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Abstract

The ability to compare objects, scenes, or situations is crucial for effective decision-
making and problem-solving in everyday life. For instance, comparing the fresh-
ness of apples enables better choices during grocery shopping, while comparing
sofa designs helps optimize the aesthetics of our living space. Despite its sig-
nificance, the comparative capability is largely unexplored in artificial general
intelligence (AGI). In this paper, we introduce MLLM-COMPBENCH, a bench-
mark designed to evaluate the comparative reasoning capability of multimodal
large language models (MLLMs). MLLM-COMPBENCH mines and pairs images
through visually oriented questions covering eight dimensions of relative compari-
son: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and
quality. We curate a collection of around 40K image pairs using metadata from
diverse vision datasets and CLIP similarity scores. These image pairs span a broad
array of visual domains, including animals, fashion, sports, and both outdoor and
indoor scenes. The questions are carefully crafted to discern relative characteris-
tics between two images and are labeled by human annotators for accuracy and
relevance. We use MLLM-COMPBENCH to evaluate recent MLLMs, including
GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcom-
ings in their comparative abilities. We believe MLLM-COMPBENCH not only
sheds light on these limitations but also establishes a solid foundation for future
enhancements in the comparative capability of MLLMs.

1 Introduction

The concept of “relativity” is integral in our daily lives. For example, relative freshness affects our
decision to purchase fruits; relative spaciousness affects our decision to choose living or working
space; relative crowdedness indicates which paths to select; (relative) change between two scenes
reveals what happened to the environment. In short, the ability to compare objects, scenes, or
situations and reason about their relativity is vital for us to make informed decisions, solve problems
effectively, and acquire knowledge efficiently, enabling us to make sense of the surrounding world.

The recent advance of multimodal large language models (MLLMs), a.k.a. large multimodal models
(LMMs), [1, 3, 58, 33, 32, 14, 6] has demonstrated promising progress toward artificial general
intelligence (AGI) [65, 36] and achieved unprecedented results in a variety of vision and language
(V&L) tasks, ranging from free-formed visual recognition [15, 10, 13] and visual captioning [10, 2]
to visual question answering [21, 22, 53]. Yet, much less attention has been paid to tasks that involve
relativity and comparison between multiple visual inputs, e.g., two images. In essence, most of the
existing datasets for visual recognition [15, 10, 13] and V&L tasks [21, 2, 40, 31, 16, 65] comprise
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Q: Which lemon is 
more peeled?

Q: Which coat is 
more floral?

Q: Which bird has more 
grey on its breast?

Q: Which fish has more 
evenly split colors?

Attribute

Q: Which scissor is   
more opened?

Q: Which person
smiles more?

: Right : Left

State

Q: Which person 
feels happier?

Emotion

Q: Which frame 
happened first? 

Q: Which car is newer
by release year?

Temporal Spatial

Q: Which shelves is 
closer to the camera?

Quality

Q: Which image is more   
affected by motion blur?

: Right : Left

Existence

: Baseball bat : None

Q: Which image has 
more elephants?

Q: What is the most obvious 
difference between two images? 

: Right : Left

Quantity

: Right : Left : Right : Left : Right : Left

: Right : Left : Right : Left : Right : Left : Right : Left

: Right: Left

Q: Which image has 
more umbrellas?

: Right : Left: Car : People

: Right: Left

Figure 1: MLLM-COMPBENCH offers diverse triplets comprising two images, a question about their relativity,
and an answer to cover eight types of relativity (see §1). See examples along with predictions of GPT-4V [1].

examples with only single visual inputs (e.g., an image or a video clip), making them infeasible to
assess MLLMs’ comparative capability.

In this paper, we introduce MLLM-COMPBENCH, a V&L benchmark dedicated to evaluating the
comparative reasoning capabilities of MLLMs (Figure 1). MLLM-COMPBENCH comprises 39.8K
triplets, each containing 1) a pair of visually or semantically relevant images 2) a question about their
relativity, and 3) a ground-truth answer. We consider a wide range of questions categorized into eight
aspects of relativity. Attribute Relativity tests the ability to recognize relative attributes [44] such
as size, color, texture, shape, and pattern. For instance, given two images of birds, we ask MLLMs
to compare the length of their beaks (e.g., “Which bird has longer beaks?”). Existential Relativity
assesses the comprehension of existence in comparisons, asking questions like “Which trait is in
the left butterfly but not in the right butterfly?”. State/Emotion Relativity examines if MLLMs
can identify state variations, such as different degrees of baking and smiling. Temporal Relativity
evaluates the understanding of time-related changes between two objects or scenes (e.g., “Which
video frame happens earlier during a free kick?”). Spatial Relativity checks the ability to tell spatial
differences (e.g., “Which cup looks further?”). Finally, Quantitiy/Quality Relativity investigates
whether an MLLM understands the relativity of quantity and quality (e.g., “Which image contains
more animal instances?”).

We systematically benchmark representative MLLMs on MLLM-COMPBENCH, including GPT-
4V [1], Gemini1.0-Pro [58], LLaVA-1.6 [33], and VILA-1.5 [32]. Specifically, we concatenate two
images horizontally (i.e., left and right) as the visual input. We then prompt MLLMs to answer
questions about the relativity between these two images. When applicable, we also investigate a
two-stage reasoning strategy, starting by asking a refined question about each image independently
(e.g., “How many animal instances are in the image?”), followed by a pure language question (e.g.,
“Based on the descriptions, which image has more animal instances?”). Our results reveal notable
shortcomings in existing MLLMs’ comparative abilities, especially in Existence, Spatiality, and
Quantity Relativity. We conduct further analyses of error cases, offering insights for future MLLMs’
improvements.

In sum, MLLM-COMPBENCH has several advantages: (i) MLLM-COMPBENCH introduces new
perspectives to evaluate MLLMs — comparative reasoning capabilities about relativity. (ii) MLLM-
COMPBENCH provides extensive coverage across eight relativities and fourteen domains. (iii)
MLLM-COMPBENCH benchmarks recent MLLMs, accompanied by detailed analyses and insights
for future improvement. (iv) MLLM-COMPBENCH is extensible — we identify multiple data sources
that can be further incorporated.
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Remark. During the conference, we noticed a concurrent work by Kazemi et al. [28] that also studies
MLLM’s reasoning capability with multiple images, specifically focusing on math, physics, logic,
code, table/chart understanding, spatial and temporal domains. We encourage readers to consult their
work as well.

2 Related Work

Multimodal LLMs (MLLMs). Large Language Models (LLMs) [1, 58, 4, 5, 23, 59, 63] have made
significant strides in various NLP and AI tasks. Many recent works [1, 3, 58, 33, 32, 14, 6, 29, 69,
45, 61] have extended LLMs’ capabilities into the multimodal domain, particularly for vision and
language (V&L) tasks. At a higher level, this advancement involves integrating a pre-trained vision
encoder (e.g., CLIP [49]) with LLMs via a bridge module (e.g., an adaptor [33, 14]). Different
strategies are developed to pre-train these multimodal LLMs (MLLMs), such as optimizing the LLMs
and bridge module while keeping the vision encoder frozen [33] or training the bridge part only [14].

MLLM benchmarks. Earlier, MLLMs were evaluated on traditional V&L tasks, such as visual
question answering (VQA) [21, 22, 53], image captioning [10, 2], and image-text retreival [31, 11].
Recently, a range of new and intriguing V&L tasks [37, 56] have emerged to assess MLLMs’
capabilities across various dimensions. These include comprehension and reasoning about charts [38],
diagrams [39], scene text [54, 40], web navigation [16], expert-level multimodal understanding [65],
etc. Our MLLM-COMPBENCH complements these efforts by focusing on a new dimension, MLLMs’
comparative reasoning capacity on a pair of visually or semantically relevant images.

Multi-image datasets. Several existing datasets [44, 57, 17, 25, 67, 27] provide multi-image data
(e.g., pairs of images), but they serve different purposes (e.g., not for evaluating MLLMs) or have
relatively limited scopes. NLVR2 [57] labels each image pair with a caption that may or may not be
relevant to the images, asking models to predict the caption’s relevance (i.e., image-text matching). A
few datasets [27, 7, 66] synthesize multi-image data for instruction tuning (e.g., image editing). More
relevant to ours are [17, 25, 67, 44]. Birds-to-Words [17] aims to describe the difference between
two birds; Sopt-the-diff [25] focuses on the difference between two outdoor scenes; Q-bench2 [67]
compares the quality (e.g., blurriness) between two images; Relative Attributes [44] compares the
relativeness of attributes between two facial or natural images. However, these datasets have limited
scopes, only targeting specific domains or questions. In contrast, our MLLM-COMPBENCH defines
eight relative comparisons, covering a wide range of relativities in the real world. Our image pairs
are curated from fourteen diverse visual domains. We believe this offers the V&L community a more
comprehensive benchmark to assess the comparative capabilities of current leading MLLMs.

Learning to rank & learning with preference. Several research topics are relevant to ours and may
benefit from our MLLM-COMPBENCH. Learning to rank (LTR) [30, 34, 8] aims to realize a scoring
function that can rank examples (e.g., images) based on certain aspects, such as facial ages [41, 9] and
degrees of attributes’ presence [44]. Typically, an LTR model takes one example as input; the model
is trained with pairs of examples such that the output scores match the ground-truth orders. Recently,
learning with preference information [18] has become a mainstream approach to fine-tuning LLMs
for alignment [50, 12]. Unlike our focus, these works usually collect pairs of outputs (e.g., answers
to a question) with humans’ preferences to supervise model fine-tuning.

3 Why Do We Study Comparative Reasoning?

To date, most of the existing visual recognition and V&L benchmarks focus on a single visual input
(e.g., an image or a video clip), aiming to assess and promote absolute inference and reasoning within
it, for example, identifying objects, recognizing their properties/states/actions, and describing and
reasoning about their interactions within in the scene.

In reality, not all the inference and reasoning could be made absolute, or need to be absolute. For
example, it is hard and ambiguous to describe the absolute degree of smiling [44], but it is relatively
easy to compare two faces and tell which one smiles more. This fact applies to other visual properties
like attributes (e.g., length), states (e.g., steps in cooking), and spatial locations (e.g., longitude and
latitude). Often, comprehending the relativity is sufficient for us to make sense of the real world.
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Attribute / State / Emotion / Spatiality

…

Data 
Selection

Existence

… …

Temporality / Quantity / Quality

Answer 
Annotation

Which lemon is more peeled? 

Question 
Generation

Verification

CLIP

Answer
Annotation

What’s the main difference?

Question 
Generation

Data 
Selection

Verification Answer
Annotation

Which car is newer? 

Question 
Generation

Data 
Selection

Verification

CLIP

Figure 2: MLLM-COMPBENCH curation pipeline, including data selection, question generation, answer
annotation, and verification. We rely on combinations of humans, computer programs, MLLMs (specifically
GPT-4V [1]), and CLIP similarity [49] to select images and generate questions, based on relativity types and
available metadata.

Furthermore, learning to infer and reason about relativity could naturally and more efficiently facilitate
AI models to grasp fine-grained details. For instance, learning to describe a complex scene (e.g.,
captioning) often results in a model mastering common objects and properties but missing rare and
subtle ones. In contrast, learning to tell the difference between two scenes promotes the model to
identify subtle changes and describe them.

Last but not least, the ability to perform comparative reasoning is integral to our daily decision-making
and problem-solving (see §1 for some examples). Humans’ comparative capability, e.g., providing
preferences between instances, has also been widely leveraged to supervise foundation models like
LLMs to align their outputs with application requirements and societal expectations [50, 12]. We
thus believe it is crucial to assess and promote comparative reasoning about relativity in AGI.

4 MLLM-COMPBENCH Benchmark

We introduce MLLM-COMPBENCH, a multimodal benchmark designed to assess the comparative
reasoning abilities of MLLMs across various dimensions. In what follows, we first describe the
types of comparative capabilities that MLLM-COMPBENCH aims to evaluate (§4.1). Next, we
outline our methodology for collecting images, followed by how we annotate associated questions
and answers to evaluate these capabilities (§4.2). Lastly, we provide detailed statistics on MLLM-
COMPBENCH and discuss its data quality (§4.3). Figure 2 illustrates the overall pipeline used to
develop MLLM-COMPBENCH.

4.1 Types of Relativity

Building upon §3, we consider eight comparison categories to evaluate MLLMs’ abilities to discern
differences between two similar images (Figure 1).

(1) Visual Attribute focuses on five common visual properties — Size, Color, Texture, Shape, and
Pattern — and tests whether the model can identify the relative magnitude of these attributes between
images. (2) Existence assesses the model’s capacity to identify fine-grained variations by detecting
subtle changes between images. (3) State involves comparing the conditions or status of objects. (4)
Emotion assesses the model’s capability to interpret degrees of human emotions. (5) Temporality
and (6) Spatiality evaluate the model’s ability to recognize differences in images caused by temporal
or spatial differences. These categories require both commonsense and comprehension of the physical
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world. Lastly, (7) Quantity measures the relative counting skills, and (8) Quality compares the
quality of two images, examining the model’s low-level visual perceptual skills.

4.2 Dataset Curation

One major challenge in constructing MLLM-COMPBENCH is mining image pairs that reflect the
aforementioned relativities. Fortunately, many publicly accessible datasets in vision and V&L offer
detailed annotations and metadata. We carefully investigate these datasets and identify a seed set of
fourteen datasets that align with the eight relativity types (§4.1), covering a wide range of domains
like open-domain, fashion, animal, sports, automotive, facial, and both outdoor and indoor scenes
(cf. Right in Table 1). Below, we outline the datasets for each relativity type and the process for
generating triplets of image pairs, a question, and an answer. Please see the supplementary material
for details.

4.2.1 Visual Attribute

Data collection. We consider five visual attribute datasets. MIT-States [24] includes 245 objects
with 115 visual attributes, from online sources such as food or device websites. Fashionpedia [26] is
tailored to clothing and accessories and contains 27 types of apparel along with 294 detailed attributes.
VAW [47], similar to MIT-States, offers a large-scale collection of 620 unique attributes, including
color, shape, and texture. CUB-200-2011 [60] and Wildfish++ [47] specifically provide attributes
for birds and fish. The former catalogs 15 bird parts and their attributes (e.g., “notched tail”); the
latter details 22 characteristics (e.g., “yellow pelvic fins”) of various fish species. For each dataset,
we cluster images by objects or parts with the same attributes (e.g., “round table”, “asymmetrical
blouse”, “curved bill”, “yellow dorsal fin”) and extract visually similar image pairs from each group.

Annotation. We apply rule-based approaches to generate questions about relative degrees of at-
tributes between objects (e.g., “Which coat is more floral?”). We then pair the questions with the
corresponding image pairs and present them to six human annotators. The annotators are tasked
with labeling the correct answers (binary: left/right) and filtering out any irrelevant or nonsensical
questions about the images. In total, we construct a collection of 5.3K triplets.

4.2.2 Existence

Data collection. We consider datasets for image editing, which provide image pairs with similar
layouts but subtle changes. We adopt MagicBrush [66], a recently released dataset for instruction-
guided editing. It consists of (source image, instruction, target image) triplets, where the instruction
specifies a subtle change between the source and target images. We also consider Spot-the-diff [25],
which provides image pairs in outdoor scenes, along with descriptions of their differences.

Annotation. We curate multiple-choice questions to ease automatic evaluation. We prompt GPT-4V
[1] with in-context learning to generate questions; the options are formed by the extracted objects and
their attributes from images. We then pass the questions (along with image pairs) to the annotators to
verify the options and label the correct ones. In total, we curate 2.2K triplets.

4.2.3 State

Data collection. We explore vision datasets covering the condition or status of objects (e.g., “pureed
tomato” or “mashed potatoes”). Specifically, we use two large-scale, open-domain visual attribute
datasets: MIT-States [24] and VAW [47]. They annotate not only the five common visual properties
used in Visual Attribute but also some other properties about object states. We ask human annotators
to manually review the datasets to identify image pairs relevant to state attributes.

Annotation. We follow the annotation protocol in §4.2.1 to curate a total of 1.1K triplets.

4.2.4 Emotion

Data collection. We gather facial images from two publicly available datasets, CelebA [35] and
FER-2013 [20], focusing on eight annotated human emotional states: smiling, angry, disgusted,
fearful, happy, neutral, sad, and surprised. We form image pairs from the same emotional state.

Annotation. We follow the annotation protocol in §4.2.1 to curate a total of 5.3K triplets.
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Attribute
13%

Existence
6%

State
3%

Emotion
13%

Temporality
33%

Spatiality
5%

Quantity
25%

Quality
2%

Relativity Dataset Domain # our
samples

Attribute

MIT-States [24] Open 0.2K
Fashionpedia [26] Fashion 2.4K

VAW [47] Open 0.9K
CUB-200-2011 [60] Bird 0.9K

Wildfish++ [70] Fish 0.9K

Existence MagicBrush [66] Open 0.9K
Spot-the-diff [25] Outdoor Scene 1.2K

State MIT-States [24] Open 0.6K
VAW [47] Open 0.5K

Emotion CelebA [35] Face 1.5K
FER-2013 [20] Face 3.8K

Temporality SoccerNet [19] Sport 8.3K
CompCars [64] Car 5K

Spatiality NYU-Depth V2 [55] Indoor Scene 1.9K

Quantity VQAv2 [21] Open 9.8K

Quality Q-Bench2 [67] Open 1K

Total - - 39.8K

Table 1: Overall statistics of MLLM-COMPBENCH.

4.2.5 Temporality

Data collection. We consider images with time-related tags. One pertinent source is videos. Specifi-
cally, we use SoccerNet [19], a dataset for soccer video understanding. It annotates various soccer
actions (e.g., free-kicks, corner-kicks, etc.) and specifies their exact periods (start-end frame indices).
Using this temporal metadata, we extract two frames from each annotated action, creating an image
pair that allows temporal comparison. We also consider CompCars [64], a dataset designed for
fine-grained categorization of vehicles. This dataset offers a detailed ontology of car attributes, such
as make, model, and year. We generate image pairs that feature the same car model from different
production years, for instance, a 2017 Honda Civic vs. its 2015 counterpart.

Annotation. We automatically generate (rule-based) questions and answers about which frame or
object is associated with an earlier/later time-related tag, for example, “Which frame happened first
during the free-kick?” To ensure that the two images are relevant enough to offer sufficient temporal
cues, we compute the CLIP visual similarity [49], selecting only image pairs with similar layouts and
object poses. In total, we curate 13.3K triplets.

4.2.6 Spatiality

Data collection. We collect images with spatial tags, e.g., object locations. Specifically, we use NYU-
Depth V2 [55], featuring indoor scenes with object segments and depths. Using the segmentation
maps, we identify objects within each image, and group images containing the same objects.

Annotation. We follow the annotation protocol in §4.2.1, leveraging pre-defined templates and object
information to generate questions about spatial relative comparisons (e.g., “Which shelf is closer to
the camera?”), followed by human answer annotation. Overall, we curate 1.9K triplets.

4.2.7 Quantity

Data collection. We consider images with labels related to object instances. One prominent source
is object detection datasets. Here, we use VQAv2 [21], which is built upon MSCOCO [10] and
encompasses a variety of question types, such as object counting and color. We focus on the counting
questions, grouping images with similar questions and sampling image pairs within each group.

Annotation. We use GPT-4 [1] to convert original absolute counting questions (e.g., “How many
elephants are there?”) to relative counting questions (e.g., “Which image has more elements?”). The
answers are derived automatically from VQAv2’s ground-truth answers. We curate 9.8K triplets.
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4.2.8 Quality

Data collection. We use Q-bench2 [67], a recently introduced dataset to evaluate low-level visual
perception. Concretely, it challenges MLLMs to determine the quality (e.g., blurriness or distortion)
of a single image or to compare the quality between two images.

Annotation. Through a meticulous filtering process (cf. §4.2.1), we select paired images from
Q-bench2, along with the annotated multiple-choice questions and answers, resulting in 1K triplets.

4.3 Quality Control and Dataset Statistics

To ensure the integrity of MLLM-COMPBENCH, we ask annotators to exclude poor-quality examples,
such as those with low-resolution images or questions that are irrelevant or nonsensical about the
images. The annotators also filter out image pairs with ambiguous relativities, for example, image
pairs with indistinguishable smiling degrees. To faithfully assess fine-grained capabilities, we
also apply the CLIP visual similarity to Existence, removing image pairs with salient differences.
Additionally, we implement a rigorous cross-verification process, where each annotator confirms
the accuracy of others’ answers. Only samples that receive unanimous approval from annotators are
kept. Consequently, our MLLM-COMPBENCH benchmark comprises 39.8K diverse triplets (eight
relativities from fourteen visual domains) with high quality and reliability. Please see Table 1 for the
statistics.

Human Annotators & Evaluators. We recruited five in-house human annotators from our research
team to work on MLLM-COMPBENCH. The annotators are instructed to avoid generating any
personally identifiable information or offensive content during the annotation process. Furthermore,
we recruited another five human evaluators, who were not involved in the annotation, to measure the
upper bound model performance on MLLM-COMPBENCH (Table 4). The workloads for annotation
and evaluation were distributed equally among annotators and evaluators.

5 Experiments

5.1 Experimental Setup

Baselines. We use our COMPBENCH 2 to evaluate several leading MLLMs. This includes two
powerful proprietary models, GPT-4V(ision) [1] and Gemini1.0-Pro3 [58], and two open-source
alternatives, LLaVA-1.6 [33] and VILA-1.5 [32]. GPT-4V(ision) and Gemini excel in various vision
and language tasks, such as VQA [21], OCR interpretation [40], spatial reasoning [38], and college-
level subject knowledge [65]. LLaVA-1.6 and VILA-1.5 also demonstrate competitive performance
against these proprietary giants on some tasks. Our focus is to investigate whether these cutting-edge
models can extend their capabilities to the realm of multi-image relative comparison. We evaluate
proprietary models via their official APIs and open-source models using (or fine-tuning on) NVIDIA
RTX 6000 Ada GPUs. For more details, please refer to the Appendix C in supplementary material.

Evaluation tasks & metrics. We divide our COMPBENCH into a test split (31.8K) and a held-out split
(7.9K), using an 80:20 ratio. The latter is reserved for future developments (e.g., prompt engineering).
By default, we concatenate the image pairs horizontally (i.e., left and right) as the visual input to
MLLMs, and prompt MLLMs to answer questions about the relativity between these images. To
facilitate automated evaluation, we include the possible answers as options in the questions. For
Existence and Quality, there are multiple options (typically more than two). For Quantity, there are
three options: left/right/same. For other types, there are binary options: left/right. We employ the
standard accuracy as our evaluation metric. A question is answered correctly if the model prediction
exactly matches the ground-truth answer. Further details are included in the Appendix B.

5.2 Main Results (Table 2)

Overall challenges in COMPBENCH. We observe that current MLLMs face challenges in answering
relative questions in COMPBENCH (see Table 2). All MLLMs achieve averaged accuracies over the
sixteen tasks (columns) below 80%, with GPT-4V reaching the highest accuracy at 74.7%. Further, a

2We use COMPBENCH and MLLM-COMPBENCH interchangeably.
3Due to limited public testing quota available for Gemini1.5 during our study, we opted for Gemini1.0-Pro.
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Model
Attribute Exist. State Emot. Temp. Spat. Quan. Qual.

Avg
ST FA VA CU WF MB SD ST VA CE FE SN CC ND VQ QB

GPT-4V 91.8 89.0 76.9 71.4 72.1 58.3 41.9 92.2 87.8 91.8 83.4 71.4 73.7 56.1 63.8 73.0 74.7

Gemini1.0-Pro 71.9 76.3 69.3 59.9 54.9 53.7 53.0 81.8 70.7 60.6 71.2 55.1 58.2 56.6 54.6 59.5 63.0

LLaVA-1.6 84.9 72.1 77.7 72.6 68.7 26.5 20.7 89.7 79.3 96.2 83.5 51.0 50.2 67.2 50.1 64.8 66.0

VILA-1.5 69.9 66.2 70.9 55.9 52.0 49.5 36.8 71.9 74.5 57.1 55.6 51.1 52.9 51.8 47.7 64.8 58.0

Chance level 50.0 50.0 50.0 50.0 50.0 8.6 9.7 50.0 50.0 50.0 50.0 50.0 50.0 50.0 33.3 37.4 43.1

Table 2: Overall results on COMPBENCH test split. We evaluate four leading MLLMs across eight relative
comparisons spanning sixteen tasks. The top-performing model in each task is indicated in bold. ST: MIT-
States [24], FA: Fashionpedia [26], VA: VAW [47], CU: CUB-200-2011 [60], WF: Wildfish++ [70], MB:
MagicBrush [66], SD: Spot-the-diff [25], CE: CelebA [35], FE: FER-2013 [20], SN: SoccerNet [19], CC:
CompCars [64], ND: NYU-Depth V2 [55], VQ: VQAv2 [21], QB: Q-Bench2 [67].

human evaluation study on a subset of our examples indicates that GPT-4V’s performance remains
notably behind human capabilities, highlighting the need for substantial improvement (Table 4).

Superiority in State & Emotion. State relativity is an area where MLLMs demonstrate strength.
For instance, GPT-4V/LLaVA-1.6 achieve 92.2%/89.7%, respectively, on MIT-states [24] for state
relativity. Similarly, they demonstrate impressive performance in emotion relativity (91.8%/96.2%
on CelebA [35]). Our preliminary analysis suggests that their capacity to determine the degree of
emotion (e.g., smiling) relies on specific facial features such as lip curvature or visible teeth.

Challenges in Existence. All MLLMs show weak performance in existence relativity tasks. We
attribute this to the multiple capabilities these tasks demand, including spatial understanding and
precise object recognition/comparison. For instance, when an object in the left image is moved to a
different location in the right image, the models need to not only recognize the same object in the
right image but also understand the relative change in its position. This necessitates both robust object
recognition and accurate spatial reasoning. Given that an image can contain numerous objects, the
model should have a deep understanding of how the existence of them changes between images.

Challenges in Temporality and Spatiality. MLLMs encounter difficulties with both temporal
relativity, which requires commonsense, and spatial relativity, which demands comprehension of
depth perception between objects. Specifically, for the spatial task, all MLLMs perform below 70%,
and notably, both proprietary models, GPT-4V and Gemini1.0-Pro, only achieve slightly above chance
levels (56.1% and 56.6%, respectively). This underscores the need for further research in improving
spatial relativity to advance models towards artificial general intelligence (AGI).

Challenges in Quantity & Quality. We observe the mediocre performance of MLLMs in quantity
relativity (e.g., GPT-4V: 63.8%, VILA-1.5: 47.7%). We attribute this to the models’ weak capability
in accurately counting objects in images. Similarly, MLLMs struggle with assessing image quality
(e.g., 73.0% of GPT-4V’s accuracy). These capabilities are crucial for making informed decisions in
our daily lives (cf. §1), highlighting the need for MLLMs to improve in these aspects.

Variability in performance across domains. The performance of MLLMs varies in different
domains. For instance, they excel at comparing visual attributes of daily objects [24] and clothing [26]
while struggling with those of animals (e.g., birds [60], fish [70]). This could be due to the complexity
of animal features, such as feathers, scales, or markings, which are more challenging for the model to
interpret compared to simpler attributes in everyday objects.

5.3 Further Analyses

Two-stage reasoning. What if we first ask MLLMs to analyze each image in a pair separately
(e.g., “How far is the table from the camera that took this photo? Return a number in feet.”) and
use their language responses to answer a follow-up pure language question (e.g., “Based on the
responses, which object is closer to the camera?”)? We evaluate this two-stage reasoning approach
on three comparison tasks: Existence, Emotion, and Spatiality. We find that GPT-4V, using this
two-stage reasoning, performs less effectively on all three tasks (Left in Table 3). This is likely
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Model Exist. Emot. Spat.
MB CE ND

GPT-4V 58.3 91.8 56.1
GPT-4Vtwo-stage 45.9 90.3 36.3

Model Temp. Quan.
SN VQ

LLaVA-1.6 51.0 50.1
LLaVA-1.6fine-tuned 93.9 56.6

Table 3: Left: Two-stage reasoning. Analyzing images separately and then comparing them via a pure language
question reduces performance, due to challenges in absolute inference and reasoning. Right: Fine-tuning
results. Fine-tuned LLaVA-1.6 excels in temporal relativity but falls short in quantity, struggling with counting.

Q: Which plane is bluer?

: Right : Left

Q: Which image has 
more umbrellas?

: Right : Left

Q: What is the most obvious 
difference between two images?

: Books : None : Waiter : None

Figure 3: Error Analysis on COMPBENCH. We observe four types of errors where GPT-4V [1] falls short: (i)
differentiating colors between objects and backgrounds, (ii) counting small or distant objects, (iii) identifying
objects within crowded scenes, and (iv) recognizing out-of-focus details.

because analyzing images separately can sometimes be more challenging than comparing images
directly. For instance, calculating the exact distance from an object to the camera may be difficult,
leading to inaccurate numbers. In contrast, directly answering a question, “Which object is closer to
the camera?” may be easier, as models only need to determine the relative closeness between objects.

Fine-tuning experiments. We conduct a study to see if fine-tuning helps improve the comparative
capabilities of MLLMs. We focus on two comparative tasks, temporality and quantity. For temporality,
we construct a total of 20.6K training examples from SoccerNet [19], following the similar data
collection and annotation protocol described in §4.2.5. For quantity, we curate 20.9K training
samples from VQAv2 [21], based on the protocol in §4.2.7. We then fine-tune LLaVA-1.6 [33] on
each of these training datasets separately, using LoRA techniques. As shown in Table 3 (Right),
fine-tuning significantly benefits LLaVA-1.6 in the temporal task (SoccerNet). However, interestingly,
it only marginal gains in quantity questions. We attribute this to its vision encoder, CLIP [49],
which may have weak capabilities in counting the number of objects, as reported by several prior
works [49, 43, 46]. This suggests considering new architectures or training strategies to improve its
counting capabilities as future work. Please see the supplementary material for further details.

Model Accuracy

GPT-4V 68.6%
Humans 86.5%

Table 4: Preliminary human evaluation
on 140 samples.

Error Analysis. We analyze error cases by GPT-4V and
offer insights to enhance its performance (Figure 3). First,
GPT-4V may not effectively distinguish the color between
objects and backgrounds. For instance, in the first example
of Figure 3, the object — a plane — shares a similar color
(i.e., blue) with the background, causing GPT-4V to fail
in selecting the bluer plane. Second, GPT-4V struggles to
count accurately for small or distant objects (e.g., people
further away wearing umbrellas), as shown in the second
example. Third, GPT-4V finds it challenging to identify the target object if numerous items exist
within images. In the third example, both images contain multiple objects, such as monitors, laptops,
keyboards, desks, and books, and GPT-4V fails to pinpoint the target object (i.e., books). Lastly,
GPT-4V may overlook details in out-of-focus areas of images. For instance, in the fourth example,
the camera focuses on a pizza, leaving a waiter out of focus. Consequently, GPT-4V fails to detect
facial changes in the waiter, highlighting its struggle with details in out-of-focus areas.

Human evaluation. We investigate how much current MLLMs (e.g., GPT-4V) lag behind human
performance. We conduct a preliminary human evaluation using 140 examples randomly sampled
from the sixteen tasks (columns) in Table 1. We ask five human evaluators, different from our
annotators, to answer these questions and average their performance. As shown in Table 4, the
performance of GPT-4V on these examples is approximately 18% below that of humans. This not
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Model
Attribute Exist. State Emot. Temp. Spat. Quan. Qual.

Avg
ST FA VA CU WF MB SD ST VA CE FE SN CC ND VQ QB

GPT-4V 91.8 89.0 76.9 71.4 72.1 58.3 41.9 92.2 87.8 91.8 83.4 71.4 73.7 56.1 63.8 73.0 74.7

GPT-4o 92.3 97.0 86.3 74.7 84.5 81.2 67.2 95.8 89.6 96.6 91.1 72.0 83.3 68.2 67.8 81.2 83.1

Improvement 0.5 8.0 9.4 3.3 12.4 22.9 25.3 3.6 1.8 4.8 7.7 0.6 9.6 12.1 4.0 8.2 8.4

Gemini1.0-Pro 71.9 76.3 69.3 59.9 54.9 53.7 53.0 81.8 70.7 60.6 71.2 55.1 58.2 56.6 54.6 59.5 63.0

Gemini1.5-Pro 79.2 91.8 77.7 71.4 72.8 55.4 58.7 91.0 84.0 93.0 87.3 50.3 70.3 68.3 64.8 70.5 74.2

Improvement 7.3 15.5 8.4 11.5 17.9 1.7 5.7 9.2 13.3 32.4 16.1 -4.8 12.1 11.7 10.2 11.0 11.2

Table 5: Results of new MLLM models (GPT4-o and Gemini1.5-Pro) released after NeurIPS deadline. The
top-performing model in each task is indicated in bold. Both upgraded MLLM models (GPT-4o & Gemini1.5-
Pro) exhibit significant improvements over their previous versions (GPT-4V & Gemini1.0-Pro).

only highlights the challenge of our COMPBENCH but also underscores the limited capabilities of
current MLLMs in multi-image relative comparison.

5.4 Evaluation of Recent MLLMs Released After the NeurIPS Deadline

Since our paper submission in early June 2024, several new MLLMs have been released, such as
GPT-4o [42] or Gemini1.5-Pro [52]. In Table 5, we present a comparative analysis of GPT-4V
with the recently released GPT-4o, alongside Gemini1.0-Pro with Gemini1.5-Pro. These upgraded
models demonstrate substantial improvements over their previous versions, with GPT-4o showing
marked gains in existence (MB and SD) and spatial (ND) relativities, while Gemini1.5-Pro achieves
broader enhancements across multiple relational dimensions. This progress likely results from
enhanced training approaches, including scaling model and data along with refined learning strategies.
Investigating exactly how these methods drive GPT-4o’s substantial gains on our benchmark could
be a valuable direction for future research. Nonetheless, we note that the performance of GPT-4o
remains mediocre in several relativities, such as spatiality and quantity.

6 Conclusion and Future Work

In this work, we introduce MLLM-COMPBENCH, a comprehensive benchmark designed to evaluate
comparative reasoning in multimodal LLMs (MLLMs), offering detailed analyses and insights for
future advancements. As future work, we plan to incorporate more challenging datasets into each
type of relative comparison in MLLM-COMPBENCH. For instance, additional video datasets could
be explored for temporal relativity, such as cooking activities [68] or other sports [62, 48]. Moreover,
expanding the scope of comparative reasoning relativities holds promise. Examples include similarity
comparisons (e.g., “Identify similar objects between the two images.”) and comparisons involving
more than two images (e.g., “Given images showing various views of one object along with a few of
a different object, the model should identify the outliers.”). We envision that MLLM-COMPBENCH
will serve as a valuable tool, paving the way for advancing comparative reasoning in MLLMs.
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Appendices

All codes, data, and instructions for our MLLM-COMPBENCH can be found in https://github.
com/RaptorMai/CompBench. MLLM-COMPBENCH is released under a Creative Commons Attri-
bution 4.0 License (CC BY 4.0).

Our supplementary materials are summarized as follows:

• Appendix A: Limitations, social impacts, ethical considerations, and license of assets.

• Appendix B: MLLM-COMPBENCH curation and model evaluation (cf. §4.2 and §5.1 in the main
text).

• Appendix C: Training details on LLaVA-1.6 (cf. §5.3 in the main text).

• Appendix D: More qualitative examples.

A Discussions

A.1 Limitations

While we conducted a human evaluation study to establish the upper bound performance on MLLM-
COMPBENCH, the study is currently limited to 140 samples assessed by five evaluators (cf. §5.3 in
the main text). We plan to expand the study to a larger scale in future work.

A.2 Social impacts

MLLM-COMPBENCH evaluates the comparative reasoning abilities of MLLMs in images. A poten-
tial negative impact of our work is that malicious users might exploit our concept (i.e., comparison)
to compare ethical or offensive content. Therefore, it is essential to incorporate effective safeguards
in MLLMs to filter out any inappropriate materials.

A.3 Ethical considerations

All fourteen datasets (cf. Table 1 in the main text) that we used to curate MLLM-COMPBENCH
adhere to strict guidelines to exclude any harmful, unethical, or offensive content. Additionally, we
instruct human annotators to avoid generating any personally identifiable information or offensive
content during our annotation process. Finally, we do not conduct any study to compare harmful,
ethical, or offensive content between the two images.

A.4 License of assets

All fourteen datasets are publicly available, and Table 6 details the licensing information for the
assets in each dataset. We release our MLLM-COMPBENCH under a Creative Commons Attribution
4.0 License (CC BY 4.0) to enhance global accessibility and foster innovation and collaboration in
research.

B MLLM-COMPBENCH Curation Details

B.1 Annotation Details

We create UI interfaces for annotation using Python in Jupyter Notebook and store the annotations in
JSON files. In the following sections, we provide detailed descriptions of the annotation process for
each dataset, which are omitted in the main text.

MagicBrush [66] is a large-scale, manually annotated dataset for instruction-guided real image
editing. For each image, MagicBrush utilizes DALL-E 2 [51] to generate an edited version of the
image based on language instructions, such as “let the flowers in the vase be blue.” Our goal is to
identify pairs of similar images. We thus use CLIP [49] to evaluate the visual similarity between the
original and edited images. Only pairs exceeding a predetermined similarity threshold are selected
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Public LicenseDataset

MIT-States [24] N/A
Fashionpedia [26] CC BY 4.0

VAW [47] Adobe Research License
CUB-200-2011 [60] CC BY

Wildfish++ [70] N/A
MagicBrush [66] CC BY 4.0
Spot-the-diff [25] N/A

CelebA [35] Research-only, non-commercial
FER-2013 [20] N/A
SoccerNet [19] MIT License
CompCars [64] Research-only, non-commercial

NYU-Depth V2 [55] N/A
VQAv2 [21] CC BY 4.0

Q-Bench2 [67] N/A

Table 6: License of Assets.

as candidate samples for our MLLM-COMPBENCH. For each selected pair, we then construct a
multiple-choice question to ask the difference between two images in the pairs. Concretely, we first
use GPT-4V [1] to extract all relevant objects and their attributes from the edited image with the
following prompt:

“Please extract as many components as possible from the provided images. The
following examples illustrate some potential components, but the list is not exhaus-
tive. Only provide the component names, separated by commas. If a human or
an animal is shown in the images and features such as hair, eyes, hands, mouth,
ears, and legs are visible, ensure to include them. Similarly, try to identify all
components in as much detail as possible.
Examples of components: leg, eye, ear, food, pillow, flower, plate, window, door,
chair, dining table, sofa, banana, bowl, sugar, blender, berry, lizard, watermelon,
motorcycle, apple, curtain, cookies, cake, hair, hat, dresses, bacon, butter, jam,
bread, surfboard, t-shirt, pants, hands, fridge, plants, cabinet, sink, car, girl, boy.”

We treat objects and their attributes (if found) as options for the questions. However, GPT-4V [1]
may not capture all relevant objects (options) in the images. We thus request human annotators to add
as many relevant options as possible. Finally, annotators are required to select the obvious difference
between two images as the correct answer among options and verify the quality of the generated
samples (Figure 4).

Spot-the-diff [25] offers video-surveillance image pairs from outdoor scenes, along with descriptions
and pixel-level masks of their differences. Similar to MagicBrush, we aim to construct a multiple-
choice question to find the obvious difference between the two images. We first prompt the text-only
GPT-4 to extract the potentially correct objects from the descriptions of the differences using the
following prompt:

“These sentences describe the differences between the two images. Extract the
objects from these sentences. for example, [“there are more people”, “the car
moved”], you should return “people, car”. Please only provide the answer without
any explanation and separate the answer names by commas.”

Given the extracted objects and the images, GPT-4V is tasked with finding relevant options in the
images based on the following prompt:

“Please list all the objects and attributes associated with the image, for example,
black cars, people, trees, white trucks, and yellow poles. Only provide one attribute
(adjective) per object. Please only provide the answer without any explanation
and separate the answer names with commas. Ensure to include these objects:
[OBJECTS FROM LAST STEP]”
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Figure 4: Annotation Interface for MagicBrush.

We then instruct human annotators to include additional options (if necessary) and identify the most
evident difference between two images from the available options as the correct answer (Figure 5).

MIT-States [24] includes 245 objects with 115 visual attributes or states from online sources such
as food or device websites. Each folder in this dataset is named by (adjective, noun), e.g., tall tree,
where the adjective describes the state or the attributes and the noun is the object. All the images in
this folder share the same adjective and noun. We apply rule-based approaches to generate questions
about relative degrees of attributes or states between objects (e.g., “Which tree is taller?”). We then
present the questions with the corresponding images in this folder to annotators. The annotators are
tasked to select pairs from all the images, label the correct answers (binary: left/right), and filter out
any irrelevant or nonsensical questions about the images. In addition, the annotators are required to
determine the attribute or state types by selecting from the following options: Size, Color, Texture,
Shape, Pattern, State, or None. We filter out examples where the type or answer is None. The
annotation UI interface is shown in Figure 6.

VAW [47] provides a large-scale collection of 620 unique attributes, including color, shape, and
texture. We process VAW in the same manner as MIT-States, as detailed in Figure 6.

CUB-200-2011 [60] catalogs 15 bird parts and their attributes (e.g., “notched tail”). We group images
by species with the same attributes (e.g., “curved bill”) and extract visually similar image pairs from
each group. We then prompt GPT-4 to transform visual attributes into questions that compare them
using the following in-context prompt:

“I want to turn some text describing the attributes of birds into a question comparing
these attributes between birds in two different images. Here are some examples:
Attribute: has_bill_shape::hooked, Questions: Which bird has a more hooked bill?
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Figure 5: Annotation Interface for Spot-the-diff.

Attribute: has_crown_color::brown, Questions: Which bird has more brown on its
crown?
Please turn this list of attributes into these questions in this format or style. I want
a dictionary format output. [ATTRIBUTE LIST]”

The annotators receive all images in each group along with corresponding comparative questions
generated by GPT-4. They are asked to select the pairs from the images and label the correct answers
(binary: left/right). The annotation interface is shown in Figure 7.

Wildfish++ [70] details 22 characteristics (e.g., “brown pelvic fins”) of various fish species and
provides detailed descriptions of the differences between two visually similar species. Using the
characteristics and the descriptions of difference, we first ask annotators to generate comparative
questions (e.g., “Which fish has lighter brown pelvic fins?”). Subsequently, we pass all images from
the two similar species along with the corresponding question to the annotators. They select one
image from each group to form a pair and label the correct answers as either left or right (Figure 8).

Fashionpedia [26] is tailored to clothing and accessories and contains 27 types of apparel along
with 294 detailed attributes. We group images by (attribute, type), e.g., square neckline. We apply
rule-based approaches to generate questions about relative degrees of attributes (e.g., “Which neckline
is more square?”) for each group. We then present images of the same type with different attributes,
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Figure 6: Annotation Interface for MIT-States and VAW.

such as “square neckline” and “oval neckline” to the annotators. The annotators are required to select
one image from each group to form a pair, choose one between questions from two attributes, and
label the correct answer (binary: left/right). The annotation UI interface is shown in Figure 9.

NYU-Depth V2 [55] features indoor scenes with object segments and depths. Using the segmentation
maps, we identify objects within each image and group images containing the same objects. We
apply rule-based approaches to generate questions about spatial relative comparisons (e.g., “Which
[OBJECT] is closer to the camera?”). The annotator needs to select pairs from all the images in the
same group and label the correct answers either left or right (Figure 10).

CelebA [35] is a large-scale facial attributes dataset featuring over 200K celebrity images, each
annotated with 40 attributes. We focus on images labeled with the “smiling” attribute, as it is the only
attribute related to the emotion in the dataset. We generate a comparative question such as “Which
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person smiles more?”. The annotators are tasked with selecting pairs from all images with the smiling
attribute and labeling the correct answers either left or right (Figure 11).

FER-2013 [20] contains grayscale images along with categories describing the emotion of the
person, including Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. We leverage rule-based
approaches to generate questions about relative emotional comparisons (e.g., “Which person looks
more [EMOTIONAL ADJECTIVE]?”). The annotators are required to select pairs from images that
share the same emotional attribute and determine the correct answers as either left or right (Figure 12).

SoccerNet [19], CompCars [64], VQAv2 [21], Q-bench2 [67] are automatically processed to
generate samples for MLLM-COMPBENCH using their metadata and CLIP visual similarity. For
more details, please refer to §4.2 of the main text.

B.2 Language Prompts for MLLMs

Table 7 summarizes our language prompts for evaluating MLLMs. We observe that in the case of
SoccerNet [19], Gemini1.0-pro [58] always predicts the answer “Left” for binary questions (e.g.,
“These are two frames related to [SOCCER_ACTION] in a soccer match. Which frame happens
first? Please only return one option from (Left, Right) without any other words.”). We thus prompted
the Gemini to answer open-ended questions (as shown in Table 7) instead. We then task human
evaluators with verifying whether its responses (i.e., textual descriptions) match the ground-truth
answers to calculate its performance. For a fair comparison, we apply the same open-ended questions
to other models (i.e., GPT-4V [1], LLaVA-1.6 [33], VILA-1.5 [32]) and report their accuracies.

B.3 Model Evaluation

We use official APIs to evaluate proprietary MLLMs, GPT-4V [1] and Gemini [58]. For GPT-4V,
we use the version of gpt-4-turbo4. For Gemini, we use the Gemini1.0 Pro Vision5. For open source
models such as LLaVa-1.6-34b [33]6 and VILA-1.5-40b [32]7, we utilize their official source codes
and conduct inference on NVIDIA RTX 6000 Ada GPUs.

C Training details on LLaVA-1.6

As discussed in §5.3 of the main text, we conduct a study to evaluate whether fine-tuning enhances
the comparative capabilities of MLLMs. Concretely, we focus on two relativities: Temporality and
Quantity. For temporality, we construct a total of 20.6K training examples from SoccerNet [19],
following the similar data collection and annotation protocol described in §4.2.5 of the main text. For
quantity, we curate a total training set of 20.9K samples from VQAv2 [21], based on the similar data
collection and annotation pipeline in §4.2.7 of the main text. We fine-tune LLaVA-1.6-34b [33] on
each of these training datasets separately, using LoRA techniques. We follow similar hyperparameter
settings as those provided in the official LLaVA source codes. For instance, batch size/the number of
epochs/learning rate are 16/3/2e-5, respectively. See the training script in our GitHub repository for
the complete configuration. All models are fine-tuned on four NVIDIA RTX 6000 Ada GPUs.

D More qualitative examples

In addition to the main text, we show more qualitative examples from each of fourteen datasets in
Figure 13, Figure 14, Figure 15, Figure 16, and Figure 17. We observe that GPT-4V, one of the
leading MLLMs, often faces challenges across a range of relative comparison tasks.

4https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
5https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.0-pro-vision
6https://github.com/haotian-liu/LLaVA
7https://github.com/Efficient-Large-Model/VILA
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Dataset Model Lagnauge Prompt

GPT-4V “[QUESTION] If you choose the first image, return Left, and if you
choose the second image, return Right. Please only return either Left or
Right without any other words, spaces, or punctuation.”ST, FA, VA, CU,

LLaVA-1.6

WF, CE, FE, ND
VILA-1.5

Gemini1.0-pro
“[QUESTION] If you choose the first image, return First, and if you
choose the second image, return Second. Please only return either First
or Second without any other words, spaces, or punctuation.”

MB, SD

GPT-4V “What is the most obvious difference between the two images? Choose
from the following options. If there is no obvious difference, choose
None. Options: None, [OPTIONS]. Please only return one of the options
without any other words. ”

LLaVA-1.6
VILA-1.5

Gemini1.0-pro

SN

GPT-4V
“These are two frames related to [SOCCER_ACTION] in a soccer match.
Which frame happens first?”

LLaVA-1.6
VILA-1.5

Gemini1.0-pro

CC

GPT-4V “Based on these images, which car is newer in terms of its model year or
release year? Note that this question refers solely to the year each car

LLaVA-1.6 was first introduced or manufactured, not its current condition or usage.
If you choose the first image, return Left, and if you choose the second

VILA-1.5 image, return Right. Please only return either Left or Right without any
other words, spaces, or punctuation.”

Gemini1.0-pro

Based on these images, which car is newer in terms of its model year or
release year? Note that this question refers solely to the year each car
was first introduced or manufactured, not its current condition or usage.
If you choose the first image, return First, and if you choose the second
image, return Second. Please only return either First or Second without
any other words, spaces, or punctuation.”

VQ

GPT-4V “[QUESTION] If the second image has more, return Right. If the first
image has more, return Left. If both images have the same number,
return Same. Please only return either Left or Right or Same without
any other words, spaces, or punctuation.”

LLaVA-1.6
VILA-1.5

Gemini1.0-pro

QB

GPT-4V

“[QUESTION] Options: [OPTIONS]”LLaVA-1.6
VILA-1.5

Gemini1.0-pro

Table 7: Language prompts for evaluating MLLMs. ST: MIT-States [24], FA: Fashionpedia [26], VA:
VAW [47], CU: CUB-200-2011 [60], WF: Wildfish++ [70], MB: MagicBrush [66], SD: Spot-the-diff [25], CE:
CelebA [35], FE: FER-2013 [20], SN: SoccerNet [19], CC: CompCars [64], ND: NYU-Depth V2 [55], VQ:
VQAv2 [21], QB: Q-Bench2 [67].
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Figure 7: Annotation Interface for CUB-200-2011.
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Figure 8: Annotation Interface for Wildfish++.
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Figure 9: Annotation Interface for Fashionpedia.
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Figure 10: Annotation Interface for NYU-Depth V2.
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Figure 11: Annotation Interface for CelebA.
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Figure 12: Annotation Interface for FER-2013.
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Q: Which branch is thinner?
: Left : Right

Q: Which cake is more ruffled?
: Left : Right

Q: Which hose is more crinkled?
: Left : Right

MIT-
States

Q: Which wheel is more dented?
: Right : Left

Q: Which neckline is 
more square?
: Left : Right

Q: Which coat’s fit is 
more curved?
: Left : Right : Right : Left

Q: Which pants’ fit 
is looser?

: Right : Left

Q: Which dress is 
more symmetrical?

Fashion

VAW

Q: Which clouds is whiter?

: Left : Right

Q: Which dog is more asleep?

: Right : Left : Left : Right

Q: Which cat is staring more 
directly at the camera? Q: Which person is more hugging?

: Left : Right

Figure 13: Qualtiative examples on MIT-States [24], Fashionpedia [26], and VAW [47].

CUB
Q: Which bird has more orange 

on its throat?

: Left : Right

Q: Which bird has more brown 
on its wings?

: Right : Left

Q: Which bird has a smaller bill 
length to head length ratio?

: Right : Left

Q: Which bird has more grey 
on its breast?

: Left : Right

Wildfish
Q: Which fish has a more 

prominent dark spot on the 
posterior upper side of the body?

: Left : Right

Q: Which fish has a more 
yellow dorsal fin?

: Left : Right

Q: Which fish has a more 
pronounced dark blotch on 

the dorsal fin?

: Right : Left

Q: Which fish has a more 
solid yellow backside with 

two black lines?

: Left : Right

Magic
Brush

: Cup : None : Chair : None : Cup : None: Boat : None

Q: What is the most obvious difference between two images?

Figure 14: Qualtiative examples on CUB-200-2011 [60], Wildfish++ [70], and MagicBrush [66].

28

28825https://doi.org/10.52202/079017-0906



Q: What is the most obvious difference between two images?

Spot-
the-diff

: People : None : Man : None : Black car : None : Car : People

CelebA
Q: Which person smiles more?

: Right : Left : Left : Right : Right : Left : Left : Right

FER-
2013

Q: Which person feels 
more sad?

: Right : Left

Q: Which person feels 
more fearful?
: Right : Left : Right : Left

Q: Which person feels 
more neutral?

Q: Which person feels 
more sad?

: Right : Left

Figure 15: Qualtiative examples on Spot-the-diff [25], CelebA [35], and FER-2013 [20].

SoccerNet

: Left : Right

Q: Which frame occurred first?
: Right : Left : Right : Left

CompCars

: Right : Left : Left : Right: Left : Right

Q: Which car is newer in terms of its model year or release year? 

NYU-
Depth

Q: Which tissue box is closer to the camera?

: Right : Left

Q: Which towel is closer to the camera?

: Left : Right

Q: Which door knob is closer to the camera?

: Left : Right

Figure 16: Qualtiative examples on SoccerNet [19], CompCars [64], and NYU-Depth V2 [55].

VQAv2

Q: Which image has more dogs?

: Left : Right

Q: Which image has more 
umbrellas pictured?

: Left : Right

Q: Which image has more people 
wearing glasses?

: Left : Same

Q-Bench2
Q: Compared to the first image, 

how is the sharpness of the second image?

: Clearer : More blurry

Q: Compared to the first image, how is 
the sharpness of the second image?

: Sharper : More blurry

Q: Is the first image sharper than 
the second image?

: Yes : No

Figure 17: Qualtiative examples on VQAv2 [21] and Q-Bench2 [67].
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See discussions in Suppl.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

discussions in Suppl.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See details in
Suppl.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See details in Suppl.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Most of our experiments are evaluating existing MLLM
models.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See details in Suppl.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See details in Suppl.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We curated new annotations.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See discussions in Suppl.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See discussions in Suppl.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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