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Figure 1: Generation results on an imbalanced toy dataset with majority and minority classes.
Our approach, leveraging in-context learning with LLMs, achieves (1) distinct class boundaries,
(2) accurate feature correlations, (3) well-matched value ranges, (4) robust numerical-categorical
relationships (last row), and (5) comprehensive data distribution coverage, with improvements over
its ablated versions and the fine-tuned GReaT model [4]. Complete results are available in Fig. 9.

Abstract

Large language models (LLMs) have demonstrated remarkable in-context learning
capabilities across diverse applications. In this work, we explore the effectiveness
of LLMs for generating realistic synthetic tabular data, identifying key prompt de-
sign elements to optimize performance. We introduce EPIC, a novel approach that
leverages balanced, grouped data samples and consistent formatting with unique
variable mapping to guide LLMs in generating accurate synthetic data across all
classes, even for imbalanced datasets. Evaluations on real-world datasets show
that EPIC achieves state-of-the-art machine learning classification performance,
significantly improving generation efficiency. These findings highlight the effec-
tiveness of EPIC for synthetic tabular data generation, particularly in addressing
class imbalance. Our source code for our work is available here.
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Figure 2: Comparison of ML classification performance with synthetic data on the Travel
dataset. Results are averaged across four classifiers: XGBoost, CatBoost, LightGBM, and gradient
boosting classifier, with each classifier run five times. Our method uses the GPT-3.5-turbo model.

1 Introduction

Tabular data, consisting of mixed variable types such as numerical and categorical variables, represents
a widely applicable and essential data format [30]. It plays a crucial role in enhancing decision-
making and efficiency in various real-world applications, such as finance, healthcare, manufacturing,
and natural sciences [1, 3, 26]. However, challenges such as data scarcity and class imbalance,
particularly for rare yet crucial events, often significantly degrade the performance of machine
learning (ML) models, often resulting in reduced accuracy for underrepresented classes. To address
these challenges, efficient synthetic data generation methods have been developed to augment tabular
datasets. Traditional methods, such as synthetic minority oversampling technique (SMOTE) and its
variants [5, 11, 21], focus on generating minority class samples to alleviate class imbalance. Recently,
advanced generative models, such as TVAE [35], CTAB-GAN [39], and TabDDPM [19], have shown
promising results in producing high-quality synthetic tabular data.

Large language models (LLMs) have also demonstrated significant potential for generating realistic
tabular data, effectively handling both numerical and categorical variables [4, 37]. However, these
models often require extensive, data-specific fine-tuning, which can increase the risk of overfitting
to majority classes or dominant feature values, especially in small and highly imbalanced tabular
datasets. An alternative approach involves leveraging the in-context learning capabilities of LLMs.
Existing work has shown that LLMs can solve complex reasoning tasks, learn and mimic patterns
from input data, and augment textual datasets without parameter updates [13, 20, 34].

However, designing effective prompts to optimize this capability for tabular data generation is
challenging, especially for imbalanced datasets. This is because tabular data is not naturally expressed
in textual form and involves unique challenges, such as identifying feature correlations and accurately
representing underrepresented attributes. Therefore, carefully crafted prompt design tailored to
synthetic tabular data generation is essential to fully leverage the capabilities of LLMs. While several
studies have employed in-context learning with LLMs for synthetic tabular data generation [27, 37],
few have conducted comprehensive investigations into optimal prompt designs that significantly
impact data quality and generation efficiency.

In response, this study examines key components of prompt design and identifies an effective
method for generating high-quality synthetic tabular data, particularly addressing class imbalance. We
introduce a novel approach, EPIC, which leverages the in-context learning capabilities of LLMs to
produce synthetic tabular data with balanced class representation. EPIC incorporates prompt design
strategies such as CSV style formatting, balanced class grouping, and a unique variable mapper, which
together contribute to generating synthetic data that accurately represents class-specific distributions
and feature correlations, as illustrated in Fig. 1.

Extensive evaluations across six real-world datasets demonstrate that EPIC significantly improves the
data quality and generation efficiency, achieving state-of-the-art performance. As shown in Fig. 2,
baselines exhibit low sensitivity, struggling to accurately generate minority class samples due to
inherent class imbalances. In contrast, EPIC achieves high sensitivity and balanced performance for
all classes, underscoring its robustness and practicality for real-world applications.
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Figure 3: Overview of our approach. Our prompt includes repeated data example sets consisting of
feature names and class-balanced groups, with the feature name at the end serving as a trigger for the
LLM to generate realistic synthetic tabular data. The proposed unique variable remaps categorical
values to distinct alphanumeric strings, ensuring clear distinction and variability among variables.

In summary, our key contributions are as follows:

• Our study explores the effectiveness of LLMs in generating realistic synthetic tabular data
through in-context learning, providing prompt design guidelines to efficiently generate
high-quality data while addressing class imbalance.

• We propose EPIC, a simple yet effective prompting method that uses balanced, grouped data
samples with unique variable mapping to generate tabular data that accurately represents both
minority and majority classes, preserving feature correlations and overall data distribution.

• The proposed approach is model-agnostic, generally applicable to various LLMs, and easy
to implement for any tabular data with minimal preprocessing requirements.

• Extensive experiments on six real-world public tabular datasets and one toy dataset demon-
strate the effectiveness of our approach, significantly improving ML classification perfor-
mance and data generation efficiency.

By addressing class imbalance and enhancing classification outcomes, our work contributes to the
advancement of the crucial field of tabular data research, significantly impacting various domains.

2 Method

In this study, we investigate various prompt design components to maximize the in-context learning
capabilities of LLMs for generating high-quality tabular data. Our objective is to develop an optimized
approach that reliably and effectively produces realistic tabular data, accurately representing both
minority and majority classes to improve ML classification performance, especially addressing
class imbalance. Formally, given a tabular dataset T of dimensions n×m, with n samples and m

variables, we aim to generate a synthetic dataset T̂ of dimensions n′ ×m that accurately reflects key
characteristics of T , including class-specific attributes, feature correlations and, data distributions.

To achieve this, we explore the following key prompt design elements: data format (Section 2.1),
class presentation methods (Section 2.2), variable mapping (Section 2.3), and task specification
(Section 2.4). These design choices are evaluated through extensive analyses on the public datasets
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from diverse domains, focusing on ML classification performance and generation efficiency. Detailed
analysis is provided in Section 3, with Fig. 12 in Appendix C.1 illustrating the ablated versions.

Building on these analyses, we introduce EPIC, a structured prompting method designed to guide
LLMs in synthetic data generation while effectively addressing class imbalance, as depicted in Fig. 3.
EPIC begins with optional variable descriptions, followed by a series of structured data sample sets,
each containing balanced samples for each class. Each set consists of feature names and samples
organized by target class. To prompt the LLM to generate a corresponding set of synthetic samples,
feature names are appended at the end of the prompt to serve as a trigger, leveraging the pattern
recognition capabilities of LLMs. The following sections detail each design component of EPIC.

2.1 Data format: Sentence vs CSV style

We investigate effective data formatting methods to represent tabular data within prompts, ensuring
that LLMs can interpret the demonstrations and generate new data accurately. Tabular data can be
formatted as plain text or as comma-separated values (CSV style). Let the feature name of the k-th
variable be vk, and the i-th observation of this variable be ok,i. According to previous work [4],
this value can be transformed into a sentence-style representation as [vk, “is”, ok,i, “, ”]. In contrast,
the CSV style can be expressed as [ok,i, “, ”], presenting only values, with variable names for all
variables specified as v = [v1, “, ”, v2, “, ”, · · · , vm] at the beginning of the data sample presentation.
Here, the sentence style redundantly uses variable names and “is" tokens for every value, leading
to higher token usage and computational cost than the CSV style. The CSV-style format enables a
higher volume of in-context learning examples within the same token constraints. Thus, our method
utilizes a CSV-style format to maximize the number of examples, as providing a large number of data
samples is crucial for ensuring sufficient representation of the original dataset in in-context learning.

2.2 Class presentation

Class presentation methods aim to ensure adequate representation of all target classes within a prompt,
particularly addressing underrepresented classes in imbalanced datasets. The construction of data
samples within the prompt is crucial, as it can either worsen or mitigate existing imbalances. To
address this, we explore three prompt design options and propose a class balancing and grouping
approach that enables accurate and representative generation of data samples across all target classes.

Single-class vs. Multi-class generation When generating data under class conditions, a primary
consideration is whether to generate data for one class at a time or for all classes simultaneously.
Single-class generation allows the model to focus on the unique characteristics of a specific class,
while multi-class generation enables direct comparison across classes. Our experiments indicate
that generating data for multiple classes simultaneously in a structured manner (discussed in the
following sections) yields samples that more accurately capture the distinctive features of each class.
This finding suggests that generating data with contextual awareness of other class characteristics
enhances the representativeness of synthetic samples.

Original vs. Balanced class ratio When constructing prompts to generate multiple classes
simultaneously, simple random sampling from the original dataset T often results in an imbalanced
distribution of samples across target classes. This imbalance may cause the LLM to overfit to the
majority class, limiting its ability to learn the characteristics of the minority class. To mitigate this, we
employ a balanced sampling approach, equalizing sample numbers for all classes rather than strictly
following the original class distribution. Our findings reveal that balancing sample sizes substantially
improves the quality of generated data for minority classes, indicating that providing balanced data
enables LLMs to learn more effectively and replicate the accurate characteristics of all target classes.

Listing vs. Class grouping Within a prompt, data samples can either be presented sequentially, in the
order they are sampled, or grouped by class. Grouping emphasizes contrasts between different classes
and reinforces similarities within each group, enabling the LLM to generate more distinct and coherent
samples for each group. Empirical evidence suggests that grouping yields a better representation of
class-specific feature correlations in the generated data. Class grouping also contributes to constraining
the LLM to generate data with specific attributes more efficiently. Without grouping, guiding the
LLM to produce samples with targeted attributes can be challenging, often requiring numerous
iterations to achieve the desired outcome. In contrast, grouping samples by specific features facilitates
conditioning the LLM to generate data in groups with particular attributes or conditions. Although
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this work primarily focuses on class conditions, this approach can also be applied to feature grouping,
enabling controlled generation based on selected criteria.

2.3 Variable mapping: Original values vs. Unique variable mapping

Unlike existing methods that often require extensive preprocessing and handling of noisy or missing
data [19, 40], our approach minimizes these steps, preserving the integrity of the raw data, including
original feature names and values, similar to other LLM-based approaches [4]. However, a critical
challenge arises when a dataset contains numerous categorical variables with identical values (e.g.,
extensive boolean variables). In such cases, data examples in the prompt may become monotonous and
repetitive, making it difficult for the model to distinguish between variables, which can significantly
degrade the quality of the generated data. Moreover, when faced with such repetitive input, LLMs
tend to struggle to generate valid samples, leading to a notable decline in generation efficiency.

To address this, we propose a unique variable mapping method, which remaps the values of each
categorical variable to distinct random alphanumeric strings, as illustrated in Fig. 3. Uniform substitu-
tion is applied across the dataset, maintaining the integrity of the data structure while introducing
necessary variation. For example, consider a categorical variable v1 with values of ‘t’ and ‘f’. Our
approach remaps these values to distinct three-character strings, such as ‘JY0’ and ‘GGN,’ respec-
tively, and applies them consistently across all data points in the dataset. Other categorical variables
are similarly remapped to unique values. The transformed dataset is then used as in-context learning
demonstrations. Although these new values do not hold inherent semantic meaning, they effectively
represent categorical distinctions as symbols, allowing the LLM to identify and utilize patterns within
them. This approach ensures that each variable has a unique representation, making the variables
clearly distinguishable and leading to more accurate and efficient data generation.

2.4 Task specification

A crucial aspect of the prompt design is clearly guiding the LLM to generate synthetic data as
intended. To achieve this, we consider two options and ultimately find that prompting the LLM to
learn the pattern from a structured, consistent format with optional descriptions for variables is more
effective for reliable generation than providing explicit instructions.

Explicit instruction vs. Completion triggering To clarify the task for the LLM, a prompt
might include explicit instructions, such as “generate new data samples." However, crafting specific
instructions can be challenging, as LLMs are highly sensitive to subtle prompt variations, making it
inefficient to determine an optimal phrasing for tabular data generation. A simpler and more effective
approach is to provide patterns within the prompt for the LLM to mimic by formatting data samples
without explicit instructions, leveraging its advanced pattern recognition capabilities. Formally, let
the i-th set of data samples across all c classes be structured as Si = [v, si,1, · · · , si,c], where each
si,k contains n samples for the k-th class. Here, v represents feature names and serves as a header
to indicate the start of a set. This approach enables the LLM to recognize the pattern in which
each set of data samples is structured and consistently begins with v. We then input t such sets
in a prompt, [S1,S2, . . . ,St], to establish a recognizable pattern, expecting the LLM to generate
the next set, St+1 = [v, st+1,1, · · · , st+1,c]. To reinforce this, we place a trigger at the end of the
prompt by including the new header [v] for St+1, signaling the LLM to complete the sequence with
[st+1,1, · · · , st+1,c]. By structuring the input prompt in this way, we guide the LLM to generate a
consistent number of samples, n, for each target class.

Providing contextual information Optionally, adding contextual information to the prompt can
help the LLM understand the characteristics of the original dataset and generate accurate samples.
Therefore, when available, we include line-by-line variable descriptions at the beginning of the
prompt. Additionally, we treat the target class variable as one of the attributes and position it as the
first variable to clarify that each group is organized by the target class.

2.5 Overview of tabular data generation process

The synthetic data generation process begins by creating a prompt template and determining whether
the unique variable mapping is needed. The prompt template specifies parameters such as the target
class, sample size per group, the number of groups, and the number of sets to construct demonstrations.
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We then randomly sample data examples from the dataset to populate the template, ensuring that
examples do not overlap within each prompt to maintain diversity. Using the provided examples,
the LLM generates new data in a CSV format, which is subsequently converted into a structured
tabular format. Instances containing categorical variable values not present in the original dataset are
discarded to maintain authenticity. This generation process is repeated until the desired sample size
is achieved, with new examples sampled with replacement in each iteration. This approach enables
the LLM to encounter diverse combinations of real samples and produce rich synthetic samples
(see Appendix B.1 for analysis). Although each individual generation reflects the distribution of the
provided subset, successive iterations enable the LLM to cover a broader range of the original data
cumulatively. This iterative method ensures that the output generated by the LLM comprehensively
reflects the characteristics of the original data. Final prompting examples are available in Appendix C.5

3 Experiments

This section describes the experimental setup and provides a comprehensive evaluation of our method,
assessing its effectiveness across diverse real-world datasets.

Summary We conduct three unique experiments to analyze the utility of our method in enhancing
ML classification performance: augmenting the original dataset with generated data (Tables 1, 19,
Figs. 2, 14), augmenting only the minority class similar to SMOTE (Table 6), and using only generated
data (Table 7). Additionally, we evaluate our approach using three LLMs: Mistral, Llama2, and
gpt3.5-turbo (Table 2, Figs. 4, 5). We perform ablations on prompt elements to compare classification
performance (Tables 3, 5) and conduct unique analyses of token usage and LLM generation efficiency
(Tables 4, 8, 9). To examine feature correlations, we separately analyze minority and majority classes,
comparing results across all prompt variations (Figs. 4, 5). We further investigate how varying the
number of generated samples affects classification performance (Figs. 6, 7). Using a toy dataset, we
analyze how different prompts influence the accuracy of generated data distributions (Figs. 1, 9).
Lastly, we explore the sampling of input examples and their corresponding outputs in LLMs using
the toy dataset, providing insights into the variability and reliability of generated data (Figs. 10, 11).

3.1 Experimental setup

Datasets We evaluate our method using six real-world public tabular classification datasets from
diverse domains: Travel (Marketing), Sick (Healthcare), HELOC (Finance), Income (Social science),
Diabetes (Healthcare), and Thyroid (Healthcare). The Thyroid dataset, released after the training cut-
off date for GPT-3.5-turbo-0613, provides a more rigorous validation of our approach on completely
unseen data. For binary classification datasets, the minority class is designated as one. All duplicate
data samples are removed from the datasets. Each dataset is randomly split into 80% training and
20% test sets. We retain the original data, including missing or noisy features. The exception is the
Sick dataset, where we follow the source’s method. Further details are provided in Appendix C.2.

Evaluation measure We evaluate our method based on ML classification performance, generation
efficiency, feature correlation, and analysis of generated data distribution. For classification, we report
F1 score, sensitivity, specificity, and balanced accuracy (BAL ACC). Feature correlation is measured
using Pearson correlation for numerical variables and Cramér’s V correlation for categorical variables.

Baseline models In our study, we compare our method with various generative models for tabular
data, including SMOTE [5], SMOTENC [5], TVAE [35], CopulaGAN [22], CTGAN [35], CTAB-
GAN [39], CTAB-GAN+ [40], GReaT [4], and TabDDPM [19]. To compare prompting methods, we
also use the prompts from CuratedLLM [27] and LITO [37].

Experimental details Our method utilizes the GPT-3.5 models (GPT-3.5-turbo-0613 and GPT-
3.5-turbo-16k-0613), Mistral-7b-v0.1 [15], and Llama-2-7b [29]. Unless stated otherwise, we use
the GPT-3.5 model for our method. The number of synthetic data samples is based on the size of
the original datasets. Across all experiments, unless stated otherwise, we report results from four
top-performing ML classifiers: XGBoost [7], CatBoost [24], LightGBM [17], and Gradient boosting
classifier [10], known for their strong performance, often surpassing recent deep learning models on
tabular datasets. Each classifier is executed in five independent runs, with results averaged over a total
of 20 runs to ensure robustness. Further details are available in Appendix C.
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Table 1: Comparison of ML classification performance when synthetic data are added to
the original dataset. Results are averaged across four classifiers, with each model run five times.
Complete results, including all baselines and standard deviation values, are provided in Table 19.

Dataset Method #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Travel

Original - 58.12 (0.00) 71.00 (0.00) 57.00 (0.00) 85.00 (0.00)
+TVAE [35] +1K 59.78 (+1.66) 72.35 (+1.35) 62.00 (+5.00) 82.69 (-2.31)
+CopulaGAN [22] +1K 21.76 (-36.36) 55.52 (-15.48) 12.80 (-44.20) 98.23 (+13.23)
+CTAB-GAN+ [40] +1K 54.66 (-3.46) 68.62 (-2.38) 53.00 (-4.00) 84.23 (-0.77)
+GReaT [4] +1K 60.95 (+2.83) 72.86 (+1.86) 58.80 (+1.80) 86.92 (+1.92)
+TabDDPM [19] +1K 53.20 (-4.92) 67.70 (-3.30) 50.40 (-6.60) 85.00 (0.00)
+Ours +1K 66.65 (+8.53) 78.23 (+7.23) 78.00 (+21.00) 78.46 (-6.54)

Sick

Original - 87.81 (0.00) 91.22 (0.00) 82.83 (0.00) 99.61 (0.00)
+TVAE [35] +1K 87.77 (-0.04) 91.47 (+0.25) 83.37 (+0.54) 99.56 (-0.05)
+CopulaGAN [22] +1K 83.60 (-4.21) 86.61 (-4.61) 73.37 (-9.46) 99.86 (+0.25)
+CTAB-GAN+ [40] +1K 82.35 (-5.46) 86.28 (-4.94) 72.83 (-10.00) 99.74 (+0.13)
+GReaT [4] +1K 87.23 (-0.58) 90.83 (-0.39) 82.07 (-0.76) 99.60 (-0.01)
+TabDDPM [19] +1K 85.17 (-2.64) 89.30 (-1.92) 79.02 (-3.81) 99.57 (-0.04)
+Ours +1K 88.71 (+0.90) 92.93 (+1.71) 86.41 (+3.58) 99.44 (-0.17)

HELOC

Original - 71.01 (0.00) 73.21 (0.00) 67.89 (0.00) 78.52 (0.00)
+TVAE [35] +1K 71.12 (+0.11) 73.25 (+0.04) 68.15 (+0.26) 78.34 (-0.18)
+CopulaGAN [22] +1K 71.23 (+0.22) 73.32 (+0.11) 68.37 (+0.48) 78.26 (-0.26)
+CTAB-GAN+ [40] +1K 71.03 (+0.02) 73.15 (-0.06) 68.13 (+0.24) 78.17 (-0.35)
+GReaT [4] +1K 70.35 (-0.66) 72.96 (-0.25) 66.22 (-1.67) 79.70 (+1.18)
+TabDDPM [19] +1K 70.65 (-0.36) 72.89 (-0.32) 67.51 (-0.38) 78.26 (-0.26)
+Ours +1K 71.92 (+0.91) 73.66 (+0.45) 69.96 (+2.07) 77.35 (-1.17)

Income

Original - 66.90 (0.00) 76.45 (0.00) 57.28 (0.00) 95.61 (0.00)
+TVAE [35] +20K 66.96 (+0.06) 76.80 (+0.35) 59.13 (+1.85) 94.48 (-1.13)
+CopulaGAN [22] +20K 66.75 (-0.15) 76.73 (+0.28) 59.16 (+1.88) 94.29 (-1.32)
+CTAB-GAN+ [40] +20K 66.49 (-0.41) 76.42 (-0.03) 58.14 (+0.86) 94.70 (-0.91)
+GReaT [4] +20K 67.95 (+1.05) 77.51 (+1.06) 60.69 (+3.41) 94.33 (-1.28)
+TabDDPM [19] +20K 66.85 (-0.05) 76.50 (+0.05) 57.70 (+0.42) 95.30 (-0.31)
+Ours +20K 69.16 (+2.26) 79.15 (+2.70) 66.45 (+9.17) 91.85 (-3.76)

Diabetes

Original - 54.87 (0.00) 42.07 (0.00) 60.00 (0.00) 60.73 (0.00)
+TVAE [35] +10K 54.79 (-0.08) 41.96 (-0.11) 59.96 (-0.04) 60.71 (-0.02)
+CopulaGAN [22] +10K 54.27 (-0.60) 41.59 (-0.48) 59.73 (-0.27) 59.97 (-0.76)
+CTAB-GAN+ [40] +10K 54.24 (-0.63) 41.52 (-0.55) 59.63 (-0.37) 60.01 (-0.72)
+GReaT [4] +10K 54.78 (-0.09) 41.98 (-0.09) 59.98 (-0.02) 60.61 (-0.12)
+TabDDPM [19] +10K 54.64 (-0.23) 41.83 (-0.24) 59.91 (-0.09) 60.55 (-0.18)
+Ours +10K 54.94 (+0.07) 42.14 (+0.07) 60.04 (+0.04) 60.82 (+0.09)

Thyroid

Original - 94.23 (0.00) 95.08 (0.00) 91.14 (0.00) 99.02 (0.00)
+TVAE [35] +1K 90.45 (-3.78) 92.20 (-2.88) 86.36 (-4.78) 98.04 (-0.98)
+CopulaGAN [22] +1K 86.73 (-7.50) 88.71 (-6.37) 78.41 (-12.73) 99.02 (0.00)
+CTAB-GAN+ [40] +1K 27.46 (-66.77) 58.07 (-37.01) 16.14 (-75.00) 100.0 (+0.98)
+GReaT [4] +1K 91.31 (-2.92) 92.46 (-2.62) 85.91 (-5.23) 99.02 (0.00)
+TabDDPM [19] +1K 94.39 (+0.16) 96.26 (+1.18) 95.45 (+4.31) 97.06 (-1.96)
+Ours +1K 94.80 (+0.57) 96.39 (+1.31) 95.23 (+4.09) 97.55 (-1.47)

3.2 Machine learning classification performance using the synthetic data

We evaluate the quality of the synthetic data samples by assessing the machine learning classification
performance when the synthetic data are added to the original dataset. Here, our method utilizes
the GPT-3.5-turbo model. As shown in Table 1, our method achieves state-of-the-art F1 scores
and balanced accuracy across all six datasets, surpassing the baselines that require model training.
Notably, our method is the only one that consistently outperforms the original data in both F1
score and balanced accuracy across all six datasets. For a machine learning model to perform well
in classification, the correlation between input data and labels in the training data must be precise.
Thus, the consistent improvement across six datasets demonstrates that the data generated by our
method aligns well with the class labels. Other methods often result in worse performance than the
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Table 2: Comparison of classification performance using synthetic data generated by different
LLMs with our method. We report the average performances of five runs of gradient boosting
classifier. #syn denotes the number of synthetic samples added to the original dataset.

Dataset Method Model #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Travel

Original - - 60.00±0.00 72.31±0.00 60.00±0.00 84.62±0.00
+Ours Mistral +1K 66.67±0.00 78.00±0.00 76.00±0.00 80.00±0.00
+Ours Llama2 +1K 67.80±0.00 79.23±0.00 80.00±0.00 78.46±0.00
+Ours GPT3.5 +1K 70.18±0.00 80.77±0.00 80.00±0.00 81.54±0.00

Sick

Original - - 84.09±0.00 89.86±0.00 80.43±0.00 99.28±0.00
+Ours Mistral +1K 88.42±0.00 95.15±0.00 91.30±0.00 99.00±0.00
+Ours Llama2 +1K 85.53±0.95 93.14±0.52 87.39±0.97 98.88±0.06
+Ours GPT3.5 +1K 91.95±0.00 93.41±0.00 86.96±0.00 99.86±0.00

HELOC

Original - - 71.32±0.04 73.39±0.03 68.47±0.06 78.31±0.00
+Ours Mistral +1K 71.48±0.00 73.74±0.00 68.00±0.00 79.47±0.00
+Ours Llama2 +1K 70.77±0.00 73.08±0.00 67.37±0.00 78.79±0.00
+Ours GPT3.5 +1K 71.93±0.02 73.68±0.02 69.90±0.00 77.45±0.04

original data, indicating that the data generated by baselines disrupts the original data distribution.
These findings underscore the robustness and effectiveness of our method, affirming its superiority
over baselines, even for challenging datasets.

Moreover, baselines such as GReaT and TabDDPM exhibit significantly lower sensitivity compared to
specificity, particularly for Travel and Income. Their high balanced accuracy is due to high specificity,
but their severely low sensitivity indicates a failure to generate appropriate minority class data. In
contrast, our method significantly improves sensitivity and achieves a balance between sensitivity
and specificity while also attaining the best-balanced accuracy and F1 score compared to the
baselines. For example, in Travel, our method achieves a sensitivity of 78%, which is 19%p higher
than the second-best method, GReaT, at 58.8%. In Income, our method shows 66.45% sensitivity,
surpassing the second-best score of 60.69%. These results highlight the effectiveness of our method
in accurately representing minority classes in tabular datasets.

Overall, our findings demonstrate that our approach is generally applicable across various imbalanced
tabular datasets and excels in generating high-quality samples that improve ML classification perfor-
mance. Further analyses exploring the impact of augmenting the original dataset for the minority class
(Table 6) and replacing the original dataset with synthetic data (Table 7) are available in Appendix A.

3.3 Open-source LLMs

We also apply our prompting method to open-source LLMs, including Llama2 [29] and Mistral [15].
As shown in Table 2, our method exhibits robust performance when used with open-source LLMs
across various datasets. Notably, in the Sick dataset, Mistral demonstrates the highest balanced
accuracy, indicating its effectiveness in generating high-quality tabular data. These results validate
the broader applicability and general effectiveness of our approach with open-source LLMs.

3.4 Exploring optimal prompt design through ablation studies

We investigate key prompt design choices and validate our method through extensive ablation studies
across multiple datasets from diverse domains, focusing on ML performance and generation efficiency,
as detailed in Tables 3 and 4, respectively. Given a fixed number of input samples, we evaluated (1)
the number of input tokens required, (2) the number of valid generated samples, and (3) the generation
success rate. Our results indicate that CSV-style prompting generally outperforms sentence-style
prompting in ML performance with the same number of input samples. While generating data for
one class at a time yields good results for the Sick and Income datasets, it results in a low F1 score
of 58.67% on the Travel dataset. However, generating data for multiple classes simultaneously with
balanced samples improves this score to 70.37%. Furthermore, applying unique variable mapping
consistently enhances F1 scores on the Sick dataset. The combined approach of random mapping and
grouping achieves higher F1 score of 91.95% compared to 86.60% with random mapping but without
grouping, underscoring the positive impact of this combined approach. These findings indicate
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Table 3: Comparison of F1 scores with ablated methods using the gradient boosting classifier.
Asterisk (*) in Income indicates where only +1K synthetic samples are used due to a low success rate
in sample generation. The ‘-’ symbol denotes where our unique variable mapping is not needed.

Format Class Balance Group Unique Sick (+1K) Travel (+1K) Income (+20K)

Sentence single ✗ ✗ ✗ 81.52±0.65 43.24±0.00 69.62±0.00
CSV-style single ✗ ✗ ✗ 86.60±0.00 58.67±0.00 70.49±0.00

Sentence multi ✗ ✗ ✗ 77.95±0.33 58.33±0.00 67.96±0.00
CSV-style multi ✗ ✗ ✗ 87.74±0.96 50.98±0.00 ∗68.56±0.00

Sentence multi ✓ ✗ ✗ 81.68±0.49 55.56±0.00 69.26±0.00
CSV-style multi ✓ ✗ ✗ 84.68±0.38 70.37±0.00 70.64±0.00
CSV-style multi ✓ ✗ ✓ 86.60±0.00 - -

CSV-style multi ✓ ✓ ✗ 81.55±0.00 70.18±0.00 70.17±0.00
CSV-style multi ✓ ✓ ✓ 91.95±0.00 - -

Table 4: Comparison of token usage and generation efficiency across ablated methods on the
Income dataset. Results are based on 100 inferences, each with 20 random input samples. Input
tokens indicates the number of tokens required in the LLM prompt for a fixed number of input
samples. Output samples shows the average number of synthetic samples generated per iteration.
Success rate measures the ratio of inferences that generate at least one valid data sample.

Format Class Balance Group Unique #set Input
tokens ↓ Output

samples ↑
Success

rate ↑

Sentence single ✗ ✗ ✗ - 1832.9 1.26 96%
CSV-style single ✗ ✗ ✗ - 1024.6 1.11 16%

Sentence multi ✗ ✗ ✗ - 1827.4 0.97 97%
CSV-style multi ✗ ✗ ✗ - 912.8 0.38 38%

Sentence multi ✓ ✗ ✗ - 1938.7 1.73 97%
CSV-style multi ✓ ✗ ✗ - 920.3 0.88 31%

CSV-style multi ✓ ✓ ✗ 1 965.6 8.6 48%
CSV-style multi ✓ ✓ ✗ 2 1014.6 10.52 94%

Table 5: Comparison of classification performance on the Sick dataset for task specification
elements in prompt design. Results are averaged across XGBoost, CatBoost, LightGBM, and
gradient boosting classifier. Methods marked with an asterisk (*) use the prompt designs proposed in
the respective papers. #syn denotes the number of synthetic samples added to the original dataset.

Method #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Instruction-CuratedLLM∗ +1K 15.86±5.13 56.02±3.54 17.17±11.80 94.86±4.93
Instruction-LITO∗ +1K 21.32±1.65 72.06±2.49 84.46±3.10 59.66±3.50
Ours w/ class distinction +1K 74.06±2.64 96.23±0.98 96.74±1.93 95.72±0.60
Ours w/o var description +1K 76.06±4.56 96.29±1.40 96.41±2.76 96.18±1.06
Ours +1K 88.71±1.98 92.93±0.91 86.41±1.85 99.44±0.27

that prompt design significantly influences the quality of generated data, emphasizing the need for
carefully tailored prompts to generate high-quality synthetic tabular data.

For the Travel and Income datasets, performance without grouping is slightly better than with
grouping, but the differences are within 0.5%p, making their performance on par. However, these
show significant differences in LLM generation efficiency. Without grouping, an average of 0.88
samples are generated per iteration, whereas grouping increases this to an average of 8.6 samples
per iteration. Repeating the set twice within the prompt further improves generation efficiency,
boosting the average output to over 10 samples and the success rate to 94%, by creating input patterns
that LLMs can mimic to generate data. Unique variable mapping also significantly enhances LLM
generation efficiency and success rates, as detailed in Table 8 of Appendix A.3.

9

31512 https://doi.org/10.52202/079017-0990



(a) Minority class (b) Majority class
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Figure 4: Difference between Cramér’s V correlation matrices of real and synthetic datasets for
categorical variables in the Travel dataset. More intense colors indicate larger differences, with
positive differences shown in red and negative differences shown in blue. Black indicates where the
correlation is not measured since only one unique value is generated for those variables.

Furthermore, we conduct an ablation study on the task specification elements, as shown in Table 5.
Our approach of triggering completion significantly enhances overall ML performance compared to
the instruction-based prompting methods. Interestingly, adding class distinctions within the prompt
achieves the best sensitivity, indicating that the distinction facilitates better generation for minority
classes. Providing variable descriptions improves balanced accuracy but reduces the F1 score, sug-
gesting that this element may be optional rather than a definitive improvement. A comparison of
generation efficiency using these methods is provided in Table 9 of Appendix A.3.

3.5 Analysis of feature correlation

We compare the feature correlations of the categorical variables between original and synthetic data,
as illustrated in Fig. 4. Our synthetic data generated with Mistral and Llama2 exhibit the closest
feature correlation with the original data for both minority and majority classes, outperforming
the baselines and ablated versions. Additionally, our grouping method significantly contributes to
preserving feature correlation for the minority class. These findings indicate that our method generates
data that more accurately matches each class, particularly for underrepresented classes, compared to
other methods. Additional results on the Sick dataset are available in Fig. 5 of Appendix A.3.

4 Limitations and future work

When the training dataset is large and cannot be fully included in the LLM prompt due to token size
limitations, only a subset of the data can be used as examples for generating samples. If these prompt
samples do not fully represent the original data distribution, the generated data may be incomplete
and of low quality, as LLMs are limited to producing data based only on the patterns present in the
input. To overcome this, our method employs multiple rounds of random sampling with replacement
to create a synthetic dataset that more comprehensively represents the original distribution, resulting
in improved machine learning classification performance (a comprehensive analysis is provided in
Appendix B.1). However, this approach still carries the risk that samples may not fully capture the
original data distribution. Future research will focus on developing methods to identify key examples
that more accurately represent the entire dataset.

5 Conclusion

This study demonstrates the effectiveness of using LLMs for synthetic tabular data generation. We
introduce EPIC, a simple yet effective solution for generating realistic, high-quality data without
additional training, specifically designed to address class imbalance. Our method demonstrates
significant improvements over state-of-the-art generation models across six real-world public datasets,
generating data with highly accurate feature correlations and significantly improving ML classification
accuracy for minority classes. These results underscore the substantial impact of our approach in
real-world applications, making a significant contribution to the field of tabular data research.

10

31513https://doi.org/10.52202/079017-0990



Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No.RS-2019-II190075 Artificial Intelligence Graduate
School Program(KAIST)), Electronics and Telecommunications Research Institute(ETRI) grant
funded by the Korean government (24ZB1220, Fundamental Technology Research for Human-Centric
Autonomous Intelligent Systems), and the National Supercomputing Center with supercomputing
resources including technical support (KSC-2024-CRE-0028).

References
[1] Mohammad Alauthman, Amjad Aldweesh, Ahmad Al-qerem, Faisal Aburub, Yazan Al-Smadi, Awad M

Abaker, Omar Radhi Alzubi, and Bilal Alzubi. Tabular data generation to improve classification of liver
disease diagnosis. Applied Sciences, 13(4):2678, 2023.

[2] Rok Blagus and Lara Lusa. Smote for high-dimensional class-imbalanced data. BMC bioinformatics, 14:
1–16, 2013.

[3] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci.
Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[4] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language models
are realistic tabular data generators. Proc. the International Conference on Learning Representations
(ICLR), 2022.

[5] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

[6] Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, and Yan Liu. Boosting deep learning risk
prediction with generative adversarial networks for electronic health records. In 2017 IEEE International
Conference on Data Mining (ICDM), pp. 787–792. IEEE, 2017.

[7] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proc. the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 785–794, 2016.

[8] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun. Generating
multi-label discrete patient records using generative adversarial networks. In Machine learning for
healthcare conference, pp. 286–305. PMLR, 2017.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

[10] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.

[11] Elif Ceren Gök and Mehmet Onur Olgun. Smote-nc and gradient boosting imputation based random forest
classifier for predicting severity level of covid-19 patients with blood samples. Neural Computing and
Applications, 33(22):15693–15707, 2021.

[12] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem Babenko.
Tabr: Tabular deep learning meets nearest neighbors. In Proc. the International Conference on Learning
Representations (ICLR), 2024.

[13] Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time
series forecasters. Proc. the Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

[14] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that
solves small tabular classification problems in a second. In Proc. the International Conference on Learning
Representations (ICLR), 2023.

[15] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

11

31514 https://doi.org/10.52202/079017-0990



[16] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In Proc. the International Conference on Learning Representations (ICLR),
2018.

[17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Proc. the Advances in Neural Information
Processing Systems (NeurIPS), 30, 2017.

[18] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Proc. the Advances in Neural Information Processing Systems (NeurIPS),
35:22199–22213, 2022.

[19] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling tabular
data with diffusion models. In Proc. the International Conference on Machine Learning (ICML), pp.
17564–17579. PMLR, 2023.

[20] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines. In
Conference on Robot Learning, pp. 2498–2518. PMLR, 2023.

[21] Mimi Mukherjee and Matloob Khushi. Smote-enc: A novel smote-based method to generate synthetic data
for nominal and continuous features. Applied System Innovation, 4(1):18, 2021.

[22] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410. IEEE, 2016.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[24] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features. Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 31, 2018.

[25] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. A
systematic survey of prompt engineering in large language models: Techniques and applications. arXiv
preprint arXiv:2402.07927, 2024.

[26] Joydeb Kumar Sana, Mohammad Zoynul Abedin, M Sohel Rahman, and M Saifur Rahman. A novel
customer churn prediction model for the telecommunication industry using data transformation methods
and feature selection. Plos one, 17(12):e0278095, 2022.

[27] Nabeel Seedat, Nicolas Huynh, Boris van Breugel, and Mihaela van der Schaar. Curated llm: Synergy of
llms and data curation for tabular augmentation in ultra low-data regimes. arXiv preprint arXiv:2312.12112,
2023.

[28] Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with chain-
of-thought from labeled data. In Findings of the Association for Computational Linguistics: EMNLP 2023,
2023.

[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[30] Boris van Breugel and Mihaela van der Schaar. Position: Why tabular foundation models should be a
research priority. In Proc. the International Conference on Machine Learning (ICML), 2024.

[31] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In Proc. the
International Conference on Learning Representations (ICLR), 2023.

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models. Proc. the Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[33] Xumeng Wen, Han Zhang, Shun Zheng, Wei Xu, and Jiang Bian. From supervised to generative: A novel
paradigm for tabular deep learning with large language models. In Proc. the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2024.

12

31515https://doi.org/10.52202/079017-0990



[34] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun Li, Yu Kang, Qingwei Lin,
Yingnong Dang, et al. Unilog: Automatic logging via llm and in-context learning. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering, pp. 1–12, 2024.

[35] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data
using conditional gan. Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2019.

[36] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In Proc. the International Conference on Learning Representations
(ICLR), 2024.

[37] June Yong Yang, Geondo Park, Joowon Kim, Hyeongwon Jang, and Eunho Yang. Language-interfaced
tabular oversampling via progressive imputation and self-authentication. In Proc. the International
Conference on Learning Representations (ICLR), 2024.

[38] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Proc. the Advances in Neural
Information Processing Systems (NeurIPS), 2023.

[39] Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data synthesizing.
In Asian Conference on Machine Learning, pp. 97–112. PMLR, 2021.

[40] Zilong Zhao, Aditya Kunar, Robert Birke, Hiek Van der Scheer, and Lydia Y Chen. Ctab-gan+: Enhancing
tabular data synthesis. Frontiers in big Data, 6:1296508, 2024.

[41] Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose reasoning
structures. arXiv preprint arXiv:2402.03620, 2024.

13

31516 https://doi.org/10.52202/079017-0990



Appendix

This supplementary material enhances the main manuscript by providing detailed experimental results
and additional visualizations.

• Appendix A provides additional experimental results on the machine learning classification
for imbalanced data, ablation study, and feature correlation analysis.

• Appendix B studies the impact of sample size on the machine learning performance and
comprehensively analyzes the experiments conducted on the toy dataset.

• Appendix C provides comprehensive information on the datasets, baselines, implementation
details, and prompt design and examples.

• Appendix D provides related work.

• Appendix E discusses the broader impacts of our research.

• Appendix F presents confusion matrix results and the complete results of Table 1.

A Additional experimental results

Our experiments with synthetic tabular data for imbalanced classes follow three main approaches: (1)
Adding synthetic data to both minority and majority classes of the existing dataset and evaluating
machine learning classification performance. The results of this approach are presented in Table 1
of the main manuscript. (2) Adding synthetic data only to the minority class, with detailed results
provided in Appendix A.1. (3) Evaluating classification performance using only synthetic data without
the original dataset, as discussed in Appendix A.2. Moreover, Appendix A.3 presents further ablation
study results, and Appendix A.4 provides a feature correlation analysis for the sick dataset.

A.1 Comparative analysis of augmenting the original dataset for the minority class

One of the major advantages of our method is its ability to generate high-quality synthetic data for
minority classes, even with limited samples. Similar to oversampling techniques like SMOTE, we add
synthetic dataset only to the minority class and evaluate machine learning classification performance.
To balance the ratio of majority to minority classes, we add only minority class samples to the original
data and then measure the classification performance of the machine learning model. For this task,
we additionally investigate the effectiveness of our method compared to SMOTE and SMOTENC [5].
As shown in Table 6, adding minority class samples generated from our method leads to higher

Table 6: Comparison of binary classification performance when augmenting the minority class
with synthetic data to balance class sizes. Average performance of the gradient boosting classifier is
reported over five runs. #syn denotes the number of synthetic samples added to the original dataset.

Dataset Method #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Travel

Original - 60.00±0.00 72.31±0.00 60.00±0.00 84.62±0.00
+SMOTE +163 63.45±1.05 75.08±0.69 68.00±0.00 82.15±1.38
+SMOTENC +163 62.61±2.54 74.74±2.00 70.40±3.58 79.08±0.84
+TVAE +163 54.55±0.00 68.46±0.00 60.00±0.00 76.92±0.00
+CopulaGAN +163 52.46±0.00 66.62±0.00 64.00±0.00 69.23±0.00
+CTGAN +163 57.63±0.00 70.92±0.00 68.00±0.00 73.85±0.00
+GReaT +163 62.07±0.00 74.46±0.00 72.00±0.00 76.92±0.00
+Ours +163 72.13±0.00 83.23±0.00 88.00±0.00 78.46±0.00

Income

Original - 69.05±0.00 78.02±0.00 61.03±0.00 95.00±0.00
+SMOTE +13,487 69.62±0.25 79.84±0.23 68.86±0.57 90.81±0.14
+SMOTENC +13,487 69.79±0.11 80.51±0.06 71.80±0.23 89.22±0.19
+TVAE +13,487 68.26±0.00 79.12±0.00 68.43±0.00 89.82±0.00
+CopulaGAN +13,487 67.76±0.02 81.12±0.01 80.15±0.03 82.09±0.00
+CTGAN +13,487 68.51±0.00 78.82±0.00 66.26±0.00 91.38±0.00
+GReaT +13,487 70.04±0.00 83.36±0.00 85.08±0.00 81.64±0.00
+Ours +13,487 71.09±0.02 83.60±0.01 83.53±0.03 83.66±0.00
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Table 7: Comparison of classification performance using only synthetic data for training. Average
performance of the gradient boosting classifier is reported over five runs.

Dataset Method #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Travel

Original - 60.00±0.00 72.31±0.00 60.00±0.00 84.62±0.00
TVAE 1K 46.51±0.00 63.85±0.00 40.00±0.00 87.69±0.00
CopulaGAN 1K 0.00±0.00 49.23±0.00 0.00±0.00 98.46±0.00
CTGAN 1K 12.50±0.00 50.15±0.00 8.00±0.00 92.31±0.00
GReaT 1K 62.50±0.00 73.85±0.00 60.00±0.00 87.69±0.00
Ours 1K 70.00±0.00 81.23±0.00 84.00±0.00 78.46±0.00

HELOC

Original - 71.32±0.04 73.39±0.03 68.47±0.06 78.31±0.00
TVAE 1K 68.91±0.10 71.50±0.08 65.28±0.12 77.72±0.07
CopulaGAN 1K 69.50±0.00 70.82±0.00 69.17±0.00 72.47±0.00
CTGAN 1K 68.71±0.02 71.98±0.03 63.36±0.00 80.60±0.05
GReaT 1K 64.14±0.10 69.54±0.07 55.76±0.15 83.33±0.11
Ours 1K 71.48±0.06 70.17±0.05 78.90±0.16 61.44±0.16

F1 scores and balanced accuracy on both Travel and Income datasets, compared to when samples
generated by other baselines are added. In the Travel dataset, where the number of minority class
samples is substantially low, baselines, especially CopulaGAN and CTGAN, demonstrate markedly
low sensitivity, indicating their failure to accurately learn the minority class data distribution. In
contrast, our method demonstrates its efficacy in producing high-quality data for minority classes
on the Travel dataset. Compared to the Original, it significantly improves the F1 score by 12.13%p,
underscoring its superior performance of our approach.

A.2 Comparative analysis of replacing the original dataset with synthetic data

We compare the classification performance using only synthetic data for training, as shown in
Table 7. For both the Travel and HELOC datasets, the classification model trained on synthetic
datasets generated by our model outperforms the one trained on original data in terms of F1 score
and sensitivity. This improvement in performance suggests that the data generated by our method
accurately represents the distribution of the original data. Furthermore, it highlights the effectiveness
of our class-balanced generation approach in improving the performance of classification models.

A.3 Additional ablation study results

This section presents additional ablation study results on the Sick datasets. We evaluate the token
efficiency and generation stability of ablated versions based on 100 inferences, each with 20 random
input samples. As shown in Table 8, for the Sick dataset, due to its repetitive, monotonous values,
the number of generated samples is low, even with grouping. Using a unique variable mapper in
such cases significantly increases the number of samples generated per attempt from 6.93 to 17.68.
This improvement demonstrates that our approach effectively controls the quantity of generated data
samples, ensuring the stable production of synthetic tabular data. Moreover, the ability to generate
multiple data samples in a single inference can significantly lower generation time and costs.

We also compare the efficiency and stability of generation when ablating task specification elements in
our prompt design, as shown in Table 9. The prompt design from Curated LLM [27], despite requiring
the highest number of input tokens, achieves high performance in terms of output samples and
success rate. However, the generated data shows relatively low quality, resulting in a low classification
performance with an F1 score and balanced accuracy, as discussed in Section 3.4. In contrast, the
prompt design of LITO [37] is the most efficient in terms of input tokens but produces the fewest
output samples and has the lowest success rate, indicating instability in synthetic data generation.

Our proposed method balances efficiency and performance, using approximately half the input
tokens compared to CuratedLLM’s prompt while generating a high number of output samples and
maintaining a high success rate. Additionally, the synthetic data generated by our method achieves
the highest classification performance in terms of F1 score, as shown in Section 3.4. When class
distinctions are provided, the average number of output samples decreased from 17.68 to 9.70. This
result indicates that it is more robust to distinguish groups with simple numbering, such as A and
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Table 8: Comparison of token usage and generation efficiency across ablated methods on the
Sick dataset. Results are based on 100 inferences, each with 20 random input samples. Input
tokens indicates the number of tokens required in the LLM prompt for a fixed number of input
samples. Output samples shows the average number of synthetic samples generated per iteration.
Success rate measures the ratio of inferences that generate at least one valid data sample.

Format Class Balance Group Unique #set Input
tokens ↓

Output
samples ↑

Success
rate ↑

Sentence single ✗ ✗ ✗ - 3867.2 0.52 52%
CSV-style single ✗ ✗ ✗ - 1223.6 2.42 38%

Sentence multi ✗ ✗ ✗ - 3879.9 0.52 52%
CSV-style multi ✗ ✗ ✗ - 1226.3 3.05 48%

Sentence multi ✓ ✗ ✗ - 3870.0 0.63 63%
CSV-style multi ✓ ✗ ✗ - 1117.3 0.70 16%
CSV-style multi ✓ ✗ ✓ - 1985.4 3.00 15%

CSV-style multi ✓ ✓ ✗ 1 1331.3 4.73 64%
CSV-style multi ✓ ✓ ✗ 2 1439.9 6.93 99%
CSV-style multi ✓ ✓ ✓ 2 2060.8 17.68 95%

Table 9: Comparison of token usage and generation efficiency for task specification ablation on
the Sick dataset. Results are based on 100 inferences, each with 20 random input samples.

Method Input tokens ↓ Output samples ↑ Success rate ↑

Instruction-CuratedLLM∗ 4677.4 21.67 95%
Instruction-LITO∗ 1277.4 4.06 57%
Ours w/ class distinction 2222.7 9.7 91%
Ours w/o var description 2066.9 15.96 88%
Ours 2060.8 17.68 95%

(a) Minority class (b) Majority class

Ours-Mistral
   

Ours-GPT3.5-turboOurs-Llama2 TVAEGReaT

TabDDPM CTAB-GANCTAB-GAN+ CopulaGANCTGAN

Ours-Mistral
   

Ours-GPT3.5-turboOurs-Llama2 TVAEGReaT

TabDDPM CTAB-GANCTAB-GAN+ CopulaGANCTGAN

Figure 5: Difference between Pearson correlation matrices of real and synthetic data for nu-
merical variables in the Sick dataset. More intense colors indicate larger differences, with positive
differences shown in red and negative differences shown in blue. Black indicates where the correlation
is not measured since only one unique value is generated for those variables.

B, rather than explicitly specifying class information in each group. Including variable descriptions
slightly reduces the number of output samples and success rate compared to not including them, but
the difference is not significant. This suggests that the grouping strategy plays a more crucial role in
robust data generation than the presence of variable descriptions.

A.4 Analysis of feature correlation between numerical variables

In the main manuscript, we visualize the feature correlation between categorical variables. Here,
we analyze the Pearson correlation between numerical variables in the Sick dataset and compare
the differences in feature correlation values to the original data, as shown in Fig. 5. As a result, our
methodology consistently shows feature correlations similar to the original data for both minority and
majority classes. In contrast, other baselines either show significant deviations in feature correlation
for all classes or perform well for majority classes but not for minority ones. These results demonstrate
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Figure 6: Classification performance on the Income dataset when synthetic data generated by
our proposed method are added to the original dataset. We experiment with varying synthetic
sample sizes, comparing data sampling methods: with replacement (w/ rep.) and without replacement
(w/o rep.). EPIC samples with replacement. GPT-3.5-turbo is used for the experiment.
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Figure 7: Classification performance on the Income and Diabetes datasets using only synthetic
data generated by our proposed method for training. Black dashed lines denote the F1 score using
only the original data. GPT-3.5-turbo is used for our method.

that our methodology shows superior performance compared to the baselines in generating high-
quality data that accurately represents both minority and majority classes within the original dataset.

B Additional analysis of EPIC

This section provides an in-depth analysis of the proposed method, EPIC. Appendix B.1 analyzes the
effect of sample size on classification performance. Appendix B.2 discusses the significance of the
observed performance improvements. Appendix B.3 provides complete qualitative results on the toy
dataset. Finally, Appendix B.4 explores tabular data classification with in-context learning methods.

B.1 Impacts of sample size on the classification performance

Adding synthetic data to the original dataset Data samples in prompts can be selected either
with or without replacement. Our method uses sampling with replacement to generate a large and
diverse dataset, as sampling without replacement limits the amount of synthetic data to the number of
actual data points. While we ensure that there are no overlapping examples within each prompt to
maintain diversity, each prompt is constructed using sampling with replacement.

We conduct experiments to analyze (1) how much datasets can be enlarged and (2) how this impacts
classification performance by comparing sampling with and without replacement. As shown in Fig. 6,
performance improves steadily in both scenarios as the volume of generated data increases. However,
the improvement is constrained when sampling without replacement due to the limited number of
possible samples. When sampling with replacement, as the dataset size expands, there is a noticeable
improvement in the balance between sensitivity and specificity, which contributes to enhanced overall
performance, including gains in balanced accuracy and F1 score. Generating up to 40K synthetic
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Figure 8: Average classification results across six datasets compared with the closest baselines.

Table 10: Performance improvement after adding synthetic data to the original dataset. Results
are reorganized from Table 1 of our main manuscript.

Method Dataset
Improvement from the original data (%p)

F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

GReaT

Travel 2.83 1.86 1.8 1.92
Sick -0.58 -0.39 -0.76 -0.01

HELOC -0.66 -0.25 -1.67 1.18
Income 1.05 1.06 3.41 -0.31
Diabetes -0.09 -0.09 -0.02 -0.12
Thyroid -2.92 -2.62 -5.23 0.00

TabDDPM

Travel -4.92 -3.3 -6.6 0.00
Sick -2.64 -1.92 -3.81 -0.04

HELOC -0.36 -0.32 -0.38 -0.26
Income -0.05 0.05 0.42 -0.31
Diabetes -0.23 -0.24 -0.09 -0.18
Thyroid 0.16 1.18 4.31 -1.96

Ours

Travel 8.53 7.23 21 -6.54
Sick 0.9 1.71 3.58 -0.17

HELOC 0.91 0.45 2.07 -1.17
Income 2.26 2.7 9.17 -3.76
Diabetes 0.07 0.07 0.04 0.09
Thyroid 0.57 1.31 4.09 -1.47

data points resulted in even better performance than the 20K synthetic data points reported in Table 1
of our main manuscript. We also observed that as the volume of generated data continues to increase,
the gains in balanced accuracy and F1 score eventually plateau, indicating diminishing returns and
suggesting that further data generation beyond a certain point offers limited additional benefit.

Using only synthetic data We investigate how varying the number of synthetic samples affects
classification performance. This analysis is conducted on the Income and Diabetes datasets, and the
results are shown in Fig. 7. For the Income dataset, sample sizes range from 500 to 10,000, while
for Diabetes, the range was 500 to 20,000. For both datasets, a consistent increase in the F1 score is
observed as the number of samples grows. This result demonstrates that our method can adequately
represent the original data distribution by generating a sufficient number of synthetic data samples.

B.2 Significance of performance improvements

We analyze the significance of performance improvements achieved by EPIC. As shown in Fig. 6,
while the gains in F1 score and balanced accuracy between 0 and 40K samples may seem modest,
the sensitivity actually increases significantly from around 50% to 70%. This improvement balances
performance across all classes, leading to a more meaningful outcome and greatly enhancing model
usability. Baselines often learn biases in the training data, resulting in abnormally high specificity
at the expense of sensitivity. This imbalance can inflate balanced accuracy or F1 scores, but such
performance is ineffective for real-world tasks. In contrast, our method significantly enhances
sensitivity with only a slight reduction in specificity. As a result, our method achieves the most
balanced performance across all four metrics, as shown in Fig. 8.

Our method is the only approach among the seven baselines that consistently improves both F1 score
and balanced accuracy compared to using only the original data (Table 19). Extensive experiments
across six real-world datasets from diverse domains (finance, healthcare, marketing, and social
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Figure 9: Complete generation results on an imbalanced toy dataset with majority and minority
classes. Our approach, leveraging in-context learning with LLMs, achieves (1) distinct class bound-
aries, (2) accurate feature correlations, (3) well-matched value ranges, (4) robust numerical-categorical
relationships (last row), and (5) comprehensive data distribution coverage, with improvements over
its ablated versions and the fine-tuned GReaT model [4].

science) using four classifiers, each tested five times, demonstrate the state-of-the-art performance
of our method, with significant gains in the highly imbalanced Travel, Sick, Income, and Thyroid
datasets (Fig. 13). While GReaT and TabDDPM are the closest baselines, they exhibit inconsistent
performance. As highlighted in Table 10, they reduce original data performance in more than half of
the cases (red). For example, both underperform on HELOC and Diabetes.

In stark contrast, our method consistently outperforms the original data across all datasets
(blue). In the challenging Diabetes dataset, only our method improves over the original data. While
specificity decreases in all methods, our method still achieves a superior balance of metrics, leading
to greater practicality. These results underscore that our method offers the greatest practical utility
and a meaningful performance advantage among the models tested.

B.3 Complete results on toy dataset

In Fig. 9, we illustrate the complete qualitative results on the toy dataset. We assume a challenging
multivariate data scenario in an imbalanced binary classification situation, where variables with and
without correlations are mixed. Using the scikit-learn library [23], we created a total of 12 variables.
These variables have strong correlations in pairs. There are 11 numerical variables and one categorical
variable, and the categorical variable is shown on the x-axis in the last row of Fig. 9. In the figure, the
majority class is shown in blue, and the minority class is shown in red.

The generated results are evaluated from four aspects: (1) assessing whether generated data samples
correctly belong to their respective classes, ensuring clear class boundaries; (2) examining whether the
shapes formed by variable correlations, such as circles or moon patterns, are accurately represented;
(3) evaluating whether the generated values fall within an acceptable range for each variable; and (4)
analyzing whether relationships between categorical and numerical variables are accurately captured.

19

31522 https://doi.org/10.52202/079017-0990



1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

Figure 10: Illustration of the input samples (majority and minority) and the corresponding
generated samples (majority and minority) for each inference of EPIC on the imbalanced
toy dataset. In this example, with 180 input samples per inference, EPIC requires 23 inferences to
generate 1,000 samples. Empty boxes represent cases where the model fails to generate valid samples.

The baseline method, GReaT [4], has successfully learned from the training data to generate class-
separated samples. However, upon closer inspection, there are samples belonging to different classes.
Ours, despite generating samples without training, shows similar or better quality.

Overall, CSV-style generation produces better class separation boundaries compared to sentence-
style generation. Regarding class presentation, giving a single class can sometimes result in good
generation outcomes, but it fails to accurately capture the correlation with the majority class, resulting
in shapes like squares instead of circles, and it also fails to accurately generate the categorical
variable. On the other hand, when generating multi-class samples, if the sample numbers are not
balanced, the generation results for the minority class can be compromised. Even when balanced,
providing grouping leads to clearer class distinctions. Additionally, adding unique variable mapping
significantly improves the performance, resulting in a well-distinguished categorical variable.

In addition, we visualize the inputs and outputs of both our method and the ablated model without
grouping, as shown in Fig. 10 and Fig. 11. For each inference, 180 class-balanced samples are input
into the LLM prompt. To generate a total of 1,000 samples, our method required 23 inferences,
whereas the ablated model needed 37 inferences, demonstrating the stability of our method in
generating synthetic data samples. In terms of data generation quality, our method successfully
generates both majority and minority classes in most inferences, with the distribution of the generated
samples closely mirroring that of the actual input data. In contrast, the ablated model exhibits a higher
number of inferences where the generated data deviates from the input data distribution.

B.4 Comparison of advanced tabular classification models

The ability of LLMs to generate high-quality synthetic data for imbalanced classes in our approach
highlights their potential to directly address classification tasks, offering a promising avenue for future
research. However, the challenge lies in designing effective prompts to fully leverage this potential.
The performance of LLMs is highly dependent on prompt design, and numerous studies have shown
that small variations in prompt crafting can lead to significant differences in outcomes [18, 25]. Our
work shares this motivation, focusing on designing prompts that enable LLMs to effectively generate
high-quality tabular data, particularly to address class imbalance. While exploring LLMs for direct
classification could enhance performance, this direction is beyond the scope of our current study.
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Figure 11: Illustration of the input samples (majority and minority) and the corresponding
generated samples (majority and minority) for each inference of the ablated version of our
method on the imbalanced toy dataset. In this example, with 180 input samples per inference, the
ablated method without grouping requires 37 inferences to generate 1,000 samples. Empty boxes
represent cases where the model fails to generate valid samples.

We conduct experiments using recent in-context learning-based tabular classification methods, such
as TabPFN [14], which employs a pretrained transformer, and T-Table [33], which leverages LLMs.
We also test TabR [12], an advanced deep-learning tabular classification model, using its official
code. As detailed in Table 11, we evaluate classification performance on the Travel dataset using the
original and synthetic data. For T-Table, we use the GPT-3.5-turbo model, incorporating all original
data but limiting synthetic samples to 200 per input prompt due to token constraints. To further
enhance performance, we employ voting across five inferences [31].

Table 11: Comparison of F1 scores using robust tabular classification models on the Travel
dataset. GB refers to gradient boosting classifier.

Model Original +Ours +TabDDPM +GReaT

XGBoost 55.32 67.74 51.06 64.00
LightGBM 60.00 64.29 55.32 62.50
CatBoost 57.14 64.41 48.09 57.73
GB 60.00 70.18 58.33 59.57

TabPFN 56.00 59.26 55.32 53.06
T-Table 21.62 30.43 10.53 17.65
TabR 46.41 60.78 44.88 32.41
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Figure 12: Illustration of ablated versions of our proposed method.

The results indicate that, while the newly introduced classifiers do not outperform traditional ones,
adding synthetic data generated by our method to the original data consistently leads to significant
performance improvements across all classifiers. In contrast, using TabDDPM and GReaT often
results in decreased performance. Our method uniquely and consistently enhances the performance
of different classifiers, demonstrating superior label-matching quality. These findings underscore the
value of high-quality synthetic data in enhancing classifier performance across diverse models,
highlighting the importance of data generation research as a distinct area from classifier development.

Tabular data generation is a critical area of research with significant implications [4, 27, 37]. This
task serves two primary purposes: (1) enhancing classification performance in a model-agnostic
manner through data augmentation, similar to SMOTE, as shown in Tables 1, 2, and 6, and (2)
generating synthetic data to replace original data in security-critical or privacy-sensitive contexts,
as demonstrated in Table 7. In fields such as healthcare, where collecting new samples or achieving
balanced class labels is challenging and data may be noisy or incomplete, generating high-quality
synthetic data is crucial.

In conclusion, even as more advanced classification models for tabular data are developed in the
future, our proposed method could continue to play a crucial role in enhancing performance
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Table 12: Dataset details used in this study.

Dataset #Class #Categorical
features

#Numerical
features #Samples Domain

Travel 2 4 2 447 Marketing
Sick 2 21 6 3,711 Medical
HELOC 2 - 23 9,872 Financial
Income 2 8 6 32,561 Social
Diabetes 3 36 11 101,766 Medical
Thyroid 2 16 1 364 Medical

by generating high-quality synthetic data, thereby potentially making a significant impact on the
tabular data classification community and related tasks.

C Additional experimental details

This section provides the illustration of ablated versions (Appendix C.1), comprehensive information
on the datasets (Appendix C.2) and comparison baselines (Appendix C.3), implementation details
(Appendix C.4), and final prompt design and examples (Appendix C.5).

C.1 Ablation prompt examples

This section visualizes five ablated versions of our proposed prompt design, as shown in Fig. 12.
The ablations involve removing or altering four key components: data format, balanced class ratio,
multi-class generation, and class grouping.

C.2 Dataset

A detailed description of the datasets is shown in Table 12. The variable descriptions are directly
sourced from dataset platforms like Kaggle or the UCI repository. In our approach, we designate the
class with fewer instances as the positive class for binary classification tasks. We also provide the
class distribution information for the datasets used in this work, as shown in Fig. 13. Among the six
datasets, the Travel, Income, Sick, and Thyroid datasets exhibit substantial class imbalances.

0%

20%

40%

60%

80%

100%

Travel
Marketing

Sick
Medical

HELOC
Finance

Income
Social

Diabetes
Medical

Thyroid
Medical

Class 0 Class 1 Class 2

Figure 13: Class distribution for the real-world public tabular datasets used in this study.

C.3 Baseline reproducibility

In our research, we utilize implementations from the Synthetic Data Vault [22] for TVAE [35],
CTGAN [35], and CopulaGAN, while for the GReaT [4] model, we employ code from its offi-
cial repository. In our experiment, the GReaT model fails to accurately generate column names
‘max_glu_serum’ and ‘A1Cresult’ in the Diabetes dataset, even after training for 85 epochs, as re-
ported in the original paper. Extending the training to 105 epochs does not rectify this issue, with
‘max_glu_serum’ and ‘A1Cresult’ being correctly generated in only approximately 2.8% and 12.1%
of instances, respectively. For these columns, failure cases are treated as NaN values.
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We utilize the official open-source code from the official TabDDPM GitHub repository to reproduce
CTAB-GAN [39], CTAB-GAN+ [40], and TabDDPM [19]. For the Adult Income and California
datasets, the hyperparameters provided are used. For other datasets lacking provided hyperparameters,
we apply the hyperparameters from the Wilt dataset, which, according to the corresponding paper,
demonstrated the largest performance improvement over the original data.

Due to the lack of official code provided by the authors of LITO [37], we adopt the prompt design
described in their original paper. Specifically, we use the prompt for LITO-C to generate minority
class data. To generate samples for both majority and minority classes, we also use the modified
prompt to generate majority class data. Similarly, for CuratedLLM [27], we follow the prompt design
detailed in their paper. Although LITO and CuratedLLM propose multi-stage techniques for data
generation, we focus solely on evaluating their prompt designs.

C.4 Experimental setup

For classification, we utilize the target class of each dataset to divide groups. Specifically, the
Diabetes dataset has three groups, and the Travel, Sick, HELOC, Income, and Thyroid datasets have
two groups. For the process of unique variable mapping, each discrete value is transformed into a
combination of three characters, including uppercase letters and digits. Regarding hyperparameter
settings of downstream machine learning models: For the gradient boosting classifier, we use the
default hyperparameters provided by scikit-learn library. For XGBoost [7], CatBoost [24], and
LightGBM [17], we conduct 5-fold cross-validation on the training set of the original data, optimizing
two key hyperparameters: learning rate and max depth. These optimized settings are then consistently
applied across all experiments, aligning the model’s performance closely with the characteristics of
the original data. Where possible, we train the classification models using a single NVIDIA GeForce
RTX 3090 GPU on an Ubuntu 18.04 system.

C.5 More details on the prompt design

This section outlines the construction of the proposed prompt. As shown in the prompt examples in
Tables 13-18, the final prompt template for synthetic data generation consists of four parts.

Descriptions (Optional). The prompt may start with descriptions of the variables in the dataset,
provided line-by-line, if precise and available. These descriptions define what each column in the
dataset represents, offering contextual understanding to the LLM about the data. It will be located at
the top of the prompt (but not repeated to maintain token efficiency) for additional context.

Set-level examples. Then, a set-level examples are present. This section begins with a data entry
format header, specifying the order and names of each feature. This header acts as a guide for the
LLM, indicating the start of an example set, which is crucial for interpreting the structure of the
tabular data. Following the header, there’s a line specifying a group name, signaling the start of a
specific group. Instances belonging to this group are then listed, one per line, in a CSV style. This
process is repeated for each group within the set.

Repetition of set-Level template. To reinforce the data structure and patterns, this set-level template
is repeated several times within the prompt, each time with distinct data samples. This repetition is
key in enabling the LLM to recognize, learn, and subsequently replicate the set format in its synthetic
data generation process.

Trigger for LLM data generation. After all the example sets are presented, the same header that
indicates the start of an example set is included at the end of the prompt. This header serves as a
signal for the LLM to commence generating synthetic data, maintaining the structure and patterns
established in the prompt.

By following this structured approach, the LLM is guided to effectively generate synthetic data that
matches the structure and characteristics of the original dataset.

D Related work

LLM in-context learning prompting With the remarkable advancements in LLMs, extensive
research has been conducted in prompt engineering to maximize their potential for various natural
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language processing (NLP) tasks, including text summarization and question answering, yielding
significant value [9, 28, 36, 41]. Optimizing prompts for specific tasks is inherently a combinatorial
challenge, and in the absence of established optimization principles, progress has often been driven
by heuristic methods validated through rigorous empirical evaluations [25, 32, 38]. Our study adopts
this empirical approach, conducting extensive experiments to develop effective prompts for synthetic
tabular data generation, which holds unique challenges that differ from typical NLP tasks. Through
these experiments, we introduce a tailored prompt design, EPIC, that employs class-balanced, grouped,
and structured formatting and unique variable mapping.

Tabular data generation In the field of tabular data synthesis, traditional methods have predomi-
nantly focused on interpolation techniques, such as SMOTE [5]. Although useful, these methods often
struggle to capture complex relationships between features [2]. Recently, generative models have
shown promise in generating realistic tabular data [6, 8, 16, 35, 39, 40], and diffusion models have
also achieved promising results in this area [19]. Building on these advances, GReaT [4] achieved
notable success by transforming tabular data into natural text format and fine-tuning LLMs for
synthetic tabular data generation. However, this fine-tuning process is resource-intensive, requir-
ing extensive training of large models for each dataset. To address this, LITO [37] and Curated
LLM [27] have explored using LLMs through in-context learning for tabular data generation, yet
these approaches require additional filtering steps to ensure data quality. In contrast, we demonstrate
that with comprehensive prompt exploration, high-quality tabular data generation can be achieved
through prompt design alone, without the need for additional steps. Our work is distinguished by the
thorough and comprehensive evaluations across six real-world datasets and synthetic toy data, aiming
to provide deeper insights into the prompting process. We addressed experiments and analyses often
overlooked in prior research on tabular data generation.

E Broader Impact

Our method is generally applicable to tabular data generation and classification tasks with minimal
preprocessing, making it accessible for diverse research and industrial applications. Potential positive
impacts include enhanced data accessibility and privacy preservation, which can support decision-
making processes in fields such as healthcare and finance by reducing reliance on real data and
protecting individual privacy. However, potential negative impacts include the risk of data misuse.
Synthetic data generation could be exploited maliciously, such as to create deceptive datasets intended
to mislead systems or individuals. Additionally, using closed-source LLMs poses potential risks,
including data leakage through API calls, particularly concerning when handling sensitive data, and
limitations on direct access to verify the models being used. Ensuring quality, security, and ethical
use of generated data under these conditions is essential.

F Complete quantitative results

This section presents the complete confusion matrix results in Appendix F.1 and compares the
classification performance with the baselines in Appendix F.2.

F.1 Confusion matrix results

We present normalized confusion matrix results on binary classification datasets, as shown in Fig. 14.
The results demonstrate that adding the synthetic data generated by our method to the original
dataset significantly enhances classification performance, outperforming baselines by a large margin.
Additionally, using only the synthetic data generated by our method achieves better performance than
augmenting the original dataset with synthetic data from baselines.

F.2 Complete results on comparison with baselines

Table 19 offers the complete performance comparison results with standard deviation values of 20
independent experiments on all six datasets.
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+Ours

+CTGAN +CopulaGAN +TVAE

Original data

+CTAB-GAN+

Ours only +TabDDPM +GReaT

+CTAB-GAN

(a) Travel

+Ours

+CTGAN +CopulaGAN +TVAE

Original data

+CTAB-GAN+

Ours only +TabDDPM +GReaT

+CTAB-GAN

(b) Sick

+Ours

+CTGAN +CopulaGAN +TVAE

Original data

+CTAB-GAN+

Ours only +TabDDPM +GReaT

+CTAB-GAN

(c) Income

Figure 14: Normalized confusion matrix results on binary classification datasets using the
gradient boosting classifier. Ours only denotes cases where only our synthetic data are used.
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Table 13: Example of an EPIC prompt for the Travel dataset. This prompt illustrates the structure
of sets and groups. Each iteration utilizes randomly selected samples from the training data.

Template Prompt sample

Descriptions Churn: whether customer churns or doesnt churn for tour and
travels company,

age: the age of customer,

FrequentFlyer: whether customer takes frequent flights,

AnnualIncomeClass: class of annual income of user,
ServicesOpted: number of times services opted during recent years,

AccountSyncedToSocialMedia: whether company account of user

synchronised to their social media,

BookedHotelOrNot: whether the customer book lodgings/Hotels using

company services.\n\n

Set Header Churn,Age,FrequentFlyer,AnnualIncomeClass,ServicesOpted,

AccountSyncedToSocialMedia,BookedHotelOrNot

Group A.
Churn,28,Yes,High Income,6,No,Yes
Churn,37,Yes,Low Income,4,Yes,Yes
Churn,30,Yes,Low Income,1,Yes,Yes\n

Group B.
Doesnt churn,38,No,Low Income,1,Yes,No
Doesnt churn,28,No Record,Low Income,5,No,Yes
Doesnt churn,34,Yes,Low Income,1,No,No\n\n

Set Header Churn,Age,FrequentFlyer,AnnualIncomeClass,ServicesOpted,

AccountSyncedToSocialMedia,BookedHotelOrNot

Group A.
Churn,30,Yes,High Income,4,No,No
Churn,28,No,Low Income,6,No,Yes
Churn,28,No Record,Middle Income,2,No,No\n

Group B.
Doesnt churn,37,Yes,Low Income,1,No,No
Doesnt churn,36,No,Middle Income,1,No,Yes
Doesnt churn,28,No,Middle Income,3,No,No\n\n

Set Header Churn,Age,FrequentFlyer,AnnualIncomeClass,ServicesOpted,

AccountSyncedToSocialMedia,BookedHotelOrNot

Group A.
Churn,27,Yes,High Income,5,No,No
Churn,37,No,Low Income,5,Yes,No
Churn,33,No,Low Income,5,Yes,Yes\n

Group B.
Doesnt churn,37,Yes,Low Income,1,No,No
Doesnt churn,36,No,Middle Income,1,No,Yes
Doesnt churn,28,No,Middle Income,3,No,No\n\n

Set Header
(trigger)

Churn,Age,FrequentFlyer,AnnualIncomeClass,ServicesOpted,

AccountSyncedToSocialMedia,BookedHotelOrNot
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Table 14: Example of an EPIC prompt for the Sick dataset. This prompt illustrates the structure
of sets and groups. Each iteration utilizes randomly selected samples from the training data. In this
scenario, our unique variable mapping is employed, whereby each unique value of a variable is
consistently substituted with a unique three-character alphanumeric string. This approach ensures
diversity and robustness in the synthesized data.

Template Prompt sample

Descriptions Class: hypothyroidism is a condition in which the thyroid gland

is underperforming or producing too little thyroid hormone,

age: the age of an patient,

sex: the biological sex of an patient,

TSH: thyroid stimulating hormone,

T3: triiodothyronine hormone,

TT4: total levothyroxine hormone,

T4U: levothyroxine hormone uptake,

FTI: free levothyroxine hormone index,

referral_source: institution that supplied the thyroid disease

record.\n\n

Set Header Class,age,sex,on_thyroxine,query_on_thyroxine,

on_antithyroid_medication,sick,pregnant,thyroid_surgery,

I131_treatment,query_hypothyroid,query_hyperthyroid,lithium,

goitre,tumor,hypopituitary,psych,TSH_measured,TSH,T3_measured,T3,

TT4_measured,TT4,T4U_measured,T4U,FTI_measured,FTI,referral_source

Group A.
JY0,64.0,E3R,ZIQ,A6A,K6Y,RU5,SQ6,Q6D,IER,Z9P,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,0.85,PIX,1.1,ASS,99.0,D0T,1.11,SD4,90.0,X5Z
JY0,72.0,L2J,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,CLC,PDL,
UZ8,KWH,0.28,PIX,0.9,ASS,79.0,D0T,0.7,SD4,112.0,X5Z\n

Group B.
GGN,56.0,L2J,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,5.4,PIX,1.7,ASS,104.0,D0T,1.01,SD4,103.0,X5Z
GGN,42.0,OQX,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,0.02,PIX,2.6,ASS,138.0,D0T,1.58,SD4,88.0,W7B\n\n

Set Header Class,age,sex,on_thyroxine,query_on_thyroxine,

on_antithyroid_medication,sick,pregnant,thyroid_surgery,

I131_treatment,query_hypothyroid,query_hyperthyroid,lithium,

goitre,tumor,hypopituitary,psych,TSH_measured,TSH,T3_measured,T3,

TT4_measured,TT4,T4U_measured,T4U,FTI_measured,FTI,referral_source

Group A.
JY0,72.0,L2J,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,5.3,PIX,1.0,ASS,97.0,D0T,0.65,SD4,150.0,X5Z
JY0,60.0,L2J,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,1.2,PIX,0.8,ASS,44.0,D0T,0.84,SD4,52.0,X5Z\n

Group B.
GGN,23.0,E3R,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,3.6,PIX,7.0,ASS,141.0,D0T,1.77,SD4,80.0,YF8
GGN,32.0,E3R,TU1,A6A,K6Y,RU5,SQ6,Q6D,IER,TFG,Z50,Y9J,SYD,ZWI,PDL,
UZ8,KWH,0.64,PIX,1.7,ASS,102.0,D0T,0.76,SD4,134.0,YF8\n\n

Set Header
(trigger)

Class,age,sex,on_thyroxine,query_on_thyroxine,

on_antithyroid_medication,sick,pregnant,thyroid_surgery,

I131_treatment,query_hypothyroid,query_hyperthyroid,lithium,

goitre,tumor,hypopituitary,psych,TSH_measured,TSH,T3_measured,T3,

TT4_measured,TT4,T4U_measured,T4U,FTI_measured,FTI,referral_source
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Table 15: Example of an EPIC prompt for the HELOC dataset. This prompt illustrates the
structure of sets and groups. Each iteration utilizes randomly selected samples from the training data.

Template Prompt sample

Descriptions

Set Header RiskPerformance,ExternalRiskEstimate,MSinceOldestTradeOpen,

MSinceMostRecentTradeOpen,AverageMInFile,NumSatisfactoryTrades,

NumTrades60Ever2DerogPubRec,NumTrades90Ever2DerogPubRec,

PercentTradesNeverDelq,MSinceMostRecentDelq,

MaxDelq2PublicRecLast12M,MaxDelqEver,NumTotalTrades,

NumTradesOpeninLast12M,PercentInstallTrades,

MSinceMostRecentInqexcl7days,NumInqLast6M,NumInqLast6Mexcl7days,

NetFractionRevolvingBurden,NetFractionInstallBurden,

NumRevolvingTradesWBalance,NumInstallTradesWBalance,

NumBank2NatlTradesWHighUtilization,PercentTradesWBalance

Group A.
Bad,90,211,6,102,17,0,0,100,-7,7,8,17,1,0,0,1,1,0,-8,0,-8,0,0
Bad,56,146,3,41,37,0,0,100,-7,7,8,41,4,24,4,1,1,75,75,15,2,5,90\n

Group B.
Good,87,222,8,111,28,0,0,97,-8,6,6,33,1,24,0,0,0,0,13,2,2,0,27
Good,81,302,2,86,37,0,0,95,59,6,6,41,4,41,0,0,0,1,69,3,5,0,50\n\n

Set Header RiskPerformance,ExternalRiskEstimate,MSinceOldestTradeOpen,

MSinceMostRecentTradeOpen,AverageMInFile,NumSatisfactoryTrades,

NumTrades60Ever2DerogPubRec,NumTrades90Ever2DerogPubRec,

PercentTradesNeverDelq,MSinceMostRecentDelq,

MaxDelq2PublicRecLast12M,MaxDelqEver,NumTotalTrades,

NumTradesOpeninLast12M,PercentInstallTrades,

MSinceMostRecentInqexcl7days,NumInqLast6M,NumInqLast6Mexcl7days,

NetFractionRevolvingBurden,NetFractionInstallBurden,

NumRevolvingTradesWBalance,NumInstallTradesWBalance,

NumBank2NatlTradesWHighUtilization,PercentTradesWBalance

Group A.
Bad,63,150,3,50,29,3,3,91,75,6,3,32,4,75,-7,6,6,33,90,1,7,1,73
Bad,73,269,14,91,28,0,0,97,-8,6,6,34,0,26,0,0,0,49,70,5,4,2,75\n

Group B.
Good,79,344,24,135,24,0,0,100,-7,7,8,24,0,17,1,1,1,41,-8,4,1,2,50
Good,85,386,2,125,25,0,0,96,34,6,6,49,1,39,1,1,1,2,72,4,3,0,64\n\n

Set Header
(trigger)

RiskPerformance,ExternalRiskEstimate,MSinceOldestTradeOpen,

MSinceMostRecentTradeOpen,AverageMInFile,NumSatisfactoryTrades,

NumTrades60Ever2DerogPubRec,NumTrades90Ever2DerogPubRec,

PercentTradesNeverDelq,MSinceMostRecentDelq,

MaxDelq2PublicRecLast12M,MaxDelqEver,NumTotalTrades,

NumTradesOpeninLast12M,PercentInstallTrades,

MSinceMostRecentInqexcl7days,NumInqLast6M,NumInqLast6Mexcl7days,

NetFractionRevolvingBurden,NetFractionInstallBurden,

NumRevolvingTradesWBalance,NumInstallTradesWBalance,

NumBank2NatlTradesWHighUtilization,PercentTradesWBalance
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Table 16: Example of an EPIC prompt for the Income dataset. This prompt illustrates the structure
of sets and groups. Each iteration utilizes randomly selected samples from the training data.

Template Prompt sample

Descriptions

Set Header income,age,workclass,fnlwgt,education,education_num,

marital-status,occupation,relationship,race,sex,capital-gain,

capital-loss,hours-per-week,native-country

Group A.
>50K,52,Private,298215,Bachelors,13,Married-civ-spouse,
Craft-repair,Husband,White,Male,0,0,50,United-States
>50K,30,Self-emp-inc,321990,Masters,14,Married-civ-spouse,
Exec-managerial,Husband,White,Male,15024,0,60,?
>50K,28,Local-gov,33662,Masters,14,Married-civ-spouse,
Prof-specialty,Wife,White,Female,7298,0,40,United-States\n

Group B.
<=50K,42,Private,572751,Preschool,1,Married-civ-spouse,
Craft-repair,Husband,White,Male,0,0,40,Nicaragua
<=50K,25,Self-emp-not-inc,159909,Assoc-voc,11,Married-civ-spouse,
Farming-fishing,Husband,White,Male,0,0,40,United-States
<=50K,20,?,182117,Some-college,10,Never-married,?,Own-child,White,
Male,0,0,40,United-States\n\n

Set Header income,age,workclass,fnlwgt,education,education_num,

marital-status,occupation,relationship,race,sex,capital-gain,

capital-loss,hours-per-week,native-country

Group A.
>50K,38,Private,58108,Bachelors,13,Married-civ-spouse,
Exec-managerial,Husband,White,Male,0,0,50,United-States
>50K,31,State-gov,124020,Assoc-acdm,12,Married-civ-spouse,
Tech-support,Husband,White,Male,0,0,40,United-States
>50K,41,Private,130126,Prof-school,15,Married-civ-spouse,
Prof-specialty,Husband,White,Male,0,0,80,United-States\n

Group B.
<=50K,51,Private,138514,Assoc-voc,11,Divorced,Tech-support,
Unmarried,Black,Female,0,0,48,United-States
<=50K,18,Private,205218,11th,7,Never-married,Sales,Own-child,White,
Female,0,0,20,United-States
<=50K,21,Private,185948,Some-college,10,Never-married,Sales,
Own-child,White,Male,0,0,35,United-States\n\n

Set Header
(trigger)

income,age,workclass,fnlwgt,education,education_num,

marital-status,occupation,relationship,race,sex,capital-gain,

capital-loss,hours-per-week,native-country
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Table 17: Example of an EPIC prompt for the Diabetes dataset. This prompt illustrates the
structure of sets and groups. Each iteration utilizes randomly selected samples from the training data.
In this scenario, our unique variable mapping is employed, whereby each unique value of a variable
is consistently substituted with a unique three-character alphanumeric string. This approach ensures
diversity and robustness in the synthesized data.

Template Prompt sample

Descriptions

Set Header readmitted,encounter_id,patient_nbr,race,gender,age,weight,

admission_type_id,discharge_disposition_id,admission_source_id,

time_in_hospital,payer_code,medical_specialty,num_lab_procedures,

num_procedures,num_medications,number_outpatient,number_emergency,

number_inpatient,diag_1,diag_2,diag_3,number_diagnoses,

max_glu_serum,A1Cresult,metformin,repaglinide,nateglinide,

chlorpropamide,glimepiride,acetohexamide,glipizide,glyburide,

tolbutamide,pioglitazone,rosiglitazone,acarbose,miglitol,

troglitazone,tolazamide,insulin,glyburide-metformin,

glipizide-metformin,glimepiride-pioglitazone,

metformin-rosiglitazone,metformin-pioglitazone,change,diabetesMed

Group A.
AD6,39850434,428733,HX2,LL7,10F,H7H,2,7,1,13,QTD,3S2,44,4,15,1,0,
6,QDY,HR7,8K9,9,JAT,N0H,K06,2TV,65H,A7C,MK7,JWO,HXK,SVQ,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,CWD,6TQ,VDM,HMH,0OU,HNM,NGY,NC4
AD6,112757142,66907593,7MT,LL7,10F,BES,2,1,1,1,CFV,XY0,50,3,16,3,0,
3,6RA,BSI,DQ8,8,JAT,N0H,K06,2TV,65H,A7C,MK7,JWO,HXK,DQV,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,PDO,6TQ,VDM,HMH,0OU,HNM,UXM,NC4\n

Group B.
YRB,163732050,91571517,7MT,LL7,BM0,H7H,3,1,1,1,QTD,SKI,17,6,9,0,0,
1,6RA,4UR,0TR,9,JAT,N0H,K06,2TV,65H,A7C,MK7,JWO,HXK,SVQ,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,PDO,6TQ,VDM,HMH,0OU,HNM,UXM,R51
YRB,108763158,24232068,7MT,UWV,TVU,H7H,1,6,7,7,QBR,79B,46,0,17,0,0,
0,I3K,OOH,6BC,9,JAT,N0H,K06,2TV,65H,A7C,GJH,JWO,HXK,SVQ,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,05I,6TQ,VDM,HMH,0OU,HNM,NGY,NC4\n

Group C.
PS6,274193592,68737500,7MT,LL7,10F,H7H,1,3,7,5,QBR,SKI,60,1,18,0,0,
0,DL8,AL8,P2T,9,JAT,ZAX,K06,2TV,65H,A7C,MK7,JWO,HXK,SVQ,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,CWD,6TQ,VDM,HMH,0OU,HNM,NGY,NC4
PS6,156572340,114902370,7MT,UWV,BM0,H7H,1,1,7,2,QSB,SKI,50,3,8,0,0,
0,24G,FKO,DZJ,9,JAT,N0H,K06,2TV,65H,A7C,MK7,JWO,HXK,SVQ,BMY,FCV,
ZRU,IDJ,8CO,78A,NXL,8GG,6TQ,VDM,HMH,0OU,HNM,NGY,NC4\n\n

· · ·

Set Header
(trigger)

readmitted,encounter_id,patient_nbr,race,gender,age,weight,

admission_type_id,discharge_disposition_id,admission_source_id,

time_in_hospital,payer_code,medical_specialty,num_lab_procedures,

num_procedures,num_medications,number_outpatient,number_emergency,

number_inpatient,diag_1,diag_2,diag_3,number_diagnoses,

max_glu_serum,A1Cresult,metformin,repaglinide,nateglinide,

chlorpropamide,glimepiride,acetohexamide,glipizide,glyburide,

tolbutamide,pioglitazone,rosiglitazone,acarbose,miglitol,

troglitazone,tolazamide,insulin,glyburide-metformin,

glipizide-metformin,glimepiride-pioglitazone,

metformin-rosiglitazone,metformin-pioglitazone,change,diabetesMed
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Table 18: Example of an EPIC prompt for the Thyroid dataset. This prompt illustrates the structure
of sets and groups. Each iteration utilizes randomly selected samples from the training data.

Template Prompt sample

Descriptions

Set Header Recurred,Age,Gender,Smoking,Hx Smoking,Hx Radiothreapy,

Thyroid Function,Physical Examination,Adenopathy,Pathology,

Focality,Risk,T,N,M,Stage,Response

Group A.
Yes,46,M,Yes,No,No,Euthyroid,Single nodular goiter-left,
Bilateral,Follicular,Uni-Focal,High,T4b,N1b,M1,II,Structural
Incomplete
Yes,27,M,No,No,No,Euthyroid,Multinodular goiter,Bilateral,
Papillary,Multi-Focal,Intermediate,T3a,N1b,M0,I, Structural
Incomplete
Yes,35,F,No,No,No,Euthyroid,Multinodular goiter,Right,
Papillary,Multi-Focal,Intermediate,T1b,N1b,M0,I, Structural
Incomplete\n

Group B.
No,31,M,No,No,No,Euthyroid,Single nodular goiter-right,No,
Papillary,Uni-Focal,Low,T3a,N0,M0,I,Indeterminate
No,25,F,No,No,No,Euthyroid,Multinodular goiter,No,
Papillary,Uni-Focal,Low,T2,N0,M0,I,Indeterminate
No,30,F,No,No,No,Euthyroid,Single nodular goiter-right,No,
Papillary,Uni-Focal,Low,T1b,N0,M0,I,Excellent\n

Set Header Recurred,Age,Gender,Smoking,Hx Smoking,Hx Radiothreapy,

Thyroid Function,Physical Examination,Adenopathy,Pathology,

Focality,Risk,T,N,M,Stage,Response

Group A.
Yes,37,M,No,No,No,Euthyroid,Multinodular goiter,Bilateral,
Papillary,Multi-Focal,Intermediate,T3a,N1b,M0,I,Structural
Incomplete
Yes,63,M,Yes,No,No,Euthyroid,Single nodular goiter-right,
Right,Papillary,Multi-Focal,Intermediate,T3a,N1b,M0,II,Structural
Incomplete
Yes,80,M,Yes,No,No,Euthyroid,Single nodular goiter-left,No,
Hurthel cell,Multi-Focal,Intermediate,T4a,N0,M0,II,Structural
Incomplete\n

Group B.
No,55,F,No,No,No,Euthyroid,Single nodular goiter-left,No,
Papillary,Uni-Focal,Low,T2,N0,M0,I,Excellent
No,31,F,No,No,No,Euthyroid,Multinodular goiter,Right,
Papillary,Multi-Focal,Intermediate,T1a,N1b,M0,I,Excellent
No,29,F,No,No,No,Euthyroid,Single nodular goiter-right,No,
Papillary,Uni-Focal,Low,T1b,N0,M0,I,Excellent\n

Set Header
(trigger)

Recurred,Age,Gender,Smoking,Hx Smoking,Hx Radiothreapy,

Thyroid Function,Physical Examination,Adenopathy,Pathology,

Focality,Risk,T,N,M,Stage,Response
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Table 19: Complete results comparing ML classification performance when synthetic data are
added to the original dataset. Results are averaged across four classifiers: XGBoost, CatBoost,
LightGBM, and the gradient boosting classifier, with each model run five times. #syn denotes the
number of synthetic samples added to the original dataset.

Dataset Method #syn F1 score ↑ BAL ACC ↑ Sensitivity ↑ Specificity ↑

Travel

Original - 58.12±2.04 (0.00) 71.00±1.41 (0.00) 57.00±3.40 (0.00) 85.00±0.68 (0.00)

+TVAE [35] +1K 59.78±4.89 (+1.66) 72.35±3.52 (+1.35) 62.00±6.81 (+5.00) 82.69±1.31 (-2.31)

+CopulaGAN [22] +1K 21.76±2.00 (-36.36) 55.52±0.83 (-15.48) 12.80±1.64 (-44.20) 98.23±1.89 (+13.23)
+CTGAN [35] +1K 29.84±3.61 (-28.28) 57.79±1.56 (-13.21) 19.20±2.46 (-37.80) 96.38±1.15 (+11.38)

+CTAB-GAN [39] +1K 56.07±8.29 (-2.05) 69.58±5.14 (-1.42) 51.00±7.88 (-6.00) 88.15±3.31 (+3.15)

+CTAB-GAN+ [40] +1K 54.66±3.64 (-3.46) 68.62±2.40 (-2.38) 53.00±3.40 (-4.00) 84.23±2.05 (-0.77)

+GReaT [4] +1K 60.95±2.59 (+2.83) 72.86±1.80 (+1.86) 58.80±3.69 (+1.80) 86.92±0.79 (+1.92)

+TabDDPM [19] +1K 53.20±4.10 (-4.92) 67.70±2.69 (-3.30) 50.40±4.19 (-6.60) 85.00±1.31 (0.00)

+Ours +1K 66.65±2.53 (+8.53) 78.23±2.10 (+7.23) 78.00±4.59 (+21.00) 78.46±2.50 (-6.54)

Sick

Original - 87.81±2.46 (0.00) 91.22±0.95 (0.00) 82.83±1.71 (0.00) 99.61±0.22 (0.00)

+TVAE [35] +1K 87.77±2.88 (-0.04) 91.47±1.33 (+0.25) 83.37±2.47 (+0.54) 99.56±0.23 (-0.05)

+CopulaGAN [22] +1K 83.60±1.33 (-4.21) 86.61±0.53 (-4.61) 73.37±0.97 (-9.46) 99.86±0.10 (+0.25)
+CTGAN [35] +1K 87.52±1.68 (-0.29) 89.86±0.52 (-1.36) 79.89±0.97 (-2.94) 99.82±0.19 (+0.21)

+CTAB-GAN [39] +1K 86.12±1.49 (-1.69) 89.51±1.24 (-1.71) 79.35±2.49 (-3.48) 99.68±0.06 (+0.07)

+CTAB-GAN+ [40] +1K 82.35±4.16 (-5.46) 86.28±2.49 (-4.94) 72.83±4.86 (-10.00) 99.74±0.14 (+0.13)

+GReaT [4] +1K 87.23±1.87 (-0.58) 90.83±1.09 (-0.39) 82.07±2.10 (-0.76) 99.60±0.12 (-0.01)

+TabDDPM [19] +1K 85.17±2.07 (-2.64) 89.30±1.18 (-1.92) 79.02±2.26 (-3.81) 99.57±0.10 (-0.04)

+Ours +1K 88.71±1.98 (+0.90) 92.93±0.91 (+1.71) 86.41±1.85 (+3.58) 99.44±0.27 (-0.17)

HELOC

Original - 71.01±0.47 (0.00) 73.21±0.31 (0.00) 67.89±0.82 (0.00) 78.52±0.34 (0.00)

+TVAE [35] +1K 71.12±0.32 (+0.11) 73.25±0.33 (+0.04) 68.15±0.21 (+0.26) 78.34±0.48 (-0.18)

+CopulaGAN [22] +1K 71.23±0.27 (+0.22) 73.32±0.25 (+0.11) 68.37±0.31 (+0.48) 78.26±0.36 (-0.26)

+CTGAN [35] +1K 70.82±0.24 (-0.19) 73.06±0.27 (-0.15) 67.60±0.25 (-0.29) 78.52±0.55 (0.00)

+CTAB-GAN [39] +1K 70.60±0.41 (-0.41) 72.87±0.21 (-0.34) 67.39±0.97 (-0.50) 78.36±0.74 (-0.16)

+CTAB-GAN+ [40] +1K 71.03±0.05 (+0.02) 73.15±0.10 (-0.06) 68.13±0.21 (+0.24) 78.17±0.38 (-0.35)

+GReaT [4] +1K 70.35±0.33 (-0.66) 72.96±0.24 (-0.25) 66.22±0.49 (-1.67) 79.70±0.21 (+1.18)
+TabDDPM [19] +1K 70.65±0.18 (-0.36) 72.89±0.14 (-0.32) 67.51±0.35 (-0.38) 78.26±0.30 (-0.26)

+Ours +1K 71.92±0.11 (+0.91) 73.66±0.17 (+0.45) 69.96±0.21 (+2.07) 77.35±0.51 (-1.17)

Income

Original - 66.90±2.12 (0.00) 76.45±1.48 (0.00) 57.28±3.41 (0.00) 95.61±0.46 (0.00)
+TVAE [35] +20K 66.96±1.36 (+0.06) 76.80±1.11 (+0.35) 59.13±2.92 (+1.85) 94.48±0.71 (-1.13)

+CopulaGAN [22] +20K 66.75±1.72 (-0.15) 76.73±1.33 (+0.28) 59.16±3.41 (+1.88) 94.29±0.81 (-1.32)

+CTGAN [35] +20K 66.22±0.82 (-0.68) 76.27±0.65 (-0.18) 57.95±1.73 (+0.67) 94.59±0.44 (-1.02)

+CTAB-GAN [39] +20K 66.48±2.11 (-0.42) 76.31±1.51 (-0.14) 57.45±3.61 (+0.17) 95.17±0.58 (-0.44)

+CTAB-GAN+ [40] +20K 66.49±1.14 (-0.41) 76.42±0.90 (-0.03) 58.14±2.41 (+0.86) 94.70±0.63 (-0.91)

+GReaT [4] +20K 67.95±1.36 (+1.05) 77.51±1.05 (+1.06) 60.69±2.56 (+3.41) 94.33±0.51 (-1.28)

+TabDDPM [19] +20K 66.85±1.83 (-0.05) 76.50±1.34 (+0.05) 57.70±3.26 (+0.42) 95.30±0.60 (-0.31)

+Ours +20K 69.16±1.01 (+2.26) 79.15±0.82 (+2.70) 66.45±1.98 (+9.17) 91.85±0.49 (-3.76)

Diabetes

Original - 54.87±1.37 (0.00) 42.07±1.23 (0.00) 60.00±0.64 (0.00) 60.73±1.63 (0.00)

+TVAE [35] +10K 54.79±1.40 (-0.08) 41.96±1.24 (-0.11) 59.96±0.66 (-0.04) 60.71±1.65 (-0.02)

+CopulaGAN [22] +10K 54.27±1.48 (-0.60) 41.59±1.26 (-0.48) 59.73±0.75 (-0.27) 59.97±1.65 (-0.76)

+CTGAN [35] +10K 54.72±1.13 (-0.15) 41.92±1.02 (-0.15) 59.86±0.53 (-0.14) 60.63±1.32 (-0.10)

+CTAB-GAN [39] +10K 54.22±1.28 (-0.65) 41.53±1.09 (-0.54) 59.73±0.59 (-0.27) 59.91±1.46 (-0.82)

+CTAB-GAN+ [40] +10K 54.24±1.16 (-0.63) 41.52±1.01 (-0.55) 59.63±0.57 (-0.37) 60.01±1.31 (-0.72)

+GReaT [4] +10K 54.78±1.31 (-0.09) 41.98±1.17 (-0.09) 59.98±0.60 (-0.02) 60.61±1.55 (-0.12)

+TabDDPM [19] +10K 54.64±1.50 (-0.23) 41.83±1.28 (-0.24) 59.91±0.75 (-0.09) 60.55±1.78 (-0.18)

+Ours +10K 54.94±1.43 (+0.07) 42.14±1.29 (+0.07) 60.04±0.66 (+0.04) 60.82±1.68 (+0.09)

Thyroid

Original - 94.23±1.99 (0.00) 95.08±1.60 (0.00) 91.14±3.12 (0.00) 99.02±1.01 (0.00)

+TVAE [35] +1K 90.45±1.89 (-3.78) 92.20±1.65 (-2.88) 86.36±3.30 (-4.78) 98.04±0.00 (-0.98)

+CopulaGAN [22] +1K 86.73±3.99 (-7.50) 88.71±2.91 (-6.37) 78.41±5.08 (-12.73) 99.02±1.01 (0.00)

+CTGAN [35] +1K 76.40±6.58 (-17.83) 81.14±4.55 (-13.94) 62.27±9.10 (-28.87) 100.0±0.00 (+0.98)
+CTAB-GAN [39] +1K 53.49±3.71 (-40.74) 68.30±1.73 (-26.78) 36.59±3.45 (-54.55) 100.0±0.00 (+0.98)
+CTAB-GAN+ [40] +1K 27.46±7.80 (-66.77) 58.07±2.60 (-37.01) 16.14±5.21 (-75.00) 100.0±0.00 (+0.98)
+GReaT [4] +1K 91.31±1.61 (-2.92) 92.46±0.99 (-2.62) 85.91±1.40 (-5.23) 99.02±1.01 (0.00)

+TabDDPM [19] +1K 94.39±1.09 (+0.16) 96.26±0.50 (+1.18) 95.45±0.00 (+4.31) 97.06±1.01 (-1.96)

+Ours +1K 94.80±1.02 (+0.57) 96.39±0.62 (+1.31) 95.23±1.02 (+4.09) 97.55±0.87 (-1.47)
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction (Section 1) accurately reflect the contributions
and scope of our paper. Refer to the contribution summary at the end of the Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are provided in Section 4.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: The paper includes comprehensive experimental details in Section 3 and
Appendix C, and provides supplementary code to facilitate reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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rameters, and their selection process, in Section 3 and Appendix C.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard deviations in Fig. 2 and ML classification perfor-
mance tables in main manuscript, and the experimental results in Section A and Section F.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide information about the GPU resources used for the experiments in
Appendix C.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and adhered to the NeurIPS Code of Ethics throughout the
research process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models are being released in this paper, so there is no risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code includes a README file that provides comprehensive docu-
mentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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