at (-2, -2) with a radius of 2. 
There is a circle centered at (0, 0) that passes through (-2, -2). 
There is a line segment with slope -1 that passes (-2, -2).
How many intersection points are there?

{ 
tool: "Python matplotlib" , 
draw_content_of_each_step:"Draw the next shape on the figure",
when_terminate: :"All shapes are placed on the figure",

 thought_at_each_step: "the new 
intersections at each step."
initialization: “

fig, ax = plt.subplots()
ax.set_xlim(-6, 2)
ax.set_ylim(-6, 2)" 

}

Step 1: Planning

{
thought: “ Only one shape, with no intersections.”, 
is_terminate: False
iterative_draw_step: “

plt.circle(c=(-2,-2), r=2, fill=False)”
}

Step 2: Iterative reasoning

High-level Drawing Planning:

There is a circle centered at (-2, -2) with a radius of 2. 
There is a circle centered at (0, 0) that passes through (-2, -2). 
There is a line segment with slope -1 that passes (-2, -2).
How many intersection points are there?
Trajectory of  thoughts:
1. Only one shape, with no intersections.
2. There are 2 additional intersection points generated.
3. There are 3 additional intersection points generated.
(Please interpret the content of image first)

Step 3: Conclusive Reasoning

Output: From the provided figure, there are 5 intersection points.

Input:
You are facing an problem: {problem} along with {figure.png}
Please use Python matplotlib to draw the next shape on the figure…
Give your insight about the new intersections at each step…

Iterate 3 times

Tool Selection: This is a geometric problem, we'll utilize the 
matplotlib library for its ability to draw various shapes.

Initialization: we need to setting up the coordinate system, the 
coordinate system should span from -6 to 2 for both axes.

Iteration: Proceed with drawing the shapes iteratively. Each step 
we render the respective shapes onto the coordinate system. 

-6 -4 -2 0 2
-6

-4

-2

0

2

-6 -4 -2 0 2
-6

-4

-2

0

2

There are three shape in the figure: two circles and one line, …

self-alignment
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-6

-4
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2

Figure 3: Illustration of the workflow in VAP.

disqualified and mislead the reasoning process. To alleviate the negative effect of such images, we
introduce a technique named self-alignment to enforce MLLMs to literally describe the synthesized
image and check whether its text description is aligned with the initial high-level plan. If disparity is
detected, we discard the image and restart the reasoning process.

Step 1: Planning As demonstratrd in Figure 3, our method takes a textual problem P as input and
firstly generates a high-level reasoning plan. In implementation, we first prompt the LLM to acquire
a detailed description of the plan in natural language. The output of the plan consists of five key
components: (1) an analysis of the problem’s characteristics for visualization, along with the chosen
drawing tool T from the set of available tools ST ; (2) A description of how to initialize the image
using the chosen tool, accompanied by the corresponding API call instruction I0; (3) the prompt Pd

that drives the LLM to draw in each iterative step; (4) the prompt Pt that drives the LLM to think
step by step during the iterative drawing process; (5) the termination condition C for the iteration.
To facilitate subsequent reasoning, we further transform the unstructured textual description of the
planning into semi-structured JSON format. This step can be formalized as shown in Equation 1,
where Fplanning denotes the language model involved in this step with prompt engineering. With the
instruction I0, we can create the initial image g0 ∈ G using the selected tool.

{T, I0,Pd,Pt, C} ← Fplanning(P,ST ), g0 ← T (I0) (1)

Note that both plan generation and JSON format transformation are implemented using LLMs with
prompt engineering. Details of the prompt templates can be found in Appendix A.1.1.

Step 2: Iterative reasoning In the iterative reasoning step, the MLLM is specified by two prompts
Pd and Pt generated in the previous step, along with the image synthesis tool ST and the assigned
termination condition C. We denote the MLLM in this step as F{Pd,Pt,ST ,C}. In each iteration t, the
MLLM takes the original problem P , the partially-completed image gt and trajectory of thoughts
Zt as input. The MLLM will then generate an instruction It containing API calls used to update the
image gt. Regarding the update of the image, an accompanying ‘thought’ zt that provides a textual
interpretation of the current state is generated. The process is formally depicted in Equation 2, with
details of the prompt template presented in Appendix A.1.2. Here, Zt starts as an empty array and
the new ‘thought’ zt is appended to the trajectory at each iteration.

{zt, It} ← F{Pd,Pt,ST ,C}(P, gt, Zt), Zt+1 ← Zt ∪ {zt}, gt+1 ← T (It) (2)

4
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We observe that the MLLM occasionally failed to follow the instructions provided in the prompt (e.g.,
repeatedly drawing the same shape), causing disruption to the entire iterative process. To address this
issue and improve the stability of reasoning process, we enrich the context of MLLM by appending
the input and output from the last step, which serve as illustrative examples for the MLLM to better
follow the instructions.

Step 3: Conclusive reasoning When the iterative reasoning terminates (i.e., condition C is met),
we proceed to the final step of conclusive reasoning using the synthesized image of step 2, denoted
by gn. Since we cannot guarantee gn is a perfect output and a disqualified gn may mislead the
conclusive reasoning process, we introduce a technique named self-alignment to enforce MLLMs to
literally describe the synthesized image and check whether its text description is aligned with the
initial high-level plan. If disparity is detected, we discard the image and restart the reasoning process.
If a qualified image cannot be obtained after a certain number of trials, VAP is degraded to simple
input-output reasoning, without leveraging the visual channel.

As shown Equation 3, our conclusive reasoning takes gn, the trajectory of thoughts Zn, along with
the original problem P as input and leverage the prompt template presented in Appendix A.1.3 to
derive the final answer A.

A ← Fself−alignment(P, gn, Zn) (3)

4 Experiments

We evaluate VAP using four diversified and challenging tasks, including Geometry Intersection Count,
Sudoku Puzzle, Time Series Prediction, and Travelling Salesman Problem. We also provide a typical
input-output example for each task in Appendix A.2.

These tasks share three LLM-based reasoning baselines, including standard prompting, chain-of-
thought (CoT) prompting, and CoT with self-consistency (CoT-SC) prompting [4].

For CoT prompting, the reasoning process involves multiple intermediate steps. In the Geometry
Intersection Counting task, we define each intermediate step as calculating the number of intersections
between a pair of shapes. In the Sudoku Puzzle task, each step involves considering a position that
violates the Sudoku rules. For Time Series Prediction and Travelling Salesman Problem, it is
challenging to define specific step content. Therefore, we append a ‘think step by step’ instruction to
the standard prompt and include an additional step to extract the solution from the generated thoughts.

Additionally, for CoT-SC prompting, when the task output is discrete (i.e., Geometry Intersection
Counting, Sudoku Puzzle, and Travelling Salesman Problem), we sample k answers and use the
majority answer. When the task output is continuous (i.e., numeric value in the task of Time Series
Prediction), we generate k predictions and calculate their average as the final forecast value. The
default k is set to 10.

For fairness, we employ the ‘GPT-4-vision-preview’ as the underlying MLLM for these baselines
and our VAP. The default temperature is set to 0. For methods that require sampling, such as SC, the
temperature is set to 0.7.

4.1 Task 1: Geometry Intersection Counting

Task Description The task determines the number of intersection points between a couple of
geometric shapes described in natural language. For example, given the input “There is a line segment
from (−2.5, −1) to (−0.5, −1) and a circle centered at (−1.5, −1) with radius 1,” the correct output
should be “2”, as there are 2 intersection points between the circle and the line segment.

Task Setup We randomly sample 200 problem instances from Geometry Intersection Counting task
in the BIG-bench benchmark2 [36] . The performance metric used in this task is accuracy, which is
defined as the percentage of problem instances in which the output number matches the ground truth.

2https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/
intersect_geometry
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Task-specific Baselines We introduce two additional baselines specifically developed for solving
geometry problems. The first is Inter-GPS [37], a symbolic reasoner [38] for geometry problems.
The second is G-LLaVA [39], a MLLM specialized trained on geometry problems. Since geometry
figures are not available in the problem input, G-LLaVA only leverages the textual modality for
reasoning.

Table 1: Intersection Point Result.
Method Accuracy
Standard 8.5%
CoT 10.0%
CoT-SC(k=5) 11.0%
CoT-SC(k=10) 11.5%
CoT-SC(k=20) 11.5%
Inter-GPS 6.0%
G-LLaVA 14.0%
VAP 16.5%

3 4 5 6
Number of Shapes

0.1

0.3

0.5

A
cc

ur
ac

y

Methods
Standard

CoT

CoT-SC(k=5)

CoT-SC(k=10)

CoT-SC(k=20)

VAP

Figure 4: Accuracy with different number of shapes.

Results As shown in Table 1, Inter-GPS and G-LLaVA exhibit low accuracy, primarily because
they are originally trained on dual-modality datasets and thus show limited effectiveness with text-
only input. We also examine their performance when provided with an additional image input in
Section 4.5, where the purpose is to validate the effectiveness of the synthesized images by our VAP
algorithm. Among the general-purpose reasoning methods, standard prompting and CoT prompting
yield relatively low accuracy (8.5% and 10.0% respectively). The CoT-SC method, even with a sample
size of 20, only marginally improves accuracy by 1.5%. In contrast, VAP significantly outperforms
these methods and achieves an accuracy of 16.5%. Furthermore, in the break-down analysis with
increasing number of shapes, as illustrated in Figure 4, VAP demonstrates clear superiority over other
LLM-based methods in more complex scenarios involving four or more shapes. We can see that the
accuracy of all baselines is almost close to 0 in these complex scenarios.

4.2 Task 2: Sudoku Puzzle

Task Description In this task, an initial state of a Sudoku board is presented in natural language,
with digits on filled cells and dots denoting empty cells. For example, in a 9×9 board, a row “..6 ... ...”
only contains digit 6 in the third column. The reasoning process iteratively provides the information
of the next action, in the form of “x y digit”, where ‘x’ and ‘y’ specify the cell’s coordinates on the
board, and ‘digit’ is the number to be placed in that cell.

Task Setup We utilize the Sudoku puzzle generation program from the BIG-bench3 to create a
dataset that includes 150 Sudoku puzzles. For performance evaluation, we employ correct rate and
collision rate as two metrics. The correct rate measures the accuracy in solving the puzzles, and
collision rate assesses the frequency at which the position in given command is already filled with
numbers, which indicates a violation of Sudoku rules.

Task-specific Baselines For a more comprehensive evaluation, we also incorporate Tree of Thought
(ToT) [40] as an additional baseline. The implementation of ToT in this task is not troublesome
because it is straightforward to decompose the thought process into a tree-structured representation
for board games.

Results In Table 2, the standard prompting shows a low success rate of 18.0%, with a high rate of
rule violations. This can be attributed to Sudoku’s demands for reasoning and rule comprehension,
which pose a challenge for LLMs relying solely on prompt engineering. The CoT and CoT-SC
methods show improved performance, as they can, to certain extent, enhance the coherence of LLM
reasoning by providing a reference of previous steps. The ToT algorithm is the most effective among
these baselines, achieving a 22.6% success rate, owing to its tree-structured thought process. Notably,

3https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/sudoku
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VAP outperforms all other methods with a correct rate of 35.5%. VAP also reduces the collision rate,
implying that integrating the image modality is helpful for LLMs to understand game rules.

Table 2: Sudoku Result.
Method Correct rate↑ Collision rate↓
Standard† 18.0% 68.7%
CoT 17.3% 64.7%
CoT-SC(k=5) 20.6% 48.7%
CoT-SC(k=10) 20.6% 47.3%
ToT 22.6% 44.0%
VAP 35.5% 26.0%

0

200

400

600

800

611

767
703

675
594 617

556

Methods
SMA
Standard
CoT
CoT-SC
LLMTime
VAP
VAP+LLMTime

Figure 5: Time series prediction results,
with y-axis indicating MAE.

4.3 Task 3: Time Series Prediction

Task Description To evaluate the numerical analysis capabilities, we regard the LLM as a time
series predictor. In this task, a sequence of data points is provided, and the objective for the LLM is
to predict the next n values in the series.

Task Setup The dataset for this task is sourced from the Darts library [41], which includes a curated
collection of 8 real univariate time series datasets. We configure the window size to 100 data points
and predict the subsequent n = 8 values in the series. The performance is evaluated using the Mean
Absolute Error (MAE) metric.

Task-specific Baselines We chose the LLMTime algorithm [42] as the most cutting-edge method
for comparison, where a data rescaling strategy and a tokenization trick is introduced to enhance
numerical precision. For instance, the sequence “8.05, 1, 35” will be tokenized as “8 0 5 , 1 0 0 , 3 5
0 0”. We also adopt the simple moving average (SMA) as a traditional statistical baseline for time
series forecasting.

Results As shown in Figure 5, SMA is recognized as a traditionally effective method for time
series prediction, surpassing most LLM-based methods with an MAE of 611. Among the LLM-based
approaches, compared to standard prompting, CoT-SC approach significantly reduces the MAE
from 767 to 675, justifying the effectiveness of integrating auto-regression and sample strategy. It
is noteworthy that LLMTime, as a preprocessing technique for LLMs to handle sequential data,
performs effectively. Its performance even marginally exceeds that of SMA. In the result, VAP
outperforms the majority of LLM-based methods and is slightly inferior to LLMTime. However,
considering that VAP is orthogonal to LLMTime, we introduce a new method that combines the same
preprocessing technique with VAP. The results show that this combined version, VAP+LLMTime,
outperforms all comparison algorithms.

4.4 Task 4: Travelling Salesman Problem

Next, we test our method on travelling salesman problem (TSP), an NP-hard combinatorial optimiza-
tion problem that poses challenges for neural network solvers [43]. The input for TSP instances
consists of a set of coordinates, and the output is a sequence of city indices representing the route for
the salesman.

Task Setup We use Euclidean TSP instances with 10 and 20 cities as our testset. For each city size,
100 instances are generated by a program, with coordinates uniformly distributed within a [0, 100]2

integer grid. The average path length and the gap from the optimal solution are used as metrics.

Task-specific Baselines We introduce four traditional TSP solvers as our task-specific baselines:
Gurobi, an exact TSP solver using mixed integer programming; Nearest neighbour (NN) algorithm,
which greedily selects the closest city; Fastest insertion (FI), an efficient insertion method; and a
Random baseline that chooses paths randomly for performance benchmarking. Here, note that the
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output of LLM-based methods (i.e., Standard, CoT, CoT-SC, and VAP) might violate constraints of
TSP (e.g., generating duplicate cities). In such cases, we randomly select an unvisited city to continue
the solution.

Table 3: TSP task performance.

Method Traditional LLMs-based

Gurobi Random NN FI Standard CoT CoT-SC VAP

N
=1

0 Length 294.8 529.6 327.4 306.8 327.5 327.2 325.0 312.4
Gap 0.0% 79.7% 11.1% 4.1% 11.1% 11.0% 10.4% 6.0%

N
=2

0 Length 383.7 989.5 448.2 424.2 544.5 547.2 541.9 499.3
Gap 0.0% 170.7% 16.8% 10.6% 41.9% 42.6% 41.2% 30.2%

Results As shown in Table 3, the performance of standard prompting is comparable to the Nearest
Neighbour algorithm when applied to TSP with 10 cities. CoT demonstrates very slight improvement
over standard prompting. This might be attributed to the TSP’s requirement for a heuristic and
complex thought process, which is challenging for CoT to replicate. VAP outperforms all LLM-based
algorithms, achieving a 6.0% gap for optimality, close to the Fastest Insertion’s performance. It’s
worth noting that when the number of cities in a problem instance increases to 20, the performance of
LLM-based algorithms significantly decreases as the search space of TSP grows exponentially with
the problem size. Such a huge search space poses a significant challenge for LLMs not specifically
tailored to solve TSP. Nonetheless, VAP’s superiority over other LLM-based methods is still evident
when the problem size increases.

4.5 Effectiveness of the Synthesized Images

To demonstrate the quality of synthesized images, we first present several illustrative examples in
Figure 6 and then provide numerical experiments in the following.
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(d) TSP example

Figure 6: Examples of images synthesized by our VAP among the four tasks.

In the first experiment to evaluate the quality of synthesized images, we use the rate of integrity as
the metric, which refers to whether the generated image contains all the elements described in the
original problem. This is a relatively objective metric for human annotators to reach consensus. As
shown in Table 4, the images synthesized by VAP demonstrate a high integrity rate across various
tasks. Notably, for Time Series Prediction and TSP, the module achieves an impressive integrity rate
of 100% and 98.0%, respectively. We also evaluate the performance improvement of VAP when
provided with the ground truth image. As shown in Table 4, the column of ‘With ground truth image’
refers to the performance boost rate. If the drawing errors had been corrected, we can observe notable
potential for improvement. These results underscore the crucial role of accurate image rendering in
enhancing the final output quality of the VAP.

In the next experiment, we provide the synthesized images by our VAP as additional input for the
geometry solvers Inter-GPS and G-LLaVA involved in task of Geometry Intersection Counting. As
shown in Table 5, these two approaches can greatly benefit from our synthesized images. Their
remarkable accuracy boosting validates the effectiveness of the images generated by VAP.
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Table 4: Performance of Drawing Module.
Task Integrity With ground truth image
Geometry 83.5% 5.8% (17.0%→ 18.0%)
Sudoku 89.3% 5.1% (35.5%→ 37.3%)
Time Series 100.0% -
TSP 98.0% 1.3% (30.2%→ 30.6%)

Table 5: Performance of dedicated ge-
ometry solvers with (denoted by †) and
without synthesized images.

Method Accuracy Accuracy†

Inter-GPS 6.0% 17.0%
G-LLaVA 14.0% 20.5%

5 Ablation Study

In the ablation study, we evaluate the effectiveness of three steps, including high-level planning,
iterative reasoning and self-alignment in conclusive reasoning. Note that removing the planning step
refers to prompting the LLM to draw the image step-by-step without providing a plan in advance.
Removing iterative reasoning refers to directly prompting the LLM to generate an entire image and
then proceeding to the conclusive reasoning step without intermediate results.

As shown in Table 6, we report the core metric for four tasks: accuracy for Geometry Intersection
Problems, correct rate for Sudoku puzzles, MSE for Time Series Prediction, and average tour length
for the TSP with 10 cities. The results demonstrate that removing any of the key components causes
a performance degradation, except for self-alignment in Time Series Prediction. This is because
there is no error in the drawing module, as discussed in Subsection 4.5. Hence, in this scenario,
self-alignment plays no effect. Interestingly, removing planning step causes the most significant
performance drop for Geometry Intersection Problems and TSP. The reason is that planning is crucial
for visualizing problems requiring precise spatial relationships. Furthermore, iterative reasoning
proves to be an essential component, as its removal leads to considerable performance degradation
across all tasks. This finding highlights the importance of our view that all problem-solving is a
step-by-step process. Self-alignment plays an important role in the task of Sudoku. For example, the
LLM will occasionally draw the incorrect coordinate range for the Sudoku board, resulting in a board
with the wrong size. However, with self-alignment, the model first describes the board size in the
figure and cross-checks this against the original plan, preventing such issues.

Table 6: Ablation study results. Each column represents a task and the cell indicates the performance
when removing a module in VAP.

Geometry Sudoku Time Series TSP(N=10)

VAP 16.5% 35.5% 556 312.4
w/o planning 12.0% 24.7% 578 322.0
w/o iterative 14.5% 19.9% 582 321.3
w/o self-alignment 16.0% 25.1% 556 315.9

6 Limitations of VAP

Even though VAP has been shown to outperform other LLM-based approaches in a set of versatile
tasks, there still exists a noticeable performance gap between VAP and task-specific approaches.
However, these tailored approaches require nontrivial efforts for domain customization and is not
able to support other types of reasoning tasks. In contrast, VAP is a lightweight and training-free
framework. With negligible customization cost, VAP is general enough to handle a spectrum of
complex reasoning tasks with visual and spatial clues.

The other limitation is the black-box functionality of VAP, even though the framework is inspired
by the cooperation of two subsystems in different regions of human brain that cooperate with each
other. In Appendix A.3, we provide two case studies as examples to provide certain insights and
justify the effectiveness of VAP. It would be an interesting future research direction to explore the
interpretability of VAP and its relationship with cognitive science.
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7 Conclusion

In this paper, we introduced a novel reasoning framework called Vision-Augmented Prompting (VAP),
designed to enhance the reasoning capabilities of large language models (LLMs) by emulating the
human cognitive system’s dual modality processing. VAP leverages the external image synthesis
tools to generate visual representations that augment the textual input. The procedure of VAP follows
a three-step algorithm: first, it automatically generates a high-level plan for reasoning; second, it
engages in iterative drawing and reasoning based on the partially-completed image; and finally,
original problem, all thoughts and generated image are jointly to derive a solution. To enhance
robustness, we introduced a self-alignment technique, where the MLLM describes the image content,
and the image channel is discarded if the self-description fails to align with the initial high-level
plan. We conducted extensive experiments across four diverse reasoning tasks: intersection counting
in Geometry Intersection Problems, Sudoku Puzzles, Time Series Prediction, and the Travelling
Salesman Problem. The results demonstrated the effectiveness of VAP, establishing new state-of-the-
art performance compared to other training-free LLM-based methods.
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A Appendix

A.1 Prompt Engineering of VAP

A.1.1 Planning

The planning step’s prompt is divided into two sub-steps. First, a high-level plan’s textual repre-
sentation is generated using the following prompt. Here, the ‘{examples}’ and ‘{problem}’ are
placeholders for the few-shot examples (which will be discussed later) and the problem input,
respectively.
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Your role is to visualize a problem by creating an image that represents the problem description
accurately using a specific tool. This task involves drawing an image that encapsulates all the
details provided in the problem description.
The drawing will be executed through an iterative process. This means you will develop the
image in a step-by-step manner, ensuring that each element of the problem is represented
accurately.
Before beginning the drawing, you are required to outline a high-level plan for how you will
approach the drawing process. This plan should cover three essential aspects:
1. Tool Selection - The choice of software or tool you will use for drawing. Here are drawing
tools available:
- Python Matplotlib: a powerful Python library used for creating a wide variety of static,
animated, and interactive visualizations. It is widely utilized in data science and engineering
for generating high-quality plots and graphs.

//=== Continued from previous page ===
- Turtle: a Python library that provides a simple way to draw graphics and shapes using a virtual
"turtle" that moves around the screen. Inspired by the Logo programming language, it is an
excellent tool for teaching programming concepts through visual feedback.
- DALLE3: an advanced image generation model, capable of creating detailed and imaginative
images from textual descriptions. It leverages deep learning to understand and produce highly
realistic or fantastical scenes based on user prompts.
2. Initialization Approach: How you will begin your drawing, focusing on setting up the initial
state of the image.
3. Iterative Drawing Approach: A detailed description of how you will iteratively add details to
the image step by step.
Output Format: Your plan should be organized into three distinct paragraphs, each starting with
the respective headings: Tool selection:, Initialization:, and Iteration:.
{examples}
Problem Description: {problem}

The few-shot examples are optional to improve the LLM’s ability to handle various tasks. The
planning step plays a crucial role in the overall reasoning process, therefor, we use a one-shot
example as our default setting (the same as other baselines for fairness). For the planning step, we use
several pairs of problem input and textual high-level plan as examples. For other standard prompting,
we use the problem input and answer output as examples. For CoT prompting and CoT-SC prompting,
we use problem input, trajectory of thoughts, and answer output as examples.

Subsequently, a semi-structured plan in JSON format is extracted using the following prompt. Here,
{drawing_plan} is the placeholder of the high-level plan generated before.

You are tasked with visualizing problems by creating images. Each image should be constructed
step by step, based on a detailed plan you’ve previously prepared.
You should first review your plan, and start by examining the high-level plan you’ve made for
the iterative drawing process.
Your plan is as following: {drawing_plan}.
Your task is to extract meta-information from your drawing plan and format it as a JSON string.
Follow this strict JSON structure in your output:
{
“tool”: “Name of the tool you’re using”,
“draw_content_of_each_step”: “Describe what you’ll draw in each step”,
“when_terminate”: “Criteria for completing the drawing”,
“thought_at_each_step”: “Your thought process at each step”,
“initialization”: “Initial setup before starting the drawing”
}
PLEASE ENSURE YOUR JSON OUTPUT IS CORRECTLY FORMATTED! Avoid including
extraneous words or characters outside the JSON structure.
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A.1.2 Iterative reasoning

The prompt for the iterative reasoning step is as follows. Please note that current cutting-edge MLLMs
cannot embed images at arbitrary positions of prompt. Therefore, we provide the image in context
and refer to it in prompt description accordingly.

You are a problem visualizer, tasked with drawing an image based on a problem description
using a specified tool.
You will draw the image accurately, ensuring that all information in the problem description is
included in the image. This process will be done iteratively. Each iteration step will involve
drawing a specific content of the figure using the tool.
The problem description is as follow: {problem}
Here is the partially completed figure given in context. {figure.png}. Please refer to it during
your thought process and image updates.

//=== Continued from previous page ===
For each step, provide your thoughts in {thought_at_each_step}.
Next, update the image content {draw_content_of_each_step} using API calls with the tool
tool.
Output Format:
Your output should be a JSON string. Strictly follow the JSON format provided below.
{
“thought”: “Your thought on this iteration”,
“is_terminal”: false, // true if this is the last iteration, otherwise false. The terminition condition
is {when_terminate}
“iterative_draw_step”: “Description of what was drawn or modified in this step”
}
PLEASE ENSURE YOUR JSON OUTPUT IS CORRECTLY FORMATTED! Do not include
any extra words or comments.

A.1.3 Conclusive reasoning

First, we apply self-alignment by prompting the MLLM to describe the content of the image.

Please describe the details of the given image accurately and comprehensively. Include all
visible objects and elements without omitting any details, and avoid adding any imaginary or
non-existent objects. Ensure that the description is as detailed as possible, faithfully capturing
the essence of the image provided.
Here is the given image {image.png}.
Your description is as follow:

Next, the MLLM is prompted to function as a binary classifier and is tasked with checking whether
the description aligns with the initial high-level plan. The prompt is shown as follow.

You are an artist who visualizes problems.
You have made a plan for your drawing: {drawing_plan}
The final content you drew is described as: {self_description}
Now, you should determine whether the description aligns with your initial drawing plan. Pay
close attention to the details in both.
Your output should be a single word: ‘true‘ if they align, and ‘false‘ if they do not. Do not
provide any additional comments or explanations.
Here is your answer:

The prompt of conclusive reasoning step is as follow.
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Here is the problem: {problem}
Its visualization is given in context. {figure.png}
The description of the image is as follows: {self_description}
The trajectory of thoughts is as follows: {thoughts_trajectory}
Provide your final answer:

A.1.4 Prompt used in ablation study

In the ablation study, we investigate the impact of the planning step by removing it from the process.
The removal of the planning step results in the loss of access to meta-information, such as the selected
tool, which can no longer be incorporated into the iterative reasoning prompt template. To address
this issue, we employ an alternative prompt template specifically designed for iterative reasoning in
the absence of the planning step. This alternative template allows for the continuation of the iterative
reasoning process without relying on the meta-information that would have been provided by the
planning step. The specific prompt we used is shown as follow.

You are a problem visualizer, tasked with drawing an image based on a problem description
using a specified tool.
You will draw the image accurately, ensuring that all information in the problem description is
included in the image. This process will be done iteratively. Each iteration step will involve
drawing a specific content of the figure using the tool.
The problem description is as follow: {problem}
Here is the partially completed figure given in context. {figure.png}. Please refer to it during
your thought process and image updates.
For each step, provide your thoughts according to this problem.
Next, update the image content according to this problem using Python API calls.
Output Format:
Your output should be a JSON string. Strictly follow the JSON format provided below.
{
“thought”: “Your thought on this iteration”,
“is_terminal”: false, // true if this is the last iteration, otherwise false
“iterative_draw_step”: “Description of what was drawn or modified in this step”
}
PLEASE ENSURE YOUR JSON OUTPUT IS CORRECTLY FORMATTED! Do not include
any extra words or comments.

A.2 Examples of Four Experimental Tasks

This section presents the input-output examples for the four tasks involved in the experiments.

A.2.1 Geometry Intersection Counting

Input: There is a circle centered at (-1.5, -1.0) with radius 3.0. There is a polygon with coordinates
[(-2.2, 4.0), (-3.2, -0.4), (2.4, -2.6), (3.8, 4.1)]. There is a line segment from (0.9, 3.3) to (-1.3, 3.4).
How many intersection points are there?

Output: 2

A.2.2 Sudoko Puzzle

Input: Sudoku puzzle Fill the dots with digits "[1-4]". Digits cannot repeat in the same row, column
or 2x2cell. Each cell is separated by spaces or empty lines. Specify the new digits with a command:
"<x> <y> <digit>", removing the quotes. The top left corner has coordinates "1 1". For example the
command to add the digit "4" to the bottom left corner is "1 4 4".

Please pay attention to the information given in the image, especially the positions of the X-axis and
Y-axis.

Board:
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24 31

.3 ..

.1 2.

.2 1.

Command:

Output: 1 1 4

A.2.3 Time Series Prediction

Input: You are a time predictor. The user will provide a sequence and you will predict the next
value(only one value needed). The sequence is represented by decimal strings separated by commas.

Please continue the following sequence without producing any additional text. Do not say anything
like ’the next value in the sequence are’, just return the numbers. Sequence:

458.0,387.0,427.0,565.0,465.0,445.0,450.0,556.0,500.0,452.0,435.0,554.0,510.0,433.0,453.0,548.0,

486.0,453.0,457.0,566.0,515.0,464.0,431.0,588.0,503.0,443.0,448.0,555.0,513.0,427.0,473.0,526.0,

548.0,440.0,469.0,575.0,493.0,433.0,480.0,576.0,475.0,405.0,435.0,535.0,453.0,430.0,417.0,552.0,

464.0,417.0,423.0,554.0,459.0,428.0,429.0,534.0,481.0,416.0,440.0,538.0,474.0,440.0,447.0,598.0,

467.0,439.0,446.0,567.0,485.0,441.0,429.0,599.0,464.0,424.0,436.0,574.0,443.0,410.0,420.0,532.0,

433.0,421.0,410.0,512.0,449.0,381.0,423.0,531.0,426.0,408.0,416.0,520.0,409.0,398.0,398.0,507.0,

432.0,398.0,406.0,526.0,

Output: 438.0

A.2.4 Travelling Salesman Problem

Input: You are an TSP solver. Solve a TSP instance:

Here are 10 point in a city, each point is represented as a pair of numbers, indicating its coordinates
in the specified space. The coordinations are as following:

0: (0.9371, 0.1482)

1: (0.6345, 0.2510)

2: (0.2628, 0.7120)

3: (0.1545, 0.9067)

4: (0.2827, 0.8081)

5: (0.9533, 0.9086)

6: (0.4199, 0.7617)

7: (0.6315, 0.0414)

8: (0.8694, 0.5878)

9: (0.7709, 0.7211)

What is the shortest possible route that visits each city exactly once and returns to the origin city?

Your answer should be the permutation of all city index (separated by comma). The start point is 0.
Please give your answer directly, don’t use any other tools.

Output: 0,7,1,8,9,5,2,6,4,3
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A.3 Interpretability of VAP

To better understand how VAP facilitates problem-solving, we conduct two experimental studies to
gain a deeper insight.

[112.0, 118.0, 132.0, 129.0, 121.0, 
135.0, 148.0, 148.0, 136.0, 119.0, 
104.0, 118.0, 115.0, 126.0,...]

GPT: Without an analytical 
tool, it’s hard to observe an 
accurate periodic patterns.

GPT: The periodic pattern 
in the data appears to have 
a cycle that repeats 
approximately every 15
units on the x-axis.

Has periodicity?
Period = ?

Original 
Problem

Image of 
VAP

Figure 7: Detect periodicity with and without VAP.
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(b) Solution given by
VAP

Figure 8: A case study of TSP task.

Firstly, we focus on Time Series Prediction task. Figure 7 shows the Air Passengers Dataset from
Darts. On the left, we have the textual representation of the sequence alongside an image drawn by
VAP. We ask GPT-4V to model the periodicity of this sequence, which is an important factor in Time
Series Prediction. Despite the clear periodic pattern in this sequence, GPT-4V struggles to recognize
this periodicity when provided only with the textual problem. In contrast, when presented with the
image, GPT-4V could easily identify the sequence’s periodicity. This study demonstrates how VAP
can provide a more efficient and clear information format, thereby enhancing the model’s reasoning
ability on prediction tasks.

The second study focuses on the TSP, where we visualize two solutions for the same TSP instance in
Figure 8. One solution is generated using standard prompting, while the other is given by VAP. The
comparison of the two solutions reveals that the standard prompting results in numerous crossing
paths, which is proven to be suboptimal in Euclidean TSP [44]. In contrast, the VAP solution has
few crossing paths. This improvement is likely due to the clear visualization of visited partial paths,
which provides the model with heuristic cues to easily exclude bad choices.

A.4 More Experimental Results

A.4.1 Effiency of VAP

Rregarding the computational efficiency of VAP, we conduct an experiments comparing the time
consumption and accuracy of various methods across geometry and Sudoku tasks. Table 7 presents
the results of this analysis.

Table 7: Efficiency and Accuracy Comparison

Method Geometry Sudoku
Time Usage Accuracy Time Usage Correct Rate

Standard 0.2 s 8.5% 0.3 s 18.0%
CoT 0.5 s 10.0% 0.8 s 17.3%
CoT-SC (k=5) 2.3 s 11.0% 4.1 s 20.6%
CoT-SC (k=10) 4.5 s 11.5% 8.8 s 20.6%
ToT (n_children=5) - - 9.0 s 22.6%
VAP 4.1 s 16.5% 9.5 s 35.5%

Although VAP is computationally intensive, its time usage is comparable to ToT and CoT-SC (k=10)
in the Sudoku task. Interestingly, for the simpler geometry task, VAP demonstrates faster performance
than CoT-SC (k=10). This efficiency can be attributed to VAP’s unique structure: despite its large
context (including tool instructions, thought trajectory, and image encoding), the output is concise,
consisting primarily of API calls and immediate thoughts. This leads to rapid inference during each
step, as we observed that time usage is predominantly influenced by the number of decoded tokens.
Given VAP’s superior effectiveness on these tasks, we posit that the observed performance gap in
computational efficiency is acceptable.
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A.4.2 Different Foundational Models

Our experimental setup employs a unified VLLM. However, we observed that VAP necessitates a
MLLM to process visual-text input, whereas other baselines solely require textual input. Considering
that traditional LLMs are expected to outperform MLLMs in text-only tasks, we introduced GPT-4
and LLaMA 3 8B as additional LLMs to ensure a more comprehensive and equitable comparison.
Table 8 presents the results of this expanded analysis on geometry intersection counting task.

Table 8: Performance on Geometry Task over Different Foundational Models
Method Accuracy (GPT-4v) Accuracy (GPT-4) Accuracy (LLaMA 3)
Standard 8.5% 10.0% 7.0%
CoT 10.0% 11.0% 8.0%
CoT-SC (k = 5) 11.0% 11.5% 8.0%
CoT-SC (k = 10) 11.5% 11.5% 8.0%
CoT-SC (k = 20) 11.5% 11.5% 8.0%
VAP 16.5% - -

The findings reveal several noteworthy points. First, GPT-4 demonstrated a marginal improvement
in baseline performance compared to GPT-4v, albeit still significantly lower than VAP. Conversely,
LLaMA 3 8B exhibited reduced accuracy, which can be attributed to its smaller model size potentially
limiting its generalization capabilities for this particular reasoning task. While larger variants
of LLaMA 3 might yield superior results, current hardware constraints precluded their evaluation.
Interestingly, simpler methods such as standard prompting show greater sensitivity to model variations
compared to more complex approaches like CoT with CoT-SC. Despite these differences, we believe
that the fundamental conclusions of our study remain valid.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made main claims that accurately reflect the paper’s contributions
and scope in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discuss the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include the content of the theoretical analysis results that
require assumptions or proof.
Guidelines:

• The answer NA means that the paper does not include theoretical Results
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all the information needed to reproduce the main experi-
mental results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the Results

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the experimental code and test data to facilitate reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the Results See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and Baselines If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify the all details of experiment, including hyper-parameters,
the rationale for their selection and underlying model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In our experiment, we set the temperature of the LLM to 0 for reproducibility,
ensuring that their responses were deterministic and free from randomness. And we also
utilize a fixed test set. Consequently, there were no error bars in our experimental results, as
the outputs were consistent and invariable across multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The paper does not provided resource usage in experiment because the method
we proposed is LLMs-based, which solely involved API calls to these models and is not
computationally intensive at all. Any computer with network communication capabilities
could execute our method.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work performed has no direct societal impact, as it relies solely on calling
LLMs and their behavior is fully controlled. The approach does not involve any external
factors or unintended consequences that could potentially affect society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the data and LLMs employed in this research have appropriately
acknowledged and adhered to the respective licenses governing their use for research
purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets, including source code and dataset we use, are well documented
and the documentation is provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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