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Abstract

In expand-and-sparsify (EaS) representation, a data point in Sd−1 is first randomly
mapped to higher dimension Rm, where m > d, followed by a sparsification
operation where the informative k ≪ m of the m coordinates are set to one and the
rest are set to zero. We propose two algorithms for non-parametric classification
using such EaS representation. For our first algorithm, we use winners-take-all
operation for the sparsification step and show that the proposed classifier admits
the form of a locally weighted average classifier and establish its consistency
via Stone’s Theorem. Further, assuming that the conditional probability function
P (y = 1|x) = η(x) is Hölder continuous and for optimal choice of m, we show
that the convergence rate of this classifier is minimax-optimal. For our second
algorithm, we use empirical k-thresholding operation for the sparsification step,
and under the assumption that data lie on a low dimensional manifold of dimension
d0 ≪ d, we show that the convergence rate of this classifier depends only on d0
and is again minimax-optimal. Empirical evaluations performed on real-world
datasets corroborate our theoretical results.

1 Introduction

Given a training set x1, . . . , xn of size n and a test point x sampled i.i.d. from a distribution
µ over some sample space X ⊂ Rd, the basic idea of non-parametric estimation (e.g., density
estimation, regression or classification) is to construct a function x 7→ fn(x) = fn(x, x1, . . . , xn)
that approximates the true function f (which could be a density/regression/classification function as
appropriate) as n→∞ Tsybakov [2008]. For any x ∈ X , fn(x) typically depends on a small subset
of the training set lying within a small neighborhood of (thus close to) x. For example, in case of
k-nearest neighbor, fn(x) depends on the k points from the training set that are closest to x; in case
of random forest, for each tree constituting the forest, fn(x) depends on the points from the training
set that are routed to the same leaf node to which x is also routed to; in case of kernel methods, fn(x)
depends on the points from training set defined by an appropriate kernel. In this paper, we propose a
new non-parametric classification method where, for any x ∈ Sd−1, the appropriate neighborhoods
are obtained using expand-and sparsify (EaS) representation of x.

On a high level, expand-and-sparsify representation is essentially a transformation from a low-
dimensional dense representation of sensory inputs to a much higher-dimensional, sparse represen-
tation. Such representation has been found, for instance, in the olfactory system of the fly (Wilson
[2013]) and mouse (Stettler and Axel [2009]), the visual system of the cat (Olshausen and Field
[2004]), and the electrosensory system of the electric fish (Chacron et al. [2011]). For example, in
the olfactory system of Drosophila (Turner et al. [2008], Masse et al. [2009], Wilson [2013], Caron
et al. [2013]), the primary sense receptors of the fly are the roughly 2,500 odor receptor neurons
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(also known as, ORNs), which can be clustered into 50 types, based on their odor responses, leading
to a dense, 50-dimensional sensory input vector. In fact, all ORNs of a given type converge on
a corresponding glomerulus in the antennal lobe; there are 50 of these in a topographically fixed
configuration. This information is then relayed via projection neurons to a collection of roughly
2000 Kenyon cells (KCs) in the mushroom body, with each KC receiving signal from roughly 5-10
glomeruli (Dasgupta and Tosh [2020]. The pattern of connectivity between the glomeruli and Kenyon
cells appears random (Chacron et al. [2011]). The output of the KCs is integrated by a single anterior
paired lateral (APL) neuron which then provides negative feedback causing all but the 5% highest-
firing KCs to be suppressed (Lin et al. [2014]). The result is a random sparse high-dimensional
representation of the sensory input, that is the basis for subsequent learning. The primary motivation
of this paper is to study the benefit of this type of naturally occurring representation in the context of
supervised classification.

In our setting, the EaS representation is a mapping from the d-dimensional unit sphere Sd−1

to {0, 1}m,m ≫ d, where a data point x ∈ Sd−1 is first randomly mapped to higher di-
mension Rm using a random projection matrix Θ, and is followed by a sparsification opera-
tion, where the informative k ≪ m of the m coordinates of the resulting vector Θx ∈ Rm

are set to one and the rest of the coordinates are set to zero. Rows of Θ are typically
drawn independently from some distribution ν over Sd−1 or Rd. Let Cj , j = 1, . . . ,m, be
the set of all examples from the input space X ⊂ Sd−1 whose jth coordinate in respective
EaS representations are set to 1. We call Cj the response region of θj (the jth row of Θ).

Figure 1: Top: A point x ∈ R2 (coordinate-wise
values are different shades of gray) and its projec-
tion y = Θx ∈ R15 (coordinate-wise values are
different shades of red). The sparsification step
sets the largest 5 values of y to 1 (black squares)
and the rest to zero. Bottom: Activated response
regions Cj , x ∈ Cj , (x is a red dot), are shown
using different colors. The points from the train-
ing set that intersects with these activated response
regions are shown using black dots.

Note that for any x ∈ X , there are k activated
response regions corresponding to the k non-
zero bits in the EaS representation of x. These k
activated response regions serves as k neighbor-
hoods of x for our proposed non-parametric clas-
sifier, where, for any x ∈ X and each activated
response region Cj , we estimate Pr(y = 1|Cj)
– expected value of y when x is restricted to Cj

– and take their average to be the estimate of
Pr(y = 1|x). In a toy example, we visually
show the EaS representation and the activated
response regions Cj of a data point in Fig. 1.
Comparing whether this conditional probability
estimate exceeds 1/2, we predict the class label
of y. In particular, we present two algorithms us-
ing different sparsification schemes and analyze
their theoretical properties.

One may find similarity between our proposed
algorithm and a random forest classifier – for
any x ∈ X , k activated response regions
Cj , x ∈ Cj , may be interpreted as the leaf nodes
(containing x) of k decision trees in a random
forest. However, unlike random forest, we can
not simply increase k (number of trees) with-
out changing other hyper-parameters (such as
m) hoping to achieving better prediction perfor-
mance. Therefore, even-though the consistency property of random forest is studied under different
settings Biau et al. [2008], Scornet et al. [2015], Scornet [2016], Tang et al. [2018], those ideas can
not be applied for our theoretical analysis.

We summarize our contributions below:

• We present an interesting connection between non-parametric estimation and EaS represen-
tation, and propose two algorithms for non-parametric classification via EaS representation,
and present empirical evaluations on benchmark machine learning datasets.

• For our first algorithm (using k-WTA sparsification), we establish its universal consistency
and prove that it achieves minimax-optimal convergence rate that depends on dimension d.
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• When data lie on a low dimensional manifold having dimension d0 ≪ d, we present a second
algorithm (using empirical k-thresholding sparsification) and prove that its convergence rate
is minimax-optimal and depends only on d0.

The rest of the paper is organized as follows. We discuss related work in 2. We present our first
algorithm and its theoretical analysis including consistency and convergence rate in section 3. We
present our second algorithm and derive its convergence rate in section 4. We present our empirical
results in section 5 and conclude discussing limitations and future work in section 6.

2 Related work

Non-parametric estimation is an important branch of statistics with a rich history and classical
results. Interested readers may refer to Tsybakov [2008], Györfi et al. [2002], which provide
excellent treatment of this subject. Here we briefly review consistency and convergence rates of
well-known non-parametric methods such as, partitioning estimates (histograms), k-nearest neighbors,
kernel methods, and random forests. In the non-parametric literature, it is typical to estimate the
regression function η(x) = E(y|x) from data, and use the resulting estimate ηn (using a sample
of size n) to construct plug-in decision function (classification rule). Under mild conditions, such
regression estimates and the resulting plug-in classification rules are consistent for histograms, k-
nearest neighbors, and kernel methods Györfi et al. [2002], Devroye et al. [1996]. Under mild
conditions, different variations of random forest methods are also known to be consistent Biau
et al. [2008], Scornet et al. [2015], Scornet [2016], Tang et al. [2018]. Under the assumption that
the regression function η(x) is Lipschitz continuous, the L2 error of the regression estimate of
histogram convergences at a rate O

(
n−1/(d+2)

)
(Theorem 4.3 Györfi et al. [2002], the L2 error of

the regression estimate of the kernel method convergence at a rate O
(
n−1/(d+2)

)
(Theorem 5.2

Györfi et al. [2002]), and the L2 error of the regression estimate of k-nearest neighbors method
convergences at a rate O

(
n−2/(d+2)

)
(Theorem 6.2 Györfi et al. [2002]). For random forest, Gao and

Zhou [2020] established finite-sample rate O(n−1/(8d+2)) on the convergence of pure random forests
for classification, which was be improved to be of O(n−1/(3.87d+2)) by considering the midpoint
splitting mechanism. They introduced another variant of random forests, which follow Breiman’s
original random forests but with different mechanisms for splitting dimensions and positions, to get a
convergence rate O(n−1/(d+2)(lnn)1/(d+2)), which reaches the minimax rate, except for a factor
(lnn)1/(d+2).

For EaS representation, when ν is the uniform distribution over Sd−1 and the sparsification scheme
is a k-winners-take-all (k-WTA) operation that sets the k largest entries of a vector in Rm to one the
rest to zero, Dasgupta and Tosh [2020] proposed a function approximation scheme using such EaS
representation that can approximate any Lipschitz continuous function f : Sd−1 → R in the L∞
norm, where the error decays exponentially slowly with d. Further, they showed when the data lie on
a low dimensional submanifold of Sd−1 having dimension d0 ≪ d, using a different sparsification
step, termed as k-thresholding, any Lipschiz continuous function defined on this manifold can be
approximated in the L∞ norm, where the error decays exponentially slowly with d0. A different
EaS representation, where the projection matrix is a sparse binary matrix and the sparsification
step is k-WTA, was proposed in Dasgupta et al. [2017] that effectively hash input data points and
such hashing has been shown to provide improved performance in accurately solving the similarity
search problems compared to the state-of-the-art locality sensitive hashing (LSH) based techniques
(Gionis et al. [1999], Andoni and Indyk [2008], Datar et al. [2004]). Such EaS representation has
also been used to summarize data in the form of a bloom filter, termed as fly bloom filter (FBF), and
has been successfully used in solving the novelty detection problems in Dasgupta et al. [2018] and
classification problem in Sinha and Ram [2021], Ram and Sinha [2021, 2022].

While our work is inspired by the results of Dasgupta and Tosh [2020], there are key differences.
First, we explicitly expand upon and apply the idea of Dasgupta and Tosh [2020] to the supervised
binary classification setting, and derive the rate at which the error probability of our proposed
classifier converges to that of the Bayes optimal classifier. In comparison, the main motivation of
Dasgupta and Tosh [2020] was to prove the existence of a weight vector that results in arbitrarily
well function approximation in the unsupervised learning setting using EaS representation. Because
of this existential nature of their result, the effect of sample size was neither needed nor considered
in their result. Second, the k-thresholding sparsification scheme proposed in Dasgupta and Tosh
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[2020] for function approximation result assumed that the coordinate-wise thresholds were known.
We make no such assumption and explicitly describe how to compute such thresholds from data–
resulting in realizable algorithm and derive convergence rate of our proposed classifier that takes care
of the uncertainly associated with random natures of these thresholds. Third, while Dasgupta and
Tosh [2020] only considers LipSchitz continuous functions, we consider that conditional probability
function η(x) = Pr(y = 1|x) to be Hölder continuous (a broader function class), and prove that our
proposed classifier achieves minimax-optimal convergence rate – whether such optimal convergence
rate was achievable in the proposed setting was, unknown prior to our result.

Finally, we note that random Fourier features Rahimi and Recht [2007] are generated using a
construction similar to EaS, however the choice of random directions there are chosen using a kernel
function that measures a notion of similarity in the input space. EaS representation can also be though
of an opposite process of compressed sensing Candes et al. [2006], Donoho [2006], where the goal is
to recover a sparse vector given random projections to it, while random projection is used to generate
a sparse representation in case of EaS.

3 Algorithm 1

Algorithm 1 Training set Dn = {(xi, yi)}ni=1 ⊂
Sd−1 × {0, 1}, Projection dimensionality m ∈
N, k ≪ m non-zeros in the EaS representation,
random seed R, and inference with test point x ∈
Sd−1.
TrainEaSClassifier(Dn,m, k,R)

Sample Θ with seed R
Initialize w[i], ct[i]← 0, ∀i ∈ [m]
for (x, y) ∈ S do

eas← h1(x)
w[i]← w[i] + y, ∀i ∈ [m] : eas[i] = 1
ct[i]← ct[i] + 1, ∀i ∈ [m] : eas[i] = 1

end
w[i]← w[i]/ct[i], ∀i ∈ [m]
return Θ, w

end
InferEaSClassifier(x,Θ, k, w)

eas← h1(x)
return I[(eas · w)/k ≥ 1

2 ]
end

In this section we present our first algorithm and
analyze its statistical properties. For the rest of
our presentation, we use the following notations.
For any positive integer k ∈ N, we use [k] to
denote the set {1, . . . , k}. For any vector v, we
use the notation v[i] to denote its ith coordinate
value. We use Sd−1 to denote the d-dimensional
unit sphere and B(x, r) to denote a closed ball
of radius r centered at x. We use I to denote indi-
cator variable such that for any boolean variable
A, I[A] is 1 if A is True, and 0 otherwise. We
consider the binary classification setting, where
the instance space is X ⊂ Sd−1 and the output
class label is Y = {0, 1}. Let µ denotes the
measure on X and let η : X → [0, 1], defined as
η(x) = Pr(y = 1|x), represents the conditional
probability distribution. Then, the joint probabil-
ity distribution on X × Y is completely defined
by µ and η. Let {(xi, yi)}ni=1, be a training set
of size n sampled i.i.d.from µ× η. Due to space
limitation, proofs of all our results (organized
section wise) are deferred to the Appendix.

For x ∈ Sd−1, the EaS representation of x, that uses k-WTA sparsification step, is given by the
function h1 : Sd−1 → {0, 1}m defined as,

h1(x) = Γk(Θx), (1)
where Θ is a m × d random projection matrix whose rows θ1, . . . , θm are sampled i.i.d from the
uniform distribution over Sd−1 and Γk : Rm → {0, 1}m is the k-WTA function converting a vector in
Rm to one in {0, 1}m by setting the largest k ≪ m elements of Θx to 1 and the rest to zero. For any
j ∈ [m], let Cj = {x ∈ X : h1(x)[j] = 1}. We note that the subsets (response regions) C1, . . . , Cm

does not form a partition since they can be overlapping. We summarize our first algorithm for
binary classification using h1 in Alg. 1. During its learning/training phase, a vector w ∈ [0, 1]m

summarizes the average y value over m response regions Cj , j ∈ [m] using the training set. In
particular, w[j], j ∈ [m] learned during the training phase is precisely given by

η̂j =

∑n
i=1 yiI[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

(2)

Using (2),for any x ∈ X , we further define

η̂(x) =
1

k

∑
j:x∈Cj

η̂j (3)

4
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During the inference phase, for any test point x, Alg. 1 first computes (w · h1(x))/k, which is an
average of average y values over k response regions {Cj : h1(x)[j] = 1}, which can be interpreted
as an estimate of the conditional probability η(x) and is precisely the quantity η̂(x) given in (3). Alg.
1 then makes its prediction based on whether η̂(x) is greater than or equal to 1/2. We can rewrite this
conditional probability estimate as follows.

η̂(x) =
w · h1(x)

k
=

1

k

∑
j:x∈Cj

w[j] =
1

k

∑
j:x∈Cj

η̂j =
1

k

∑
j:x∈Cj

∑n
i=1 yiI[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

=

n∑
i=1

1

k

∑
j:x∈Cj

I[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]


︸ ︷︷ ︸

wn,i(x)

yi =

n∑
i=1

wn,i(x)yi (4)

Using viewpoint (4), Alg. 1 can be interpreted as a “plug-in" classifier Devroye et al. [1996] where
prediction is based on whether the estimated conditional probability η̂ exceeds 1/2 or not. In
particular, classifier in Alg. 1 can be represented as g : X → {0, 1} described as

g(x) =

{
1, if η̂(x) ≥ 1/2,
0, otherwise.

(5)

In comparison, the Bayes optimal classifier g∗ : X → {0, 1} is defined as

g∗(x) =

{
1, if η(x) ≥ 1/2,
0, otherwise.

(6)

In equation 4, the weights wn,i(x) = wn,i(x, x1, . . . , xn) ∈ R depends on x1, . . . , xn. Next we
show that for sufficiently large n sum of these weights is 1. Therefore, η̂ is simply a weighted average
estimator of η and is a non-parametric classifier Devroye et al. [1996].

Lemma 3.1. For any x ∈ X , suppose n is sufficiently large such that {xi, . . . , xn} ∩ Cj ̸= ∅ for
each j satisfying x ∈ Cj . Then,

∑n
i=1 wn,i(x) = 1.

Indeed, we show in Lemma D.7 (in the Appendix), that for any x ∈ X , whenever n → ∞ and
mk/n→ 0 as n→∞, |{x1, . . . , xn} ∩ Cj | → ∞ for all j such that x ∈ Cj .

3.1 Consistency of Algorithm 1

In this section we prove that Alg. 1 is universally consistent. We start with the definition
of consistent and universally consistent classification rule Devroye et al. [1996]. Let Dn =
{(x1, y1), . . . , ((xn, yn)} be a training set sampled i.i.d. from a certain distribution of (x, y) and
let gn : X → {0, 1} be a classification rule learned using Dn. Then gn is consistent (or asymp-
totically Bayes-risk efficient) for a certain distribution of (x, y) if the expected error probability
ELn = Pr {gn(x,Dn) ̸= y} → L∗ as n→∞, where L∗ is the Bayes error probability. A sequence
of decision rules is called universally consistent, if it is consistent for any distribution of the pair
(x, y). It is well known that a general theorem by Stone Stone [1977] (presented below) provides a
recipe for establishing universal consistency of any classification rule of the form

gn(x) =

{
1, if ηn(x) ≥ 1/2,
0, otherwise.

(7)

based on an estimate ηn(x) of the conditional probability η(x), satisfying ηn(x) =
∑n

i=1 wn,i(x)yi
where weights wn,i(x) = wn,i(x, x1, . . . , xn) are non-negative and

∑n
i=1 wn,i(x) = 1.

Theorem 3.2. [Stone’s Theorem (Theorem 6.3 [Devroye et al., 1996])] Assume that for any distribu-
tion of x, the weights satisfy the following three conditions:
(i) There is a constant c such that, for every non-negative measurable function f sat-
isfying Ef(x) < ∞, E (

∑n
i=1 wn,i(x)f(xi)) ≤ cEf(x). (ii) For all a > 0,

limn→∞ E
(∑n

i=1 wi,n(x)I{∥xi−x∥>a}
)
= 0. (iii) limn→∞E (max1≤i≤n wn,i(x)) = 0.

Then gn is universally consistent.

5
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Since we have already established in the previous section that the classification rule given in Alg. 1
admits the form given in (5), in conjunction with (4) and Lemma 3.1, we are ready to use Theorem
3.2 to establish universal consistency of Alg. 1. We state our consistency result below.
Theorem 3.3. Let (kn) and (mn) be increasing functions of n and let (δn) be a decreasing function
of n satisfying limn→∞ δn = 0. Then the classification rule using EaS representation (1) given in
Alg. 1 that admits the form given in (5) is universally consistent whenever the following conditions
hold:(i) kn

mn
→ 0 as n→∞, (ii) log(1/δn)

mn
→ 0 as n→∞ and, (iii) mkn

n

n → 0 as n→∞.

Once m and k are fixed, for any x ∈ X , there are
(
m
k

)
possible subsets of k indices, from the m

possible indices in the EaS representation, that h1(x) can set to 1. For i ∈ {1, . . . ,
(
m
k

)
}, let σ(i)

represents the set of k indices in the ith subset and we let Ck
i = {x ∈ X : h1(x)[j] = 1, ∀j ∈ σ(i)}

to denote the set of instances whose EaS representation precisely sets the indices in σ(i) to 1 and the
rest to zero. The following two results are crucial in proving our consistency results above, as well as
in deriving convergence rate in the next section.
Lemma 3.4. For any positive integers m, k, where k < m, the following relations hold.

i) For any i ∈ {1, . . . ,
(
m
k

)
}, Ck

i = ∩j∈σ(i)Cj . ii) {Ck
i }

(mk )
i=1 forms a partition of X . iii) For any

j ∈ [m], Cj = ∪i:j∈σ(i)C
k
i . iv) For any j ∈ [m], µ(Cj) =

∑
i:j∈σ(i) µ(C

k
i ).

Lemma 3.5. Let d ≥ 3 and pick any 0 < δ < 1. There is an absolute constant c0 > 0 such that the
following holds. With probability at least 1− δ,

max
j∈[m]

diam(Cj) ≤ 8

(
k + c0(d logm+ log(1/δ)

m

) 1
d−1

.

In particular, if k ≥ c0(d logm+ log(1/δ)) then, maxj∈[m] diam(Cj) ≤ 8
(
2k
m

) 1
d−1 .

3.2 Convergence rate of Algorithm 1

While the consistency result established in the previous section provides the behavior of Alg. 1 in the
large sample limit, it does not provide the rate at which the excess Bayes risk converges to zero. In
this section we establish such finite sample convergence rate. From the plug-in classifier view point
of Alg. 1 given in (5) and the definition of Bayes optimal classifier in (6), it is easy to see that how
well the prediction of Algorithm 1 relates to the prediction of the Bayes optimal classifier will depend
on how well η̂(x) approximates η(x).

Recall that for any x ∈ X , point-wise error probability or risk of the Bayes optimal classifier is
defined as L∗(x) = Pr(g∗(x) ̸= y|x) = min{η(x), 1 − η(x)} [Devroye et al., 1996]. Taking
expectation over x, risk of the Bayes optimal classifier is L∗ = E (min{η(x), 1− η(x)}). Now, for
any plug-in classification rule gn(x) defined in (7) that uses a conditional probability estimate ηn
using training data Dn, the excess Bayes risk is given by the following well known result (Corollary
6.1 of Devroye et al. [1996].
Lemma 3.6 ([Devroye et al., 1996]). The error probability of a classifier gn(x) defined in (7) satisfies

the inequality: Pr (gn(x) ̸= y|Dn)− L∗ ≤ 2Ex

(
|η(x)− ηn(x)|

∣∣∣∣Dn

)
.

Taking expectation over Dn, the above lemma immediately translates to

Pr(gn(x) ̸= y)− L∗ ≤ 2Ex,Dn
(|η(x)− ηn(x)|) (8)

Therefore, in order to establish convergence rate of Alg. 1, following Lemma 3.6 and (8), we need
to bound expected value of |η̂(x)− η(x)|. Towards this end, we first extend η defined over points
x ∈ X to over measurable sets A ⊂ X with µ(A) > 0 as follows:

η(A)= 1

µ(A)

∫
A
η(x)µ(dx)=

1

µ(A)

∫
A
Pr(y=1|x)µ(dx)=Pr(y=1|x ∈ A)=E(y|x ∈ A) (9)

Thus, η(A) is the probability that y = 1 for a point x chosen at random from the distribution µ
restricted to the set A, or in other words, it is the expected value of y when x is restricted to the set A.

6
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With this definition, we introduce an intermediate quantity

η̄(x) =
1

k

∑
j:x∈Cj

η̄j (10)

where, η̄j is defined as,

η̄j =
1

µ(Cj)

∫
Cj

η(x)µ(dx) = η(Cj) (11)

Using triangle inequality, this allows us to write: Ex,Dn
|η̂(x)−η(x)| = Ex,Dn

|η̂(x)− η̄(x)+ η̄(x)−
η(X)| ≤ Ex,Dn

|η̂(x)− η̄(x)|+ Ex,Dn
|η̄(x)− η(x)|, and we show how to individually bound each

term on the right-hand side of this inequality next.
Remark 3.7. Note that, once m and k are fixed, our hypothesis space is the set of all linear models
on the k-sparse m dimensional binary vectors. The two terms on the right-hand side of the above
inequality correspond to estimation error (the error of our proposed classifier with respect to the best
hypothesis from the hypothesis space) and approximation error (the error difference between the best
hypothesis from the hypothesis space and the target classifier, i.e., Bayes optimal), respectively.

3.3 Bounding Ex,Dn
|η̂(x)− η̄(x)|

Note that there is an inherent randomness in our proposed algorithm associated with the choice of Θ.
In particular, the response regions Cj are random quantities that depend on the choice of Θ. In this
section, we fix Θ and conditioned on this, we bound Ex,Dn |η̂(x)− η̄(x)|. This ensures that for any
δ > 0, the same bound holds with probability at least 1− δ over the choice of Θ.
Lemma 3.8. Fix any Θ. Then we have, Ex,Dn

|η̂(x)− η̄(x)| ≤
√

m
kn .

Sketch of proof: From the definition of η̂(x) and η̄(x) given in (3) and (10) and applying
Jensen’s inequality, crux of the proof is to focus on the expected value of the random quantity
1
k

∑
j:x∈Cj

(∑n
i=1 yiI[xi∈Cj ]∑n
i=1 I[xi∈Cj ]

− η(Cj)
)2

. Note that, for j ∈ [m],
∑n

i=1 I[xi ∈ Cj ] = nµn(Cj) is the
number of the points from Dn that fall in Cj , where µn(Cj) is the empirical probability estimate.
We bound the quantity of interest in Lemma 3.8 as a sum of two quantities corresponding to the
following two cases:

Case 1: when µn(Cj) = 0. Using the notation 0/0 = 0, the quantity of interest becomes
1
k

∑
j:x∈Cj

(
η2(Cj)I[µn(Cj) = 0]

)
. Utilizing the properties of the response regions established in

Lemma 3.4, we show in Lemma E.3 that the expected value of the quantity of interest at most m
nke .

Case 2: when nµn(Cj) > 0. Here the quantity of interest becomes
1
k

∑
j:x∈Cj

(∑n
i=1(yi−η(Cj))I[xi∈Cj ]

nµn(Cj)

)2
I[nµn(Cj) > 0]. Conditioned on x, x1, . . . , xn, we first

show in Lemma E.1 that expected value (w.r.t. y1, . . . , yn) of this quantity becomes at most
1
4k

∑
j:x∈Cj

(
I[nµn(Cj)>0]

nµn(Cj)

)
. Next, conditioned on x1, . . . , xn, and utilizing the properties of the

response regions established in Lemma 3.4, we show in Lemma E.2 that expected value (w.r.t. x)
of this quantity is at most 1

4

∑m
j=1

(
µ(Cj)I[nµn(Cj)>0]

nµn(Cj)

)
. Finally, using standard Binomial bound

(Lemma E.4) we show that expected value (w.r.t. x1, . . . , xn) of this quantity is at most m
2kn .

3.4 Bounding Ex,Dn
|η̄(X)− η(x)|

In order to bound the expected value of |η̄(x)−η(x)|, we need to impose certain smoothness condition
on η. We consider a general form of smoothness, known as Hölder continuty for η.
Definition 3.9. We say that η : X → [0, 1] is (L, β) smooth if for all x, x′ ∈ X , we have |η(x) −
η(x′)| ≤ L∥x− x′∥β .

Using Hölder continuity assumption above, we first show the following:
Lemma 3.10. Suppose η is (L, β) smooth. Then, supx∈S |η(x)−η̄(x)| ≤ L·maxj∈[m](diam(Cj))

β .

We have already shown in Lemma 3.5 how to bound the diameters of Cj . Combining these two
results we have

7

29663 https://doi.org/10.52202/079017-0933



Lemma 3.11. Let d ≥ 3 and pick any 0 < δ < 1. Assume η to be (L, β) smooth. There is an
absolute constant c0 > 0 such that the following holds. If k ≥ c0(d logm + log(1/δ)) then with

probability at least 1− δ, Ex,Dn
|η̄(x)− η(x)| ≤ 8L (2k/m)

β
d−1 .

Combining Lemma 3.8, 3.11 and 3.6 we are present the main result of this section.
Theorem 3.12. Let Dn = {(xi, yi)}ni=1 ⊂ X × {0, 1} be the training data and consider the EaS
representation given in (1). Let d ≥ 3 and pick any 0 < δ < 1. Assume η to be (L, β) smooth. There
is an absolute constant c0 > 0 such that the following holds. If k ≥ c0(d logm + log(1/δ)) then
with probability at least 1− δ over the random choice of Θ,

Pr(g(x) ̸= y)− L∗ ≤ 2

(√
m

kn
+ 8L

(
2k

m

) β
d−1

)

Corollary 3.13. In Theorem 3.12, set m = kn
(d−1)

2β+(d−1) . Then, with probability at least 1− δ, over
the choice of Θ,

Pr(g(x) ̸= y)− L∗ = O
(
n− β

2β+(d−1)

)
.

Remark 3.14. Since X ⊂ Sd−1, the effective dimension in our setting is d′ = (d − 1) and the

convergence rate of Corollary 3.13 can be rewritten as O
(
n
− β

2β+d′
)

which is minimax-optimal for
plug-in classifiers under the assumption that η is (L, β)-smooth [Audibert and Tsybakov, 2007].

3.5 Inability to adapt to manifold structure

In Theorem 3.12, we derived the convergence rate of the classifier presented in Alg. 1 by bounding
Ex,Dn |η(x) − η̂(x)|, which upper bounds the excess Bayes risk, from above and the resulting
convergence rate decays exponentially slowly with the dimension d. We now show that even if the
data lie on a low dimensional manifold having dimesnion d0 ≪ d, there exists a smooth η such that
the quantity Ex,Dn

|η(x)− η̂(x)| decreases at a rate no faster than n− 1
d+1 . To prove claim, we assume

data to lie on the following one-dimensional manifold:

X1 = {(x1, x2, 0, 0, . . . , 0) ∈ Rd : x2
1 + x2

2 = 1} (12)

We further assume that k = β = 1 which implies that η is L-Lipschitz from the definition of
(L, β)-smoothness. Our lower bound result is as follows.
Theorem 3.15. For any d > 3, let input space X1 be the one-dimensional sub-manifold of Rd given
in (12). Take k = 1 and β = 1. Suppose the random matrix Θ has rows chosen from a distribution
that is uniform over Sd−1. Then there exists a 1

2 -Lipschitz function η : X1 → [0, 1] such that the
following holds with probability at least 1/2 over the choice of Θ.

Ex,Dn
|η(x)− η̂(x)| = Ω

(
n− 1

d+1

)
4 Algorithm 2

In this section we present an alternate EaS representation and an associated classification algorithm
that adapts to intrinsic dimension d0 when data lie on a low dimensional manifold with dimension
d0 ≪ d. Here, we assume that the rows θi, i ∈ [m] of matrix Θ are sampled i.i.d. from a multivariate
Gaussian distribution N(0, 1/

√
dId), denote by ν, where Id is d× d identity matrix. This EaS repre-

sentation is denoted by h2 : X → {0, 1}m, where for any point x ∈ X , the jth coordinate of h2(x)
is set to 1, as given in (14), using a data dependent threshold τn. In particular, given a training set of
size1 2n sampled i.i.d.from (µ, η), using the first half of it, namely, D′

n = {(x′
1, y

′
1), . . . , (x

′
n, y

′
n)},

define τn : Rd → R to be:

τn(θ)=sup

{
τ :
1

n

n∑
i=1

I[θ · x′
i ≥ τ ] ≥ k

m

}
(13)

1Instead of representing the training set to be D2n = {(xi, yi)}2ni=1, for notational convenience, we represent
its first half as D′

n = {(x′
i, y

′
i}ni=1 and the second half as Dn = {(xi, yi)}ni=1. D′

n is only used to compute
empirical thresholds in (13) and therefore, we could use unlabeled data sampled i.i.d.from µ for this purpose.
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h2(x)[j] = I[θj · x ≥ τn(θj)] (14)
We call the sparsification scheme given in (14)empirical-k-thresholding. For j ∈ [m], the jth response
region Cj is defined as:

Cj = C(θj) = {x ∈ X : θj · x ≥ τn(θj)} (15)
Using the second half of the training data, namely Dn = {(x1, y1), . . . , (xn, yn)}, average y values
over different Cj are estimated and summarized in vector w in the same way as in Alg. 1 implying
that w[j] = η̂j ,∀j ∈ [m], where η̂j is given in (2). This completes the training phase of our proposed
algorithm summarized in Alg. 2.

Algorithm 2 Training set D′
n =

{(x′
i, y

′
i)}ni=1, Dn = {(xi, yi)}ni=1 ⊂ X × {0, 1},

Projection dimensionality m ∈ N, integer k ≪ m,
integer t, random seed R, and inference with test
point x ∈ Sd−1.
TrainEaSClassifier(Dn, D

′
nm, k, t, R)

Sample Θ with seed R
Initialize w[i], ct[i]← 0, ∀i ∈ [m]
for j ∈ [m] do

Compute τn(θj) using (13) and D′
n

end
for (x, y) ∈ Dn do

eas← h2(x)
w[i]← w[i] + y, ∀i ∈ [m] : eas[i] = 1
ct[i]← ct[i]+1, , ∀i ∈ [m] : eas[i] = 1

end
w[i]← w[i]/ct[i], ∀i ∈ [m]
return Θ, w

end
InferEaSClassifier(x,Θ, t, w)

eas← hn
2 (x)

Θx ← {θi : h2(x)[i] = 1}
˜eas← eas
˜eas[i]← 0,∀i ∈ [m] : i /∈ At(x)

return I[( ˜eas · w)/t ≥ 1
2 ]

end

The inference phase of Alg. 2 is slightly different
from Alg. 1. While EaS representation using h2

is not k-sparse anymore, we show that for large
enough sample size, with high probability, it is at
least k/2-sparse and at most 2k-sparse in expec-
tation (see Lemma F.1 in Appendix F). Let t be
an integer passed as an argument to Alg. 2. For
any x ∈ X , let Θ(x) = {θj : x ∈ Cj} and we
define At(x) to be the set containing the indices
j ∈ [m], such that θj is one of the t closest points
to x from Θ(x). To make an inference for any
x ∈ X , Alg. 2 first computes ( ˜eas · w)/t and
makes it prediction based on whether this quan-
tity is greater than 1/2. Clearly, ( ˜eas · w)/t is
the average of w[j] for j ∈ At(x) and therefore,
the conditional probability estimate η̂(x) of Alg.
2 can be represented as,

η̂(x) =
1

t

∑
j

η̂jI[j ∈ At(x)] (16)

Remark 4.1. Note that h1 and h2 are different in
a specific way. When the support of data does not
cover the whole unit sphere and is concentrated
possibly in a small region and m is large, many
of the m coordinates in EaS representation will
never be activated (set to 1) for any data point
as the corresponding projection direction θj may
not be one of the k closest ones to any data point.
Thus, many of the θj will be unused. This prob-

lem is avoided in h2, where every θj is used but the respective response region Cj may not be local
to the manifold. For this purpose we need to identify “good” projection directions. Later in Lemma
B.4 we show that, for any δ > 0, with probability at least 1− 2δ over the choice of Θ and D′

n, the
number of “good” projection directions t is linear in k.

Due to space limitation, manifold assumptions and other important details of analysis of Alg. 2 are
presented in Appendix B and we present the main theoretical results below.
Theorem 4.2. Let Dn = {(xi, yi)}ni=1 ∪D′

n = {(x′
i, y

′
i)}ni=1 ⊂ X × {0, 1} be the training data

where the data lies on a low dimensional manifold satisfying manifold assumption presented in
section B.1 and suppose the EaS representation is given as in (14). Pick any 0 < δ < 1. Assume η to
be (L, β) smooth. If k ≥ c′d ln(m/δ), where c′d is a constant that depend on d, then with probability
at least 1− 2δ,

Pr(g(x) ̸= y)− L∗ ≤ 2

(√
2m

αdkn
+ 4L

(
2k

c1m

) β
d0

)
where αd is a constant that depends on d.

Corollary 4.3. In Theorem 4.2, setting m = kn
d0

2β+d0 ensure that with probability at least 1− δ,

Pr(g(x) ̸= y)− L∗ = O
(
n− β

2β+d0

)
.

Remark 4.4. The convergence rate of Corollary 4.3 depends only on d0 and is minimax-optimal for
plug-in classifiers under the assumption that η is (L, β)-smooth [Audibert and Tsybakov, 2007].
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Figure 2: Empirical evaluation of Alg. 1, k-NN (for k = 1 and 10) and RF on eight datasets Here
expansion factor is m/d. An error bar in the form of a shaded graph is provided for Alg. 1 over 10
independent runs.

5 Empirical evaluations

We investigate the effectiveness of our proposed method by evaluating it on eight benchmark datasets,
details of which are provided in appendix A. We address the following questions:
1. Does performance our proposed classifier improve with increasing m as suggested by the theory?
2. How does our proposed classifier perform compared to other non-parametric classifiers?
For each dataset, we generate train and test set using scikit-learn’s train_test_split method
(80 : 20 split). We compare our proposed method against two non-parametric classifiers –
scikit-learn’s implementation of k-nearest neighbor classifier (k-NN) and random forest (RF).
For k-NN, we used two values of k: k = 1 and 10. For RF we use a grid search over the number
of estimators (trees) from the set {250, 500, 750, 1000} and perform a 3 fold cross validation to
choose the final model. We preset our experimental results in Fig. 2 where we plot test accuracy
of Alg. 1, k-NN (for k = 1 and 10) and RF by varying expansion factor, where we define
expansion factor to be m/d. As per Theorem 3.12, we set k to be d logm. As can be seen
from Fig. 2, with increasing m test accuracy of Alg. 1 increases in all eight datasets and becomes
comparable to that of k-NN and RF for large m, thus corroborating our theoretical findings.

6 Conclusions, limitations and future work

In this paper, we present an interesting connection between non-parametric estimation and expansion-
and-sparsify representation. We presented two non-parametric classification algorithms using EaS
representation and proved that both algorithms yield minimax-optimal convergence rates. The
convergence rate of the first algorithm depends on the ambient dimension d, while the convergence
rate of the second algorithm, under manifold assumption, depends only on the intrinsic dimension
d0 ≪ d. In both algorithms, the projection directions are chosen in a data-independent manner.
One limitation of our current work is that, even though the second algorithm adapts to the manifold
structure, there is a large constant, possibly depending exponentially on d, involved in bounding the
excess Bayes risk, that is hidden under the Big Oh notation. In the future, we plan to investigate
various data-dependent projection direction choices for a sparse representation, that would adapt to
a manifold structure, and the constant involved in bounding of the excess Bayes risk from above,
would be independent of ambient dimension d.

Acknowledgements: We thank the anonymous reviewers for their constructive feedback. This work
is supported by funding from the “NSF AI Institute for Foundations of Machine Learning (IFML)”
(FAIN:2019844).
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Dataset Name # Samples # Features
mnist35 13454 20
fmnist24 11200 20
segment (v.2) 2310 19
wine (v.7) 2554 11
wind (v.2) 6574 14
puma8NH (v.2) 8192 8
cpu_small (v.3) 8192 12
twomoons 5000 2

Table 1: Dataset statistics

A Dataset details and computing environment

Details of the eight datasets used in our experiments are listed in Table 1. Among the eight datasets, the
twomoons is a synthetic dataset generated using make_moons method from sklearn.dataset2 with
noise parameter 0.2. All the remaining datasets are taken from the OpenML repository3 Vanschoren
et al. [2013]. Both mnist and fmnist (fashion-mnist for short) are 10 class classification problem
with 784 features. We convert them to binary classification problems by using the label 3 and 5 for
the mnist dataset and label 2 (Pullover) and 4 (Coat)for fmnist dataset. For efficiency purpose,
the feature dimensions for both these datasets are reduced to 20 using principal component analysis
(PCA). For the remaining six datasets, the task is that of binary classification. For all eight datasets,
the features are normalized using StandardScaler option in scikit-learn and are made to be
unit norm.

We run our experiments on a laptop with Intel Xeon W-10855M Processor, 64GB memory and
NVDIA Quadro RTX 5000 Mobile GPU (with 16GB memory).

B Missing details of convergence rate of Algorithm 2 from section 4

In this section we present missing details of convergence rate analysis of Algorithm 2 from section 4.
Proofs of various technical results presented in this section as well as the proof of Theorem 4.2 are
deferred to section B.

B.1 Manifold assumption

To analyze convergence rate of Algorithm 2, we proceed in the same was as in section 3.2. However,
to take advantage of the fact that data lie on a low-dimensional manifold in our analysis, we make
similar manifold assumptions as in Dasgupta and Tosh [2020]. The input space X is a compact
d0-dimensional Riemannian sub manifold M of Rd contained in the unit sphere, that is M ⊂ Sd−1.
M has nice boundaries and that the distribution on it µ, is almost uniform: formally, there exists
constants c1, c2, c3 > 0 such that for all x ∈M and for all r ≤ r0 (where r0 is an absolute constant)

c1r
d0 ≤ µ(BM (x, r) < c2r

d0 (17)

Vol(BM (x, r)) ≥ c3r
d0 (18)

Here BM (x, r) = B(x, r) ∩M .

To effectively analyze the data distribution supported on a manifold, we impose conditions on the
curvature by adopting the common requirement that M has a positive reach ρ > 0: that is, every point
in an open tubular neighborhood of M of of radius ρ has a unique nearest neighbor in M [Niyogi
et al., 2008]. For each x ∈M , let N(x) denotes the (d−d0) dimensional subspace of normal vectors
to the tangent plane at x. For each x ∈ M , the sets Γρ(x) = {x + ru ∈ Rd : u ∈ N(x), ∥u∥ =
1, 0 < r < ρ} are disjoint and let τρ be their union. Let πM : τρ → M be the projection map that
sends any point in τρ(x) to x, its nearest neighbor in M .

2https://scikit-learn.org/stable/
3https://www.openml.org/
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B.2 Bounding Ex,Dn |η̂(x)− η̄(x)|

The response regions Cj , j ∈ [m] are now random quantities that depend on the choice of Θ as well
as D′

n used to compute individual thresholds. The quantity η̂(x) given in (16) depends on t. In this
section, we fix Θ and t and conditioned on this, we bound Ex,Dn,D′

n
|η̂(x)− η̄(x)|. Later in Lemma

B.4 we show that, for any δ > 0, with probability at least 1− 2δ over the choice of Θ and D′
n, t is

linear in k.

Lemma B.1. Fix any Θ and t. Then the following holds.

Ex,Dn,D′
n
|η̂(x)− η̄(x)| ≤

√
m

tn
.

Sketch of proof: The proof strategy is similar to Lemma 3.8, but requires careful analysis to
accommodate the facts that Cj , j ∈ [m] depend on the choice of D′

n and η̂ in (16) has an indicator
function. Details are provided in Appendix B.

B.3 Bounding Ex,Dn
|η̄(x)− η(x)|

Using identical proof strategy of Lemma 3.10, we have,

Lemma B.2. Under empirical k-thresholding scheme, if η is (L, β) smooth, then for all x ∈
C1 ∪ · · · ,∪Cm,

|η(x)− η̄(x)| ≤ L max
j∈[m]

(diam(Cj))
β

Unfortunately, unlike before, all Cj such that x ∈ Cj may not be local to x and thus average y values
in some of these Cj , may be very different from η(x). To address this, we call a θ ∈ Rd good if it
lies in Γρ/2. Good θj’s are close to the manifold M and are guaranteed to be activated by a single
neighborhood of M . Thus, for large enough m, if the diameters of the Cj’s corresponding to good
θj’s are made reasonable small then the average y values in such Cj’s will be a reasonably close of
η(x) for x ∈ Cj . First, for any good θj , we bound the diameter of Cj emphasizing that the response
region of a good θj is local.

Lemma B.3. Pick any good θ ∈ Rd. Define ∆ = ∥θ − πM (θ)∥ to be the distance from θ to its
projection on M . Let C(θ) be the response region associated with θ as defined in (15). Pick any
0 < δ < 1. Then with probability at least 1− δ, over the choice of D′

n, the following holds:

BM

(
πM (θ),

√
ρ−∆

ρ+∆

(
k

2c2m

)1/d0
)
⊂ C(θ) ⊂ B

(
πM (θ),

√
ρ+∆

ρ−∆

(
2k

c1m

)1/d0
)

In particular this implies, diam(C(θ)) ≤ 4
(

2k
c1m

)1/d0

, provided (2k/(c1m))1/d0 < min(ρ, r0) and

n satisfies n ≥ c0m
k

(
log n+ log

(
m
δ

))
, where c0 > 0 is a universal constant.

Next we show that each x ∈M has number of good θj linear in k with high probability.

Lemma B.4. Pick θ1, . . . , θm ∼ ν. There is a constant c′d, depending on d, for which the following
holds. Pick any 0 < δ < 1. Set k ≥ c′d ln(m/δ). then with probability at least 1− 2δ over the choice
of θj’s and D′

n, for every x ∈ M , there are αdk/2 good θj’s with x ∈ C(θj) where c′d and αd are
constants that depend on dimension d.

Combining4 Lemma B.3 and B.4, we have

Lemma B.5. Suppose the data distribution is supported on a d0-dimensional submanifold M of
Rd with reach ρ > 0, that additionally satisfied (17) and (18). Suppose that the rows of Θ are
chosen from N(0, Id). There is a constant c′d, depending on the dimension d, and c0 > 0, universal
constant, for which the following holds. Pick any 0 < δ < 1. Let k,m and n be chosen so that

4We note that Lemma B.3 a modified version of Lemma 6 of Dasgupta and Tosh [2020] to incorporate the
uncertainty associated with the data dependent threshold selection in (13). Also, Lemma B.4 is a modified
version of Lemma 7 of Dasgupta and Tosh [2020] which incorporates threshold selection uncertainty and
additionally guaranteeing the number of good θj to be linear in k.
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k ≥ c′d ln(m/delta), (2k/(c1m))1/d0 < min(ρ, r0) and n ≥ (c0m/k)(log n + log(m/δ)). Then
with probability at least 1− 2δ over the choice of Θ and D′

n,

sup
x∈X
|η̄(x)− η(x)| ≤ 4L

(
2k

c1m

) β
d0

Combining everything leads to the main result presented in Theorem 4.2.

C Various proofs from section 3

C.1 Proof of Lemma 3.1

Proof. Simply interchange the summation. That is,

n∑
i=1

wi,n(x) =

n∑
i=1

1

k

∑
j:x∈Cj

I[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

 =
1

k

∑
j:x∈Cj

(∑n
i=1 I[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

)
= 1

D Various proofs from section 3.1

In this section we present various technical results that are needed to prove our main theorem
(Theorem 3.3). Due to space limitation proofs of some of these technical results are deferred to the
supplementary material.

D.1 Proof of Lemma 3.4

Proof. For part (i), note that if x ∈ Ck
i , then by definition, ∀j ∈ σ(i), hΘ,k(x)[j] = 1 which implies

x ∈ Cj . Therefore, Ck
i ⊆ ∩j∈σ(i)Cj . On the other hand, if x ∈ ∩j∈σ(i)Cj then hΘ,k(x)[j] =

1 ∀j ∈ σ(i), which implies x ∈ Ck
i . Therefore, ∩j∈σ(i)Cj ⊆ Ck

i .

For part (ii), take any i, j ∈ [
(
m
k

)
], i ̸= j, then σ(i) ̸= σ(j). Therefore, if x ∈ Ck

i then x /∈ Ck
j .

Since x was arbitrary, Ck
i ∩ Ck

j = ∅. Now, for any x ∈ X , since hΘ,k(x) has exactly k bits activated

(set to 1), there must exist l ∈ [
(
m
k

)
] such that x ∈ Ck

l . Therefore, ∪(
m
k )

i=1C
k
i = X .

For part (iii), take any x ∈ Cj . From the definition of Cj , hΘ,k(x)[j] = 1 and therefore, x ∈ Ck
i for

any i such that j ∈ σ(i). From part(ii) since such Ck
i s are disjoint and x was arbitrary, the result

follows.

Finally, part (iv) follows immediately from part (ii) and (iii) since Ck
i s are disjoint.

D.2 proof of Lemma 3.5

Proof. While general idea of this result appeared in Dasgupta and Tosh [2020], we pro-
vide a simplified proof. Let ν(r) = infx∈X ν(B(x, r)). We first claim that if ν(r) ≥
2
m

(
k + c0

(
d logm+ log

(
1
δ

)))
then for every j ∈ [m], Cj ⊂ B(θj , r). By definition, every

ball of radius r, centered at some x ∈ X , has ν-mass at least ν(r). Thus, by Lemma D.1, with
probability at least 1− δ, every x ∈ X will have its nearest k θj’s within a distance r. Therefore, the
jth bit of the EaS representation given in (1) will be activated by points x within distance r of θj .
Therefore, diam(Cj) ≤ 2r for all j = 1, . . . ,m, where r satisfies

ν(B(x, r)) ≥
2
(
k + c0

(
d logm+ log

(
1
δ

)))
m
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By Lemma D.2, we can take r to be the value

r =

(
3
√
d

(3/4)
(d−1)/2

·
2
(
k + c0

(
d logm+ log

(
1
δ

)))
m

)1/(d−1)

=
2√
3

(
6
√
d
(
k + c0

(
d logm+ log

(
1
δ

)))
m

)1/(d−1)

.

Therefore, we have

diam(Cj) ≤ 2r ≤ 4√
3

(
6
√
d
(
k + c0

(
d logm+ log

(
1
δ

)))
m

)1/(d−1)

≤ 8

((
k + c0

(
d logm+ log

(
1
δ

)))
m

)1/(d−1)

where, for the last inequality, we have used the fact that d1/(2(d−1)) ≤
√
2 and for d ≥ 3 it holds that

61/(d−1) ≤
√
6.

Lemma D.1 ([Chaudhuri and Dasgupta, 2010]). There is an absolute constant c0 > 0 for which the
following holds. Pick any 0 < δ < 1. Pick θ1, . . . , θm independently at random from a distribution µ
on Rd. Then with probability at least 1− δ, any ball B in Rd with

ν(B) ≥ 2

m

(
k + c0

(
d logm+ log

(
1

δ

)))
contains at least k of the θi.
Lemma D.2 (Lemma 12 [Dasgupta and Tosh, 2020]). Suppose d ≥ 3, r ∈ (0, 1), and ν is the
uniform distribution over Sd−1. Then for any x ∈ Sd−1,

ν(B(x, r)) ≥ 1

3
√
d
rd−1

(
1− r2/4

)(d−1)/2 ≥ 1

3
√
d
(3/4)

(d−1)/2
rd−1.

D.3 Proof of Theorem 3.3

Proof. Since the weights wn,i given in equation 4 are non-negative, in order to satisfy condition (i) of
Stone’s theorem, we need to show that there exists a positive constant c such that for any non-negative
measurable function f satisfying Ef(x) <∞ and for any n, E (

∑n
i=1 wn,i(x)f(xi)) ≤ cE(f(x)).

Using Lemma D.3, we show that this condition is satisfied for c = 1.

Concerning condition (ii) of Stone’s theorem, first define an = an(kn,mn, δn) =

8

(
kn+c0(d logmn+log( 1

δn
))

mn

)1/(d−1)

, where c0 is an absolute constant. Then limn→∞ δn = 0

and using condition (i) and (ii) of this theorem we also have limn→∞ an = 0. Now pick any
a > 0. We can always find a positive integer N such that for n > N, we have a > an satisfying∑n

i=1 wi,n(x)I{∥xi−x∥>a} ≤
∑n

i=1 wi,n(x)I{∥xi−x∥>an} for all x ∈ X . Replacing k,m, δ and a
with kn, δn and an respectively in Lemma D.6, we have

E

(
n∑

i=1

wi,n(x)I[∥xi − x∥ > a]

)
≤ E

(
n∑

i=1

wi,n(x)I[∥xi − x∥ > an]

)
≤ δn

Taking limit yields, limn→∞ E (
∑n

i=1 wi,n(x)I[∥xi − x∥ > a]) = 0.

Concerning condition (iii) of Stone’s Theorem, note that

E
(

max
1≤i≤n

wn,i(x)

)
≤ E

1

k

∑
j:x∈Cj

1∑n
l=1 I[xl ∈ Cj ]

 = E

(
1

k

k∑
i=1

1∑n
l=1 I[xi ∈ Cji(x,Θ)]

)

= E

(
1

k

k∑
i=1

1

Nji(x,Θ)

)
≤ E

(
1

min1≤i≤k{Nji(x,Θ)}

)
(19)
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where, for i = 1, . . . , k, we have used the notation ji(x,Θ) to denote the k random coordinates of
hΘ,k(x) that are set to 1 and Nji(x,Θ) to denote the number of points from x1, . . . , xn that fall in
Cji(x,Θ). Now from equation 19, is it easy to see that limn→∞ E (max1≤i≤n wn,i(x)) = 0 since
using lemma D.7, min1≤i≤k{Nji(x,Θ)} → ∞ in probability, as n→∞.

D.4 Technical results for satisfying condition (i) of Stone’s theorem (Theorem 3.2)

Lemma D.3. For any non-negative measurable function f : X → R+ satisfying Ef(x) <∞ and
for any n, E (

∑n
i=1 wn,i(x)f(x1)) ≤ E(f(x)), where the weights wn,i are as given in (4).

Proof.

E

(
n∑

i=1

wi,n(x)f(xi)

)
= E

 n∑
i=1

1

k

∑
j:x∈Cj

I[xi ∈ Cj ]f(xi)∑n
l=1 I[xl ∈ Cj ]


= E

1

k

∑
j:x∈Cj

(
n∑

i=1

I[xi ∈ Cj ]f(xi)∑n
l=1 I[xl ∈ Cj ]

)
= Ex

1

k
E

 ∑
j:x∈Cj

(
n∑

i=1

I[xi ∈ Cj ]f(xi)∑n
l=1 I[xl ∈ Cj ]

)∣∣∣∣∣x


= Ex

1

k

 ∑
j:x∈Cj

E

(
n∑

i=1

I[xi ∈ Cj ]f(xi)∑n
l=1 I[xl ∈ Cj ]

∣∣∣∣∣x
)

a
≤ Ex

1

k

 ∑
j:x∈Cj

1

µ(Cj)

∫
Cj

f(x1)µ(dx1)


=

(mk )∑
i=1

Pr(x ∈ Ck
i )

1
k

∑
j∈σ(i)

1

µ(Cj)

∫
Cj

f(x1)µ(dx1)


=

(mk )∑
i=1

1

k

 ∑
j∈σ(i)

Pr(x ∈ Ck
i )

µ(Cj)

∫
Cj

f(x1)µ(dx1)


=

1

k

(mk )∑
i=1

∑
j∈σ(i)

µ(Ck
i )

µ(Cj)

∫
Cj

f(x1)µ(dx1)

b
=

1

k

m∑
j=1

∑
i:j∈σ(i)

µ(Ck
i )

µ(Cj)

∫
Cj

f(x1)µ(dx1)
c
=

1

k

m∑
j=1

∫
Cj

f(x1)µ(dx1)

d
=

1

k

m∑
j=1

∑
i:j∈σ(i)

∫
Ck

i

f(x1)µ(dx1)
e
=

1

k

(mk )∑
i

∑
j∈σ(i)

(∫
Ck

i

f(x1)µ(dx1)

)

=
1

k

(mk )∑
i

k

∫
Ck

i

f(x1)µ(dx1) =

(mk )∑
i

∫
Ck

i

f(x1)µ(dx1)

f
=

∫
§
f(x1)µ(dx1) = E(f(x1))

g
= E(f(x))

where, inequality a follows from Lemma D.4. Equality b follows from the following observation. In
the line above inequality b, we are summing k ×

(
m
k

)
terms. Since k ×

(
m
k

)
= m×

(
m−1
k−1

)
and any

j ∈ [m] can appear in exactly
(
m−1
k−1

)
different subsets of of size k, equality b is simply rearranging

the terms from the line above by changing the indices appropriately. Equality c follows from part (iv)
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of Lemma 3.4. Equality d follows from part (iii) of Lemma 3.4.Equality e follows from the following
observation. In the line above equality e, we are summing m×

(
m−1
k−1

)
terms since any j ∈ [m] can

appear in exactly
(
m−1
k−1

)
different subsets of of size k. Again noticing that m×

(
m−1
k−1

)
= k ×

(
m
k

)
and each σ(i) has k terms in it, we are simply rearranging the terms from the line above by changing
the indices appropriately. Finally, equality f follows from part (ii) of Lemma E.4 and equality g
follows from the fact that x and x1 are i.i.d.

Lemma D.4. E
(∑n

i=1
I[xi∈Cj ]f(xi)∑n

l=1 I[xl∈Cj ]

∣∣∣x) ≤ 1
µ(Cj)

∫
Cj

f(x1)µ(dx1).

Proof.

E

(
n∑

i=1

I[xi ∈ Cj ]f(xi)∑n
l=1 I[xl ∈ Cj ]

∣∣∣x) =

n∑
i=1

E
(
I[xi ∈ Cj ]f(xi)∑n

l=1 I[xl ∈ Cj ]

∣∣∣x)
a
=

n∑
i=1

E

(
I[xi ∈ Cj ]f(xi)

1 +
∑

l ̸=i I[xl ∈ Cj ]

∣∣∣x)

= nE
(
I{x1∈Cj}f(x1)

1

1 +
∑n

l=2 I[xl ∈ Cj ]

∣∣∣x)
= nEx1

(
I{x1∈Cj}f(x1)Ex2,...,xn

[
1

1 +
∑n

l=2 I[xl ∈ Cj ]

∣∣∣x, x1

])
b
≤ nEx1

(
I{x1∈Cj}f(x1)

1

nµ(Cj)

)
=

1

µ(Cj)

∫
Cj

f(x1)µ(dx1)

where, equality a follows from that fact, that if xi ∈ Cj , then the term in the parenthesis does
not change and if xi /∈ Cj , then the term within the parenthesis is zero, and inequality b follows
from lemma D.5 since conditioned on x and x1, the random variable

∑n
l=2 I{xl∈Cj} is Binomially

distributed with parameters (n− 1) and µ(Cj).

Lemma D.5. (Binomial bound Györfi et al. [2002]) Let the random variable B(n, p) be Binomially
distributed with parameters n and p. Then,

E
(

1

1 +B(n, p)

)
≤ 1

(n+ 1)p

D.5 Technical results for satisfying condition (ii) of Stone’s theorem (Theorem 3.2)

Lemma D.6. Pick any 0 < δ < 1 and let a = 8

(
k+c0(d logm+log( 1

δ ))
m

)1/(d−1)

, where c0 > 0 is an

absolute constant defined in Lemma 3.5. Then,

E

(
n∑

i=1

wi,n(x)I[∥xi − x∥ > a]

)
≤ δ.

Proof. From Lemma 3.5, we have that with probability at least 1−δ, diam(Cj) ≤ a for all 1 ≤ j ≤ m.
Let us define the random variable:

A1 =


n∑

i=1

(
1

k

∑
j:x∈Cj

I[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

)
I[∥xi − x∥ > a]


and the event:

A2 =
{
∪j:x∈Cj

Cj ⊂ B(x, a)
}
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Let Ac
2 denotes complement of the event A2. Then,

E

(
n∑

i=1

wi,n(x)I[∥xi − x∥ > a]

)
= E

[
n∑

i=1

(
1

k

∑
j:x∈Cj

I[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

)
I{∥xi−x∥>a}

]
= E (A1|A2) Pr (A2) + E (A1|Ac

2) Pr (Ac
2)

a
≤ 0 · Pr(A2) + 1 · δ = δ

where the inequality follows from the fact that maximum value of A1 is 1 and conditioned on the
event A2, value of A1 is 0.

D.6 Technical results for satisfying condition (iii) of Stone’s theorem (Theorem 3.2)

Lemma D.7. For any x ∼ µ, let j1(x,Θ), . . . , jk(x,Θ) ∈ [m] be the k random coordinates
of hΘ,k(x) that are set to 1. Let Nj1(x,Θ), . . . , Njk(x,Θ) be the number of data points falling in
Cj1(x,Θ), . . . , Cjk(x,Θ) respectively. Then min{Nj1(x,Θ), . . . , Njk(x,Θ)} → ∞ in probability, when-
ever n→∞ and mk/n→ 0 as n→∞.

Proof. For any random x ∈ X , let Ck
i(x,Θ) be the random cell of the partition {Ck

i }
(mk )
i=1 which sets

k random coordinates j1(x,Θ), . . . , jk(x,Θ) of hΘ,k(x) to one. Then, Ck
i(x,Θ) = ∩ki=1Cji(x,Θ).

Let Nn(x,Θ) =
∑n

i=1 I{xi∈Ck
i(x,Θ)

} be the number of data points falling in the same cell as x. We
first we show that Nn(x,Θ)→∞ in probability. Let N1, N2, . . . N(mk )

be the number of points of

x, x1, . . . , xn falling in the
(
m
k

)
respective cells Ck

1 , . . . , C
k

(mk )
. Let S = {x, x1, . . . , xn} denote the

set of positions of these n+ 1 points. Since these points are independent and identically distributed,
fixing the set S (but not the order of the points) and Θ, the conditional probability that x falls in the
ith cell Ck

i is Ni/(n+ 1). Then for any fixed integer t > 0,

Pr(Nn(x,Θ) < t) = E [Pr (Nn(x,Θ) < t|S,Θ)]

= E

[ ∑
i:Ni<t

Ni

n+ 1

]
≤ (t− 1)

(
m
k

)
n+ 1

≤ (t− 1)
mk

n

which converges to zero on our assumption on n. Since Cki(x,Θ) ⊆ Cjl(x,Θ) for l = 1, . . . , k, we have
Nn(x,Θ) ≤ min{Nj1(x,Θ), . . . , Njk(x,Θ)} and the statement of the Lemma follows.
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E Various proofs from section 3.2

For ease of exposition, we use the notation x[1,n] to denote x1, . . . , xn and y[1,n] to denote y1, . . . , yn
for various proofs appearing in the section.

E.1 Proof of lemma 3.8

Proof. Fix any Θ. This ensures that C1, . . . , Cm are fixed. Now,

E(η̂(x)− η̄(x))2

= Ex,x[1,n],y[1,n]

[
(η̂(x)− η̄(x))2

]
= Ex[1,n]

[
Ex,y[1,n]

[
(η̂(x)− η̄(x))2|x[1,n])

]]
= Ex[1,n]

Ex,y[1,n]


1

k

∑
j:x∈Cj

(η̂j − η̄j)

2 ∣∣∣∣x[1,n]




a
≤ Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

(η̂j − η̄j)
2

∣∣∣∣x[1,n]


= Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

(∑n
i=1 YiI[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

− η(Cj)

)2 ∣∣∣∣x[1,n]


= Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

(∑n
i=1 yiI[xi ∈ Cj ]

nµn(Cj)
− η(Cj)

)2 ∣∣∣∣x[1,n]


= Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

(∑n
i=1 yiI[xi ∈ Cj ]

nµn(Cj)
− η(Cj)

)2

I[nµn(Cj) > 0] + η2(Cj)I[µn(Cj) = 0]

∣∣∣∣x[1,n]


= Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]

∣∣∣∣x[1,n]


+Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]

∣∣∣∣x[1,n]


b
≤ Ex[1,n]

Ex,y[1,n]

1
k

∑
hΘ,k(x)[j]=1

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]

∣∣∣∣x[1,n]

+
m

kne

= Ex[1,n]

Ex

1
k
Ey[1,n]

 ∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]

∣∣∣∣x, x[1,n])

+
m

kne

c
≤ 1

4
Ex[1,n]

Ex

1

k

∑
j:x∈Cj

I[nµn(Cj) > 0]

nµn(Cj)

∣∣∣∣X[1,n]

+
m

kne

d
≤ 1

4
Ex[1,n]

1
k

m∑
j=1

(
µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

)+
m

kne

=
1

4k

m∑
j=1

µ(Cj)Ex[1,n]

(
I[nµn(Cj) > 0]

nµn(Cj)

)
+

m

kne

e
≤ 1

4k

m∑
j=1

2µ(Cj)

(n+ 1)µ(Cj)
+

m

kne
=

m

2k(n+ 1)
+

m

kne
≤ m

2kn
+

m

kne
≤ m

kn
.
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where, inequality a is due to Jensen’s inequality. Inequality b follows from lemma E.3. Inequality
c follows from lemma E.1 and inequality d follows from lemma E.2. Finally inequality e follow
from the observation that nµn(Cj) is Binomially distributed with parameters n and µ(Cl) and by an
application of lemma E.4. The result follows noting that by Jensen’s inequality E|η̂(x)− η̄(x)| ≤√
E(η̂(x)− η̄(x))2.

Lemma E.1. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) k-winner-take-all sparsification. Let x be sampled from µ and let Dn =
((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is distributed as
η(xi) for i ∈ [n]. Then the following holds.

Ey[1,n]

 ∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]

∣∣∣∣x, x[1,n]

 ≤ 1

4

∑
j:x∈Cj

(
I[nµn(Cj) > 0]

nµn(Cj)

)

Proof. Conditioned on x, only k of the m coordinates in the EaS representation of x are non-zero.
WLOG, for ease of exposition, assume these k non-zero coordinate to be j1, . . . , jk ∈ [m]. Then the
number of xi that falls in any such Cjl , where l ∈ [k], is nµn(Cjl). The yi values corresponding to
these xi points (there are nµn(Cjl) of them in total) are identically and independently distributed
with expectation

E(yi|xi ∈ Cjl) = Pr(yi = 1|xi ∈ Cjl) =
1

µ(Cjl)

∫
Cjl

Pr(yi = 1|xi = x)µ(dx)

=
1

µ(Cjl

∫
Cjl

η(x)µ(dx) = η(Cjl)

Therefore, we can write

Ey[1,n]

 ∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]

∣∣∣∣x, x[1,n]


=

k∑
l=1

Ey[1,n]

[
(
∑n

i=1(yi − η(Cjl))I[xi ∈ Cjl ])
2 I[nµn(Cjl) > 0]|x[1,n]

]
(nµn(Cjl))

2


a
=

k∑
l=1

[∑n
i=1 Eyi

[
(yi − η(Cjl))

2I[xi ∈ Cjl ]I[nµn(Cjl) > 0]|xi

]
(nµn(Cjl))

2

]

b
=

k∑
l=1

[∑n
i=1 η(Cjl)(1− η(Cjl))I[xi ∈ Cjl ]I[nµn(Cjl) > 0]

(nµn(Cjl))
2

]
c
≤ 1

4

k∑
l=1

(
I[nµn(Cjl) > 0]

nµn(Cjl)

)
where, equality a is due to the following observation. For any i, j ∈ [m], i ̸= j and xi, xj ∈ Cl

for some l ∈ [m], yi and yj are identically and independently distributed with expectation η(Cl).
Therefore, the expectation of the cross product is simply:

Eyi,yj
[(yi − η(Cl))(yj − η(Cl)] = Eyi,yj

[
yiyj − η(Cl)(yi + yj) + η(Cl)

2
]

= EyiEyj − η(Cl)(Eyi + Eyj) + η(Cl)
2 = 0

Equality b follows from variance computation. In particular for any Yi, i ∈ [m] with xi ∈ Cl for
some l ∈ [m], E

[
(yi − η(Cl))

2
]
= Ey2i − 2η(Cl)Eyi + η(Cl)

2 = η(Cl) − 2η(Cl)
2 + η(Cl)

2 =
η(Cl)(1− η(Cl)). Finally, inequality c follows from the fact that for any z ∈ [0, 1], the maximum
value of z(1− z) is 1

4 .

It is easy to observe that the final result is equivalent to 1
4

∑
j:x∈Cj

(
I[nµn(Cj)>0]

nµn(Cj)

)
.
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Lemma E.2. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) k-winner-take-all sparsification. Let x be sampled from µ and let Dn =
((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is distributed as
η(xi) for i ∈ [n]. Then conditioned on x1, . . . , xn, the following holds.

Ex

1

k

∑
j:x∈Cj

I{nµn(Cj)>0}

nµn(Cj)

 ≤ 1

k

m∑
j=1

(
µ(Cj)I{nµn(Cj)>0}

nµn(Cj)

)

Proof.

Ex

1

k

∑
j:x∈Cj

I[nµn(Cj) > 0]

nµn(Cj)

 a
=

(mk )∑
i=1

Pr(x ∈ Ck
i )

1

k

∑
j∈σ(i)

I[nµn(Cj) > 0]

nµn(Cj)


=

(mk )∑
i=1

1

k

 ∑
j∈σ(i)

µ(Ck
i )I[nµn(Cj) > 0]

nµn(Cj)


b
=

1

k

m∑
j=1

∑
i:j∈σ(i)

(
µ(Ck

i )I[nµn(Cj) > 0]

nµn(Cj)

)

=
1

k

m∑
j=1

(
I[nµn(Cj) > 0]

nµn(Cj)

) ∑
i:j∈σ(i)

µ(Ck
i )

c
=

1

k

m∑
j=1

(
µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

)

where equality a follows from part (ii) of lemma 3.4 since {Ck
i }

(mk )
i=1 forms a partition of X and the

definition of σ in section 3.2. Equality b follows from the following observation. In the line above
inequality b, we are summing k ×

(
m
k

)
terms. Since k ×

(
m
k

)
= m ×

(
m−1
k−1

)
and any j ∈ [m] can

appear in exactly
(
m−1
k−1

)
different subsets of of size k, equality b is simply rearranging the terms from

the line above by changing the indices appropriately. Equality c follows from part (iv) of lemma
3.4.

Lemma E.3. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) k-winner-take-all sparsification. Let x be sampled from µ and let Dn =
((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is distributed as
η(xi) for i ∈ [n]. Then the following holds.

Ex[1,n]

Ex,y[1,n]

1
k

∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]

∣∣∣∣x[1,n]

 ≤ m

nke
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Proof.

Ex[1,n]

Ex,y[1,n]

1
k

∑
j:X∈Cj

η2(Cj)I[µn(Cj) = 0]

∣∣∣∣x[1,n]


a
= Ex[1,n]

Ex

1
k

∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]

∣∣∣∣x[1,n]


b
= Ex[1,n]

(
m
k )∑

i=1

Pr(x ∈ Ck
i )

1

k

∑
j∈σ(i)

η2(Cj)I[µn(Cj) = 0]




= Ex[1,n]

1
k

(mk )∑
i=1

∑
j∈σ(i)

µ(Ck
i )η

2(Cj)I[µn(Cj) = 0]


c
= Ex[1,n]

1
k

m∑
j=1

η2(Cj)I[µn(Cj) = 0]

 ∑
i:j∈σ(i)

µ(Ck
i )


=

1

k

m∑
j=1

η2(Cj)µ(Cj) [Ex1,...,xn
I[µn(Cj) = 0]]

=
1

k

m∑
j=1

η2(Cj)µ(Cj)(1− µ(Cj))
n =

1

nk

m∑
j=1

η2(Cj)nµ(Cj)(1− µ(Cj))
n

≤ 1

nk

m∑
j=1

η2(Cj)nµ(Cj)e
−nµ(Cj)

d
≤ 1

nk

m∑
j=1

nµ(Cj)e
−nµ(Cj) ≤ m

nk
max

j

{
nµ(Cj)e

−nµ(Cj)
} e
≤ m

nke

where equality a follows from the fact that the quantity with the inner square bracket is unaffected

by the Yis. Equality b follows from part (ii) of lemma 3.4 since {Ck
i }

(mk )
i=1 forms a partition of X

and the definition of σ in section 3.2. Equality c follows from the following observation. In the
line above inequality c, we are summing k ×

(
m
k

)
terms. Since k ×

(
m
k

)
= m ×

(
m−1
k−1

)
and any

j ∈ [m] can appear in exactly
(
m−1
k−1

)
different subsets of of size k, equality c is simply rearranging

the terms from the line above by changing the indices appropriately. Inequality d follows from the
fact maxj η(Cj) ≤ 1. Finally inequality e follows from the fact that supz ze

−z = 1
e .

Lemma E.4. (Binomial bound Györfi et al. [2002]) Let the random variable B(n, p) be Binomially
distributed with parameters n and p. Then,

E
(

1

B(n, p)
I[B(n, p) > 0]

)
≤ 2

(n+ 1)p
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E.2 Proof of Lemma 3.10

Proof. Take any x ∈ X . Then

|η(x)− η̄(x)| =

∣∣∣∣∣∣η(x)− 1

k

∑
j:x∈Cj

η̄j

∣∣∣∣∣∣ =
∣∣∣∣∣∣1k
∑
x∈Cj

(η(x)− η(x′)

∣∣∣∣∣∣ ≤ 1

k

∑
j:x∈Cj

|η(x)− η̄j |

=
1

k

∑
j:x∈Cj

∣∣∣∣∣η(x)− 1

µ(Cj)

∫
Cj

η(x′)µ(dx′)

∣∣∣∣∣
=

1

k

∑
j:x∈Cj

∣∣∣∣∣ 1

µ(Cj

∫
Cj

(η(x)− η(x′))µ(dx′)

∣∣∣∣∣
≤ 1

k

∑
j:x∈Cj

1

µ(Cj)

∫
Cj

|η(x)− η(x′)|µ(dx′)

≤ 1

k

∑
j:x∈Cj

1

µ(Cj)

∫
Cj

L∥x− x′∥βµ(dx′)

≤ 1

k

∑
j:x∈Cj

L · (diam(Cj))
β

µ(Cj)

∫
Cj

µ(dx′) ≤ L · max
j∈[m]

(diam(Cj))
β

E.3 Proof of Theorem 3.15

Proof. Define η : X1 → [0, 1] to be a triangular function defined below: for 0 < θ ≤ 2π,

η(cos θ, sin θ, 0, 0, . . . , 0) =

{
θ
π , if θ ≤ π

2− θ
π , if θ > π

Clearly, η is 1
2 -Lipschitz and for k = 1, η̄(x) =

∑m
j=1 η(Cj)I{x∈Cj}. Therefore, using Theorem E.5,

with probability at least 1/2 over the choice of Θ,

sup
x∈X1

|η(x)− η̄(x)| ≥ c′′d ·
1

m1/(d−1) logm

where c′′d is am absolute constant depending on d. Taking expectation, with probability at least 1/2
over the choice of Θ, we have, EX,Dn

|η̄(X)− η(X)| ≥ c′′d · 1
m1/(d−1) logm

. Next, using Lemma 3.8
with k = 1 yields, EX,Dn |η̂(X)− η̄(X)| ≤

√
m
n .

Using triangle inequality combining these results,

EX,Dn
|η(X)− η̂(X)| = EX,Dn

|η(X)− η̄(X) + η̄(X)− η̂(X)|
≥ EX,Dn

|η̄(X)− η(X)| − EX,Dn
|η̂(X)− η̄(X)|

≥ c′′d ·
1

m1/(d−1) logm
−
√

m

n
(20)

Ignoring the log term we see that for large enough n, the first term on the right hand side of (20) will
dominate. In particular, for n = Ω

(
m1+ 2

d−1

)
, we get EX,Dn |η(X) − η̂(X)| ≥ Ω

(
m− 1

d−1

)
. To

see this (ignoring the log term), if
√

m
n ≤

c′′d
2 ·

1
m1/(d−1) , then EX,Dn

|η(X)− η̂(X)| ≥ c′′d
2 ·

1
m1/(d−1) .

Now, √
m

n
≤ c′′d

2
· 1

m1/(d−1)
⇒ n ≥ 4

(c′′d)
2
·m1+ 2

d−1 .
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In particular, setting n = 4
(c′′d )

2m
1+ 2

d−1 , we have

EX,Dn
|η(X)− η̂(X)| ≥ c′′d

2
m− 1

d−1 =

(
c′′d
2

) d−3
d−1

n− 1
d+1 .

Theorem E.5. [Theorem 4 of Dasgupta and Tosh [2020]] For any d > 3, let input space X1 be the
one-dimensional sub-manifold of Rd given in (12). Take k = 1. Suppose that random matrix Θ has
rows chosen from the distribution ν that is uniform over Sd−1. For any 0 < λ < 1, there exists a
λ-Lipschitz function f : X1 → R such that with probability at least 1/2 over the choice of Θ, no
matter how the weights w1, . . . , wm are set, the resulting function f̂(x) =

∑m
j=1 wjI{x∈Cj} has

approximation error at least

sup
x∈X1

|f̂(x)− f(x)| ≥ c′d · λ ·
1

m1/(d−1) logm

where c′d is some absolute constant depending on d.

F Various proofs from section 4 and Appendix B

F.1 Lemma F.1 and its proof

We first show that while EaS representation using h2 is not k-sparse,for large enough sample size,
with high probability, it is at least k/2-sparse and at most 2k-sparse in expectation. F).

Lemma F.1. Pick any δ > 0. For k,m and n, satisfying n ≥ c0m
k

(
log n+ log

(
m
δ

))
, where c0 > 0

is a universal constant, with probability at least 1− δ, over the random choice of training set D′
n, the

following holds for all j ∈ [m].

(k/2m) ≤ Prx∼µ(θj · x ≥ τn(θj)) ≤ (2k/m).

Proof. We start with a version of relative generalization error bound, originally due to Vapnik and
Chervonenkis, that appeared in Chaudhuri and Dasgupta [2010].

Theorem F.2. (Theorem 15 of Chaudhuri and Dasgupta [2010]) Let G be a class of functions from X
to {0, 1} with VC dimension d <∞, and P a probability distribution on X . Let E be the expectation
with respect to P. Suppose n points are drawn independently from P; let En denotes expectation with
respect to this sample. Then for any δ > 0, with probability at least 1− δ the following holds for all
g ∈ G:

−min
(
βn

√
Eng, β

2
n + βn +

√
Eg
)
≤ Eg − Eng ≤ min

(
β2
n + βn

√
Eng, βn

√
Eg
)

where βn =
√

4(d log(2n)+log(8/δ))
n .

Let θi be the ith row of the projection matrix Θ and let µi be the distribution of θi · x where x is
distribution according to µ. Then, for any a ∈ R,

Prx∼µ(θi · x ≥ a) = µi(θi · x ≥ a).

Suppose x′
1, . . . , x

′
n are sampled independently at random from µ. For any interval Aa = [a,∞), let

µi
n(Aa) =

1

n

n∑
j=1

1I[θi · x′
j ≥ a].

Consider the class of indicator functions over the intervals [a,∞) for a ∈ R. This class has
VC dimension 1 and define β2 = 4

n

(
log 2n+ log( 8mδ )

)
. Suppose µi

n(Aa) satisfies the condition
µi
n(Aa) ≥ 4β2.
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The bound µi(Aa)− µi
n(Aa) ≤ β2 + β

√
µi
n(Aa) from Theorem F.2 yields,

µi(Aa) ≤ µi
n(Aa) + β2 + β

√
µi
n(Aa) ≤ µi

n(Aa) +
1

4
· µi

n(Aa) +
1

2
· .µi

n(Aa) =
7

4
· µi

n(Aa)

Similarly, the bound −β
√
µi
n(Aa) ≤ µi(Aa)− µi

n(Aa) from Theorem F.2 yields,

µi(Aa) ≥ µi
n(Aa)− β

√
µi
n(Aa) ≤ µi

n(Aa)−
1

2
· µi

a(Aa) =
1

2
· µi

n(Aa)

Combining these two bounds, we can can conclude that for all intervals Aa satisfying µi
n(Aa) ≥ 4β2,

with probability at least 1− δ
m it holds that

1

2
· µi

n(Aa) ≤ µi(Aa) ≤
7

4
· µi

n(Aa).

Now if we only consider the intervals Aτn(θj), then from (13) it is clear that µi
n(Aτn(θj)) ≤ k

m + 1
n .

This is because for any interval µi
n(·) can take (n + 1) possible values in steps of 1

n , namely,
0, 1

n ,
2
n , . . . , 1. Therefore, from the definition of τn(θj) in (13), if µi

n(Aτn(θj)) ̸= k
m , then to

ensure that µi
n(Aτn(θj)) ≥ k

m , its maximum value can be at most k
m + 1

n . Therefore, the condition
µi
n(Aτn(θj)) ≥ 4β2 implies,

k

m
+

1

n
≥ 16

n

(
log 2n+ log

(
8m

δ

))
=

16

n

(
log 2 + log n+ log 8 + log

(m
δ

))
=

64

n
+

16

n

(
log n+ log

(m
δ

))
or in other words, k

m ≥
63
n + 16

n

(
log n+ log

(
m
δ

))
. Noting that,

7

4
· µi

n(Aτn(θj)) ≤
7k

4m
+

7

4n
≤ 7k

4m
+

7

4
· k

63m
≤ 2k

m
.

Therefore, if k
m ≥

c0
n

(
log n+ log

(
m
δ

))
for some universal constant c0 > 0, then with probability at

least 1− δ
m ,

k

2m
≤ Prx∼µ (θj · x ≥ τn(θj) ≤

2k

m
.

Taking union bound over θ1, . . . , θm yields the desired results.

F.2 Proof of Lemma B.3

Proof. Pick any good θ, and let x = πM (θ) be its projection on M . Since X consists of unit vectors,
using Lemma F.1 with probability at least 1 − δ, the points that lie in C(θ) are at least k/(2m)
fraction or at most 2k/m fraction of x’s (under distribution µ) that have highest dot product with θ or
equivalent to closest to θ. Thus, C(θ) is the set of the form B(θ, r′) where radius r′ is so chosen that
k/(2m) ≤ µ(B(θ, r′)) ≤ 2k/m. However, it is not of the form B(x, r′′)which causes complication.
In particular, two questions need to be answered: (i) if a point x′ ∈M lies within distance r < ρ of
x, how far can it possibly be from θ, and conversely, (ii) if x′ ∈M lies within distance r < ρ of θ ,
how far can it possibly be from x? These two questions are answered in Lemma 6 of Dasgupta and
Tosh [2020] showing that,

BM (x, r) ⊂ B

(
θ,

√
∆2 +

ρ+∆

ρ
r2

)
(21)

BM (θ, r′) ⊂ B

(
x,

√
ρ

ρ−∆
((r′)2 −∆2)

)
(22)

For the left-hand containment pick r =
√

ρ−∆
ρ+∆

(
k

2c2m

)1/d0

. Further taking,

r′ =

√
∆2 +

ρ+∆

ρ
r2
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r′′ =

√
ρ

ρ−∆
((r′)2 −∆2) =

(
k

2c2m

)1/d0

and using (17) yields that µ(BM (x, r′′) < k/(2m). Now using (21) and (22) we have, BM (x, r) ⊂
BM (θ, r′) ⊂ BM (x, r′′). Since µ(BM (x, r′′)) < k/(2m), this ensures BM (x, r) ⊂ BM (θ, r′) ⊂
C(θ).

Pick r =
(

2k
c1m

)1/d0

. Using (17), this ensures that µ(B(x, r)) ≥ 2k/m. Further taking

r′ =

√
∆2 +

ρ+∆

ρ
r2

r′′ =

√
ρ

ρ−∆
((r′)2 −∆2) =

√
ρ+∆

ρ−∆

(
2k

c1m

)1/d0

and using (21) and (22), we have, BM (x, r) ⊂ BM (θ, r′) ⊂ BM (x, r′′). Since µ(BM (x, r)) ≥
2k/m, this ensures that C(θ) ⊂ BM (x, r′) which in turn is contained in BM (x, r′′). Since for any
good θ, ∆ ≤ ρ/2, the result follows.

F.3 Proof of Lemma B.4

Proof. Let E1 be the event that bounds the diameter of the response region of any good θ, as specified
in Lemma B.3, with probability at least 1−δ, over the random choice of the training set. We condition
on this event. For any x ∈M and r > 0, let

A(x, r) = {θ ∈ Γρ/2 : ∥πM (θ)− x∥ < r}

Since 1
2 <

√
ρ−∆
ρ+∆ for ∆ ≤ ρ/2, using Lemma B.3 and choosing large enough m satisfying

(2k/(c1m))1/d0 < min(ρ, r0), if we set

r1 =
1

2

(
k

2c2m

)1/d0

then,

θ ∈ A(x, r1)⇒ x ∈ BM

(
πM (θ),

1

2

(
k

2c2m

)1/d0
)
⇒ x ∈ BM

(
πM (θ),

√
ρ−∆

ρ+∆

(
k

2c2m

)1/d0
)

which implies⇒ x ∈ C(θ). It has been established that A(x, r) has non-negligible probability mass
under ν.

Lemma F.3 (Lemma 14 of Dasgupta and Tosh [2020]). Suppose ν is multivariate Gaussian N(0, I).
There is a constant cd, that depends on the dimension d, such that any x ∈M and 0 < r < r0, we
have ν(A(x, r)) ≥ cdr

d0 .

Using (17), M has a r1/2 cover M̂ of size at most (2c2/c1)8d0m/k. To see this pick points
x1, . . . , xn ∈M that are at a distance r1/2 from each other. The balls B(x1, r1/4) are disjoint and
each has µ(B(xi, r1/4)) ≥ c1(r1/4)

d0 = (c1/(2c2))(1/8
d0)k/m. Since total probability mass of

these N balls is at most 1, this gives the bound on N .

Pick any x̂ ∈ M̂ . For i ∈ [m], let Ui be a binary random variable that takes value 1 if θi ∈ A(x̂, r1/2)
and 0 otherwise. Therefore,

Ui =

{
1 w.p. ν(A(x̂, r1/2))

0 w.p.1− ν(A(x̂, r1/2))

Note that ν(x̂, r1/2) ≥ cd(r1/2)
d0 = (cd/(2c2))(1/4

d0)k/m = αdk/m, where we have set αd =
(cd/(2c2))(1/4

d0). Let U =
∑m

i=1 Ui be that number of θi’s that fall in A(x̂, r1/2) and EU =
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∑m
i=1 EUi ≥ αdk. Let E2 be the event that U > αdk/2 and let Ec

2 be the complement event. Using
Chernoff bound, we have

Pr(Ec
2|E1) = Pr (U ≤ αdk/2|E1) ≤ Pr (U ≤ (1/2)EU |E1) ≤ e−EU/8 ≤ e−αdk/8

Bounding the right most quantity above to be at most δ/M̂ , for k as specified in the lemma statement,
for suitable choice of c′d, we conclude that E2 holds (conditioned on E1) with probability at least
1 − δ. Therefore, with probability at least 1 − 2δ, both E1 and E2 hold, impying that for every
x̂ ∈ M̂ , there are at least αdk/2 good θi’s in A(x̂, r1/2).

Now pick any arbitrary x ∈ M . There is some x̂ ∈ M̂ with ∥x − x̂∥ ≤ r1/2. Moreover, for any
θj ∈ A(x̂, r1/2)⇒ θj ∈ A(x, r1/2)⇒ x ∈ C(θj).

F.4 Proof of Lemma B.1

For ease of exposition, we use the notation x[1,n] to denote x1, . . . , xn and y[1,n] to denote y1, . . . , yn,
x′
[1,n] to denote x′

1, . . . , x
′
n and y′[1,n] to denote y′1, . . . , y

′
n for various proofs appearing in the section.

Note number of non-zero entries in the EaS representation given in (14) is variable and we use the
notation k(x) to denote the number of non-zero entries in h2(x).
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Proof. Fix any Θ. Then, conditioning on x′
[1,n] ensures that C1, . . . , Cm are fixed. Now,

Ex,Dn,D′
n
(η̂(x)− η̄(x))2

= Ex,x[1,n],y[1,n],x
′
[1,n]

,y′
[1,n]

[
(η̂(x)− η̄(x))2

]
a
= Ex,x[1,n],y[1,n],x

′
[1,n]

[
(η̂(x)− η̄(x))2

]
= Ex[1,n],x

′
[1,n]

[
Ex,y[1,n]

[
(η̂(x)− η̄(x))2

∣∣∣∣x[1,n], x
′
[1,n])

]]

= Ex[1,n],x
′
[1,n]

Ex,y[1,n]


1

t

∑
j:x∈Cj

(η̂j − η̄j)

2 ∣∣∣∣x[1,n], x
′
[1,n]




b
≤ Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

(η̂j − η̄j)
2

∣∣∣∣x[1,n], x
′
[1,n]


= Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

(∑n
i=1 yiI[xi ∈ Cj ]∑n
i=1 I[xi ∈ Cj ]

− η(Cj)

)2

I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


= Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

(∑n
i=1 yiI[xi ∈ Cj ]

nµn(Cj)
− η(Cj)

)2

I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]



= Ex[1,n],x
′
[1,n]

Ex,y[1,n]


1

t

∑
j:x∈Cj


(∑n

i=1 yiI[Xi ∈ Cj ]

nµn(Cj)
− η(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]

+η2(Cj)I[µn(Cj) = 0]I[j ∈ At(x)]


∣∣∣∣x[1,n], x

′
[1,n]




= Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I{xi∈Cj}

nµn(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


+Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


c
≤ Ex[1,n],x

′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


+

m

tne

= Ex[1,n],x
′
[1,n]

Ex

1tEy[1,n]


∑

j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]∣∣∣∣x, x[1,n], x
′
[1,n])



+

m

tne

d
≤ 1

4
Ex[1,n],x

′
[1,n]

Ex

1

t

∑
j:x∈Cj

I[nµn(Cj) > 0]I[j ∈ Ax
t ]

nµn(Cj)

∣∣∣∣x[1,n], x
′
[1,n]

+
m

tne

e
≤ 1

4

(
2m

t(n+ 1)

)
+

m

tne
=

m

2t(n+ 1)
+

m

kne
≤ m

2tn
+

m

tne
≤ m

tn
.

where equality a follows from the fact that the quantity with the inner square bracket is unaffected by
the yi’s. Inequality b is due to Jensen’s inequality. Inequality c follows from Lemma F.4, in equality d
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follows from Lemma F.6 and inequality e follows from Lemma F.7. The result finally follows noting
that by Jensen’s inequality E|η̂(x)− η̄(x)| ≤

√
E(η̂(x)− η̄(x))2.

Lemma F.4. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) empirical k-threshold sparsification. Let x be sampled from µ and let
Dn = ((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is
distributed as η(xi) for i ∈ [n]. Similarly, D′

n = ((x′
1, y

′
1), . . . , (x

′
n, y

′
n)) be another random train-

ing set independent of Dn, where x′
i is sampled from µ and y′i is distributed as η(x′

i) for i ∈ [n].
Then the following holds.

Ex[1,n],x
′
[1,n]

Ex,y[1,n]

1
t

∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]

 ≤ m

nte

Proof. We start by taking the 1/t factor outside.

1

t
Ex[1,n],x

′
[1,n]

Ex,y[1,n]

 ∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


a
=

1

t
Ex[1,n],x

′
[1,n]

Ex

 ∑
j:x∈Cj

η2(Cj)I[µn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=0

Pr(k(x) = k′)Ex

 ∑
j:x∈Cj

η2(Cj)I[nµn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣k(x) = k′]

 ∣∣∣∣∣x[1,n], x
′
[1,n]


b
=

1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=1

Pr(k(x) = k′)Ex

 ∑
j:x∈Cj

η2(Cj)I[nµn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣k(x) = k′]

 ∣∣∣∣∣x[1,n], x
′
[1,n]


c
≤ 1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=1

Pr(k(x) = k′)Ex

 ∑
j:x∈Cj

I[nµn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣k(x) = k′]

 ∣∣∣∣∣x[1,n], x
′
[1,n]


d
≤ 1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=1

Pr(k(x) = k′)

m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

∣∣∣∣∣x[1,n], x
′
[1,n]


e
≤ 1

t
Ex[1,n],x

′
[1,n]

Pr(k(x) = 0)

m∑
j=1

µ(Cj)I[nµn(Cj)] +

m∑
k′=1

Pr(k(x) = k′)

m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

∣∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

(
m∑

k′=0

Pr(k(x) = k′)

)∣∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

∣∣∣∣∣x[1,n], x
′
[1,n]

 =
1

t
Ex′

[1,n]

 m∑
j=1

Ex[1,n]

[
µ(Cj)I[nµn(Cj) = 0]

∣∣∣∣x′
[1,n]

]
≤ 1

t
Ex′

[1,n]

 m∑
j=1

µ(Cj)(1− µ(Cj)
n

 =
1

nt
Ex′

[1,n]

 m∑
j=1

nµ(Cj)(1− µ(Cj)
n


≤ 1

nt
Ex′

[1,n]

 m∑
j=1

nµ(Cj)e
−nµ(Cj)

 ≤ m

nt
Ex′

[1,n]

[
max

j

{
nµ(Cj)e

−nµ(Cj)
}] f

≤ m

nt
Ex′

[1,n]

[
1

e

]
=

m

nte

where equality a follows from the fact that the quantity with the inner square bracket is unaf-
fected by the yi’s. Equality b follows from the fact that for k(x) = 0, number of non-zero
entries in the EaS of x using (14) is zero and x /∈ Cj ,∀j. Therefore, we denote the quantity
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∑
j:x∈Cj

η2(Cj)I[nµn(Cj)]I[j ∈ Ax
t ] = 0. Inequality c follows from the fact that η(Cj) ≤ 1,∀j.

Inequality d follows from Lemma F.5. Inequality e follows since we are adding a non-negative
quantity. Finally, inequality f follows from the fact that supz ze

−z = 1
e .

Lemma F.5.

Ex

 ∑
j:x∈Cj

I[nµn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣k(x) = k′

 ≤ m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

Proof. Conditioned on k(x) = k′, EaS representation given in (14) has exactly k′ non-zero entries.
Therefore, using Lemma 3.4,

Ex

 ∑
j:x∈Cj

I[nµn(Cj) = 0]I[j ∈ At(x)]

∣∣∣∣k(x) = k′


a
=

(mk′)∑
i=1

Pr
(
x ∈ Ck′

i

) ∑
j:σ(i)

I[nµn(Cj) = 0]I[j ∈ At(x)]

=

(mk′)∑
i=1

∑
j:σ(i)

µ(Ck′

i )I[nµn(Cj) = 0]I[j ∈ At(x)]

b
=

m∑
j=1

∑
i:j∈σ(i)

µ(Ck′

i )I[nµn(Cj) = 0]I[j ∈ At(x)]

=

m∑
j=1

I[nµn(Cj) = 0]

 ∑
i:j∈σ(i)

µ(Ck′

i )I[j ∈ At(x)]


≤

m∑
j=1

I[nµn(Cj) = 0]

 ∑
i:j∈σ(i)

µ(Ck′

i )

 c
=

m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

where equality a follows from part (ii) of lemma 3.4 since {Ck′

i }
(mk′)
i=1 forms a partition of X and the

definition of σ in section 3.2 with k = k′. Equality b follows from the following observation. In the
line above inequality b, we are summing k′ ×

(
m
k′

)
terms. Since k′ ×

(
m
k′

)
= m ×

(
m−1
k′−1

)
and any

j ∈ [m] can appear in exactly
(
m−1
k′−1

)
different subsets of of size k′, equality b is simply rearranging

the terms from the line above by changing the indices appropriately. Equality c follows from part (iv)
of lemma 3.4.

Lemma F.6. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) empirical k-threshold sparsification. Let x be sampled from µ and let
Dn = ((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is
distributed as η(xi) for i ∈ [n]. Similarly, D′

n = ((x′
1, y

′
1), . . . , (x

′
n, y

′
n)) be another random train-

ing set independent of Dn, where x′
i is sampled from µ and y′i is distributed as η(x′

i) for i ∈ [n].
Then the following holds.

Ey[1,n]

 ∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]

∣∣∣∣x, x[1,n], x
′
[1,n]


≤ 1

4

∑
j:x∈Cj

(
I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

)

Proof. Conditioned on x and x′
[1,n], only k(x) = k′ of the m coordinates in the EaS representation

of x are non-zero. If k′ = 0 then the right hand side of the Lemma statement still holds with tghe
value being zero since each Cj will be an empty set in that case. WLOG, for ease of exposition,
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assume that k′ > 0 and these k′ non-zero coordinate to be j1, . . . , jk′ ∈ [m]. Then the number of xi

that falls in any such Cjl , where l ∈ [k′], is nµn(Cjl). The yi values corresponding to these xi points
(there are nµn(Cjl) of them in total) are identically and independently distributed with expectation

E(yi|xi ∈ Cjl) = Pr(yi = 1|xi ∈ Cjl) =
1

µ(Cjl)

∫
Cjl

Pr(yi = 1|xi = x)µ(dx)

=
1

µ(Cjl)

∫
Cjl

η(x)µ(dx) = η(Cjl)

Therefore, we can write

Ey[1,n]

 ∑
j:x∈Cj

(∑n
i=1(yi − η(Cj))I[xi ∈ Cj ]

nµn(Cj)

)2

I[nµn(Cj) > 0]I[j ∈ At(x)]

∣∣∣∣x, x[1,n], x
′
[1,n]



=

k′∑
l=1

Ey[1,n]

[
(
∑n

i=1(yi − η(Cjl))I[xi ∈ Cjl ])
2 I[nµn(Cjl) > 0]I[jl ∈ At(x)]

∣∣∣∣x, x[1,n], x
′
[1,n]

]
(nµn(Cjl))

2


a
=

k′∑
l=1


∑n

i=1 Eyi

[
(yi − η(Cjl))

2I[xi ∈ Cjl ]I[nµn(Cjl) > 0]I[jl ∈ At(x)]

∣∣∣∣x, xi, x
′
i

]
(nµn(Cjl))

2


b
=

k′∑
l=1

[∑n
i=1 η(Cjl)(1− η(Cjl))I[xi ∈ Cjl ]I[nµn(Cjl) > 0]I[jl ∈ At(x)]

(nµn(Cjl))
2

]
c
≤ 1

4

k∑
l=1

(
I[nµn(Cjl) > 0]I[jl ∈ At(x)]

nµn(Cjl)

)
where, equality a is due to the following observation. For any i, j ∈ [m], i ̸= j and xi, xj ∈ Cl

for some l ∈ [m], yi and yj are identically and independently distributed with expectation η(Cl).
Therefore, the expectation of the cross product is simply:

Eyi,yj
[(yi − η(Cl))(yj − η(Cl)] = Eyi,yj

[
yiyj − η(Cl)(yi + yj) + η(Cl)

2
]

= EyiEyj − η(Cl)(Eyi + Eyj) + η(Cl)
2 = 0.

Equality b follows from variance computation. In particular for any yi, i ∈ [m] with xi ∈ Cl for
some l ∈ [m],

E
[
(yi − η(Cl))

2
]
= Ey2i −2η(Cl)Eyi+η(Cl)

2 = η(Cl)−2η(Cl)
2+η(Cl)

2 = η(Cl)(1−η(Cl)).

Finally, inequality c follows from the fact that for any z ∈ [0, 1], the maximum value of z(1− z) is 1
4 .

It is easy to observe that the final result is equivalent to 1
4

∑
j:x∈Cj

(
I[nµn(Cj)>0]I[j∈At(x)]

nµn(Cj)

)
.

Lemma F.7. Pick m × d projection matrix Θ. Suppose the EaS representation uses (i) a
mapping Θ and (ii) empirical k-threshold sparsification. Let x be sampled from µ and let
Dn = ((x1, y1), . . . , (xn, yn)) is a random training set where xi is sampled from µ and yi is
distributed as η(xi) for i ∈ [n]. Similarly, D′

n = ((x′
1, y

′
1), . . . , (x

′
n, y

′
n)) be another random train-

ing set independent of Dn, where x′
i is sampled from µ and y′i is distributed as η(x′

i) for i ∈ [n].
Then the following holds.

Ex[1,n],x
′
[1,n]

Ex

1
t

∑
j:x∈Cj

I[µn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣x[1,n], x
′
[1,n]

 ≤ 2m

t(n+ 1)
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Proof. We start by taking the 1/t factor outside.

1

t
Ex[1,n],x

′
[1,n]

Ex

 ∑
j:x∈Cj

I[µn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=0

Pr(k(x) = k′)Ex

 ∑
j:x∈Cj

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣k(x) = k′]

 ∣∣∣∣∣x[1,n], x
′
[1,n]


a
=

1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=1

Pr(k(x) = k′)Ex

 ∑
j:x∈Cj

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣k(x) = k′]

 ∣∣∣∣∣x[1,n], x
′
[1,n]


b
≤ 1

t
Ex[1,n],x

′
[1,n]

 m∑
k′=1

Pr(k(x) = k′)

m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

∣∣∣∣∣x[1,n], x
′
[1,n]



c
≤ 1

t
Ex[1,n],x

′
[1,n]


Pr(k(x) = 0)

m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)
+

m∑
k′=1

Pr(k(x) = k′)
m∑
j=1

µ(Cj)I[nµn(Cj) = 0]

nµn(Cj)∣∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

(
m∑

k′=0

Pr(k(x) = k′)

)∣∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex[1,n],x

′
[1,n]

 m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

∣∣∣∣∣x[1,n], x
′
[1,n]


=

1

t
Ex′

[1,n]

 m∑
j=1

Ex[1,n]

[
µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

∣∣∣∣x′
[1,n]

]
d
≤ 1

t
Ex′

[1,n]

 m∑
j=1

2µ(Cj)

(n+ 1)µ(Cj)

 =
1

t
Ex′

[1,n]

[
2m

(n+ 1)

]
=

2m

t(n+ 1)

where equality a follows from the fact that for k(x) = 0, number of non-zero entries in the EaS of x us-
ing (14) is zero and x /∈ Cj ,∀j. Therefore, we denote the quantity

∑
j:x∈Cj

I[nµn(Cj)>0]I[j∈At(x)]
nµn(Cj)

=

0. Inequality b follows from Lemma F.8. Inequality c follows since we are adding a non-negative
quantity. Finally, inequality d follows from the fact that nµn(Cj) is Binomially distributed with
parameters n and µ(Cj) and by an application of lemma E.4.

Lemma F.8.

Ex

 ∑
j:x∈Cj

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣k(x) = k′

 ≤ m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)
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Proof. Conditioned on k(x) = k′, EaS representation given in (14) has exactly k′ non-zero entries.
Therefore, using Lemma 3.4,

Ex

 ∑
j:x∈Cj

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

∣∣∣∣k(x) = k′


a
=

(mk′)∑
i=1

Pr
(
x ∈ Ck′

i

) ∑
j:σ(i)

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

=

(mk′)∑
i=1

∑
j:σ(i)

µ(Ck′

i )I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

b
=

m∑
j=1

∑
i:j∈σ(i)

µ(Ck′

i )I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

=

m∑
j=1

I[nµn(Cj) > 0]I[j ∈ At(x)]

nµn(Cj)

 ∑
i:j∈σ(i)

µ(Ck′

i )


≤

m∑
j=1

I[nµn(Cj) > 0]

nµn(Cj)

 ∑
i:j∈σ(i)

µ(Ck′

i )

 c
=

m∑
j=1

µ(Cj)I[nµn(Cj) > 0]

nµn(Cj)

where equality a follows from part (ii) of lemma 3.4 since {Ck′

i }
(mk′)
i=1 forms a partition of X and the

definition of σ in section 3.2 with k = k′. Equality b follows from the following observation. In the
line above inequality b, we are summing k′ ×

(
m
k′

)
terms. Since k′ ×

(
m
k′

)
= m ×

(
m−1
k′−1

)
and any

j ∈ [m] can appear in exactly
(
m−1
k′−1

)
different subsets of of size k′, equality b is simply rearranging

the terms from the line above by changing the indices appropriately. Equality c follows from part (iv)
of lemma 3.4.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See section 3,4,5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See section 3,4 and Appendix B-F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: section 5, Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data is available from OpenML repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bar provided in the form of shaded graph.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Data used from OpenML repository. KNN and Random Forest models are run
from Scikit-learn. See section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

39

29695 https://doi.org/10.52202/079017-0933

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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