
Computation-Aware Gaussian Processes:
Model Selection And Linear-Time Inference

Jonathan Wenger1 Kaiwen Wu2 Philipp Hennig3 Jacob R. Gardner2

Geoff Pleiss4 John P. Cunningham1

1 Columbia University
2 University of Pennsylvania

3 University of Tübingen, Tübingen AI Center
4 University of British Columbia, Vector Institute

Abstract

Model selection in Gaussian processes scales prohibitively with the size of the
training dataset, both in time and memory. While many approximations exist,
all incur inevitable approximation error. Recent work accounts for this error in
the form of computational uncertainty, which enables—at the cost of quadratic
complexity—an explicit tradeoff between computational efficiency and precision.
Here we extend this development to model selection, which requires significant
enhancements to the existing approach, including linear-time scaling in the size of
the dataset. We propose a novel training loss for hyperparameter optimization and
demonstrate empirically that the resulting method can outperform SGPR, CGGP
and SVGP, state-of-the-art methods for GP model selection, on medium to large-
scale datasets. Our experiments show that model selection for computation-aware
GPs trained on 1.8 million data points can be done within a few hours on a single
GPU. As a result of this work, Gaussian processes can be trained on large-scale
datasets without significantly compromising their ability to quantify uncertainty—
a fundamental prerequisite for optimal decision-making.

1 Introduction

Gaussian Processes (GPs) remain a popular probabilistic model class, despite the challenges in scal-
ing them to large datasets. Since both computational and memory resources are limited in practice,
approximations are necessary for both inference and model selection. Among the many approx-
imation methods, perhaps the most common approach is to map the data to a lower-dimensional
representation. The resulting posterior approximations typically have a functional form similar to
the exact GP posterior, except where posterior mean and covariance feature low-rank updates. This
strategy can be explicit—by either defining feature functions (e.g. Nyström [1], RFF [2])—or a
lower-dimensional latent inducing point space (e.g. SoR, DTC, FITC [3], SGPR [4], SVGP [5]), or
implicit—by using an iterative numerical method (e.g. CGGP [6–10]). All of these methods then
compute coefficients for this lower-dimensional representation from the full set of observations by
direct projection (e.g. CGGP) or via an optimization objective (e.g. SGPR, SVGP).

While effective and widely used in practice, the inevitable approximation error adversely impacts
predictions, uncertainty quantification, and ultimately downstream decision-making. Many pro-
posed methods come with theoretical error bounds [e.g. 2, 11–14], offering insights into the scaling
and asymptotic properties of each method. However, theoretical bounds often require too many as-
sumptions about the data-generating process to offer “real-world” guarantees [15], and in practice,
the fidelity of the approximation is ultimately determined by the available computational resources.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

31316 https://doi.org/10.52202/079017-0984

−2

0

2

Pr
ed

ic
tiv

e

CholeskyGP SVGP CaGP-CG CaGP-Opt

0.0 0.5 1.0
0.0

0.2

V
ar

ia
nc

e

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

GP mean GP uncertainty (latent + noise) Training data Posterior for Data-Generating Hyperparameters

Figure 1: Comparison of an exact GP posterior (CholeskyGP) and three scalable approximations:
SVGP, CaGP-CG and CaGP-Opt (ours). Hyperparameters for each model were optimized using
model selection strategies specific to each approximation. The posterior predictive given the data-
generating hyperparameters is denoted by gray lines and for each method the posterior (dark-shaded)
and the posterior predictive are shown (light-shaded). While all methods, including the exact GP,
do not recover the data-generating process, CaGP-CG and CaGP-Opt are much closer than SVGP.
SVGP expresses almost no posterior variance near the inducing point in the data-sparse region and
thus almost all deviation from the posterior mean is considered to be observational noise. In contrast,
CaGP-CG and CaGP-Opt express significant posterior variance in regions with no data.

One central pathology is overconfidence, which has been shown to be detrimental in key applica-
tions of GPs such as Bayesian optimization [e.g. variance starvation of RFF, 16], and manifests itself
even in state-of-the-art variational methods like SVGP. SVGP, because it treats inducing variables
as “virtual observations”, can be overconfident at the locations of the inducing points if they are not
in close proximity to training data, which becomes increasingly likely in higher dimensions. This
phenomenon can be seen in a toy example in Figure 1, where SVGP has near zero posterior variance
at the inducing point away from the data. See also Section S5.1 for a more detailed analysis.

These approximation errors are a central issue in inference, but they are exacerbated in model selec-
tion, where errors compound and result in biased selections of hyperparameters [12, 17, 18]. Con-
tinuing the example, SVGP has been observed to overestimate the observation noise [18], which can
lead to oversmoothing. This issue can also be seen in Figure 1, where the SVGP model produces
a smoother posterior mean than the exact (Cholesky)GP and attributes most variation from the pos-
terior mean to observational noise (see also Figure S3(b)). There have been efforts to understand
these biases [18] and to mitigate the impact of approximation error on model selection for certain
approximations [e.g. CGGP, 12], but overcoming these issues for SVGP remains a challenge.

Recently, Wenger et al. [19] introduced computation-aware Gaussian processes (CaGP), a class of
GP approximation methods which—for a fixed set of hyperparameters—provably does not suffer
from overconfidence. Like SVGP and the other approximations mentioned above, CaGP also re-
lies on low-rank posterior updates. Unlike these other methods, however, CaGP’s posterior updates
are constructed to guarantee that its posterior variance is always larger than the exact GP variance.
This conservative estimate can be interpreted as additional uncertainty quantifying the approxima-
tion error due to limited computation; i.e. computational uncertainty. However, so far CaGP has
fallen short in demonstrating wallclock time improvements for posterior inference over variational
methods and model selection has so far remained an open problem.

Contributions In this work, we extend computation-aware Gaussian processes by demonstrating
how to perform inference in linear time in the number of training data, while maintaining its the-
oretical guarantees. Second, we propose a novel objective that allows model selection without a
significant bias that would arise from naively conducting model selection on the projected GP. In
detail, we enforce a sparsity constraint on the “actions” of the method, which unlocks linear-time
inference, in a way that is amenable to hardware acceleration. We optimize these actions end-to-end
alongside the hyperparameters with respect to a custom training loss, to optimally retain as much
information from the data as possible given a limited computational budget. The resulting hyperpa-
rameters are less prone to oversmoothing and attributing variation to observational noise, as can be
seen in Figure 1, when compared to SVGP. We demonstrate that our approach is strongly competi-
tive on large-scale data with state-of-the-art variational methods, such as SVGP, without inheriting
their pathologies. As a consequence of our work, one can train GPs on up to 1.8 million data points
in a few hours on a single GPU without adversely impacting uncertainty quantification.

2

31317https://doi.org/10.52202/079017-0984

2 Background

We aim to learn a latent function mapping from X ⊆ Rd to Y ⊆ R given a training dataset X =

(x1, . . . ,xn) ∈ Rn×d of n inputs xj ∈ Rd and corresponding targets y = (y1, . . . , yn)
T ∈ Rn.

Gaussian Processes A Gaussian process f ∼ GP(µ,Kθ) is a stochastic process with mean func-
tion µ and kernel Kθ such that f = f(X) = (f(x1), . . . , f(xn))

T ∼ N (µ,Kθ) is jointly Gaussian
with mean µi = µ(xi) and covariance Kij = Kθ(xi,xj). The kernel Kθ depends on hyperparam-
eters θ ∈ Rp, which we omit in our notation. Assuming y | f(X) ∼ N

(
f(X), σ2I

)
, the posterior

is a Gaussian process GP(µ⋆,K⋆) where the mean and covariance functions evaluated at a test input
x⋄ ∈ Rd are given by

µ⋆(f(x⋄)) = µ(x⋄) +K(x⋄,X)v⋆,

K⋆(f(x⋄), f(x⋄)) = K(x⋄,x⋄)−K(x⋄,X)K̂−1K(X,x⋄),
(1)

where K̂ = K + σ2I and the representer weights are defined as v⋆ = K̂−1(y − µ).

In model selection, the computational bottleneck when optimizing kernel hyperparameters θ is the
repeated evaluation of the negative log-marginal likelihood

ℓNLL(θ) = − log p(y | θ) = 1
2

(
(y − µ)TK̂−1(y − µ)

quadratic loss: promotes data fit

+ log det(K̂)

model complexity

+n log(2π)
)

(2)

and its gradient. Computing (2) and its gradient via a Cholesky decomposition has time complexity
O(n3) and requires O(n2) memory, which is prohibitive for large n.

Sparse Gaussian Process Regression (SGPR) [4] Given a set of m ≪ n inducing points
Z = (z1, . . . ,zm)T and defining u := f(Z) = (f(z1), . . . , f(zm))T, SGPR defines a varia-
tional approximation to the posterior through the factorization p⋆(f(·) | y) ≈ q(f(·)) =

∫
p(f(·) |

u) q(u)du, where q(u) is an m-dimensional multivariate Gaussian. The mean and covariance of
q(u) (denoted as m := Eq(u), Σ := Covq(u)) are jointly optimized alongside the kernel hyperpa-
rameters θ using the evidence lower bound (ELBO) as an objective:

m,Σ,θ,Z = argminm,Σ,θ,Zℓ
ELBO, (3)

ℓELBO(m,Σ,θ,Z) :=ℓNLL(θ) + KL(q(f) ∥ p⋆(f | y,θ))
=− Eq(f)(log p(y | f)) + KL(q(u) ∥ p(u)) ≥ − log p(y | θ).

(4)

The inducing point locations Z can be either optimized as additional parameters during training or
chosen a-priori, typically in a data-dependent way [see e.g. Sec. 7.2 of 20]. Following Titsias [4],
ELBO optimization and posterior inference both require O(nm2) computation and O(nm) memory,
a significant improvement over the costs of exact GPs.

Stochastic Variational Gaussian Processes (SVGP) [5] SVGP extends SGPR to reduce com-
plexity further to O(m3) computation and O(m2) memory. It accomplishes this reduction by re-
placing the first term in Equation (4) with an unbiased approximation

Eq(f)(log p(y | f)) = Eq(f)(
∑n

i=1 log p(yi | f(xi))) ≈ nEq(f(xi))(log p(yi | f(xi))) .

Following Hensman et al. [5], we optimize m,Σ alongside θ,Z through joint gradient updates.
Because the asymptotic complexities no longer depend on n, SVGP can scale to extremely large
datasets that would not be able to fit into computer/GPU memory.

Computation-aware Gaussian Process Inference (CaGP) [19] CaGP1 maps the data y into a
lower dimensional subspace defined by its actions Si ∈ Rn×i on the data, which defines an approx-
imate posterior GP(µi,Ki) with

µi(x⋄) = µ(x⋄) +K(x⋄,X)vi

Ki(x⋄,x⋄) = K(x⋄,x⋄)−K(x⋄,X)CiK(X,x⋄),
(5)

1Wenger et al. [19] named their computation-aware inference algorithm “IterGP”, to emphasize its itera-
tive nature (see Algorithm S1). We adopt the naming “CaGP” instead, since if the actions S are not chosen
sequentially, it is more efficient to compute the computation-aware posterior non-iteratively (see Algorithm S2).

3

31318 https://doi.org/10.52202/079017-0984

where Ci = Si(S
T
i K̂Si)

−1ST
i ≈ K−1 is a low-rank approximation of the precision matrix and

vi = Ci(y − µ) ≈ v⋆ approximates the representer weights. Both converge to the corresponding
exact quantity as the number of iterations, equivalently the downdate rank, i → n. Note that the
CaGP posterior only depends on the space spanned by the columns of Si, not the actual matrix
(Lemma S4). Finally, the CaGP posterior can be computed in O(n2i) time and O(ni) memory.

CaGP captures the approximation error incurred by limited computational resources as additional
uncertainty about the latent function. More precisely, for any data-generating function y ∈ HKσ in
the RKHS HKσ defined by the kernel, the worst-case squared error of the corresponding approxi-
mate posterior mean µy

i is equal to the approximate predictive variance (see Theorem S2):

sup
y∈HKσ ,∥y∥HKσ ≤1

(y(x⋄)− µy
i (x⋄))

2
= Ki(x⋄,x⋄) + σ2 (6)

This guarantee is identical to one for the exact GP posterior mean and variance (see Theorem S1),
except with the approximate quantities instead.2 Additionally, it holds that CaGP’s marginal (predic-
tive) variance is always larger or equal to the (predictive) variance of the exact GP and monotonically
decreasing, i.e. Ki(x⋄,x⋄) ≥ Kj(x⋄,x⋄) ≥ Kn(x⋄,x⋄) = K⋆(x⋄,x⋄) for i ≤ j ≤ n (see Propo-
sition S1). Therefore, given fixed hyperparameters, CaGP is guaranteed to never be overconfident
and as the computational budget increases, the precision of its estimate increases. Here we call such
a posterior computation-aware, and we will extend the use of this object to model selection.

3 Model Selection in Computation-Aware Gaussian Processes

Model selection for GPs most commonly entails maximizing the evidence log p(y | θ) as a function
of the kernel hyperparameters θ ∈ Rp. As with posterior inference, evaluating this objective and its
gradient is computationally prohibitive in the large-scale setting. Therefore, our central goal will be
to perform model selection for computation-aware Gaussian processes in order to scale to a large
number of training data while avoiding the introduction of pathologies via approximation.

We begin by viewing the computation-aware posterior as exact inference assuming we can only
observe i linear projections ỹ of the data defined by (linearly independent) actions Si ∈ Rn×i, i.e.

ỹ := S′
i
T
y ∈ Ri, where S′

i = Si chol(Si
TSi)

−T ∈ Rn×i (7)
is the action matrix with orthonormalized columns. The corresponding likelihood is given by

p(ỹ | f(X)) = N
(
ỹ;S′

i
T
f(X), σ2I

)
. (8)

As we show in Lemma S1, the resulting Bayesian posterior is then given by Equation (5). Recall
that the CaGP posterior only depends on the column space of the actions Si (see Lemma S4), which
is why Equation (5) can be written in terms of Si directly rather than using S′

i.
3

Projected-Data Log Marginal Likelihood The reinterpretation of the computation-aware poste-
rior as exact Bayesian inference immediately suggests using evidence maximization for the projected
data ỹ = S′

i
T
y ∈ Ri as the model selection criterion, leading to the following loss (see Lemma S2):

ℓNLL
proj (θ) = − log p(ỹ | θ) = − logN

(
ỹ;S′

i
T
µ,S′

i
T
K̂S′

i

)
=

1

2

(
(y − µ)TSi(S

T
i K̂Si)

−1ST
i (y − µ)

quadratic loss: promotes fitting projected data ỹ

+ log det(ST
i K̂Si)−

penalizes near-colinear actions

log det(ST
i Si)

projected model complexity

+i log(2π)
)
(9)

Equation (9) involves a Gaussian random variable of dimension i ≪ n, and so all previously in-
tractable quantities in Equation (2) (i.e. the inverse and determinant) are now cheap to compute.
Analogous to the CaGP posterior, we can express the projected-data log marginal likelihood fully in
terms of the actions Si without having to orthonormalize, which results in an additional term penal-
izing colinearity. Unfortunately, this training loss does not lead to good generalization performance,
as there is only training signal in the i-dimensional space spanned by the actions Si the data are
projected onto. Specifically, the quadratic loss term only promotes fitting the projected data ỹ, not
all observations y. See Figures S1 and S2 for experimental validation of this claim.

2At first glance, SVGP satisfies a similar result (Theorem S3). However, this statement does not express the
variance in terms of the worst-case squared error to the “true” latent function. See Section S1.2 for details.

3Given this observation, we sometimes abuse terminology and refer to the actions as “projecting” the data
to a lower-dimensional space, although Si does not need to have orthonormal columns.

4

31319https://doi.org/10.52202/079017-0984

ELBO Training Loss Motivated by this observation, we desire a tractable training loss that en-
courages maximizing the evidence for the entire set of targets y. Importantly though, we need to
accomplish this evidence maximization without incurring prohibitive O(n3) computational cost. We
define a variational objective, using the computation-aware posterior qi(f | y,θ) in Equation (5)
to define a variational family Q :=

{
qi(f) = N (f ;µi(X),Ki(X,X)) | S ∈ Rn×i

}
parametrized

by the action matrix S. We can then specify a (negative) evidence lower bound (ELBO) as follows:

ℓELBO
CaGP (θ) = ℓNLL(θ)

balances data fit and model complexity

+ KL(qi ∥ p⋆)

regularizes s.t. qi ≈ p⋆

≥ − log p(y | θ). (10)

This loss promotes learning the same hyperparameters as if we were to maximize the computa-
tionally intractable evidence log p(y | θ) while minimizing the error due to posterior approximation
qi(f) ≈ p⋆(f | y,θ). In the computation-aware setting, this translates to minimizing computational
uncertainty, which captures this inevitable error.

Although both the evidence and KL terms of the ELBO involve computationally intractable terms,
these problematic terms cancel out when combined. This results in an objective that costs the same
as evaluating CaGP’s predictive distribution, i.e.

ℓELBO
CaGP (θ) =

1

2

(
1

σ2

(
∥y − µi(X)∥22 +

n∑
j=1

Ki(xj ,xj)
)
+ (n− i) log(σ2) + n log(2π)

+ ṽT
i S

TKSṽi − tr((STK̂S)−1STKS) + log det(STK̂S)− log det(STS)

) (11)

where ṽi = (STK̂S)−1ST(y−µ). For a derivation of this expression of the loss see Lemma S3. If
we compare the training loss ℓELBO

CaGP in Equation (10) with the projected-data NLL in Equation (9),
there is an explicit squared loss penalty on the entire data y, rather than just for the projected data ỹ,
resulting in better generalization as Figures S1 and S2 show on synthetic data. In our experiments,
this objective was critical to achieving state-of-the-art performance.

4 Choice of Actions

So far we have not yet specified the actions S ∈ Rn×i mapping the data to a lower-dimensional
space. Ideally, we would want to optimally compress the data both for inference and model selection.

Posterior Entropy Minimization We can interpret choosing actions S as a form of active learn-
ing, where instead of just observing individual datapoints, we allow ourselves to observe linear
combinations of the data y. Taking an information-theoretic perspective [21], we would then aim
to choose actions such that uncertainty about the latent function is minimized. In fact, we show in
Lemma S5 that given a prior f ∼ GP(µ,K) for the latent function and a budget of i actions S, the
actions that minimize the entropy of the posterior at the training data

(s1, . . . , si) = argmin
S∈Rn×i

Hp(f(X)|STy)(f(X)) (12)

are the top-i eigenvectors s1, . . . , si of K̂ in descending order of the eigenvalue magnitude (see
also Zhu et al. [22]). Unfortunately, computing these actions is just as prohibitive computationally
as computing the intractable GP posterior.

(Conjugate) Gradient / Residual Actions Due to the intractability of choosing actions to min-
imize posterior entropy, we could try to do so approximately. The Lanczos algorithm [23] is an
iterative method to approximate the eigenvalues and eigenvectors of symmetric positive-definite
matrices. Given an appropriate seed vector, the space spanned by its approximate eigenvectors is
equivalent to the span of the gradients / residuals ri = (y−µ)−K̂vi−1 of the method of Conjugate
Gradients (CG) [24] when used to iteratively compute an approximation vi ≈ v⋆ = K̂−1(y − µ)
to the representer weights v⋆. We show in Lemma S4 that the CaGP posterior only depends on the
span of its actions. Therefore choosing approximate eigenvectors computed via the Lanczos process
as actions is equivalent to using CG residuals. This allows us to reinterpret CaGP-CG, as introduced
by Wenger et al. [19], as approximately minimizing posterior entropy.4 See Section S3.1 for details.

4Wenger et al. [Sec. 2.1 of 19] showed that CaGP using CG residuals as actions recovers Conjugate-
Gradient-based GPs (CGGP) [7, 9, 10] in its posterior mean, extending this observation to CGGP.

5

31320 https://doi.org/10.52202/079017-0984

0.0

0.5

1.0

E
ig

en
ve

ct
or

s

Action S1 Action S2 Action S3 Action S4 Action S5

0.0

0.5

1.0

C
aG

P-
C

G

0 1
0.0

0.5

1.0

C
aG

P-
O

pt

0 1 0 1 0 1 0 1

0 50 100

Epoch

3

4

5

6

G
ra

ss
m

an
di

st
an

ce
d
(S
,V

ei
ge

n)

Method
Random
CaGP-CG
CaGP-Opt

Figure 2: Visualization of action vectors defining the data projection. We perform model selection
using two CaGP variants, with CG and learned sparse actions—denoted as CaGP-CG, and CaGP-
Opt—on a toy 2-dimensional dataset. Left: For each xj ∈ {x1, . . . ,xn}, we plot the magnitude
of the entries of the top-5 eigenvectors of K̂ and of the first five action vectors. Yellow denotes
larger magnitudes; blue denotes smaller magnitudes. Right: We compare the span of the actions S
against the top-i eigenspace throughout training by measuring the Grassman distance between the
two subspaces (see also Section S5.2). CaGP-CG actions are closer to the kernel eigenvectors than
the CaGP-Opt actions, both of which are more closely aligned than randomly chosen actions.

As Figure 2 illustrates, CG actions are similar to the top-i eigenspace all throughout hyperparameter
optimization. However, this choice of actions focuses exclusively on posterior inference and incurs
quadratic time complexity O(n2i).

Learned Sparse Actions So far in our action choices we have entirely ignored model selection
and tried to choose optimal actions assuming fixed kernel hyperparameters. The second contribution
of this work, aside from demonstrating how to perform model selection, is recognizing that the ac-
tions should be informed by the outer optimization loop for the hyperparameters. We thus optimize
the actions alongside the hyperparameters end-to-end, meaning the training loss for model selection
defines what data projections are informative. This way the actions are adaptive to the hyperpa-
rameters without spending unnecessary budget on computing approximately optimal actions for the
current choice of hyperparameters. Specifically, the actions are chosen by optimizing ℓELBO

CaGP as a
function of the hyperparameters θ and the actions S, s.t.

(θ⋆,Si) = argmin(θ,S)ℓ
ELBO
CaGP (θ,S). (13)

S =


s′1 0 · · · 0
0 s′2 0
...

. . .
...

0 · · · 0 s′i

 (14)

Naively this approach introduces an n× i dimensional optimiza-
tion problem, which in general is computationally prohibitive.
To keep the computational cost low and to optimally leverage
hardware acceleration via GPUs, we impose a sparse block struc-
ture on the actions (see Eq. 14) where each block is a column
vector s′j ∈ Rk×1 with k = n/i entries such that the to-
tal number of trainable action parameters, i.e. non-zero entries
nnz(S) = k · i = n, equals the number of training data. Due
to the sparsity, these actions cannot perfectly match the maxi-
mum eigenvector actions. Nevertheless, we see in Figure 2 that optimizing these sparse actions in
conjunction with hyperparameter optimization produces a nontrivial alignment with optimal action
choice minimizing posterior entropy. Importantly, the sparsity constraint not only reduces the di-
mensionality of the optimization problem, but crucially also reduces the time complexity of posterior
inference and model selection to linear in the number of training data points.

4.1 Algorithms and Computational Complexity

We give algorithms both for iteratively constructed dense actions (Algorithm S1), as used in CaGP-
CG, and for sparse batch actions (Algorithm S2), as used for CaGP-Opt, in the supplementary

6

31321https://doi.org/10.52202/079017-0984

material.5 The time complexity is O(n2i) for dense actions and O(nimax(i, k)) for sparse actions,
where k is the maximum number of non-zero entries per column of Si. Both have the same linear
memory requirement: O(ni). Since the training loss ℓELBO

CaGP only involves terms that are also present
in the posterior predictive, both model selection and predictions incur the same complexity.

4.2 Related Work

Computational Uncertainty and Probabilistic Numerics All CaGP variants discussed in this
paper fall into the category of probabilistic numerical methods [25–27], which aim to quantify ap-
proximation error arising from limited computational resources via additional uncertainty about the
quantity of interest [e.g. 28–31]. Specifically, the iterative formulation of CaGP (i.e. Algorithm S1)
originally proposed by Wenger et al. [19] employs a probabilistic linear solver [32–35].

Scalable GPs with Lower-Bounded Log Marginal Likelihoods Numerous scalable GP approxi-
mations beyond those in Sections 1 and 2 exist; see Liu et al. [36] for a comprehensive review. Many
GP models [e.g., 4, 5, 37–39] learn hyperparameters through maximizing variational lower bounds
in the same spirit as SGPR, SVGP and our method. Similar to our work, interdomain inducing point
methods [40–42] learn a variational posterior approximation on a small set of linear functionals ap-
plied to the latent GP. However, unlike our method, their resulting approximate posterior is usually
prone to underestimating uncertainty in the same manner as SGPR and SVGP. Finally, similar to our
proposed training loss for CaGP-CG, Artemev et al. [43] demonstrate how one can use the method
of conjugate gradients to obtain a tighter lower bound on the log marginal likelihood.

GP Approximation Biases and Computational Uncertainty Scalable GP methods inevitably
introduce approximation error and thus yield biased hyperparameters and predictive distributions,
with an exception of Potapczynski et al. [12] which trade bias for increased variance. Numerous
works have studied pathologies associated with optimizing variational lower bounds, especially in
the context of SVGP [12, 16–18], and various remedies have been proposed. In order to mitigate
biases from approximation, several works alternatively propose replacing variational lower bounds
with alternative model selection objectives, including leave-one-out cross-validation [44] and losses
that directly target predictive performance [45, 46].

5 Experiments

We benchmark the generalization of computation-aware GPs with two different action choices,
CaGP-Opt (ours) and CaGP-CG [19], using our proposed training objective in Equation (10) on
a range of UCI datasets for regression [53]. We compare against SVGP [5], often considered to be
state-of-the-art for large-scale GP regression. Per recommendations by Ober et al. [15], we also in-
clude SGPR [4] as a strong baseline for all datasets where this is computationally feasible. We also
train Conjugate Gradient-based GPs (CGGP) [e.g. 7, 9, 10] using the training procedure proposed
by Wenger et al. [10]. Note that CaGP-CG recovers CGGP in its posterior mean and produces nearly
identical predictive error at half the computational cost for inference [Sec. 2.1 & 4 of 19], which is
why the main difference between CaGP-CG and CGGP in our experiments is the training objective.
Finally, we also train an exact CholeskyGP on the smallest datasets, where this is still feasible.

Experimental Details All datasets were randomly partitioned into train and test sets using a
(0.9, 0.1) split for five random seeds. We used a zero-mean GP prior and a Matérn(3/2) kernel
with an outputscale o2 and one lengthscale per input dimension l2j , as well as a scalar observation
noise for the likelihood σ2, s.t. θ = (o, l1, . . . , ld, σ) ∈ Rd+2. We used the existing implementa-
tions of SGPR, SVGP and CGGP in GPyTorch [7] and also implemented CaGP in this framework
(see Section S4.2 for our open-source implementation). For SGPR and SVGP we used m = 1024
inducing points and for CGGP, CaGP-CG and CaGP-Opt we chose i = 512. We optimized the hy-
perparameters θ either with Adam [54] for a maximum of 1000 epochs in float32 or with LBFGS
[55] for 100 epochs in float64, depending on the method and problem scale. On the largest dataset
“Power”, we used 400 epochs for SVGP and 200 for CaGP-Opt due to resource constraints. For
SVGP we used a batch size of 1024 throughout. We scheduled the learning rate via PyTorch’s [56]
LinearLR(end factor=0.1) scheduler for all methods and performed a hyperparameter sweep

5For a detailed analysis see Algorithms S1 and S2 in the supplementary material, which contain line-by-line
time complexity and memory analyses.

7

31322 https://doi.org/10.52202/079017-0984

Table 1: Generalization error (NLL, RMSE, and wall-clock time) on UCI benchmark datasets. The
table shows the best results for all methods across learning rate sweeps, averaged across five random
seeds. We report the epoch where each method obtained the lowest average test NLL, and all per-
formance metrics (NLL, RMSE, and wall-clock runtime) are reported for this epoch. Highlighted in
bold and color are the best approximate methods per metric (difference > 1 standard deviation).

Dataset n d Method Optim. LR Epoch Test NLL ↓ Test RMSE ↓ Avg. Runtime ↓
mean std mean std

Parkinsons [47] 5 288 21 CholeskyGP LBFGS 0.100 100 -3.645 0.002 0.001 0.000 1min 3s
SGPR Adam 0.100 268 -2.837 0.087 0.031 0.022 27s

LBFGS 1.000 100 -3.245 0.067 0.007 0.003 2min 14s
SVGP Adam 0.100 1000 -2.858 0.016 0.006 0.002 2min 25s
CGGP LBFGS 0.100 81 -2.663 0.141 0.019 0.013 1min 12s
CaGP-CG Adam 1.000 250 -2.936 0.007 0.009 0.006 1min 44s
CaGP-Opt Adam 1.000 956 -3.384 0.005 0.004 0.002 1min 27s

LBFGS 0.010 37 -3.449 0.009 0.002 0.000 1min 53s

Bike [48] 15 642 16 CholeskyGP LBFGS 0.100 100 -3.472 0.012 0.006 0.007 7min 15s
SGPR Adam 0.100 948 -2.121 0.110 0.026 0.004 4min 3s

LBFGS 1.000 100 -3.017 0.022 0.009 0.002 4min 10s
SVGP Adam 0.010 1000 -2.256 0.020 0.020 0.002 6min 41s
CGGP LBFGS 1.000 15 -1.952 0.078 0.024 0.004 2min 6s
CaGP-CG Adam 1.000 250 -2.042 0.024 0.024 0.002 5min 17s
CaGP-Opt Adam 1.000 1000 -2.401 0.037 0.018 0.002 8min 10s

LBFGS 1.000 100 -2.438 0.038 0.017 0.001 14min 48s

Protein [49] 41 157 9 SGPR Adam 0.100 993 0.844 0.006 0.561 0.005 10min 25s
LBFGS 0.100 96 0.846 0.006 0.562 0.005 6min 56s

SVGP Adam 0.010 996 0.851 0.006 0.564 0.005 17min 19s
CGGP LBFGS 0.100 35 0.853 0.006 0.517 0.004 20min 15s
CaGP-CG Adam 1.000 27 0.820 0.006 0.542 0.004 1min 26s
CaGP-Opt Adam 0.100 941 0.829 0.005 0.545 0.004 13min 48s

LBFGS 1.000 84 0.830 0.005 0.545 0.004 14min 29s

KEGGu [50] 57 248 26 SGPR Adam 0.100 143 -0.681 0.025 0.123 0.002 2min 4s
LBFGS 1.000 100 -0.712 0.028 0.118 0.003 8min 58s

SVGP Adam 0.010 988 -0.710 0.026 0.118 0.003 24min 21s
CGGP LBFGS 0.100 30 -0.512 0.034 0.120 0.003 33min 55s
CaGP-CG Adam 1.000 229 -0.699 0.026 0.120 0.003 39min 5s
CaGP-Opt Adam 1.000 990 -0.693 0.026 0.120 0.003 22min 3s

LBFGS 0.010 40 -0.694 0.026 0.120 0.003 22min 0s

Road [51] 391 387 2 SVGP Adam 0.001 998 0.149 0.007 0.277 0.002 2h 7min 37s
CaGP-Opt Adam 0.100 1000 -0.291 0.011 0.159 0.003 2h 11min 31s

Power [52] 1 844 352 7 SVGP Adam 0.010 399 -2.104 0.007 0.029 0.000 5h 7min 57s
CaGP-Opt Adam 0.100 200 -2.103 0.006 0.030 0.000 4h 32min 48s

for the (initial) learning rate. All experiments were run on an NVIDIA Tesla V100-PCIE-32GB
GPU, except for “Power”, where we used an NVIDIA A100 80GB PCIe GPU to have sufficient
memory for CaGP-Opt with i = 512. Our exact experiment configuration can be found in Table S1.

Evaluation Metrics We evaluate the generalization performance once per epoch on the test set by
computing the (average) negative log-likelihood (NLL) and the root mean squared error (RMSE),
as well as recording the wallclock runtime. Runtime is measured at the epoch with the best average
performance across random seeds.

CaGP-Opt Matches or Outperforms SVGP Table 1 and Figure 3 show generalization perfor-
mance of all methods for the best choice of learning rate. In terms of both NLL and RMSE, CaGP-
Opt outperforms or matches the variational baselines SGPR and SVGP at comparable runtime (ex-
cept on “Bike”). SGPR remains competitive for smaller datasets; however, it does not scale to the
largest datasets. There are some datasets and metrics in which specific methods dominate, for ex-
ample on “Bike” SGPR outperforms all other approximations, while on “Protein” methods based on
CG, i.e. CGGP and CaGP-CG, perform the best. However, CaGP-Opt consistently performs either
best or second best and scales to over a million datapoints. These results are quite remarkable for nu-
merous reasons. First, CaGP is comparable in runtime to SVGP on large datasets despite the fact that
it incurs a linear-time computational complexity while SVGP is constant time.6 Second, while all
of the methods we compare approximate the GP posterior with low-rank updates, CaGP-Opt (with

6While SVGP is arguably linear time since it will eventually loop through all training data, each computation
of the ELBO uses a constant time stochastic approximation.

8

31323https://doi.org/10.52202/079017-0984

−2.5

0.0

2.5

Tr
ai

n
L

os
s

Parkinsons

−2

0

2

Bike

1.0

1.5

2.0

Protein

0

2

KEGGu

0

1

2

Road

−2

0

2

Power

−4

−2

0

Te
st

N
L

L

−2

0

0.8

0.9

1.0

−0.5

0.0

0.5

0.0

0.5

1.0

−2

0

0 1min 2min
Time

10−2

100

Te
st

R
M

SE

0 4min 8min
Time

10−2

10−1

100

0 8min16min
Time

0.5

0.6

0.7

0 20min 40min
Time

0.2

0.4

0 1h 2h
Time

0.5

1.0

0 1.5h 3h 4.5h
Time

10−1

100

CholeskyGP SGPR SVGP CGGP CaGP-CG CaGP-Opt

Figure 3: Learning curves of GP approximation methods on UCI benchmark datasets. Rows show
train and test loss as a function of wall-clock time for the best choice of learning rate per method.
CaGP-Opt generally displays a “ramp-up” phase early in training where performance is worse than
that of SVGP. As training progresses, CaGP-Opt matches or surpasses SVGP performance.

i = 512) here uses half the rank of SGPR/SVGP m = 1024. Nevertheless, CaGP-Opt is able to sub-
stantially outperform SVGP even on spatial datasets like 3DRoad where low-rank posterior updates
are often poor [57]. These results suggest that CaGP-Opt can be a more efficient approximation
than inducing point methods, and that low-rank GP approximations may be more applicable than
previously thought [58, 59]. Figure 3 shows the NLL and RMSE learning curves for the best choice
of learning rate per method. CaGP-Opt often shows a “ramp-up” phase, compared to SVGP, but
then improves or matches its generalization performance. This gap is particularly large on “Road”,
where CaGP-Opt is initially worse than SVGP but dominates in the second half of training.

0 1.5h 3h 4.5h
Time

10−2

10−1

C
ov

er
ag

e
E

rr
or

SVGP CaGP-Opt

Figure 4: Uncertainty quantification for
CaGP-Opt and SVGP. Difference between the
desired coverage (95%) and the empirical cov-
erage of the GP 95% credible interval on the
“Power” dataset. After training, CaGP-Opt has
better empirical coverage than SVGP.

SVGP Overestimates Observation Noise and
(Often) Lengthscale In Figure S5 we show that
SVGP typically learns larger observation noise
than other methods as suggested by previous work
[18, 45] and hinted at by observations on syn-
thetic data in Figure 1 and Figure S3(b). Addi-
tionally on larger datasets SVGP also often learns
large lengthscales, which in combination with a
large observation noise can lead to an oversmooth-
ing effect. In contrast, CaGP-Opt generally learns
lower observational noise than SVGP. Of course,
learning a small observation noise, in particular, is
important for achieving low RMSE and thus also
NLL, and points to why we should expect CaGP-
Opt to outperform SVGP. These hyperparameter
results suggest that CaGP-Opt interprets more of
the data as signal, while SVGP interprets more of
the data as noise.

CaGP Improves Uncertainty Quantification Over SVGP A key advantage of CaGP-Opt and
CaGP-CG is that their posterior uncertainty estimates capture both the uncertainty due to limited
data and due to limited computation. To that end, we assess the frequentist coverage of CaGP-Opt’s
uncertainty estimates. We report the absolute difference between a desired coverage percentage α

9

31324 https://doi.org/10.52202/079017-0984

and the fraction of data that fall into the α credible interval of the CaGP-Opt posterior; i.e. εαcoverage =

|α − 1
ntest

∑ntest

i=1 1(yi ∈ Iαq(xi)
)|. Figure 4 compares the 95% coverage error for both CaGP-Opt

and SVGP on the largest dataset (“Power”). From this plot, we see that the CaGP credible intervals
are more aligned with the desired coverage. We hypothesize that these results reflect the different
uncertainty properties of the methods: CaGP-Opt overestimates posterior uncertainty while SVGP
is prone towards overconfidence.

6 Conclusion

In this work, we introduced strategies for model selection and posterior inference for computation-
aware Gaussian processes, which scale linearly with the number of training data rather than quadrat-
ically. The key technical innovations being a sparse projection of the data, which balances mini-
mizing posterior entropy and computational cost, and a scalable way to optimize kernel hyperpa-
rameters, both of which are amenable to GPU acceleration. All together, these advances enable
competitive or improved performance over previous approximate inference methods on large-scale
datasets, in terms of generalization and uncertainty quantification. Remarkably, our method outper-
forms SVGP—often considered the de-facto GP approximation standard— even when compressing
the data into a space of half the dimension of the variational parameters. Finally, we also demon-
strate that computation-aware GPs avoid many of the pathologies often observed in inducing point
methods, such as overconfidence and oversmoothing.

Limitations While CaGP-Opt obtains the same linear time and memory costs as SGPR, it is not
amenable to stochastic minibatching and thus cannot achieve the constant time/memory capabilities
of SVGP. In practice, this asymptotic difference does not result in substantially different wall clock
times, as SVGP requires many more optimizer steps than CaGP-Opt due to batching. (Indeed,
on many datasets we find that CaGP-Opt is faster.) CaGP-Opt nevertheless requires larger GPUs
than SVGP on datasets with more than a million data points. Moreover, tuning CaGP-Opt requires
choosing the appropriate number of actions (i.e. the rank of the approximate posterior update),
though we note that most scalable GP approximations have a similar tunable parameter (e.g. number
of inducing points). Perhaps the most obvious limitation is that CaGP, unlike SVGP, is limited to
GP regression with a conjugate observational noise model. We leave extensions to classification and
other non-conjugate likelihoods as future work.

Outlook and Future Work An immediate consequence of this work is the ability to apply
computation-aware Gaussian processes to “real-world” problems, as our approach solves CaGP’s
open problems of model selection and scalability. Looking forward, an exciting future vision is a
general framework for problems involving a Gaussian process model with a downstream task where
the actions are chosen optimally, given resource constraints, to solve said task. Future work will
pursue this direction beyond Gaussian likelihoods to non-conjugate models and downstream tasks
such as Bayesian optimization.

10

31325https://doi.org/10.52202/079017-0984

Acknowledgments and Disclosure of Funding

JW and JPC are supported by the Gatsby Charitable Foundation (GAT3708), the Simons Foundation
(542963), the NSF AI Institute for Artificial and Natural Intelligence (ARNI: NSF DBI 2229929)
and the Kavli Foundation. JG and KW are supported by the NSF (IIS-2145644, DBI-2400135). PH
gratefully acknowledges co-funding by the European Union (ERC, ANUBIS, 101123955). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those of
the European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them. PH is a member of the Machine Learning Cluster of
Excellence, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645; he also
gratefully acknowledges the German Federal Ministry of Education and Research (BMBF) through
the Tübingen AI Center (FKZ: 01IS18039A); and funds from the Ministry of Science, Research and
Arts of the State of Baden-Württemberg. GP acknowledges support from NSERC and the Canada
CIFAR AI Chair program.

References
[1] C. Williams and M. Seeger. “Using the Nyström method to speed up kernel machines”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2001 (cit. on p. 1).
[2] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In: Advances

in Neural Information Processing Systems (NeurIPS). 2007 (cit. on p. 1).
[3] J. Quiñonero-Candela and C. E. Rasmussen. “A unifying view of sparse approximate Gaus-

sian process regression”. In: Journal of Machine Learning Research 6 (2005) (cit. on p. 1).
[4] M. Titsias. “Variational learning of inducing variables in sparse Gaussian processes”. In:

International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR. 2009,
pp. 567–574 (cit. on pp. 1, 3, 7).

[5] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian processes for big data”. In: Conference
on Uncertainty in Artificial Intelligence (UAI). 2013, pp. 282–290 (cit. on pp. 1, 3, 7).

[6] M. Gibbs. “Bayesian Gaussian processes for classification and regression”. PhD thesis. 1997
(cit. on p. 1).

[7] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. “GPyTorch: Black-
box matrix-matrix Gaussian process inference with GPU acceleration”. In: Advances in Neu-
ral Information Processing Systems (NeurIPS). 2018, pp. 7576–7586 (cit. on pp. 1, 5, 7).

[8] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson. “Constant-time predictive distribu-
tions for Gaussian processes”. In: International Conference on Machine Learning (ICML).
2018, pp. 4114–4123 (cit. on p. 1).

[9] K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson. “Exact
Gaussian processes on a million data points”. In: Advances in Neural Information Processing
Systems (NeurIPS) 32 (2019) (cit. on pp. 1, 5, 7).

[10] J. Wenger, G. Pleiss, P. Hennig, J. P. Cunningham, and J. R. Gardner. “Preconditioning for
Scalable Gaussian Process Hyperparameter Optimization”. In: International Conference on
Machine Learning (ICML). 2022 (cit. on pp. 1, 5, 7).

[11] F. Bach. “On the equivalence between kernel quadrature rules and random feature expan-
sions”. In: Journal of Machine Learning Research 18.21 (2017), pp. 1–38 (cit. on p. 1).

[12] A. Potapczynski, L. Wu, D. Biderman, G. Pleiss, and J. P. Cunningham. “Bias-Free Scalable
Gaussian Processes via Randomized Truncations”. In: International Conference on Machine
Learning (ICML). 2021 (cit. on pp. 1, 2, 7).

[13] D. R. Burt, C. E. Rasmussen, and M. van der Wilk. “Rates of Convergence for Sparse Vari-
ational Gaussian Process Regression”. In: International Conference on Machine Learning
(ICML). 2019. URL: http://arxiv.org/abs/1903.03571 (cit. on p. 1).

[14] M. Kang, F. Schäfer, J. Guinness, and M. Katzfuss. Asymptotic properties of Vecchia ap-
proximation for Gaussian processes. 2024. DOI: 10.48550/arXiv.2401.15813 (cit. on
p. 1).

11

31326 https://doi.org/10.52202/079017-0984

http://arxiv.org/abs/1903.03571
https://doi.org/10.48550/arXiv.2401.15813

[15] S. W. Ober, D. R. Burt, A. Artemev, and M. van der Wilk. “Recommendations for Baselines
and Benchmarking Approximate Gaussian Processes”. In: NeurIPS Workshop on Gaussian
Processes, Spatiotemporal Modeling, and Decision-making Systems. 2022. URL: https://
gp-seminar-series.github.io/assets/camera_ready/62.pdf (cit. on pp. 1, 7).

[16] Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. “Batched Large-scale Bayesian Optimiza-
tion in High-dimensional Spaces”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS). 2018. DOI: 10.48550/arXiv.1706.01445. URL: http://arxiv.
org/abs/1706.01445 (cit. on pp. 2, 7).

[17] R. E. Turner and M. Sahani. “Two problems with variational expectation maximisation for
time series models”. In: Bayesian Time Series Models. Cambridge University Press, 2011,
pp. 104–124. DOI: 10.1017/CBO9780511984679.006 (cit. on pp. 2, 7).

[18] M. Bauer, M. van der Wilk, and C. E. Rasmussen. “Understanding probabilistic sparse
Gaussian process approximations”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 29. 2016 (cit. on pp. 2, 7, 9).

[19] J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P. Cunningham. “Posterior and Compu-
tational Uncertainty in Gaussian processes”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2022. DOI: 10.48550/arXiv.2205.15449 (cit. on pp. 2, 3, 5, 7, 16, 17,
23).

[20] D. R. Burt, C. E. Rasmussen, and M. v. d. Wilk. “Convergence of Sparse Variational Inference
in Gaussian Processes Regression”. In: Journal of Machine Learning Research (Aug. 2020).
DOI: 10.48550/arXiv.2008.00323 (cit. on p. 3).

[21] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. “Bayesian active learning for classi-
fication and preference learning”. In: arXiv (2011). URL: https://arxiv.org/abs/1112.
5745 (cit. on pp. 5, 21).

[22] H. Zhu, C. K. Williams, R. Rohwer, and M. Morciniec. “Gaussian regression and optimal
finite dimensional linear models”. In: Neural Networks and Machine Learning. 1997 (cit. on
p. 5).

[23] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differen-
tial and integral operators. United States Government Press Office Los Angeles, CA, 1950
(cit. on pp. 5, 21).

[24] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear systems”.
In: Journal of Research of the National Bureau of Standards 49 (1952) (cit. on pp. 5, 21).

[25] P. Hennig, M. A. Osborne, and M. Girolami. “Probabilistic numerics and uncertainty in com-
putations”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 471.2179 (2015) (cit. on p. 7).

[26] J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. “Bayesian probabilistic numerical meth-
ods”. In: SIAM Review 61.4 (2019), pp. 756–789 (cit. on p. 7).

[27] P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation as Ma-
chine Learning. Cambridge University Press, 2022. ISBN: 978-1-316-68141-1. DOI: 10 .
1017/9781316681411 (cit. on p. 7).

[28] M. Pförtner, I. Steinwart, P. Hennig, and J. Wenger. Physics-Informed Gaussian Process Re-
gression Generalizes Linear PDE Solvers. 2023. DOI: 10.48550/arXiv.2212.12474 (cit.
on p. 7).

[29] L. Tatzel, J. Wenger, F. Schneider, and P. Hennig. Accelerating Generalized Linear Models
by Trading off Computation for Uncertainty. 2024. DOI: 10.48550/arXiv.2310.20285
(cit. on p. 7).

[30] M. Pförtner, J. Wenger, J. Cockayne, and P. Hennig. Computation-Aware Kalman Filtering
and Smoothing. 2024. DOI: 10.48550/arxiv.2405.08971 (cit. on p. 7).

[31] D. Hegde, M. Adil, and J. Cockayne. Calibrated Computation-Aware Gaussian Processes.
2024. DOI: 10.48550/arXiv.2410.08796 (cit. on p. 7).

[32] P. Hennig. “Probabilistic Interpretation of Linear Solvers”. In: SIAM Journal on Optimization
25.1 (2015), pp. 234–260 (cit. on p. 7).

[33] J. Cockayne, C. Oates, I. C. Ipsen, and M. Girolami. “A Bayesian Conjugate Gradient
Method”. In: Bayesian Analysis 14.3 (2019), pp. 937–1012 (cit. on p. 7).

[34] S. Bartels, J. Cockayne, I. C. Ipsen, and P. Hennig. “Probabilistic linear solvers: A unifying
view”. In: Statistics and Computing 29.6 (2019), pp. 1249–1263 (cit. on p. 7).

12

31327https://doi.org/10.52202/079017-0984

https://gp-seminar-series.github.io/assets/camera_ready/62.pdf
https://gp-seminar-series.github.io/assets/camera_ready/62.pdf
https://doi.org/10.48550/arXiv.1706.01445
http://arxiv.org/abs/1706.01445
http://arxiv.org/abs/1706.01445
https://doi.org/10.1017/CBO9780511984679.006
https://doi.org/10.48550/arXiv.2205.15449
https://doi.org/10.48550/arXiv.2008.00323
https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/1112.5745
https://doi.org/10.1017/9781316681411
https://doi.org/10.1017/9781316681411
https://doi.org/10.48550/arXiv.2212.12474
https://doi.org/10.48550/arXiv.2310.20285
https://doi.org/10.48550/arxiv.2405.08971
https://doi.org/10.48550/arXiv.2410.08796

[35] J. Wenger and P. Hennig. “Probabilistic Linear Solvers for Machine Learning”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2020. DOI: 10.48550/arXiv.2010.
09691. URL: http://arxiv.org/abs/2010.09691 (cit. on p. 7).

[36] H. Liu, Y.-S. Ong, X. Shen, and J. Cai. “When Gaussian process meets big data: A review
of scalable GPs”. In: Transactions on Neural Networks and Learning Systems 31.11 (2020),
pp. 4405–4423 (cit. on p. 7).

[37] J. Hensman, A. Matthews, and Z. Ghahramani. “Scalable variational Gaussian process clas-
sification”. In: International Conference on Artificial Intelligence and Statistics (AISTATS).
PMLR, 2015, pp. 351–360 (cit. on p. 7).

[38] H. Salimbeni, C.-A. Cheng, B. Boots, and M. Deisenroth. “Orthogonally Decoupled Vari-
ational Gaussian Processes”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 31. 2018 (cit. on p. 7).

[39] L. Wu, G. Pleiss, and J. P. Cunningham. “Variational nearest neighbor Gaussian process”.
In: International Conference on Machine Learning (ICML). PMLR, 2022, pp. 24114–24130
(cit. on p. 7).

[40] J. Hensman, N. Durrande, and A. Solin. “Variational Fourier Features for Gaussian Pro-
cesses”. In: Journal of Machine Learning Research 18.151 (2018), pp. 1–52 (cit. on p. 7).

[41] V. Dutordoir, N. Durrande, and J. Hensman. “Sparse Gaussian Processes with Spherical Har-
monic Features”. In: International Conference on Machine Learning (ICML). Vol. 119. 2020,
pp. 2793–2802 (cit. on p. 7).

[42] M. Van der Wilk, V. Dutordoir, S. John, A. Artemev, V. Adam, and J. Hensman. A framework
for interdomain and multioutput Gaussian processes. 2020. DOI: 10.48550/arXiv.2003.
01115 (cit. on p. 7).

[43] A. Artemev, D. R. Burt, and M. van der Wilk. “Tighter Bounds on the Log Marginal Likeli-
hood of Gaussian Process Regression Using Conjugate Gradients”. In: International Confer-
ence on Machine Learning (ICML). 2021 (cit. on p. 7).

[44] M. Jankowiak and G. Pleiss. Scalable Cross Validation Losses for Gaussian Process Models.
2022. DOI: 10.48550/arXiv.2105.11535 (cit. on p. 7).

[45] M. Jankowiak, G. Pleiss, and J. Gardner. “Parametric Gaussian Process Regressors”. In: In-
ternational Conference on Machine Learning (ICML). Vol. 119. 2020, pp. 4702–4712 (cit. on
pp. 7, 9).

[46] Y. Wei, R. Sheth, and R. Khardon. “Direct Loss Minimization for Sparse Gaussian Processes”.
In: International Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 130.
2021, pp. 2566–2574 (cit. on p. 7).

[47] A. Tsanas and M. Little. Parkinsons Telemonitoring. UCI Machine Learning Repository.
2009. DOI: 10.24432/C5ZS3N (cit. on p. 8).

[48] H. Fanaee-T and J. Gama. Bike Sharing. UCI Machine Learning Repository. 2013. DOI: 10.
24432/C5W894 (cit. on p. 8).

[49] P. Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository. 2013. DOI: 10.24432/C5QW3H (cit. on p. 8).

[50] M. Naeem and S. Asghar. KEGG Metabolic Reaction Network (Undirected). UCI Machine
Learning Repository. 2011. DOI: 10.24432/C5G609 (cit. on p. 8).

[51] M. Kaul. 3D Road Network (North Jutland, Denmark). UCI Machine Learning Repository.
2013. DOI: 10.24432/C5GP51 (cit. on p. 8).

[52] G. Hebrail and A. Berard. Individual Household Electric Power Consumption. UCI Machine
Learning Repository. 2006. DOI: 10.24432/C58K54 (cit. on p. 8).

[53] M. Kelly, R. Longjohn, and K. Nottingham. The UCI Machine Learning Repository. 2017.
URL: https://archive.ics.uci.edu (cit. on p. 7).

[54] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: International
Conference on Learning Representations (ICLR) (2015) (cit. on p. 7).

[55] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Mathematics of Com-
putation 35.151 (1980), pp. 773–782 (cit. on p. 7).

13

31328 https://doi.org/10.52202/079017-0984

https://doi.org/10.48550/arXiv.2010.09691
https://doi.org/10.48550/arXiv.2010.09691
http://arxiv.org/abs/2010.09691
https://doi.org/10.48550/arXiv.2003.01115
https://doi.org/10.48550/arXiv.2003.01115
https://doi.org/10.48550/arXiv.2105.11535
https://doi.org/10.24432/C5ZS3N
https://doi.org/10.24432/C5W894
https://doi.org/10.24432/C5W894
https://doi.org/10.24432/C5QW3H
https://doi.org/10.24432/C5G609
https://doi.org/10.24432/C5GP51
https://doi.org/10.24432/C58K54
https://archive.ics.uci.edu

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019. DOI: 10.48550/arXiv.1912.01703. URL: http:
//arxiv.org/abs/1912.01703 (cit. on p. 7).

[57] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. Gardner. “Fast matrix square roots
with applications to Gaussian processes and Bayesian optimization”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2020, pp. 22268–22281 (cit. on p. 9).

[58] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand. “Hierarchical nearest-neighbor Gaus-
sian process models for large geostatistical datasets”. In: Journal of the American Statistical
Association 111.514 (2016), pp. 800–812 (cit. on p. 9).

[59] M. Katzfuss and J. Guinness. “A General Framework for Vecchia Approximations of Gaus-
sian Processes”. In: Statistical Science 36.1 (2021). DOI: 10.1214/19-sts755 (cit. on p. 9).

[60] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian Processes and
Kernel Methods: A Review on Connections and Equivalences. arXiv:1807.02582 [cs, stat].
2018. DOI: 10.48550/arXiv.1807.02582 (cit. on p. 16).

[61] V. Wild, M. Kanagawa, and D. Sejdinovic. “Connections and Equivalences between the
Nyström Method and Sparse Variational Gaussian Processes”. In: arXiv (2021). URL: http:
//arxiv.org/abs/2106.01121 (cit. on pp. 16, 17).

[62] G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins University Press, 2012
(cit. on pp. 21, 25).

[63] G. Meurant and Z. Strakoš. “The Lanczos and conjugate gradient algorithms in finite pre-
cision arithmetic”. en. In: Acta Numerica 15 (May 2006), pp. 471–542. DOI: 10.1017/
S096249290626001X (cit. on p. 21).

14

31329https://doi.org/10.52202/079017-0984

https://doi.org/10.48550/arXiv.1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1214/19-sts755
https://doi.org/10.48550/arXiv.1807.02582
http://arxiv.org/abs/2106.01121
http://arxiv.org/abs/2106.01121
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1017/S096249290626001X

Supplementary Material

This supplementary material contains additional results and in particular proofs for all theoretical
statements. References referring to sections, equations or theorem-type environments within this
document are prefixed with ‘S’, while references to, or results from, the main paper are stated as is.

S1 Theoretical Results 15
S1.1 Alternative Derivation of CaGP Posterior . 15
S1.2 Worst Case Error Interpretations of the Variance of Exact GPs, CaGPs and SVGPs 16
S1.3 CaGP’s Variance Decreases Monotonically as the Number of Iterations Increases 17

S2 Training Losses 17
S2.1 Projected-Data Log-Marginal Likelihood . 17
S2.2 Evidence Lower Bound (ELBO) . 18
S2.3 Comparison of Training Losses . 20

S3 Choice of Actions 20
S3.1 (Conjugate) Gradient / Residual Policy . 21
S3.2 Information-theoretic Policy . 21

S4 Algorithms 23
S4.1 Iterative and Batch Versions of CaGP . 23
S4.2 Implementation . 23

S5 Additional Experimental Results and Details 24
S5.1 Inducing Points Placement and Uncertainty Quantification of SVGP 24
S5.2 Grassman Distance Between Subspaces . 25
S5.3 Generalization Experiment . 25

S5.3.1 Impact of Learning Rate on Generalization . 25
S5.3.2 Evolution Of Hyperparameters During Training 27

S1 Theoretical Results

S1.1 Alternative Derivation of CaGP Posterior

Lemma S1 (CaGP Inference as Exact Inference Given a Modified Observation Model)
Given a Gaussian process prior f ∼ GP(µ,K) and training data (X,y) the computation-aware
GP posterior GP(µi,Ki) (see Equation (5)) with linearly independent and fixed actions S is equiv-
alent to an exact batch GP posterior (f | ỹ) given data ỹ = S′Ty observed according to the
likelihood ỹ | f(X) ∼ N

(
S′Tf(X), σ2I

)
, where S′ = S chol(STS)−T.

Proof. First note that by definition S′ has orthonormal columns, since

S′TS′ = (S chol(STS)−T)TS chol(STS)−T

= chol(STS)−1STS chol(STS)−T

= L−1LLTL−T

= I.

Now by basic properties of Gaussian distributions, we have for arbitrary X⋄ ∈ Rn⋄×d that(
ỹ

f(X⋄)

)
∼ N

((
S′Tµ(X)
µ(X⋄)

)
,

(
S′TK(X,X)S′ + σ2S′TS′ S′TK(X,X⋄)

K(X⋄,X)S′ K(X⋄,X⋄)

))
is jointly Gaussian, where we used that I = S′TS′.

Therefore we have that (f(X⋄) | ỹ) ∼ N (µi(X⋄),Ki(X⋄,X⋄)) with

µi(X⋄) = µ(X⋄) +K(X⋄,X)S′(S′T(K(X,X) + σ2I)S′)−1(ỹ − S′Tµ),

= µ(X⋄) +K(X⋄,X)S(ST(K(X,X) + σ2I)S)−1ST(y − µ)

15

31330 https://doi.org/10.52202/079017-0984

Ki(X⋄,X⋄) = K(X⋄,X⋄)−K(X⋄,X)S′(S′T(K(X,X) + σ2I)S′)−1S′TK(X,X⋄)

= K(X⋄,X⋄)−K(X⋄,X)S(ST(K(X,X) + σ2I)S)−1STK(X,X⋄)

which is equivalent to the definition of the CaGP posterior in Equation (5). This proves the claim.

S1.2 Worst Case Error Interpretations of the Variance of Exact GPs, CaGPs and SVGPs

In order to understand the impact of approximation on the uncertainty quantification of both CaGP
and SVGP, it is instructive to compare the theoretical guarantees they admit, when the latent function
is assumed to be in the RKHS of the kernel. In the context of model selection, this corresponds to
the ideal case where the optimization has converged to the ground truth hyperparameters.

Let f ∼ GP(0,K) be a Gaussian process with kernel K and define the observed process y(·) =
f(·) + σε(·) where ε ∼ GP(0, δ) is white noise with noise level σ2 > 0, i.e. δ(x,x′) = 1(x = x′).
Consequently, the covariance kernel of the data-generating process y(·) is given by Kσ(x,x′) :=
K(x,x′) + σ2δ(x,x′) and we denote the corresponding RKHS as HKσ .

For exact Gaussian process inference, the pointwise (relative) worst-case squared error of the poste-
rior mean is precisely given by the posterior predictive variance.
Theorem S1 (Worst Case Error Interpretation of GP Variance [60])
Given a set of training inputs x1, . . . ,xn ∈ X, the GP posterior GP(µ⋆,K⋆) satisfies for any
x ̸= xj that

sup
y∈HKσ ,∥y∥HKσ ≤1

(y(x⋄)− µy
⋆(x⋄))

2

error of posterior mean

= K⋆(x⋄,x⋄) + σ2

predictive variance

(S15)

If σ2 = 0, then the above also holds for x⋄ = xj .

Proof. See Proposition 3.8 of Kanagawa et al. [60].

CaGP admits precisely the same guarantee just with the approximate posterior mean and covariance
function. The fact that the impact of the approximation on the posterior mean is exactly captured
by the approximate predictive variance function is what is meant by the method being computation-
aware.
Theorem S2 (Worst Case Error Interpretation of CaGP Variance [19])
Given a set of training inputs x1, . . . ,xn ∈ X, the CaGP posterior GP(µi,Ki) satisfies for any
x ̸= xj that

sup
y∈HKσ ,∥y∥HKσ ≤1

(y(x⋄)− µy
i (x⋄))

2

error of approximate posterior mean

= Ki(x⋄,x⋄) + σ2

approximate predictive variance

(S16)

If σ2 = 0, then the above also holds for x⋄ = xj .

Proof. See Theorem 2 of Wenger et al. [19].

While SVGP also admits a decomposition of its approximate predictive variance into two (relative)
worst-case errors, neither of these is the error we care about, namely the difference between the
data-generating function y ∈ HKσ and the approximate posterior mean µSVGP(x⋄). It only involves
a worst-case error term over the unit ball in the RKHS of the approximate kernel Qσ ≈ Kσ .
Theorem S3 (Worst Case Error Interpretation of SVGP Variance [61])
Given a set of training inputs x1, . . . ,xn ∈ X and (fixed) inducing points Z ∈ Rm×d, the optimal
variational posterior GP(µ⋆

SVGP,K
⋆
SVGP) of SVGP is given by

µ⋆,y
SVGP(x⋄) = K(x⋄,Z)(σ2K(Z,Z) +K(Z,X)K(X,Z))−1K(Z,X)y(X)

K⋆
SVGP(x⋄,x

′
⋄) = K(x⋄,x

′
⋄)−Q(x⋄,x

′
⋄) +K(x⋄,Z)(K(Z,Z) + σ−2K(Z,X)K(X,Z))−1K(Z,x′

⋄)

where Q(x,x′) = K(x,Z)K(Z,Z)−1K(Z,x′) is the Nyström approximation of the covariance
function K(x,x′) (see Eqns. (25) and (26) of Wild et al. [61]). The optimized SVGP posterior

16

31331https://doi.org/10.52202/079017-0984

satisfies for any x ̸= xj that

sup
y∈HQσ ,∥h∥HQσ ≤1

(
y(x⋄)− µ⋆,y

SVGP(x⋄)
)2

error of exact posterior mean assuming y(·) is in the RKHS of the approximate kernel Qσ

+ sup
f∈HK ,∥f∥HK

≤1

(
f(x⋄)−K(x⋄,Z)K(Z,Z)−1f(Z)

)2
error of exact posterior mean given noise-free observations at inducing points

= K⋆
SVGP(x⋄,x⋄) + σ2

approximate predictive variance

(S17)

If σ2 = 0, then the above also holds for x⋄ = xj .

Proof. See Theorem 6 of Wild et al. [61].

S1.3 CaGP’s Variance Decreases Monotonically as the Number of Iterations Increases

Proposition S1 (CaGP’s Variance Decreases Monotonically with the Number of Iterations)
Given a training dataset of size n, let GP(µi,Ki) be the corresponding CaGP posterior defined in
Equation (5) where i ≤ n denotes the downdate rank / number of iterations and assume the CaGP
actions Si ∈ Rn×i are linearly independent. Then it holds for arbitrary x⋄ ∈ X and i ≤ j ≤ n,
that

Ki(x⋄,x⋄) ≥ Kj(x⋄,x⋄) ≥ Kn(x⋄,x⋄) = K⋆(x⋄,x⋄) (S18)
where K⋆(x⋄,x⋄) is the variance of the exact GP posterior in Equation (1).

Proof. Wenger et al. [19] originally defined the approximate precision matrix Ci =∑i
ℓ=1

1
ηℓ
dℓd

T
ℓ =

∑i
ℓ=1 d̃ℓd̃

T
ℓ as a sum of rank-1 matrices and show that this definition is equiv-

alent to the batch form Ci = Si(S
T
i K̂Si)

−1ST
i we use in this work [see Lemma S1, Eqn. (S37) in

19]. Therefore we have that

Ki(x⋄,x⋄) = K(x⋄,x⋄)−K(x⋄,X)CiK(X,x⋄)

= K(x⋄,x⋄)−
i∑

ℓ=1

K(x⋄,X)d̃ℓd̃
T
ℓ K(X,x⋄)

= K(x⋄,x⋄)−
i∑

ℓ=1

(K(x⋄,X)d̃ℓ)
2

≥ K(x⋄,x⋄)−
j∑

ℓ=1

(K(x⋄,X)d̃ℓ)
2 since i ≤ j

≥ K(x⋄,x⋄)−
n∑

ℓ=1

(K(x⋄,X)d̃ℓ)
2

= K(x⋄,x⋄)−K(x⋄,X)CnK(X,x⋄)

= K⋆(x⋄,x⋄)

where the last equality follows from the fact that Sn ∈ Rn×n has rank n and therefore

Cn = Sn(S
T
nK̂Sn)

−1ST
n = SnS

−1
n K̂−1(SnS

−1
n)T = K̂−1.

S2 Training Losses

S2.1 Projected-Data Log-Marginal Likelihood

Lemma S2 (Projected-Data Log-Marginal Likelihood)
Under the assumptions of Lemma S1, the projected-data log-marginal likelihood is given by

ℓNLL
proj (θ) = − log p(ỹ | θ) = − logN

(
ỹ;S′

i
T
µ,S′

i
T
K̂S′

i

)
17

31332 https://doi.org/10.52202/079017-0984

=
1

2

(
(y − µ)TSi(S

T
i K̂Si)

−1ST
i (y − µ) + log det(ST

i K̂Si)− log det(ST
i Si) + i log(2π)

)
Proof. By the same argument as in Lemma S1 we obtain that

ℓNLL
proj (θ) = − log p(ỹ | θ) = − logN

(
ỹ;S′

i
T
µ,S′

i
T
K̂S′

i

)
=

1

2

(
(S′

i
T
y − S′

i
T
µ)T(S′

i
T
K̂S′

i)
−1(S′

i
T
y − S′

i
T
µ) + log det(S′

i
T
K̂S′

i) + i log(2π)
)

=
1

2

(
(y − µ)TS′

i(S
′
i
T
K̂S′

i)
−1S′

i
T
(y − µ) + log det(S′

i
T
K̂S′

i) + i log(2π)
)

Since S′
i = SiL

−T, where L−T = chol(ST
i Si)

−T is the orthonormalizing matrix, L−T cancels in
the quadratic loss term, giving

=
1

2

(
(y − µ)TSi(Si

TK̂Si)
−1ST

i (y − µ) + log det(S′
i
T
K̂S′

i) + i log(2π)
)

and finally we can decompose the log-determinant into a difference of log-determinants

=
1

2

(
(y − µ)TSi(Si

TK̂Si)
−1ST

i (y − µ) + log det(ST
i K̂Si)− 2 log det(L) + i log(2π)

)
=

1

2

(
(y − µ)TSi(Si

TK̂Si)
−1ST

i (y − µ) + log det(ST
i K̂Si)− log det(LLT) + i log(2π)

)
which using LLT = ST

i Si completes the proof.

S2.2 Evidence Lower Bound (ELBO)

Lemma S3 (Evidence Lower Bound Training Loss)
Define the variational family

Q :=
{
q(f) = N (f ;µi(X),Ki(X,X)) | S ∈ Rn×i

}
(S19)

then the evidence lower bound (ELBO) is given by

ℓELBO
CaGP (θ) = − log p(y | θ) + KL(q(f) ∥ p(f | y))

= −Eq(log p(y | f)) + KL(q(f) ∥ p(f))

=
1

2

(
1

σ2

(
∥y − µi(X)∥22 +

n∑
j=1

Ki(xj ,xj)
)
+ (n− i) log(σ2) + n log(2π)

+ ṽT
i S

TKSṽi − tr((STK̂S)−1STKS) + log det(STK̂S)− log det(STS)

)
where ṽi = (STK̂S)−1ST(y − µ) are the “projected” representer weights.

Proof. The ELBO is given by

−ℓELBO
CaGP (θ) = Eq(log p(y | f))−KL(q(f) ∥ p(f)) .

We first compute the expected log-likelihood term.

Eq(log p(y | f)) = Eq

(
−1

2

(
1

σ2
(y − f)T(y − f) + log det(σ2In×n) + n log(2π)

))
= −1

2

(
1

σ2
Eq

(
(y − f)T(y − f)

)
+ n log(σ2) + n log(2π)

)
Now using E

(
xTAx

)
= E(x)T AE(x) + tr(ACov(x)), we obtain

= −1

2

(
1

σ2

(
∥y − µi(X)∥22 + tr(Ki(X,X))

)
+ n log(σ2) + n log(2π)

)

18

31333https://doi.org/10.52202/079017-0984

= −1

2

 1

σ2

(
∥y − µi(X)∥22 +

n∑
j=1

Ki(xj ,xj)

)
+ n log(σ2) + n log(2π)


Since both q(f) and the prior p(f) are Gaussian, the KL divergence term between them is given by

KL(q(f) ∥ p(f)) =
1

2

(
(µi(X)− µ(X))TK−1(µi(X)− µ(X)) + log

(
det(K)

det(Ki(X,X))

)
+ tr(K−1Ki(X,X))− n

)
=

1

2

(
(KCi(y − µ(X)))TK−1KCi(y − µ(X))− log det(K−1Ki(X,X))

+ tr(In×n −CiK)− n

)
=

1

2

(
(y − µ(X))TCiKCi(y − µ(X))− log det(In×n −CiK) + tr(In×n −CiK)− n

)
=

1

2

(
ṽT
i S

TKSṽi − log det(In×n −CiK) + tr(In×n −CiK)− n

)
=

1

2

(
ṽT
i S

TKSṽi − log det(In×n −CiK)− tr((STK̂S)−1STKS)

)
Next, we use the matrix determinant lemma det(A+UV T) = det(Im + V TA−1U) det(A):

=
1

2

(
ṽT
i S

TKSṽi − log det(Ii×i − (STK̂S)−1STKS)− tr((STK̂S)−1STKS)

)
=

1

2

(
ṽT
i S

TKSṽi − log det((STK̂S)−1(STK̂S − STKS))− tr((STK̂S)−1STKS)

)
=

1

2

(
ṽT
i S

TKSṽi − log det((STK̂S)−1(σ2STS))− tr((STK̂S)−1STKS)

)
=

1

2

(
ṽT
i S

TKSṽi + log det(STK̂S)− log det(σ2STS)− tr((STK̂S)−1STKS)

)
=

1

2

(
ṽT
i S

TKSṽi + log det(STK̂S)− i log(σ2)− log det(STS)− tr((STK̂S)−1STKS)

)

19

31334 https://doi.org/10.52202/079017-0984

S2.3 Comparison of Training Losses

0

20
Tr

ai
n

L
os

s
0

2

Te
st

N
L

L

0

2

0 100 200

Epoch

10−1

Te
st

st
d.

M
SE

0 2 4

Wallclock Time (s)

10−1

CaGP-CG + Projected-Data Log-Marginal Likelihood CaGP-CG + ELBO Training Loss

Figure S1: Comparison of two different training losses for CaGP. The naive choice of the projected-
data log-marginal likelihood leads to increasingly worse generalization performance as measured by
NLL. In comparison, the ELBO training loss leads to much better performance.

0.0 0.2 0.4 0.6 0.8 1.0

−5

0

5

CaGP-CG + Projected-Data Log-Marginal Likelihood

0.0 0.2 0.4 0.6 0.8 1.0

CaGP-CG + ELBO Training Loss

Test data GP mean GP uncertainty

Figure S2: CaGP predictive distributions with hyperparameters optimized using different losses.
When optimizing hyperparameters with respect to the projected-data log-marginal likelihood,
CaGP-CG completely overestimates the noise scale, which leads to increasingly worse general-
ization performance. In comparison, the ELBO training loss leads to a much better overall fit.

S3 Choice of Actions

We begin by proving that the CaGP posterior in Equation (5) is uniquely defined by the space
spanned by the columns of the actions colsp(S), rather than the specific choice of the matrix S.
Lemma S4 (The CaGP Posterior Is Uniquely Defined by the Column Space of the Actions)
Let S,S′ ∈ Rn×i be two action matrices, each of which consists of non-zero and linearly indepen-
dent action vectors, such that their column spaces are identical, i.e.

colsp(S) = colsp(S′), (S20)

then the corresponding CaGP posteriors GP(µi,Ki) and GP(µ′
i,K

′
i) are equivalent.

Proof. By assumption (S20) there exists W ∈ Ri×i such that S
′
= SW . Since action vectors

are assumed to be linearly independent and non-zero, it holds that i = rank(S′) = rank(SW) =
rank(W), where the last equality follows from standard properties of the matrix rank. Therefore
W is invertible, and we have that

C ′ = S
′
(S

′T
K̂S

′
)−1S

′T
= SW (W TSTK̂SW)−1W TST = S(STK̂S)−1ST = C.

20

31335https://doi.org/10.52202/079017-0984

Since the CaGP posterior in Equation (5) is fully defined via the approximate precision matrix C,
the desired result follows.

Corollary S1 (Action Order and Magnitude Does Not Change CaGP Posterior)
The CaGP posterior in Equation (5) is invariant under permutation and rescaling of the actions.

Proof. This follows immediately by choosing a permutation or a diagonal matrix W , respectively,
such that S′ = SW in Lemma S4.

S3.1 (Conjugate) Gradient / Residual Policy

Consider the following linear system
K̂v⋆ = y − µ (S21)

with symmetric positive definite kernel matrix K̂ = K+σ2I , observations y, prior mean evaluated
at the data µ = µ(X) and representer weights v⋆.

Lanczos process [23] The Lanczos process is an iterative method, which computes approximate
eigenvalues Λ̂ = diag(λ̂1, . . . , λ̂i) ∈ Ri×i and approximate eigenvectors Û = (û1 · · · ûi) ∈ Rn×i

for a symmetric positive definite matrix K̂ by repeated matrix-vector multiplication. Given an
arbitrary starting vector q1 ∈ Rn, s.t. ∥q1∥2 = 1, it returns i orthonormal vectors Q = (q1 · · · qi) ∈
Rn×i and a tridiagonal matrix T = QTK̂Q ∈ Ri×i. The eigenvalue approximations are given
by an eigendecomposition of T = W Λ̂W T, where W ∈ Ri×i orthonormal, and the eigenvector
approximations are then given by Û = QW ∈ Rn×i [e.g. Sec. 10.1.4 of 62].

Conjugate Gradient Method [24] The conjugate gradient method is an iterative method to solve
linear systems with symmetric positive definite system matrix by repeated matrix-vector multiplica-
tion. When applied to Equation (S21), it produces a sequence of representer weights approximations
vi ≈ v⋆ = K̂−1(y − µ). Its residuals ri = y − µ− K̂vi are proportional to the Lanczos vectors
for a Lanczos process initialized at q1 = r0

∥r0∥2
, i.e. Q = RD where R ∈ Rn×i is the matrix of

residuals and D ∈ Ri×i a diagonal matrix (e.g. [Alg. 11.3.2 in 62] or [Sec. 3 & Eqn. (3.4) of 63]).

Therefore choosing actions defined by the residuals of CG in CaGP-CG, i.e. S = R, is equivalent
to choosing actions S′ = Û given by the eigenvector approximations computed by the Lanczos
process initialized as above, since

colsp(S) = colsp(R) = colsp(RD) = colsp(Q) = colsp(QW) = colsp(Û) = colsp(S′)

and by Lemma S4 it holds that the corresponding CaGP posteriors with actions S and S′ are equiv-
alent.

S3.2 Information-theoretic Policy

In information-theoretic formulations of active learning, new data is selected to minimize uncertainty
about a set of latent variables z. In other words, we would aim to minimize the entropy of the
posterior Hp(z|X)(z) = −

∫
log p(z | X)p(z | X) dz as a function of the data X [21]. In analogy

to active learning, in our setting we propose to perform computations y 7→ ST
i y to maximally

reduce uncertainty about the latent function f(X) evaluated at the training data.
Lemma S5 (Information-theoretic Policy)
The actions S minimizing the entropy of the computation-aware posterior p(f(X) | STy) at the
training data, or equivalently the actions maximizing the mutual information between f(X) and the
projected data STy, are given by

(s1, . . . , si) = argmin
S∈Rn×i

Hp(f(X)|STy)(f(X)) (S22)

= argmax
S∈Rn×i

H(f(X))−H
(
f(X) | STy

)
=:MI(f(X);STy)

(S23)

where s1, . . . , si are the top-i eigenvectors of K̂ in descending order of the eigenvalue magnitude.

21

31336 https://doi.org/10.52202/079017-0984

Proof. Let ỹ := STy and f := f(X). By assumption, we have that f ∼ N (µ,K). Recall that
the entropy of a Gaussian random vector f ∼ N (m,S) is given by H(f) = 1

2

(
log det(S) +

n log(2πe)
)
. Now since the covariance function of the computation-aware posterior in Equation (5)

does not depend on the targets y, neither does its entropy Hp(f |STy)(f).

Therefore, by definition of the conditional entropy and using the law of the unconscious statistician,
it holds that

H(f | ỹ) = −
∫ ∫

log p(f | ỹ)p(f | ỹ)p(ỹ) df dỹ

= Ep(ỹ)

(
Hp(f |ỹ)(f)

)
= Ep(y)

(
Hp(f |STy)(f)

)
and since the covariance of a Gaussian conditioned on data doesn’t depend on the data, we have

= Hp(f |STy)(f)

Therefore we can rewrite the mutual information in terms of prior and posterior entropy, such that

H(f)−H
(
f | STy

)
= H(f)−Hp(f |STy)(f)

=
1

2

(
log det(K) + n log(2πe)− log det(K −KCiK)− n log(2πe)

)
= −1

2
log

(
det(K −KS(STK̂S)−1STK) det(K−1)

)
Via the matrix determinant lemma det(A+UWV T) = det(W−1+V TA−1U) det(W) det(A),
we obtain

= −1

2
log

(
det(−STK̂S + SKK−1K) det(−(STK̂S)−1) det(K) det(K−1)

)
= −1

2
log

(
det(STKS − STK̂S) det(−(STK̂S)−1)

)
= −1

2
log det(σ2STS(STK̂S)−1)

=
1

2
log det(σ−2(STS)−1STK̂S)

=
1

2

(
log det((STS)−1STK̂S)− i log(σ2)

)
=

1

2

(
log det(L−TSTK̂SL−1)− i log(σ2)

)
for L a square root of STS. Now we can upper bound the above as follows

max
S∈Rn×i

H(f)−H
(
f | STy

)
≤ max

S̃∈Rn×i

1

2

(
log det(S̃TK̂S̃)− i log(σ2)

)
=

1

2

(
log det(UK̂UT)− i log(σ2))

=
1

2

(i∑
j=1

log(λj(K̂))− i log(σ2)
)

where U are the orthonormal eigenvectors of K̂ for the largest i eigenvalues. Now choosing S = U
achieves the upper bound since UTU = I and therefore Si = U is a solution to the optimization
problem.

Finally using the argument above and since H(f) does not depend on S, we have that

argmax
S∈Rn×i

H(f)−H
(
f | STy

)
= argmax

S∈Rn×i

H(f)−Hp(f |STy)(f) = argmin
S∈Rn×i

Hp(f |STy)(f) .

This proves the claim.

22

31337https://doi.org/10.52202/079017-0984

S4 Algorithms

S4.1 Iterative and Batch Versions of CaGP

Algorithm S1: CaGP = IterGP: Iterative formulation as in Wenger et al. [19]

Input: GP prior GP(µ,K), training data (X,y)
Output: (combined) GP posterior GP(µi,Ki)

1 procedure CAGP(µ,K,X,y,C0 = 0) Time Space
2 while not STOPPINGCRITERION() do
3 si ← POLICY() Select action via policy.
4 ri−1 ← (y − µ)− K̂vi−1 Residual. O(n2) O(n)
5 αi ← sT

i ri−1 Observation. O(k) O(1)
6 zi ← K̂si O(nk) O(n)
7 di ← Σi−1K̂si = si −Ci−1zi Search direction. O(ni) O(n)
8 ηi ← sT

i K̂Σi−1K̂si =zT
i di O(n) O(1)

9 Ci ← Ci−1 +
1
ηi
did

T
i Precision matrix approx. Ci ≈ K̂−1. O(n) O(ni)

10 vi ← vi−1 +
αi
ηi
di Representer weights estimate. O(n) O(n)

11 Σi ← Σ0 −Ci Representer weights uncertainty.

12 µi(·)← µ(·) +K(·,X)vi Approximate posterior mean. O(n⋄n) O(n⋄)
13 Ki(·, ·)← K(·, ·)−K(·,X)CiK(X, ·) Combined covariance function. O(n⋄ni) O(n2

⋄)
14 return GP(µi,Ki)

Algorithm S2: CaGP: Batch Version

Input: GP prior GP(µ,K), training data (X,y)
Output: (combined) GP posterior GP(µi,Ki)

1 procedure CAGP(µ,K,X,y) Time Space
2 Si ← POLICY() Select batch of actions via policy.
3 ỹ ← ST

i (y − µ) “Projected” data. O(ki) O(i)
4 Zi ← K̂Si O(nki) O(ni)
5 Li ← CHOLESKY(ST

i Zi) O(i2(i+ k)) O(i2)
6 ṽi ← L−T

i L−1
i ỹ “Projected” representer weights. O(i2) O(i)

7 KS(·,X)← K(·,X)Si O(n⋄ki) O(n⋄i)
8 µi(·)← µ(·) +KS(·,X)ṽi O(n⋄i) O(n⋄)

9 Ki(·, ·)← K(·, ·)−KS(·,X)L−T
i L−1

i KS(X, ·) O(n⋄i
2) O(n2

⋄)
10 return GP(µi,Ki)

S4.2 Implementation

We provide an open-source implementation of CaGP-Opt as part of GPyTorch. To install the pack-
age via pip, execute the following in the command line:

pip install git+https://github.com/cornellius-gp/linear_operator.git@sparsity
pip install git+https://github.com/cornellius-gp/gpytorch.git@computation-aware-gps-v2
pip install pykeops

23

31338 https://doi.org/10.52202/079017-0984

https://github.com/cornellius-gp/gpytorch/blob/e0e8cd5365e7eea72befaa02d644f588984fd337/gpytorch/models/computation_aware_gp.py

S5 Additional Experimental Results and Details

S5.1 Inducing Points Placement and Uncertainty Quantification of SVGP

To better understand whether the overconfidence of SVGP at inducing points observed in the visu-
alization in Figure 1 holds also in higher dimensions, we do the following experiment. For varying
input dimension d ∈ {1, 2, . . . , 25}, we generate synthetic training data by sampling n = 500
inputs X uniformly at random with corresponding targets sampled from a zero-mean Gaussian pro-
cess y ∼ GP(0,Kσ), where Kσ(·, ·) = K(·, ·) + σ2δ(·, ·) is given by the sum of a Matérn(3/2)
and a white noise kernel with noise scale σ. We optimize the kernel hyperparameters, variational
parameters and inducing points (m = 64) jointly for 300 epochs using Adam with a linear learning
rate scheduler. At convergence we measure the average distance between inducing points and the
nearest datapoint measured in lengthscale units, i.e.

d̄l(Z,X) =
1

m

m∑
i=1

(
min
j

∥zi − xj∥diag(l−2)

)
(S24)

where l ∈ Rd is the vector of lengthscales (one per input dimension). We also compute the average
ratio of the posterior variance to the predictive variance at the inducing points, i.e.

ρ̄(Z) =
1

m

m∑
i=1

Kposterior(zi, zi)

Kposterior(zi, zi) + σ2
. (S25)

The results of our experiments are shown in Figure S3. We find that as expected the inducing points
are optimized to lie closer to datapoints than points sampled uniformly at random. However, the
inducing points lie increasingly far away from the training data as the dimension increases relative to
the lengthscale that SVGP learns. Therefore this experiment suggests that the phenomenon observed
in Figure 1, that SVGP can be overconfident at inducing points if they are far away from training
datapoints, to be increasingly present as the input dimension increases. This is further substantiated
by Figure S3(b) since the proportion of posterior variance to predictive variance at the inducing
points is very small already in d = 4 dimensions. This illustrates both SVGP’s overconfidence at
the inducing points (in particular in higher dimensions) and that its predictive variance is dominated
by the learned observation noise, as we also saw in the illustrative Figure 1.

4 8 12 16 20 24

Input Dimension d

0.0

0.2

0.4

0.6

D
is

ta
nc

e
to

da
ta
d̄
l
(Z
,X

)

Random Inducing Points
SVGP’s Optimized Inducing Points

(a) Average distance of inducing points to the nearest
datapoint measured in lengthscale units.

4 8 12 16 20 24

Input Dimension d

0.00

0.25

0.50

0.75

1.00

V
ar

ia
nc

e
ra

tio
ρ̄
(Z

)

CholeskyGP w/ true hyperparameters
SVGP

(b) Average ratio of posterior to predictive variance at
SVGP’s inducing point locations.

Figure S3: SVGP’s inducing point placement and uncertainty in higher dimensions. (a) As the
dimension increases, the inducing points SVGP learns lie increasingly far away from the data mea-
sured in lengthscale units given a fixed training data set size and number of inducing points. (b)
SVGP’s variance at the inducing points is dominated by the learned observational noise in higher
dimensions, rather than by the posterior variance. The comparison to a CholeskyGP with the data-
generating hyperparameters shows that SVGP compensates for a lack of posterior variance at the in-
ducing points by artificially inflating the observation noise. This illustrates both the overconfidence
(in terms of posterior variance) of SVGP at the inducing points and its tendency to oversmooth.

24

31339https://doi.org/10.52202/079017-0984

S5.2 Grassman Distance Between Subspaces

In Figure 2 we compute the distance between the subspaces spanned by random vectors, the actions
S of CaGP, and the space spanned by the top-i eigenvectors. The notion of subspace distance we
use is the Grassman distance, i.e. for two subspaces spanned by the columns of matrices A ∈ Rn×p

and B ∈ Rn×p s.t. p ≥ q the Grassman subspace distance is defined by

d(A,B) = ∥θ∥2 (S26)

where θ ∈ Rq is the vector of principal angles between the two spaces, which can be computed via
an SVD [e.g. Alg. 6.4.3 in 62].

S5.3 Generalization Experiment

Table S1: Detailed configuration of the generalization experiment in Section 5.

Method Posterior Approximation Model Selection / Training

Iters. i / Ind. Points m Solver Tol. Optimizer Epochs (Initial) Learning Rate Batch Size Precision

CholeskyGP - - LBFGS 100 {1, 10−1, 10−2, 10−3, 10−4} n float64

SGPR 1024 - Adam 1000 {1, 10−1, 10−2, 10−3, 10−4} n float32

1024 - LBFGS 100 {1, 10−1, 10−2, 10−3, 10−4} n float64

SVGP 1024 - Adam 1000 {1, 10−1, 10−2, 10−3, 10−4} 1024 float32

CGGP 512 10−4 LBFGS 100 {1, 10−1, 10−2, 10−3, 10−4} n float64

CaGP-CG 512 10−4 Adam 250 {1, 10−1} n float32

CaGP-Opt 512 - Adam 1000 {1, 10−1, 10−2} n float32

512 - LBFGS 100 {1, 10−1, 10−2} n float64

S5.3.1 Impact of Learning Rate on Generalization

To show the impact of different choices of learning rate on the GP approximations we consider, we
show the test metrics for the learning rate sweeps in our main experiment in Figure S4. Note that
not all choices of learning rate appear since a small minority of runs fail outright, for example if the
learning rate is too large.

25

31340 https://doi.org/10.52202/079017-0984

0 1min 2min 3min
−4

−2

0

2

Pa
rk

in
so

ns

Train Loss

0 1min 2min 3min
−4

−3

−2

−1

0
Test NLL

0 1min 2min 3min

10−3

10−2

10−1

100
Test RMSE

0 4min 8min

−2

0

2

B
ik

e

0 4min 8min

−3

−2

−1

0

0 4min 8min

10−2

10−1

100

0 8min 16min

1.0

1.5

2.0

Pr
ot

ei
n

0 8min 16min
0.80

0.85

0.90

0.95

1.00

0 8min 16min

0.5

0.6

0.7

0 20min 40min

0

1

2

K
E

G
G

u

0 20min 40min

−0.5

0.0

0.5

0 20min 40min

0.2

0.3

0.4

0.5

0 1h 2h
0

1

2

R
oa

d

0 1h 2h

0.0

0.5

1.0

0 1h 2h

0.25

0.50

0.75

1.00

0 1.5h 3h 4.5h
Time

−2

0

2

Po
w

er

0 1.5h 3h 4.5h
Time

−2

−1

0

1

0 1.5h 3h 4.5h
Time

10−1

100

model
CholeskyGP
SGPR
SVGP
CGGP
CaGP-CG
CaGP-Opt

learning rate
0.0001
0.001
0.01
0.1
1.0

Figure S4: Effects of (initial) learning rate when using either LBFGS with Wolfe line search
(CholeskyGP, SGPR) or Adam (SVGP, CaGP-CG, CaGP-Opt) for hyperparameter optimization.

26

31341https://doi.org/10.52202/079017-0984

S5.3.2 Evolution Of Hyperparameters During Training

To better understand how the kernel hyperparameters of each method evolve during training, we
show their trajectories in Figure S5 for each dataset. Note that we only show the first three length-
scales per dataset (rather than up to d = 26).

0 1.7min

10−1

100

101

Pa
rk

in
so

ns

Outputscale

0 1.7min

10−3

10−1

Observation Noise

0 1.7min

10−1

100

101

Lengthscale: d=1

0 1.7min

100

101

Lengthscale: d=2

0 1.7min

100

101

Lengthscale: d=3

0 4min 8min

10−1

101

B
ik

e

0 4min 8min

10−3

10−1

0 4min 8min

101

103

0 4min 8min

101

103

0 4min 8min

101

103

0 8min 16min

10−1

Pr
ot

ei
n

0 8min 16min

100

2× 10−1

3× 10−1
4× 10−1

6× 10−1

0 8min 16min

100

4× 10−1

6× 10−1

2× 100

0 8min 16min

100

101

0 8min 16min

100

2× 100

3× 100
4× 100

0 20min 40min

10−2

10−1

100

K
E

G
G

u

0 20min 40min

10−2

10−1

0 20min 40min

100

101

102

0 20min 40min

100

101

102

0 20min 40min

100

101

102

0 1.4h

10−1

100

R
oa

d

0 1.4h

10−1

100

0 1.4h

10−1

0 1.4h

10−1

0 2.8h
Time

10−2

10−1

Po
w

er

0 2.8h
Time

10−3

10−2

10−1

0 2.8h
Time

100

101

0 2.8h
Time

100

101

102

0 2.8h
Time

100

CholeskyGP SGPR SVGP CGGP CaGP-CG CaGP-Opt

Figure S5: Learned hyperparameters for different GP approximations on UCI datasets. Showing
only results for the best choice of learning rate per method.

27

31342 https://doi.org/10.52202/079017-0984

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We give both illustrative and theoretical justification for the claims about our
method in Section 3 and provide extensive empirical results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of our method in the conclusion in a
dedicated paragraph.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

31343https://doi.org/10.52202/079017-0984

Answer: [Yes]
Justification: We provide proofs to all theoretical statements in the supplementary material
or cite the appropriate reference for the result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the experiments including datasets, number of repeats, hyperpa-
rameters, method implementations and hardware in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

29

31344 https://doi.org/10.52202/079017-0984

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data we use is publicly available in the UCI repository. We provide an
open-source implementation of our method in Section S4.2.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give a complete description of the choices we made for our benchmark
experiments in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat all experiments multiple times and report bootstrapped confidence
intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

30

31345https://doi.org/10.52202/079017-0984

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5, we describe the specific GPUs we use for each experiment and
report wallclock time of all training runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Due to the methodological nature of this work, there are no potential harmful
consequences of this work that we think need to be explicitly highlighted here.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational methodological research and does not have a spe-
cific negative societal impact that we feel must be explicitly highlighted here.

Guidelines:

31

31346 https://doi.org/10.52202/079017-0984

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the appropriate source for all assets used in our work. All datasets for
our experiments are licensed under a Creative Commons Attribution 4.0 International (CC
BY 4.0) license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

32

31347https://doi.org/10.52202/079017-0984

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: There are no new assets released with the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

33

31348 https://doi.org/10.52202/079017-0984

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

34

31349https://doi.org/10.52202/079017-0984

