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Abstract

We investigate the statistical and computational limits of latent Diffusion
Transformers (DiTs) under the low-dimensional linear latent space assumption.
Statistically, we study the universal approximation and sample complexity of the
DiTs score function, as well as the distribution recovery property of the initial data.
Specifically, under mild data assumptions, we derive an approximation error bound
for the score network of latent DiTs, which is sub-linear in the latent space dimen-
sion. Additionally, we derive the corresponding sample complexity bound and show
that the data distribution generated from the estimated score function converges
toward a proximate area of the original one. Computationally, we characterize
the hardness of both forward inference and backward computation of latent DiTs,
assuming the Strong Exponential Time Hypothesis (SETH). For forward inference,
we identify efficient criteria for all possible latent DiTs inference algorithms and
showcase our theory by pushing the efficiency toward almost-linear time inference.
For backward computation, we leverage the low-rank structure within the gradient
computation of DiTs training for possible algorithmic speedup. Specifically, we
show that such speedup achieves almost-linear time latent DiTs training by casting
the DiTs gradient as a series of chained low-rank approximations with bounded
error. Under the low-dimensional assumption, we show that the statistical rates and
the computational efficiency are all dominated by the dimension of the subspace,
suggesting that latent DiTs have the potential to bypass the challenges associated
with the high dimensionality of initial data.

1 Introduction

We investigate the statistical and computational limits of latent diffusion transformers (DiTs), assum-
ing the data is supported on an unknown low-dimensional linear subspace. This analysis is not only
practical but also timely. On one hand, DiTs have demonstrated revolutionary success in generative
Al and digital creation by using Transformers as score networks [Esser et al., 2024, Ma et al., 2024,
Chen et al., 2024a, Mo et al., 2023, Peebles and Xie, 2023]. On the other hand, they require significant
computational resources [Liu et al., 2024], making them challenging to train outside of specialized
industrial labs. Therefore, it is natural to ask whether it is possible to make them lighter and faster
without sacrificing performance. Answering these questions requires a fundamental understanding of
the DiT architecture. This work provides a timely theoretical analysis of the fundamental limits of
DiT architecture, aided by the analytical feasibility provided by the low-dimensional data assumption.
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Empirically, Latent Diffusion is a go-to design for effectiveness and computational efficiency [Rom-
bach et al., 2022, Liu et al., 2021, Pope et al., 2021, Su and Wu, 2018]. Theoretically, it is capable of
hosting the assumption of low-dimensional data structure (see Assumption 2.1 for formal definition)
for detailed analytical characterization [Chen et al., 2023, Bortoli, 2022]. In essence, diffusion models
with low-dimensional data structures manifest a natural lower-dimensional diffusion process through
an encoder/decoder within a robust and informative latent representation feature space [Rombach
et al., 2022, Pope et al., 2021]. Such lower-dimensional diffusion improves computational efficiency
by reducing data complexity without sacrificing essential information [Liu et al., 2021]. With this
assumption, Chen et al. [2023] decompose the score function of U-Net based diffusion models into
on-support and orthogonal components. This decomposition allows for the characterization of the
distinct behaviors of the two components: the on-support component facilitates latent distribution
learning, while the orthogonal component facilitates subspace recovery.

In our work, we utilize low-dimensional data structure assumption to explore statistical and com-
putational limits of latent DiTs. Our analysis includes the characterizations of statistical rates and
provably efficient criteria. Statistically, we pose two questions and provide a theory to characterize
the statistical rates of latent DiT under the assumption of a low-dimensional data:

Question 1. What is the approximation limit of using transformers to approximate the DiT score
function, particularly in the low-dimensional data subspace?

Question 2. How accurate is the estimation limit for such a score estimator in practical training
scenarios? With the score estimator, how well can diffusion transformers recover the data distribution?

Computationally, the primary challenge of DiT lies in the transformer blocks’ quadratic complexity.
This computational burden applies to both inference and training, even with latent diffusion. Thus, it
is essential to design algorithms and methods to circumvent this Q(L?) where L is the latent DiT
sequence length. However, there are no formal results to support and characterize such algorithms.
To address this gap, we pose the following questions and provide a fundamental theory to fully
characterize the complexity of latent DiT under the low-dimensional linear subspace data assumption:

Question 3. Is it possible to improve the 2(L?) time complexity with a bounded approximation error
for both forward and backward passes? What is the computational limit for such an improvement?

Contributions. We study the fundamental limits of latent DiT. Our contributions are threefold:

* Score Approximation. We address Question 1 by characterizing the approximation limit of
matching the DiT score function with a transformer-based score estimator. Specifically, under mild
data assumptions, we derive an approximation error bound for the score network, sub-linear in
the latent space dimension (Theorem 3.1). These results not only explain the expressiveness of
latent DiT (under mild assumptions) but also provide guidance for the structural configuration of
the score network for practical implementations (Theorem 3.1).

* Score and Distribution Estimation. We address Question 2 by exploring the limitations of score
and distribution estimations of latent DiTs in practical training scenarios. Specifically, we provide a
sample complexity bound for score estimation (Theorem 3.2), using norm-based covering number
bound of transformer architecture. Additionally, we show that the learned score estimator is able
to recover the initial data distribution (Corollary 3.2.1).

* Provably Efficient Criteria and Existence of Almost Linear Time Algorithms. We address
Question 3 by providing provably efficient criteria for latent DiTs in both forward inference and
backward computation/training. For forward inference, we characterize all possible efficient
DiT algorithms using a norm-based efficiency threshold for both conditional and unconditional
generation (Proposition 4.1). Efficient algorithms, including almost-linear time algorithms (Propo-
sition 4.2), are possible only below this threshold. For backward computation, we prove the
existence of almost-linear time DiT training algorithms (Theorem 4.1) by utilizing the inherent
low-rank structure in DiT gradients through a chained low-rank approximation.

Interestingly, both our statistical and computational results are dominated by the subspace dimen-
sion under the low-dimensional assumption, suggesting that latent DiT can potentially bypass the
challenges associated with the high dimensionality of initial data.

Organization. Section 2 includes background on score decomposition and Transformer-based
score networks. Section 3 includes DiTs’ statistical rates. Section 4 includes DiTs’ provably efficient
criteria. Section 5 includes concluding remarks. We defer discussions of related works to Appendix C.
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Notations. We use lower case letters to denote vectors, e.g., 2 € RP. |||, and |]2]
denote its Euclidean norm and Infinite norm respectively. We use upper case letters to de-
note matrix, e.g., Z € R™>L. | Z],, |1Z]|ps and [|Z]| denote the 2-norm, operator norm

and Frobenius norm respectively. | Z||, , denotes the p,g-norm where the p-norm is over

columns and g-norm is over rows. Given a function f, let || f(z)|| > = ([ ||f(z)|>dz)"/2, and
1f Ol iy = supsry (I1f (@) = fF@)llo/llz — ylly). With a distribution P, we denote || f[| 2 py =

([p If(z)]|3d2)"/? as the L?(P) norm. Let f; P be a pushforward measure, i.e., for any measurable
Q, (f4P)(Q) = P(f~1(Q)). We use ¢ for (conditional) Gaussian density functions.

2 Background

This section reviews the ideas we built on, including an overview of diffusion models (Section 2.1),
the score decomposition under the linear latent space assumption (Section 2.2), and the transformer
backbone in DiT (Section 2.3).

2.1 Score-Matching Denoising Diffusion Models

We briefly review forward process, backward process and score matching in diffusion models.

Forward and Backward Process. In the forward process, Diffusion models gradually add noise
to the original data zg € RP, and g ~ P,. Let z; denote the noisy data at the timestamp ¢,
with marginal distribution and destiny as P; and pt The conditional distribution P(x;|x) follows
N(B(t)xg,o(t)Ip), where 5(t) = exp(— fo (s)ds/2), =1- %), and w(t) > Ois a
nondecreasing weighting function. In practice, the forward process terminates at a large enough 7’
such that Pr is close to N (0, Ip). In the backward process, we obtain y; by reversing the forward
process. The generation of y; depends on the score function V log p;(-). However, this is unknown in
practice, we use a score estimator syy (-, ) to replace V log p¢(-), where sy (-, t) is usually a neural
network with parameters W. See Appendix D.1 for the details.

Score Matching. To estimate the score function, we use the following loss

T
min [ (OB, [lsw (o1, t) ~ Vlogpi(en) 3]
w To

where v(t) is the weight function, and T} is a small value to stabilize training and prevent score

function from blowing up [Vahdat et al., 2021]. However, it is hard to compute V log p;(-) with

available data samples. Therefore, we minimize the equivalent denoising score matching objective
T

min | A(OEzo~n, [EMIO [||5W(a:t, t) — Vo, log ¥y (a | xo)ngﬂ dt, @.1)
To
where ¢ (x¢|zo) is the transition kernel, then V, log ¢ (x¢|x0) = (B(t)zo — x¢) /o (¢).

To train the parameters W in the score estimator sy (-, t), we use the empirical version of (2.1). We
select n i.i.d. data samples {xo;}7 ; ~ Py, and sample time ¢; (1 < ¢ < n) uniformly from interval
[To, T). Given zg ;, we sample z;, from N(5(t;)zo,,0(t;)Ip). The empirical loss is

1 n
= > lsw (e, ti) — 20l (2.2)
=1
For convenience of notation, we denote population loss L(WW) = Ep, [L(W)).

2.2 Score Decomposition in Linear Latent Space

In this part, we review the score decomposition in [Chen et al., 2023]. We consider that the D-
dimensional input data x supported on a dy-dimensional subspace, where dy < D.

Assumption 2.1 (Low-Dimensional Linear Latent Space). Let = denote the initial data att = 0. x
has a latent representation via x = Bh, where B € RP*do jg an unknown matrix with orthonormal
columns. The latent variable h € R% follows the distribution P, with a density function py,.

Remark 2.1. By “linear latent space,” we mean that each entry of a given latent vector is a linear
combination of the corresponding input, i.e., x = Bh. This is also known as the “low-dimensional
data” assumption in literature [Chen et al., 2023].
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Let Z and & denote the perturbed data and its associated latent variable at ¢ > 0, respectively. Based
on the low-dimensional data structure assumption, we have the following score decomposition theory:
on-support score s, (B Z,t) and orthogonal score s_ (7, t).

Lemma 2.1 (Score Decomposition, Lemma 1 of [Chen et al., 2023]). Let data x = Bh follow
Assumption 2.1. The decomposition of score function V log p;(Z) is

Vlogp:(Z) = BVlogp}'(h) — (Ip — BB") Z/o(t), h=DB'z, (2.3)
sy (h,t) s_(z,t)

where pf(h) == [ 1¢(h|h)pn(h)dh, :(:|h) is the Gaussian density function of N (3(t)h, o (t)I4,).
B(t) = e t/? and o(t) = 1 — e~*. We restate the proof in Appendix D.2 for completeness.

Additionally, our theoretical analysis is based on two following assumptions as in [Chen et al., 2023].

Assumption 2.2 (Tail Behavior of P,). The density function p; > 0 is twice continuously differen-
tiable. Moreover, there exist positive constants Ay, A1, Ay such that when ||h||, > Ao, the density

function py, (k) < (2m)~%/2 Ajexp(—Az|[|3/2).

Assumption 2.3 (L, -Lipschitz of s, (h,t)). The on-support score function s, (h,t) is L, -
Lipschitz in h € R% for any ¢ € [0, 7).

2.3 Score Network and Transformers

In this part, we introduce the score network architecture and Transformers. Transformers are the
backbone of the score network in DiT. By Assumption 2.1, h = BTz € R% with do < D.

(Latent) Score Network. Following [Chen et al., 2023], we rearrange (2.3) into
Vlog pi(T) = B(o(t)Viegpl(B'Z) + B'Z)/o(t) — T/o(t). (2.4)

:=q(BTz,t): R0 x[Ty,T] — Rdo

We use Wp € RP>*4 to approximate B € RP* % and a neural network f(W 2 Z,t) to approximate
q(BTZ,t). We adopt the following score network class for diffusion in latent space (i.e., in h € R%)

S={sw(@ t) = Wpf(W5Z,t)/o(t) = T/a(t), W = {Wg, f}}, (2.5)
where the columns in W are orthogonal, f : R9 x [Tp, T] — R% is a neural network. In this work,
we focus on the diffusion transformers (DiTs), i.e., using Transformer for f [Peebles and Xie, 2023].

Transformers. A Transformer block consists of a self-attention layer and a feed-forward layer,
with both layers having skip connection. We use 77! : R¥*L — R4*L to denote a Transformer
block. Here r and m are the number of heads and head size in self-attention layer, and [ is the hidden
dimension in feed-forward layer. Let X € R%*% be the model input, then we have the model output

Attn(X) = X + > WX - Softmax ((W}(X)T WéX) : 2.6)
FF o Attn(X) = Attn(X) 4+ Wy - ReLU(Wy - Attn(X) 4 by 1L) + bol ], (2.7)
where Wi, W, Wi, € R™*4 Wi, € R™>™ Wy € R* W, € R by € RY, by € RY,
In our work, we use Transformer networks with positional encoding £ € R%*L. We define the
Transformer networks as the composition of Transformer blocks
7';’”” = {fr : R™*L 5 RYL | fris a composition of blocks 77™!*s}.
For example, the following is a Transformer network consisting K blocks and positional encoding
fr(X) = FF5) 6 Attn™ o ... FFW o Attn ™ (X + E). (2.8)

3 Statistical Rates of Latent DiTs with Subspace Data Assumption

In this section, we analyze the statistical rates of latent DiTs. Section 3.1 introduces the class of
latent DiT score networks. In Section 3.2, we prove the approximation limit of matching the DiT
score function with the score network class, and characterize the structural configuration of the score
network when a specified approximation error is required. Following this, in Section 3.3, utilizing the
characterized structural configuration, we prove the score and distribution estimation for latent DiTs.
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Figure 1: Overview of DiT Score Network Architecture sy (-,t). W3 denotes the linear layer from the
input data space to the linear latent space. f(-) = R™* o f7 o R(-) denotes the transformer network f7(-) with

reshaping layer R(-), where f7(-) € 7,°™!. W denotes the linear layer from the linear latent space to the
input data space. o (t) denote the variance of the conditional distribution P(x¢ | o).

3.1 DiT Score Network Class

Here, we provide the details about DiT score network class used in our analysis. In (2.5), f is
a network with Transformer as the backbone, and (h,t) € R% x [Ty, T denotes the input data.
Following [Peebles and Xie, 2023], DiT uses time point ¢ to calculate the scale and shift value in the
Transformer backbone, and it transforms an input picture into a sequential version. To achieve the
transformation, we introduce a reshape layer.

Definition 3.1 (DiT Reshape Layer R(-)). Let R(-) : R% — R¥*Z be a reshape layer that transforms
the dyp-dimensional input into a d X L matrix. Specifically, for any dy = i X ¢ image input, R(-)
converts it into a sequence representation with feature dimension d = p? (where p > 2) and
sequence length L = (i/ p)2. Besides, we define the corresponding reverse reshape (flatten) layer
R71(:) : R¥*E — Rdo g the inverse of R(-). By dy = dL, R, R™! are associative w.r.t. their input.

To simplify the self-attention block in (2.6), let W, = W5Wi, and Wi, = (W)W,
Definition 3.2 (Transformer Network Class 7;”’”). We define the Transformer network class as
ET’m’l(K, Cr, 055, Cov, C?gz?o, Ckq, 0%, Cr,Cg, L7), satisfying the constraints

« Model architecture with K blocks: f7(X) = FF¥) o Attn™ o ... FFY o Attn™ (X);
* Model output bound: Supx ||f7—( e < Crs

¢ Parameter bound in Attn() H WOV T||2 oo < C’OV ,
G NET (|, o < cE,vZ € [K];

* Parameter bound in FFO: |WH|, |, < Cr, Vi € [2),i € [K];

* Lipschitz of fr: || f7(X1) — fT(Xz)HF < LT[ X1 = Xol|p, VX1, X2 € R¥E.

|Wov) T, < Cov.

WIi(QHZQQ =

Definition 3.3 (DiT Score Network Class STT,m,z (Figure 1)). We denote STr,m,z as the DiT score
p P
network class in (2.5), replacing f with R=! o f7 o R, and f7 is from the Transformer class 7;,’“”"’1.

3.2 Score Approximation of DiT
Here, we explore the approximation limit of latent DiT score network class STT m, under linear

latent space assumption. Recall that P; is the distribution of x¢, o(¢) is the variance of P(z|zg),
dy is the dimension of latent space, L is the sequence length of transformer input, 7" is the stopping
time in forward process, Tj is the early stopping time in backward process, and L, is the Lipschitz
coefficient of on-support score function. Then we have the following Theorem 3.1.

Theorem 3.1 (Score Approximation of DiT). For any approximation error ¢ > 0 and any data
distribution Py under Assumptions 2.1 to 2.3, there exists a DiT score network St from 87_2,1,4
p

(defined in Definition 3.2), where W = {WB, fT} such that for any ¢ € [Ty, T'], we have:
H 1) = Vlogpy(-) ‘ <e-Vdo/o(t)

where o(t) = 1 — e, and the upper bound of hyperparameters in 87;2,1,4 are

K = O(7%), Cr = O (doLs, /o Vog(do/Ty) + 108 (1/€) ) ,

2Pt
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Cov = (1/e)°W, Cov = (1/e )0(17 (?i2§ (1/0)°W, Crq = (1/)°W,
Cp = O(LY?), Op> = (1/¢)°C = (1/0)°W, LT = O (doLs, ) -

Proof Sketch. Our proof is built on the key observation that there is a tail behavior of the
low-dimensional latent variable distribution P, (Assumption 2.2). Recall that Vlogp:(Z) =
Bq(h,t)/o(t) — /o (t), where h = BT Z (defined in (2.4)). By taking W5 = B, our aim reduces
to construct a transformer network to approximate q(h, t). To achieve this, we firstly approximate
q(h,t) with a compact-supported continuous function, based on the tail behavior of P,. Then we
construct a transformer to approximate the compact-supported continuous function using the universal
approximation capacity of transformer [Yun et al., 2020]. See Appendix F.1 for a detailed proof. [

Intuitively, Theorem 3.1 indicates the capability of the transformer-based score network to approx-
imate the score function with precise guarantees. Furthermore, Theorem 3.1 provides empirical
guidance for the design choices of the score network when a specified approximation error is required.

Remark 3.1 (Comparing with Existing Works). Theoretical analysis of DiTs is limited. Previous
works that do not specify the model architecture assume that the score estimator is well-approximated
[Benton et al., 2024, Wibisono et al., 2024]. To the best of our knowledge, this work is the first to
present an approximation theory for DiTs, offering the estimation theory in Theorem 3.2 and Corol-
lary 3.2.1 based on the estimated score network, rather than a perfectly trained one.

Remark 3.2 (Latent Dimension Dependency). Theorem 3.1 suggests that the approximation capacity
and Transformer network size primarily depend on the latent variable dimension dy = d x L. This
indicates that DiTs can potentially bypass the challenges associated with the high dimensionality of
initial data by transforming input data into a low-dimensional latent variable.

3.3 Score Estimation and Distribution Estimation

Besides score approximation capability, Theorem 3.1 also characterizes the structural configuration
of the score network for any specific precision, e.g., K, C'g, Cr, etc. This characterization enables
further analysis of the performance of score network in practical scenarios. In Theorem 3.2, we
provide a sample complexity bound for score estimation. In Corollary 3.2.1, show that the learned
score estimator is able to recover the initial data distribution.

Score Estimation. To derive a sample complexity for score estimation using S;-2.1,4, we rewrite
p

the score matching objective in (2.2) as We argming s .., E(sw), W= {WB, fT}
2L

P

Theorem 3.2 shows that as sample size n — 0o, sy (-, t) convergences to V log p;(-).

Theorem 3.2 (Score Estimation of DiT). Under Assumptions 2.1 to 2.3, we choose S;2.1.4 as in
Theorem 3.1 using € € (0,1) and L > 1, With probability 1 — 1/poly(n), we have

1 T ~ 1 2L 1 1
~ (1) = V1 -H dt=0(——.20/9" 4 4 _— 2}
T—Jb/;‘FW( ) 8P ()|| 12 <nume RS VE T
(3.1

where O hides the factors related to D,dy,d, L., and logn.

S4
Proof. See Appendix F.2 for a detailed proof. O

Intuitively, Theorem 3.2 shows a sample complexity bound for score estimation in practice.

Remark 3.3 (Comparing with Existing Works). [Zhu et al., 2023] provides a sample complexity
for simple ReLU-based diffusion models under the assumption of an accurate score estimator. To
the best of our knowledge, we are the first to provide a sample complexity for DiTs, based on the
learned score network in Theorem 3.1 and the quantization (piece-wise approximation) approach for
transformer universality [Yun et al., 2020]. Furthermore, our first term shows a convergence rate of
1/T, outperforming [Chen et al., 2023], in which the first term is independent of T'.
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Remark 3.4 (Double Exponential Factor and Inconsistent Convergence). Theorem 3.2 reports an
explicit result on sample complexity bounds for score estimation of latent DiTs: a double exponential
factor 2(1/9°" in the first term. We remark that this arises from the required depth K is O(e~2L),
and the norm of required weight parameters is (1/¢)°(!) as shown in Theorem 3.1, assuming the
universality of transformers requires dense layers [Yun et al., 2020]. This double exponential factor
causes inconsistent convergence with respect to sample size n, as its large value prevents setting € as
a function of n to balance the first and second terms in (3.1). This motivates us to rethink transformer
universality and explore new proof techniques for DiTs, which we leave for future work.

Definition 3.4. For later convenience, we define {(n, €, L) := —L7 - 2(/ 9% 4 —5 + €.

Distribution Estimation. In practice, DiTs generate data using the discretized version with step size
1, see Appendix D.1 for details. Let ﬁTO be the distribution generated by s using the discretized
backward process in Theorem 3.2. Let P#O and péﬂo be the distribution and density function of
on-support latent variable h at T. We have the following results for distribution estimation.

Corollary 3.2.1 (Distribution Estimation of DiT, Modified From Theorem 3 of [Chen et al., 2023]).
Let T = O(logn), Ty = O(min{cy, 1/Ls, }), where ¢y is the minimum eigenvalue of Ep, [hh"].
With the estimated DiT score network sy in Theorem 3.2, we have the following with probability
1 —1/poly(n).
(i) The accuracy to recover the subspace B is HWBW; - BBT Hi =0 (&(nye, L) /co).
(ii) With the conditions KL(P||N (0, I4,)) < oo, there exists an orthogonal matrix U € R%*? such
that we have the following upper bound for the total variation distance
TV(PY}EO?(WBU)JﬁTo) = 6( f(na67L) -logn), (3.2)

where O hides the factor about D, dy,d, Ls, ,Jogn,and T — Ty. and (WU )JﬁTa denotes the
pushforward distribution.

(iii) For the generated data distribution ﬁTO, the orthogonal pushforward (I — WpW )ﬁﬁTo is
N(0,%), where ¥ < aTyl for a constant a > 0.

S4

Proof. See Appendix F.3 for a detailed proof. O

Intuitively, Corollary 3.2.1 shows the estimation results in 3 parts: (i) the accuracy of recovering the

subspace B; (ii) the estimation error between 13T0 and P{ﬁo; and (iii) the vanishing behavior of 13T0 in
the orthogonal space. These indicate that the learned score estimator is capable of recovering the
initial data distribution. Notably, Corollary 3.2.1 is agnostic to the specifics of £(n, €, L).

Remark 3.5 (Comparing with Existing Works). Oko et al. [2023] analyze the distribution estimation
under the assumption that the initial density is supported on [—1, 1]” and smooth in the boundary.
Our Assumption 2.2 demonstrates greater practical relevance. This suggests that our method of
distribution estimation aligns more closely with empirical realities.

Remark 3.6 (Subspace Recovery Accuracy). (i) of Corollary 3.2.1 confirms that the subspace is
learned by DiTs. The error is proportional to the sample complexity for score estimation and depends
on the minimum eigenvalue of the covariance of P,.

4 Provably Efficient Criteria

Here, we analyze the computational limits of latent DiTs under low-dimensional linear subspace data
assumption (i.e., Assumption 2.1). The hardness of DiT models ties to both forward and backward
passes of the score network in Definition 3.3. We characterize them separately.

4.1 Computational Limits of Backward Computation

Following Section 2, suppose we have n i.i.d. data samples {z¢;}_; ~ Py, and time ¢;, (1 <
i < n) uniformly sampled from [Ty, T]. For each data z¢,; € R”, we sample Ty, € RP from
N(B(ti,)wo.iy0(tiy)Ip). Let (WaR™1(+))T be the inverse transformation of W4 R~1(-), and denote
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Yo = (WaR 1) (20,) € R¥E. We rewrite the empirical denoising score-matching loss (2.2) as

dx L
1 - -1 T 2 1 - —1 T 2
gZHWAR (fr(BWaze,))) = zo4||,, = gZH Wa R fr(R(W ) — Yo )HF-
i=1 “’_doxl =1 pxdy dox1 dxL
4.1

For efficiency, it suffices to focus on just transformer attention heads of the DiT score network due to
their dominating quadratic time complexity in both passes. Thus, we consider only a single layer
attention for f, to simplify our analysis. Further, we consider the following simplifications:

(S0) To prove the hardness of (4.1) for both full gradient descent and stochastic mini-batch gradient
descent methods, it suffices to consider training on a single data point.

(S1) For the convenience of our analysis, we consider the following expression for attention mech-
anism. Let X,Y € Rl Let W, Wo, Wy € R** be attention weights such that
Q= WgoX ¢ RXL K = WgX € R*Land V = Wy X € R**L. We write attention
mechanism of hidden size s and sequence length L as

Att(X) = (WoWyX) D™ exp(XTWEWoX) € R, 4.2)

V' multiplication K -Q multiplication

with D := diag(exp(XWoW L XT)1,). Here, exp(-) is entry-wise exponential function, i.e.,
exp(A), ; = exp(4;,;) for any matrix A, diag(-) converts a vector into a diagonal matrix with
the vector’s entries on the diagonal, and 1, is the length-L all ones vector.

(S2) Since V multiplication is linear in weight while K'-Q) multiplication is exponential in weights,
we only need to focus on the gradient update of K-() multiplication. Therefore, for efficiency
analysis of gradient, it is equivalent to analyzing a reduced problem with fixed Wo Wy X =
const..

(S3) To focus on the DiT, we consider the low-dimensional linear encoder W 4 to be pretrained and
to not participate in gradient computation. This aligns with common practice [Rombach et al.,
2022] and is justified by the trivial computation cost due to the linearity of W >

(S4) To further simplify, we introduce A;, Ay, Az € R**L and W € R?*? via

2
HVVAR*1 (fT(R(W,:\rIt,-O ) — Yo )H (By (S0), (S1) and (52))
—— ~—~ F \
=X €cRIxL =Y eRIXL

_ -1 -1 T T
= [wart( wowy, X Dlew( XL wiwg X )-Y)|
=Woy €Rdxd =Az€RIxL ::AI ERLxd =W eRdxd =AzERIXE

4.3)
Notably, A1, Ag, A3, X, Y are constants w.r.t. training above loss with gradient updates.

Therefore, we simplify the objective of training DiT into

Definition 4.1 (Training Generic DiT Loss). Given A;, Ay, A3, Y € R¥L and Woy, W € RIx4
following (S4), Training a DiT with /5 loss on a single data point X, Y € R¥*Z is formulated as

- .1 —1 —1 T 2
min Lo(W) = min 5HWAR (Woy AsD " exp(A] W A,) — Y)HF. (4.4)
Here D := diag(exp(A] WA3)1,) € REXE
Remark 4.1 (Conditional and Unconditional Generation). Ly is generic. If A; # Ay, € RI¥*E,

Definition 4.1 reduces to cross-attention in DiT score net (for conditional generation). If A; = A €
R4*L_ Definition 4.1 reduces to self-attention in DiT score net (for unconditional vanilla generation).

We introduce the next problem to characterize all possible gradient computations of optimizing (4.4).

’The gradient computation is linear in W4, and hence the computation w.r.t. W is cheap and upper-bounded
by L - poly(d) time in a straightforward way.
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Problem 1 (Approximate DiT Gradient Computation (ADITGC(L,d,T',¢))). Given
Ay, Ag, A3 Y € R¥¥E. Let e > 0. Assume all numerical values are in O(log(L))-bits
encoding. Let loss function £y follow Definition 4.1. The problem of approximating gradient
computation of optimizing empirical DiT loss (4.4) is to find an approximated gradient matrix

~ ~ (W)
GW) e R4%d guch that ||Q — %” < l/poly(L). Here, ||A||

max = max ‘= max; j |A;;| for any
matrix A.

In this work, we aim to investigate the computational limits of all possible efficient algorithms of
ADITGC with e = 1/poly(L). Yet, the explicit gradient of DiT denoising score matching loss (4.4)
is too complicated to characterize ADITGC. To combat this, we make the following observations.

(O1) Let gi(+) == WARTI(:) : RIXL — R, go(-) == Att(:) : R>E — R4 and g3(-) =
R(Wj ) : RP — R4*L such that g3(x) = X for x € RP (with D > dy = dL).

(02) Vectorization of f7. For the ease of presentation, we use notation flexibly that f7 to denote
both a matrix in R%*” and a vector in R%" in the following analysis. This practice does not

affect correctness. The context in which f7 is used should clarify whether it refers to a matrix
or a vector. Explicit vectorization follows Definition D.1.

(03) Linearity of g;. By linearity of W4 R™1(-), we treat g; as a matrix in R% >4 acting on vector
fr() e R4,

Therefore, we have Lo = ||g1 - [92(g3) — Y] dgz

3, such that its gradient involves % = 01910 From

above, we only need to focus on proving the computation time and error control of term g‘g/{‘}
for gradient w.r.t W. Luckily, with tools from fine-grained complexity theory [Alman and Song,
2023, 2024a,b,c] and tensor trick (see Appendix D.3), we prove the existence of almost-linear time
algorithms for Problem 1 in the next theorem. Let vec(W) := W for any matrix W following

Definition D.1.

Theorem 4.1 (Existence of Almost-Linear Time Algorithms for ADITGC). Suppose all numerical
values are in O(log L)-bits encoding. Let max(||Wov A3 |lmax; [|Wk A1 pax: 1WAz ,.) < T
There exists a L'*°(!) time algorithm to solve ADITGC(L,, L,d = O(log L),T = o(y/Tog L)) (i.e.,
Problem 1) with loss £ from Definition 4.1 up to 1/poly(L) accuracy. In particular, this algorithm

_ ~(W
outputs gradient matrices G("") € R?*? such that ||Q( ) 2e || .. < 1/poly(L).

Proof Sketch. Our proof is built on the key observation that there exist low-rank structures within the
DiT training gradients. Using the tensor trick [Diao et al., 2019, 2018] and computational hardness
results of attention [Hu et al., 2024b, Alman and Song, 2023], we approximate DiT training gradients
with a series of low-rank approximations and carefully match the multiplication dimensions so
that the computation of givf, forms a chained low-rank approximation. We complete the proof by
demonstrating that this approximation is bounded by a 1/poly(L) error and requires only almost-
linear time. See Appendix G.2 for a detailed proof. O

Remark 4.2. We remark that Theorem 4.1 is dominated by the relation between L and d, hence by
the subspace dimension® dy = dL. A smaller dy makes Theorem 4.1 more likely to hold.

4.2 Computational Limits of Forward Inference

Since the inference of score-matching diffusion models is a forward pass of the trained score estimator
sw, the computational hardness of DiT ties to the transformer-based score network,

sw (A1, As, A3) = WaR™(WovAs D Lexp (Al Wi WoAs)), 4.5)
—_——
dxL  LXL HLx’s_/\?x’L—/

following notation in Definition 4.1. For inference, we study the following approximation problem.
Notably, by Remark 4.1, (4.5) subsumes both conditional and unconditional DiT inferences.

Problem 2 (Approximate DiT Inference ADITI(d, L,T',ér)). Let p > 0 and B > 0. Given
A1, As, A3 € RYE and Woy, Wk, Wg € R4 with guarantees that |[WovAsll, <
B, |[WkAill, < B and [|[WgA;y|| ., < B, we aim to study an approximation problem

3See Assumption 2.1.
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ADITI(d, L, B, 6r), that approximates sy (A1, Az, A3) with a vector Z € R% (with dy = d- L) such
that Hgf WaR™! (WOVAgD’1 exp(AlTWI—(rWQAQ)) ||max < ép. Here, ||A]| = max; ; |A4;j]
for any matrix A.

max

By (02) and (O3), we make an observation that Problem 2 is just a special case of [Alman and Song,
2023]. Hence, we characterize the all possible efficient algorithms for ADITI with next proposition.

Proposition 4.1 (Norm-Based Efficiency Phase Transition). Let [|WqAs| < B, [[WkAi||, < B
and |[Wov As||, < B with B = O(y/log L). Assuming SETH (Hypothesis 1), for every ¢ > 0,

there are constants C, C,, C, > 0 such that: there is no O(n2_qg-time (sub-quadratic) algorithm for
the problem ADITI(L,d = Clog L, B = Cyp\/log L, 0p = L™=).

Remark 4.3. Proposition 4.1 suggests an efficiency threshold for the upper bound of ||[Wx A|| .,
[Wq Azl .. [Wov As|| .. Only below this threshold are efficient algorithms for Problem 2 possible.

Moreover, there exist almost-linear DiT inference algorithms following [Alman and Song, 2023].

Proposition 4.2 (Almost-Linear Time DiT Inference). Assuming SETH, the DiT inference problem
ADITI(L,d = O(log L), B = o(+/Iog L), 6 = 1/poly(L)) can be solved in L'+°(1) time.

Remark 4.4. Proposition 4.2 is a special case of Proposition 4.1 under the efficiency threshold.

Remark 4.5. Propositions 4.1 and 4.2 are dominated by the relation between L and d, hence by the
subspace dimension dy = dL. A smaller dy makes Propositions 4.1 and 4.2 more likely to hold.

5 Discussion and Concluding Remarks

We explore the fundamental limits of latent DiTs with 3 key contributions. First, we prove that
transformers are universal approximators for the score functions in DiTs (Theorem 3.1), with
approximation capacity and model size dependent only on the latent dimension, suggesting DiTs
can handle high-dimensional data challenges. Second, we show that Transformer-based score
estimators converge to the true score function (Theorem 3.2), ensuring the generated data distribution
closely approximates the original (Corollary 3.2.1). Third, we provide provably efficient criteria
(Proposition 4.1) and prove the existence of almost-linear time algorithms for forward inference
(Proposition 4.2) and backward computation (Theorem 4.1). Our computational results hold for both
unconditional and conditional generation of DiTs (Remark 4.1). These results highlight the potential
of latent DiTs to achieve both computational efficiency and robust performance in practical scenarios.

Practical Guidance from Computational Results. Section 4 analyzes the computational feasibility
and identifies all possible efficient DiT algorithms/methods for both forward inference and backward
training. These results provide practical guidance for designing efficient methods:

* The latent dimension should be sufficiently small: d = O(log L) (Theorem 4.1, Propositions 4.1
and 4.2).

* Normalization of K, @), and V' in DiT attention heads enhances performance and efficiency:
— For efficient inference: max {||Wx A1, [[WoAz|, |[Wov As||} < B with B = o(y/log L)
(Proposition 4.2) and A1, As, A3 being the input data associated with K, Q, V.
— For efficient training: max {||Wx A1 |, [[WoAz||, |[Wov As||} <T withT' = o(v/Iog L) (The-
orem 4.1).

We remark that these conditions are necessary but not sufficient; sufficient conditions depend on the
specific design of the methods used. This is due to the best- or worst-case nature of hardness results.

Limitations and Future Direction. As discussed in Remark 3.4, the double exponential factor in
our explicit sample complexity bound (Theorem 3.2) suggests a possible gap in our understanding
of transformer universality and its interplay with DiT architecture. This motivates us to rethink
transformer universality and explore new proof techniques for DiTs, which we leave for future work.
Besides, due to its formal nature, this work does not provide immediate practical implementations.
However, we expect that our findings provide valuable insights for future diffusion generative models.

Post-Acceptance Note [October, 29, 2024]. A follow-up work by Hu et al. [2024f] alleviates
the double exponential factor and achieves minimax optimal statistical rates for DiTs under Holder
smoothness data assumptions.

https://doi.org/10.52202/079017-0992 31571



Broader Impact

This theoretical work aims to shed light on the foundations of diffusion generative models and is not
anticipated to have negative social impacts.
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A More Discussions on Low-Dimensional Linear Latent Space

Our analysis is based on the low-dimensional linear latent space assumption (Assumption 2.1). Here
we further discuss this in light of our theoretical results

Our results are more general and extend beyond Assumption 2.1. In addition to the case where
dy < D, our theoretical results apply to two other settings: dg = D and dy > D. Especially, for
dy = D, our results still hold by setting B as the identity matrix Ip. Namely, our results hold after
removing the linear subspace assumption.

* Statistically, for score approximation, score estimation, and distribution estimation, the upper
bounds depend on the dimension of the latent variable dy, other than d. A smaller dy allows
for a reduced model size to achieve a specified approximation error compared to a larger one
(Theorem 3.1). Additionally, with a smaller dy, both score and distribution estimation errors are
reduced relative to scenarios with larger ones (Theorem 3.2 and Corollary 3.2.1).

» Computationally, smaller dy benefits the provably efficient criteria (Proposition 4.1, almost-linear
time algorithms for forward inference (Proposition 4.2) and backward computation (Theorem 4.1).
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B Notation Table

We summarize our notations in the following table for easy reference.

Table 1: Mathematical Notations and Symbols

Symbol Description

2]l Euclidean norm, where z is a vector

2]l o Infinite norm, where z is a vector

1 Z||5 2-norm, where Z is a matrix

1Z1,p Operator norm, where Z is a matrix

1 Z|| Frobenius norm, where Z is a matrix

11, , P, g-norm, where Z is a matrix

I|f (@)l 2 L?-norm, where f is a function

1f @)l p2py L?(P)-norm, where f is a function and P is a distribution

£l Lip Lipschitz-norm, where f is a function

fyP Pushforward measure, where f is a function and P is a distribution
n Sample size

T Data point in original data space, z € R”

h Latent variable in low-dimensional subspace, h € R%

Dh The destiny function of h

B The matrix with orthonormal columns to transform A to z, where B € RP*do
T Perturbed data variable at £ > 0

B h=B"z

T Stopping time in the forward process of Diffusion model

Ty Stopping time in the backward process of Diffusion model

W Discretized step size in backward process

pi(+) The density function of « for at time ¢

() The density function of & at time ¢

P (Conditional) Gaussian density function

d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT

X Sequence input of transformer network in DiT, where X € R4*E
E Position encoding, where E € R¥* L

R(") Reshape layer in DiT, R(:) : R% — RIxL

Wg The orthonormal matrix to approximate B, where W € RP>do
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C Related Works

Organization. In the following, we first discuss recent developments in DiTs. Then, we discuss the
main technique of our statistical results: the universality (universal approximation) of transformer.
Next, we discuss recent theoretical developments in diffusion generative models. Lastly, we discuss
other aspects of transformer in foundation models beyond diffusion models.

Diffusion Transformers. Diffusion [Ho et al., 2020] and score-based generative models [Song
and Ermon, 2019] have been particularly successful as generative models of images, video and
biomedical data [Nichol et al., 2021, Ramesh et al., 2022, Liu et al., 2024, Zhou et al., 2024a,b,
Wang et al., 2024a,b]. Recently, transformer-based diffusion models have garnered significant
attention in research. The U-ViT model [Bao et al., 2022] incorporates transformer blocks into a
U-net architecture, treating all inputs as tokens. In contrast, DiT [Peebles and Xie, 2023] utilizes a
straightforward, non-hierarchical transformer structure. Empirically, diffusion transformers (DiTs)
[Peebles and Xie, 2023] have emerged as a significant advancement (e.g., SORA [OpenAl, 2024,
Liu et al., 2024] from OpenAl), effectively combining the strengths of transformer architectures and
diffusion-based approaches. Models like MDT [Gao et al., 2023a] and MaskDiT [Zheng et al., 2023]
improve the training efficiency of DiT by applying a masking strategy.

Universality and Memory Capacity of Transformers. The universality of transformers refers to
their ability to serve as universal approximators. This means that transformers theoretically models
any sequence-to-sequence function to a desired degree of accuracy. Yun et al. [2020] establish that
transformers can universally approximate sequence-to-sequence functions by stacking numerous
layers of feed-forward functions and self-attention functions. In a different approach, Jiang and Li
[2023] affirm the universality of transformers by utilizing the Kolmogorov-Albert representation
Theorem. Most recently, Kajitsuka and Sato [2023] show that transformers with one self-attention
layer is a universal approximator.

The memory capacity of a transformer is a practical measure to test the theoretical results of the
transformer’s universality, by ensuring the model can handle necessary context and dependencies. By
memory capacity, we refer to the minimal set of parameters such that the model (i.e., transformer)
approximates all input-output pairs in the training dataset with a bounded error. Several works address

the memory capacity of transformers. Kim et al. [2022] show that transformers with O(d+ L++v NL)
parameters are sufficient to memorize N length-L and dimension-d sequence-to-sequence data points
by constructing a contextual mapping with O(L) attention layers. Mahdavi et al. [2023] show that a
multi-head-attention with / heads is able to memorize O(hL) examples under a linear independence
data assumption. Kajitsuka and Sato [2023] show that a single layer transformer with O(N Ld + d?)
parameters is able to memorize N length-L and dimension-d sequence-to-sequence data points by
utilizing the connection between the softmax function and Boltzmann operator. Hu et al. [2024d],
Wang et al. [2023] extend the results of [Kajitsuka and Sato, 2023, Yun et al., 2020] to prompt
tuning and discuss the memorization of the data sequences. Another line of research establishes a
different kind of memory capacity for transformers by connecting transformer attention with dense
associative memory models (modern Hopfield models) [Hu et al., 2024a,b,e, 2023, Wu et al., 2024a,b,
Ramsauer et al., 2020]. Notably, they define memory capacity as the smallest number of (length-L and
dimension-d) data points the model (transformer attention) is able to store and derive exponential-in-d
high-probability capacity lower bounds. In particular, Hu et al. [2024e] report a tight exponential
scaling of capacity with feature dimension from the perspective of spherical codes.

Our work is motivated by and builds on [Yun et al., 2020] to bridge the transformer’s function
approximation ability with data distribution estimation. While we do not address the memorization of
DiTs (or diffusion models in general), recent studies on dense associative models suggest viewing pre-
trained diffusion generative models as associative memory models [Achilli et al., 2024, Ambrogioni,
2023, Hoover et al., 2023]. We plan to explore this aspect in future work.

Theories of Diffusion Models. In addition to empirical success, there has been several theoretical
analysis about diffusion models [Chen et al., 2024b, Tang and Zhao, 2024]. Chen et al. [2023] studies
score approximation, estimation, and distribution recovery of U-Net based diffusion models. Benton
et al. [2024] provide convergence bounds linear in data dimensions, assuming accurate score function
approximation. Zhu et al. [2023], Wibisono et al. [2024] provide statistical sample complexity
bounds for score-matching under the similar assumptions. Oko et al. [2023] analyze the distribution

31580 https://doi.org/10.52202/079017-0992



estimation under the assumption that the initial density is supported on [—1, 1]¥ and smooth in the
boundary.

Among these works, our work is built on and closest to [Chen et al., 2023], as both assume the data
has a low-dimensional structure*. However, our work differs in three key aspects. First, beyond the
simple ReLU networks considered in [Chen et al., 2023], we provide the first score approximation
analysis for DiTs with a transformer-based score estimator. Second, our work is the first to provide
the statistical rates of DiTs (score and distribution estimation) based on transformer universality
[Yun et al., 2020] and norm-based converging number bound [Edelman et al., 2022], supporting the
practical success of DiTs [Esser et al., 2024, Ma et al., 2024]. Lastly, our work provides the first
comprehensive analysis of the computational limits and all possible efficient DiT algorithms/methods
for both forward inference and backward training. This offers timely insights into the empirical
computational inefficiency of DiTs [Liu et al., 2024] and guidance for future DiT architectures.

Transformers in Foundation Models: Transformer-Based Pretrained Models. Transformer-
based pretrained models utilize attention mechanisms to process sequential data, enabling the learning
of contextual relationships for tasks like natural language understanding and generation. These models
encompass three types: encoder-based, decoder-based, and diffusion transformers. Encoder-based
transformers, such as DNABERT [Zhou et al., 2024c, 2023, Ji et al., 2021], employ bidirectional
attention to extract feature representations DNABERT shows great potential to capture complex
patterns of genome sequences and improve tasks such as gene prediction. Decoder-based transformers
generate output sequences from encoded information using unidirectional attention, such as ChatGPT
[Radford et al., 2019, Floridi and Chiriatti, 2020, Brown et al., 2020] for natural language. The
diffusion transformers generate a sequence toward a target distribution, such as SoRA [Liu et al.,
2024] and Videofusion [Luo et al., 2023] for video generation and DecompDiff [Guan et al., 2024]
for drug design. In our paper, we present an early exploration of the statistical and computational
limits of diffusion transformer models.

“Recent work by Havrilla and Liao [2024] examines the generalization and approximation of transformers
under Holder smoothness and low-dimensional subspace assumptions.
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D Supplementary Theoretical Background
In this section, we provide some further background. We show the details about the forward and

backward process in Diffusion Models in Appendix D.1. Besides, we give the details of the proof
about the score decomposition in Appendix D.2.

D.1 Diffusion Models

Forward Process. Diffusion models gradually add noise to the original data in the forward process.
We describe the forward process as the following SDE

dz, = f%w(t):z:tdt + Vw(t)dWy, z; € RP, (D.1)

where zg ~ Py, (W});>0 is a standard Brownian motion, and w(¢) > 0 is a nondecreasing weighting
function. Let P; and p; denote the marginal distribution and destiny of x¢. The conditional distribution

P(x4|z0) follows N(B(t)xo, o(t)Ip), where B(t) = exp( S w ds/2) and o(t) = 1 — 52(1).
In practice, (D.1) terminates at a large enough 7" such that Py is close to N (0, Ip).

Backward Process. We obtain the backward process y; := xp_4 by reversing (D.1). The backward
process satisfies

1
dy; = §w(T )y +w(T — )V log pr—+(ys ] dt + w(T — t)dWy, (D.2)

where the score function V log p;(+) is the gradient of log probability density function of z;, and
W, is a reversed Brownian motion. However, V log p;(-) and Pr are both unknown in (D.2). To
resolve this, we use a score estimator sy (-, ) to replace V log p;(-), where sy (-, t) is usually a
neural network with parameters WW. Secondly, we replace Pr by the standard Gaussian distribution.
Consequently, we obtain the following SDE

- 1 . . —
dy; = [2w(T -y + w(T —t)sw(ye, T — t)] dt + /w(T — t)dWy, yo ~ N(0,Ip). (D.3)

In practice, we use discrete schemes of (D.3) to generate data, following [Song and Ermon, 2019].
We use ¢ > 0 to denote the discretization step size. For t € [kpu, (k + 1)u], we have

g = [;w(T — ), + w(T = t)sw (G, T — ku)} At + /(T — £)dW,. (D.4)

D.2 Proof of Lemma 2.1

Here we restate the proof of [Chen et al., 2023, Lemma 1] for completeness.

Proof. Recall z = Bh by Assumption 2.1 with z € RP, B € RP*d and h € R%,
By the forward process (D.1), we have

7) = / (@ | Bhypn(h)dh, (D5)
where
—_2
Gi( | BR) = [2mh(t)] P/ exp (—W) , D)

is the Gaussian transition kernel.
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Then we write the score function as

Vlog pi(Z) = Vp[: Eg) o7
_ V[ 4u(® | Bh)pu(h)dh
[ ¢:(z | Bh)pp(h)dh
_ V(@ | Bh)pn(h)dh
J¥u(@ | Bh)pp(h)dh

where the last equality holds since 1 (Z | Bh) is continuously differentiable in Z.

Plugging (D.6) into (D.7), we have

(By pluging in ])1(,7))

(By interchanging [ with V)

Vlog pi ()

- -D/2 — 7|
= fi/Jt[(Qx fg;z])ph(h)dh / % (B(t)Bh — T) exp (—W) pn(h)dh.

We then decompose above score function by projecting of Z into Span(B), i.e., replacing —T with
-BB'z — (Ip — BB")z:

Vlog pi(T)
~ [2mh(@p)) P2
[ (x| Bh)pn(h)dh

Sz

Absorbing the factor of [27/(t)]~"/? into the Gaussian kernel +;(Z | Bh), we have

(B(t)Bh— BB'z) — (Ip — BB") 7

exp <||ﬁ(t)2ii(zt)—x|2> pr(h)dh.

Vlog pi(7)
ekt P 1 _ I8(t)Bh — I3
= Fe ] B | 7 (OB~ BETE) e ( 201 2) i

- ! L (1, - BBz T

Fomm (oo 00~ #7)2) [tz | 0maoan
| 1 N 1 _

= TR / oy (BB~ BBT5) bu(z | Bhpu(h)dh— s (Ip ~ BBT) 7.
To further simplify s, we decompose 14 (Z | Bh) as

bi(% | BR)
~ omh(0)] P exp (15010 — 713
= (]2 exp (- s 0B - BT~ (15 - BBT) 7]
= [2mh(t)] "/ exp ( - 5o (1808 = BB 3]+ | (1o~ B57) 2]

—2BBWMR—BTE) (Ip — BBT)x))
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= o) exp (g ks (I80Bn BBl + (1o - 7))

(B(B(t)h — BT 7) is in Span(B) while (Ip — BB")Z is orthogonal to Span(B))

h— BTz, Ip— BBz’
- [27rh(t)]7d0/2 exp <_W> . [Qﬂ—h(t)]*(Dfdo)/Z exp (_ H( D T ) H2>’

= (BT Z|h) =Y((Ip—BBT)I)
(since B has orthonormal columns)
where both ¢, (BT Z | h) and ¢, ((Ip — BB")Z) are Gaussian.
Plugging (T | Bh) = 9, (BTE | h) Uy ((ID — BBT)E) into s, we obtain
1
54(Z,t) = C/ o) (8(t)Bh — BB Z) (BT | h)iu((Ip — BBT)Z)py(h)dh
1

= C¢y((Ip — BB")Z) / o (B(t)Bh — BB ) ¢(B "z | h)pp(h)dh

T Je(BTz |1h)ph(h)dh / ﬁ (8(t)Bh — BB z) (B % | h)pn(h)dh,

where C == [¢;((Ip — BBT)Z) [4(BTZ | h)pn(h)dh] 1.

Notably, s depends only on the projected data B Z. Therefore, we are able to replace s (Z,t) with
5. (BTZ,t). The benefit is that the dimension d of the first input in s (B "z, t) is much smaller.

Lastly, by denoting h = BT Z such that V¢, (h | k) = (B(t)h — h)y(h | h)/o(t), we arrive at

Vie(h | h)pn(h)
J ¥e(h | B)pr(h)dh
= BV logp?(BTx). (/),h (h) = / i (h|R)pn (h)d/z)

S+(BT.f, t) =B

This completes the proof. O
D.3 Preliminaries: Strong Exponential Time Hypothesis (SETH) and Tensor Trick

Here we present the ideas we built upon for Section 4.

Strong Exponential Time Hypothesis (SETH). Impagliazzo and Paturi [2001] introduce the
Strong Exponential Time Hypothesis (SETH) as a stronger form of the P # NP conjecture. It suggests
that our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems [Cygan et al., 2016, Williams, 2018].

Hypothesis 1 (SETH). For every e > 0, there is a positive integer k& > 3 such that £-SAT on formulas
with n variables cannot be solved in O (2(1=<)") time, even by a randomized algorithm.

Tensor Trick for Computing Gradients. The tensor trick [Diao et al., 2019, 2018] is an instrument
to compute complicated gradients in a clean and tractable fashion. We start with some definitions.

Definition D.1 (Vectorization). For any matrix X € RL*4, we define X = vec (X) € RE4 such
that X; ; = X(;_1yqy; foralli € [L] and j € [d].

Definition D.2 (Matrixization). For any vector X € R9, we define mat(X) = X such that
Xi; = mat(X) = X ;_1)q4; foralli € [L] and j € [d], namely mat(-) = vec™"(-).

Definition D.3 (Kronecker Product). Let A € RF«*d and B € R *% _ We define the Kronecker

product of A and B as A ® B € RFaloxdads quch that (A ® B) (i, —1)L,+is,(ju—1)ds+js+ 1S €qual to
Aia,jaBib,jb with 7, € [La],ja € [da],ib € [Lb],jb E [db].
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Definition D.4 (Sub-Block of a Tensor). For any A € RF«Xda and B € RFv X% Jet A= A® B €
REaLoxdads “Forany j € [L,], we define A; € RE»*4eds be the j-th Ly X dady, sub-block of A.

Lemma D.1 (Tensor Trick [Diao et al., 2019, 2018]). For any A € RFe*de B ¢ REvXd and
X € R%xd jtholds vec (ATXB) = (AT ® BT)X € Rbals,

To showcase the tensor trick, let’s consider a (single data point) attention following [Gao et al.,
2023b,c]. Setting D = diag (exp (XTW}T( WQX)]IL) and W = VVKVVér € R4 we have

Lo=|| Wy, X D ep{XTWX}- V_ |, (D.8)

dxd eRde ERLXL G]RLXL eRde

Proposition D.1 (Definition 4.7 of [Gao et al., 2023b]). By Definition D.3 and Definition D.4,
we identify D, ; = <exp(Ajﬂ),]lL> € Rforall j € [L], with A = X ® X €
RE“ X% and W € R¥. Therefore, for each j € [L] and i € [d], it holds Lo =

Y S § (P53 exe(A ), X W, ) = Vi)

The elegance of Proposition D.1 emerges when we vectorize the weights into vectors W, W,, making
the gradient computations (e.g., 4€o/w and 4£0/w ) more tractable by avoiding complex matrix or
tensor derivatives. This approach systematically simplifies the handling of chain-rule terms in the
gradient computation of losses like L.

Fine-Grained Complexity for Transformer. Many recent works also utilize similar techniques
from fine-grained complexity to analyze transformer architectures. Alman and Song [2023, 2024b],
Liang et al. [2024d], Alman and Song [2024a] explore the computational feasibility of inference
and training for standard softmax and tensor attention. Liang et al. [2024c] extend the single-
layer training results from [Alman and Song, 2024b] to deep transformer models. [Liang et al.,
2024a] extend [Alman and Song, 2024b] to provide a fast attention gradient approximation based
on Fourier transform. [Liang et al., 2024b] extend [Alman and Song, 2024b] to sparse attention
matrix. Hu et al. [2024d] study the computational limits of inference and training in prompt-tuning
for pretrained transformers. Hu et al. [2024c¢] study the computational limits of LoRA [Hu et al.,
2021] in transformers, identifying norm-bound conditions for efficient LoRA training and proving
the existence of nearly linear-time LoRA algorithms.

Our work is closest to [Alman and Song, 2024b, 2023]. Our forward inference computational results
build on [Alman and Song, 2023]. Our backward training computational results are related to [Alman
and Song, 2024b] but include additional analysis on reshaping and latent embedding.
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E More Background and Auxiliary Lemmas: Universal Approximation of
Transformers via Piecewise Approximation

Here, we review the universal approximation of transformers following [Yun et al., 2020].

Our goal is to reproduce the results of [Yun et al., 2020] and use or modify them as auxiliary lemmas
for proofs of Section 3 (i.e., Appendix F.)

We start with their central result and prove it in the rest of the section.

Lemma E.1 (Universal Approximation of Transformers, Theorem 3 of [Yun et al., 2020]). Let e > 0.
For any given compact-supported continuous function f : R¥*E — R4*L there exists a transformer
network f7- € 7,24, such that

(f1rx- f(X)Ifde>1/2 <e

Proof Overview. We use the following proof strategy:
» Step 1. We show that the piecewise-constant function is able to approximate compact-supported
continuous function in Appendix E.1.

» Step 2. We define modified self-attention and feed-forward layers to construct the modified
transformer. We show that the modified transformer is able to approximate piecewise-constant
function in Appendix E.2.

* Step 3. We show that the standard transformer in Appendix E.3 is able to approximate the modified
transformer.

We provide details of Step 1. in Appendix E.1, Step 2. in Appendix E.2, and Step 3. in Appendix E.3.
Then we summarize our results in Appendix E.4.

E.1 Piecewise-Constant Function Approximates Compact-Supported Continuous Function
In this subsection, we show that the piecewise-constant function is able to approximate compact-

supported continuous function.

We start with the definition of the compact-supported continuous functions of interest.

Assumption E.1. Without loss of generality, we assume that the target function in discussion is
supported on [0, 1]4*L. We denote the set of [0, 1]¢*L-supported continuous functions as F.

We introduce the notion of grid and cube for the compact support [0, 1]4*L.

Definition E.1 (Grid and Cube with Width ). Given a grid width 6, let G5 := {0,,...,1 — 6 }4*L
denote the set of grids within [0, 1], For a grid point G = (Ge(q,ke[z]) € Gs» we denote its
associated cube as

Sag = ®?:1 ®£:1 [Gjk, Gk +6) C [0, ”dXL'

dxL

Each cube S¢ represents a hyper rectangular in the multi-dimensional space [0, 1]***, constructed to

discretize the space into smaller subspaces.

We introduce the notion of piecewise-constant fucntion class w.r.t. the [0, 1]*L-supported continuous
function class F.

Definition E.2 (Piecewise-Constant Function Class). Let f5 denote the piesewise constant function of
grid width 4, and 1{-} denote the indicator function. For each G € G, and any matrix Ag € R4*L,
we define the piecewise-constant function class as

F(6) = {f(; (X =Y Ao 1{X €86}, 4 € RM} . (E.1)
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We recall that for a given sequence-to-sequence function f,

1= ( [ IIf(X>fde>1/2-

We approximate the compact-supported function with a piecewise-constant function in the next
lemma.

Lemma E.2. (Lemma 8 of [Yun et al., 2020]) For any given f € F and ¢/3 > 0, we can find a
d* > 0, such that there exists a f5» € F(0*) satisfying || f — fs+||,2 < €/3.

Proof. See Appendix E.5.2 for a detailed proof. O

E.2 Modified Transformer Approximates Piecewise-constant Function

In this subsection, we define modified self-attention and feed-forward layers to construct the modified
transformers. We use the modified transformers to approximate the piecewise-constant function.

Definition E.3 (Modified Transformer Networks). The modified transformer network 7;’;”” includes
two modifications to the standard transformer network ’7;”"’1 :

* Modified attention layer: Replace Softmax operator with Hardmax operator o g ().

* Modified feed-forward layer: Replace ReLU(:) with an activation function ( € ¥. Here, ¥
denotes the set of all piecewise linear functions with at most three pieces and at least one constant.

We approximate 7 (&) with this modified transformer networks 77!,

Lemma E.3 (Modified from Proposition 4 of [Yun et al., 2020]). For each fs5 € JF(0), there exists a
fT,c € 7-;2)’1’1 such that ||f5 — fT’CHLQ = O(éd/Q).

Proof Sketch. Given 6, and for any grid G € G5, we have a grid set G5 and the cube Sg.

Our proof follows two steps:

¢ Quantization. For all X € RA*L we quantize it to a finite set:

- If X € Sg C [0,1]9*E, we quantize it to the element G € Gj.
- If X ¢ [0,1]9*E, we quantize it to an element out of Gj.

* Mapping. For any G € Gs, we map it to the desired output Ag.

For Quantization, we achieve this by a series of modified feed-forward layers. We show this in
Appendix E.2.1.

For Mapping, we follow two steps:

» For any G # G’ € Gs, we use a “contextual mapping” ¢.(-) (defined as Definition E.4). The

mapping maps all the elements in ¢.(G) and ¢.(G’) to different values. Then, we use a series of
modified self-attention layers to achieve “contextual mapping”. We show this in Appendix E.2.2.

Definition E.4 (Contextual Mapping). Consider a finite set Gs € R¥*X. A map q.. : G5 — R'*L
defines a contextual mapping if the map satisfies the following:

— For any G € Gy, the entries in q.(G) are all distinct.
— For any G # G’ € G, all entries of q.(G) and g.(G’) are distinct.

* For any G € Gs, we use a series of modified feed-forward layers to map ¢.(G) to Ag. We show
this in Appendix E.2.3.

O
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Remark E.1. Our proof differs from [Yun et al., 2020] in one aspect: Although [Yun et al., 2020,
Proposition 4] outlines a proof for transformer networks without positional encoding and sketches
the proof for networks with it, we provide a detailed proof for the latter to support our proof.

E.2.1 Quantization by Modified Feed-forward Layers

We use a series of modified feed-forward layers in 77! to quantize an input X € R™* to an

element G of the following grid:

{=J,0,6,...,1 =&},

where J > L > 0 is a large number to be determined later. We achieve this via two steps.

* Step 1: Map the element out of [0, 1) to —.J.

We use e; to represent the standard unit vector where the ¢-th element is 1. For the ¢-th row of X,
we define the following feed-forward layer to achieve our aim.

Definition E.5 (Feed-forward Layer 1). The vector e; acts as the weight parameters, and ¢; (-) acts
as the activation function in the feed-forward layer

—t—J, fort<OQort>1,

E.2
0, otherwise. (E.2)

X =X +e6(e] X), G) = {

We take ¢ = 1 as an example to give the specific calculation. Let X = (; ;)ax 1, then we have

1
0
FRX) =X+ | .| (GQz1) Glrr2) - Glen)
0
Gzi1) Glzi2) -+ Gl(zrn)
0 0 . 0
:X+ . . . .
0 0 - 0

In the first row of X, the above layer transforms the element that is out of [0,1) to —.J.

We stack the above layers together for ¢ = 1,2,...,d. If the element of X is out of [0, 1), the
series of layers maps it to J.

Step 2: Map the element in [0, 1) to {0,0,24,...,1 — d}.

For the i-th row of X, we take k = 0,1,...,1/0 — 1 respectively. We define the following layer.

Definition E.6 (Feed-forward Layer 2). The vector e; acts as the weight parameters and (5 () acts
as the activation function in the feed-forward layer

0, t<Oort>J,

—t, 0<t<0. E-3)

X = X + exale] X — ko1T), Galt) = {

We take ¢ = 1 and & = 1 as an example. We give the following specific calculation

1
0
FF(X) =X+ : (Ga(z1,1 —0) Ca(x1,2 —9) Ca(z1,L — 9))
0
CGr11 —9) G(r12—9) Ca(z1,L — 9)
0 0 0
0 0 0
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In the first row of X, the above layer transforms the element in [4, 24] to 4.

We stack the above layers together fori = 1,2,... ,dand k =0,1,...,1/§ — 1. If the element of
X isin [kd, (k 4 1)d], the series layers maps it to kd.

Combining the above two parts, we achieve our goal with d/§ + d feed-forward layers. We denote
the d/d + d series layers as f7 1.

E.2.2 Contextual Mapping by Modified Self-attention Layers

In our attention layers, we use the following positional encoding £ € R4* L

01 2 L-1
0 1 2 L-1

E=|. . - (E.4)
012 - L-1

According to Appendix E.2.1, the output of f7 .1 is in the grid {—J,0,6,...,1 — 6}%*L. For any X
in this grid, the first column of X + F is in

{=J,0,8,...,1 =6},
and the second column is in
(=T +1,1,146,...,2 -0}

The results are similar in the other columns.

Fort=0,1,...,L — 1, we use the following notation:
[(:0:i+1=6l;={i—J4,i+0,...,i+1—0d}.
Then, we define the grid Q; as the following.

Definition E.7 (Grid g; ). We add E to all the grid points in G5 to generate the modified grid g;,
defined as follows:

Gf =[0:0:1-0]4x[1:6:2-6]4x---x[L—-1:6:L—4%

Next, we show that the modified attention layer computes contextual mapping (Definition E.4) for
g;. Fori=1,2,...,L — 1, we use the following notation:

[(:0:i4+1—0]:={i,i+,i+26,...,i+1—5}.

Limma E.4 (Modified from Lemma 6 of [Yun et al., 2020]). We consider the following subset of
gs:

Gs:=[0:6:1—-0]*x[1:6:2-0]%x---x[L—1:6:L—4¢.
L

Assume that L > 2 and 6! > 2. Then, there exist a function f7 . : R*L — R¥*L composed of
6% + 1 modified attention layers (Definition E.3), a vector u € R<, and two constants ti,tr € R
(0 < t; < t,),such that ¢.(G) = u' fr.(G),G € g; satisfies the following properties:

1. Forany G € 55, all the entries of ¢.(G) are distinct.

2. For any different G, G’ € Gs, all the entries of ¢.(G), ¢.(G’) are distinct.
3. Forany G € Gs, all the entries of ¢.(G) are in [t;, ¢,].

4. Forany G € Gi \ Gs. all the entries of ¢.(G) are outside [t;, Z,].
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Proof. See Appendix E.5.3 for a detailed proof. O

Remark E.2. Our proof differs from [Yun et al., 2020] in one aspect: The original [Yun et al., 2020,
Lemma 6] does not include positional encoding (E.4). Although Yun et al. [2020] sketches the proof
for networks with (E.4) in the attention layer input, we detail the proof.

E.2.3 Map to the Desired Output by Modified Feed-forward Layers

Next, we show that a series of feed-forward layers map the output of modified attention layers f7 2
to the desired output of function fs«.

Lemma E.5 (Lemma 7 of [Yun et al., 2020]). There exists a function fr .3 : RI*L — RIxL
composed of O(L(1/§)%* /L) modified feed-forward layers, such that

A if G € Gy,
fT,c3 o fT,cQ(G) = { ¢ 0

04x;, ifGeGi\Gs.

Proof. See Appendix E.5.4 for a detailed proof. O

In conclusion, we have the following lemma for the required number of layers in the modified
transformer.

Lemma E.6 (Total Number of Layers). From the proof of Lemma E.3, if we want to achieve a
approximation error O(§%/2) by the modified transformer, we need O(5~") modified feed-forward
layers in f7 .1, O(6~%) modified self-attention layers in f7 .2, and O(6~%") modified feed-forward
layers in fr 3.

Proof. By the proof of Lemma E.3, we complete the proof. O

E.3 Standard Transformers Approximate Modified Transformers

In this subsection, we show that standard neural network layers are able to approximate the modified
self-attention layers and the modified feed-forward layers (Definition E.3). We have the following
Lemma E.7.

Lemma E.7 (Lemma 9 of [Yun et al., 2020]). For each fr . € 7?,’1’1 and any € > 0, there exists
fr € T24* such that || fr — frcll . < €/3.

Proof. See Appendix E.5.5 for a detailed proof. O

E.4 All Together: Standard Transformers Approximate Compact-supported Continuous
Functions

We summarize the results of Lemmas E.2, E.3 and E.7. Then we prove Lemma E.1.

Furthermore, to achieve the € approximation error in Lemma E.1, we take § = 0(62/ d) in Lemma E.3.
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E.5 Supplementary Proofs

We first present two preliminary concepts: selective shift operation and bijective column ID mapping
in Appendix E.5.1.

Then we show

* Proof of Lemma E.2 in Appendix E.5.2
* Proof of Lemma E.4 in Appendix E.5.3
* Proof of Lemma E.5 in Appendix E.5.4
* Proof of Lemma E.7 in Appendix E.5.5

E.5.1 Preliminaries

Here, we give the definition of two preliminary concepts: selective shift operation and bijective
column ID mapping.

Selective Shift Operation. This operation refers to shifting certain entries of the input selectively.

To achieve this, we consider the following function £(+; ) : R¥XE — RIxL
E(X;b0) = eru' Xog [(u' X) T (u' X —bol,))], (E.5)

where X € R¥>*E ¢y = (1,0,0,---,0)" € R%, and bg € R. u € R? s a vector to be determined.

To see the output, we consider the j-th column of v Xo g [(u' X)T(u" X — bo1,))]:

o If uTX:,j > bg, it calculates argmax of u' X;

o If uTX:J- < bg, it calculates argmin of ul X.

All rows of £(X;bg) except the first row are zero. We consider the j-th entry of the first row in
&(X;bg), which is denoted as £(X;bg)1 ;. Then for all j € [L], we have

maxy uTX;’k ifuTX:,j > bg,

X' — TX TX T TX_ P =
E(X5bo)1y =u' Xog [(u"X) (u" X, ; —bg)] minguT X,y ifuT X, < bo.

From this observation, we define a function parametrized by bg and b’Q (with bg < b’Q)

§(X5bq,bg) = &§(X;5bq) — E(X;bp). (E.6)
Then we have

T . T . T /
maxiu X, p —mingu' X, 5, ifbg <u'X.; <b

Xb bl . = ’ I 7 )

§(X300, b1 {0, others.

We define an attention layer of the form X — X + £(X;bq, bg). For any column X. ;, if bg <

u' X, ;< by, its first coordinate X ; is shifted up by maxy, u' X, —ming u" X j, while all the

other coordinates stay untouched. We call this the selective shift operation because we can choose bg

and b’Q to shift certain entries of the input selectively.

Bijective Column ID Mapping. We consider the input G € g; (Definition E.7). We use
J=L+3L5 % andu=(1,6"1,672,..., 6", (E.7)

For any j € [L], we have the following two conclusions:
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« IfG;; >Oforalli € [d],ie.,G.; €[ —1:6:j—d]% then we have

§— o tt
u'G.;€[6;:6:6;+6 4T —6], where §; = (j —1)- <51> . (EB)

The mapping G, ; — u" G, j maps the elementsin [j—1: 6 : j—6]%to [§; : 6 : §; + 641 —§].
This is a bijection.

* If there exists ¢ € [d] such that G, ; = —J + j, then

67d+1 -4

u'G.; < -3L6 M+ (j-1)- ( 3

) + 67 <. (E.9)

We say that u T G. ; gives the “column ID” for each possible value of G. ; € [ —1: 6 : j — d]%.

Remark E.3 (Illustration of Bijection Properity). For the bijection property, we give the following
illustration. Let G.; = (915, 92j," - »94;) ' and G.j = (G15,92j, ** »9aj) - fu' G, = u' G
and G.; # G.;, we deduce

(91 — G1j) + 6 "(g25 — G2j) + -+ 6 (gaj — Ga;) = 0. (E.10)

Because G.; # G.;, then there exists a k (k < d), such that gx; # gx; and g;; = gi; (i > k). We
have

‘5_k+1(gkj - gkj)‘ > 6k
However,
(915 — g1j) + - + 5 R (g — Ge-1)]
< g1y — Gl + -+ |67 (gr-1.5 — Tn—1.5)]

<(U=8) 4o 4 521 - 5)

< 57k+2.

This contradicts with (E.10). Thus we prove the property of bijection.
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E.5.2 Proof of Lemma E.2

Proof of Lemma E.2. We restate the proof from [Yun et al., 2020] for completeness.
By the nature of the compact-supported continuous function, f is uniformly continuous.

Because ||-|| . is equivalent to ||-|| » when the number of entries are finite, we have the following by
the definition of uniform continuity.

For any €/3 > 0, there exists a §* > 0, such that for any X,V € R¥L and [| X — Y| < 0*, we
have || £(X) = F(¥) | < /3.

Then we perform the following steps following Definitions E.1 and E.2:

* We create a grid G5~ by choosing grid width §*. We also create cube S with respect to G € G+
* For any grid point G € Gg+, we define Cc € Sg as the center point of the cube Sg.

* We define a piecewise-constant function fs- (X) = >"; ¢, f(Ca)I{X € S¢}.

For any X € S¢, we have | X — Cg||, < 0*. According to the uniform continuity, we drive
1£(X) = fs+ (XMl p = I/ (X) = F(Co)llp < €/3.

This implies that || f — f5+||,» < €/3 and completes the proof. O

E.5.3 Proof of Lemma E.4

We give the proof of Lemma E.4 by constructing the network to satisfy the requirements.

Proof of Lemma E.4. Recall the selective shift operation in Appendix E.5.1. The overall idea of the
construction includes two steps:

* Step 1: For each j € [L], we stack 6 ¢ attention layers. For g € [§; : 6 : 6; + 641 — §] (E.8) in
the increasing order, we use the attention layer as

67%(9—6/2,9+6/2). (E.11)

The total number of layers is L~¢. These layers cast G € Q~5 to L different entries required by
Property 1 of Lemma E.4.

* Step 2: We add an extra single-head attention layer with the following attention part
Lo~ (E+Dd=1e( ), (E.12)

This layer achieves a global shifting and casts different G € Gs to unique elements required by the
Property 2 of Lemma E 4.

The two operations map Gs and Q;r \ Gs to different sets, as required by Property 3 and Property 4 of
Lemma E.4. The bounds ¢; and ¢, are calculated then.

Then, we give a detailed proof by showing the impact of the two steps and verifying the four properties
of Lemma E.4. We achieve this by making a category division of g;:

* Category 1: G € G, all entries in the point G are between 0 and L — 4.

» Category 2: G € g; \ Gs, the point G has at least one entry that equals to —.J.

Letu= (1,67%,672,...,679*). Recall that §; = (j — 1)(6 — §=9*1)/(6 — 1) forany j € [L] in
(E.8).
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Category 1. We denote g; == u' G. ;, then we have g; < go < --- < gr. The first §~¢ layers

sweep the set [0; : 6 : 6; + 64T — §],j € [L] and apply selective shift operation on each element
in the set. This means that selective shift operation will be applied to g; first, then go, followed by g3,
and so on.

* The First Shift Operation. In the first selective shift operation with g going through [d; : § :
81 4 64t — d], the (1,1)-th entry of G (i.e., G1,1) is shifted by the operation, while the other
entries are left untouched. The updated value G ; is

Gii=Gi1+07? max (u"G.x) — min (u'Gip)| =G+ 6 (gL — 9).

Therefore, the output of the layer after the operation is
(é:,l G:,Q Tt G(:,L) .

Let g, = uTé,l. We have

d
g1 =G11+ Z57i+1Gi,1
i=2

d
=Gi1+ 57d(gL —g1)+ 257i+1Gi,1
i—2

=g1+0 gL — g1)-

Then we deduce g7, < g1, because

g1 =91 +6 gL — q1)
S5 — 5—d+1

> —d ~1)-
>0+6 {(L -

— 5 4 6} (By (E.8))

=54 (L - 1)L +6+ (L— 1)5_01+1 — gt
B 1-6 1-6
>6d. (L—1)L+5
- 1-9
57d+1 a1
=(L—-1 -
(L=1)7—5 +9
> gr. (By 0 <1and (E.S))
Thus, after updating, we have
maXUT (é:,l G:,Q G:,L) :max{gth?"'agL} :glv

and the new minimum is gs.

* The Second Shift Operation. In the second selective shift operation with g going through
[62 08 : 8y + 64+ — 6], the (1,2)-th entry of G (i.e., G o) is shifted by the operation, while the
other entries are left untouched. The updated value G 5 is

Gio=GCra+0" %G — )
=Gio+6 g1 —g2) + 6291 — 1)

Therefore, the output of the layer after the operation is

(é:,l é:,Q e G(:,L) .
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We have
g2 = uTé:,Q
=g2+6 g1 —g2) + 6 (gL — 91).

Then we deduce g1 < go, because

g1+ gL —91) < g2+ 07491 — g2) + 0 U9 — gn1)
= (67 =1D)(g2—91) <5 =g — 1) (Byd ?>1landgr > go)
Thus, after updating, we have
ma‘XUT (é:,l é:,2 T G:,L) = max{§17§27"'agL} = §27
and the new minimum is gs.
* Repeating the Process. By repeating this process, we show that the j-th shift operation shifts
G1,; by 67%(g;—1 — g;). Then we have

ng = UTG Vi

j—1

=g+ Y 6 gk —gjri1) + 79 — 1)
k=1

We deduce g;_1 < g; holds for all 2 < j < L, because
gi-1<Yj
j—1

= g+ Y 0 gk —gi k) + 570V gL — 1)
k=2
-1
< g+ Y gk = giki1) + 07 (gr — g1)
k=1

j—1
= D T 1) (g k1 — g5-k) <OV = 1) (gL — qn),
k=1

where the last inequality holds because

j—1
D TR g i —gjk)
k=1

j—1
<67UTEN g ki1 — gi—k)

ES
Il

1
<670 (g — gy).

Therefore, after the j-th selective shift operation, g; is the new maximum among
{91,---,3j,9j41,--.,91} and gj4+1 is the new minimum.

» After L Shift Operations. After the whole L shift operations, the input GG is mapped to a new
point G, where v G = (g1 g2 ... gr)and g < g2 < --- < gr. For the lower and upper
bound of gy, we have the following lemma.

Lemma E.8 (Lemma 10 of [Yun et al., 2020]). gr, = uTé:7 . satisfies the following bounds:

5—(L—1)d+1(5—d _ 1) < gL < Lé_(L+1)d_
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Also, the mapping from (g1 g2 --- gr) to g, is one-to-one mapping.

* Global Shifting by the Last Layer. We note that after the above L shift operations, there is
another attention layer with attention part L6~ (L+D4=1£(.;0). Since 0 < §; < --- < §p., it adds
the following to each entry in the first row of G:

Lo~ (LADd-1 ml?qué B = L5_(L+1)d_1§L.

)

The output of this layer is defined to be the function f7 .2(G).

In summary, for any G € Gz, i € [d], and j € [L], we have

Gi;+067 ifi=1,
fr.e2(G)ij :{ LiTo

G, if2<i<d,

where 61 = 32971 07" (g; 1, — gj_p41) + 0 (gr, — g1) + Lo~ (EFDIAG,
Forany G € Gsand j € [L],

u' fr.e2(G).j = g; + Lo~ EHDIg,
Next, we check the Property 1, Property 2 and Property 3 of Lemma E.4.
* Checking Property 1 of Lemma E.4. Given any G € Gs, we already prove that

g1 <g2<---<gr,

All of them are distinct.

Checking Property 2 of Lemma E.4. Note that the upper bound on gz, from Lemma E.8 also
holds for other g; (j € [L — 1]). For all j € [L], we have

Lo~ EDING, <l fr o(G). j < Lo~ EHDIg, 4 Lo B,

By Lemma E.8, two different G, G/ € Gs are mapped to different §;, and g7, and they differ at
least by 4. This means that the following two intervals are guaranteed to be disjoint:

[Lo—(E+Dd-1g, [s=(L+ld=lg, | J5=(L+D)dy
[Lé_(LJrl)d_lg/L,L5_(L+1)d_1§/L + L(S_(L+1)d).
Thus, the entries of u' f7 2(G) and u " fr .2(G’) are all distinct.

Now, we finish showing that the mapping f7 .2(-) uses (1/5)% + 1 attention layers to implement a
contextual mapping on Gj.

* Checking Property 3 of Lemma E.4. Given Lemma E.8 and u'fr.(G).; €
[Lo—(EADdAG, [5—(L+Dd=17 1 [5~4+Dd) forany G € Gs, we have

W frea(G).; > Lo~ 2E+Dd(5=d _ 1),
U freo(G).; < L272EFDdL | py=(Lahd

This proves that all u " fr.ec2(L). ; are between t; and ¢,., where

tl — L572(L+1)d(57d _ 1)

)
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t, = L26_2(L+1)d_1 + L5_(L+1)d.

Category 2. Now we check the Property 4 of Lemma E.4. For the input points G € g; \ 55,

note that the point G has at least one entry that equals to —J + k,k € [L — 1]. Letg; == u' G. ;.
Recall that whenever a column G ; has an entry that equals to —J + k, k € [L — 1], we have g; < 0.
Without loss of generality, assume that g; < 0.

Because the selective shift operation is applied to each element of [0 : § : §7, + 6~ %+ — §] and is not

applied to negative values, thus we have ming u' G. j, = g1 < 0. g1 never gets shifted upwards and
remains the minimum for the whole time.

* All g,’s are Negative. When all g;’s are negative, selective shift operation never shifts the input
G. Thus G = G. Recall that ' G.; < 0 for all j € [L]. The last layer with attention part
Lo~ (EADd=1¢(.0) adds Lo~ (E+H4=1 min,, uTCNJ:Jg < 0 to each entry in the first row of G. This
makes G remain negative. Therefore, f1.c2(G) satisfies u " fr.02(G).; <0 <t forall j € [L].

* Not All g;’s are Negative. Now consider the case where at least one g; is positive. Suppose that
there are k positive elements and they satisfy g;;, < g;, < --- < ¢;,. Thus selective shift operation
does not affect g;, where i € [L] \ {i1, ..., }. It shifts g;, by

5_d(m]iLX u' Gy — mkin u' G.p)

5—d+1 -9 5—d+1 Y

g+l —§
=6 4@3Lo " — 5 — (L - i) =5 )
>4 20574 (By 6! >2)
— o5 (L+Dd
The next shift operations shift g;,,...,¢;, by an even larger amount. Therefore, at the end
of the first L(1/6)¢ layers, we have Lo~ (LDd < i, << ¢i,andg; < Oforall j €
[L)\ {i, .-y}

Then, we shift G by the last layer. The last layer with attention part L~ (E+1Dd=1¢(.; 0) acts
differently for negative and positive g;’s. (i). For negative g;’s, it adds the following to g;,j €

[L)\ {i1, . yik}:

B

Ly~ (E4Dd-1 mkinuTé E= L5*(L+1)d*1g1 < 0.

This term pushes them further to the negative side. (ii). For positive g;’s, it adds
L(Sf(LJrl)dfl HlkaX UTék _ L(;f(LJrl)dflgik > 2L2572(L+1)d71.

Thus they are all greater than or equal to 212§~ 2(E+1d+1 Note that
2L252LADd=1 5 4 where t, = L2§~2(E+1d=1 4 [5—(L+Dd,

Then the final output f7 .(G) satisfies u " fr c2(G).; ¢ [ti,t,], for all j € [L]. This completes
the verification of Property 4 of Lemma E.4.

In conclusion, we need O(L5~?) layers of modified self-attention layer to obtain our approximation.
This completes the proof. O
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E.5.4 Proof of Lemma E.5

Proof of Lemma E.5. We restate the proof from [Yun et al., 2020] for completeness.

Note that |G5 | = (1/6 + 1)L < oo, so the output of f7 (G5 ) has finite number of distinct real
values. Let M be the upper bound of all these possible values. By the construction of f7 o, M > 0.

Construct the Layers: fr .3(fr 2(G)) = 0gxp if G € QgL \ Gs. According to Lemma E.4, for
all j € [L], wehave u' fr 2(G).; € [ti,t,]if G € Gs,and u' f7,2(G). ; & [t ] if G € G \ Gs.

Due to this property, we add the following feed-forward layer.

Definition E.8 (Feed-forward Layer 3). The vectors u and 1 ;, act as the weight parameters, and (3(-)
acts as the activation function in the feed-forward layer.

0 ifte [t,t,]

L ift ¢ [t E-13)

XxXM4+nm@mﬁxx<aw{

* Casefor G € G \ Gs. We have (s(u" f7..2(G)) = 1] . Thus, all the entries of the input are
shifted by —M — 1 and become strictly negative.

« Case for G € Gs. We have G(u' fr2(G)) = 0], so the output stays the same as the f7 2(G).

With the input f7 2(G),if G € Gs. then Cs(u” f7.c2(G)) = 0] . Thus, the output stays the same as

the input. If G € G \ Gs, then (3(u " fr c2(G)) = 1] . Thus, all the entries of the input are shifted
by —M — 1 and become strictly negative.

Next, we map those negative entries to zero. Fori = 1,2, - - - , d, we add the following layer:

Definition E.9 (Feed-forward Layer 4). The vectors u and e; act as the weight parameters and (4(-)
acts as the activation function in the feed-forward layer.

—t ift <0

0 ift>0. E.19

X%X+&M@VX%@@{

After these d layers, the output for G € G\ Gs is a zero matrix, while the output for G € G5 remains

f1.c2(G).

Construct the Layers: fr .3(f7r 2(G)) = AgifG € 55. Each different G is mapped to L unique
numbers u | f7 .2(G), which are at least § apart from each other. We map each unique number to the

corresponding output column as follows. We choose one G € Gs. For each u " fr.e2(G). ;7 € (L],
we add the following feed-forward layer.

Definition E.10 (Feed-forward Layer 5). The vectors u and e; act as the weight parameters, and
C4(+) acts as the activation function in the feed-forward layer.

X =X+ ((Ag):5 — f1.e2(G):j) G5 (u" X —u' f7,02(G). ;11), (E.15)
1 —6/2<t<d/2
Gt = {0 oth/ers._ o (E.16)

* Casefor G € G \ Gs. Recall that the input X of this layer is fr .2(G). If X is a zero matrix,

which is the case for G € G \Gs,wehaveu” X = 0] . ThenuT X —u' fre(G). 1] < —t1p.
Since ¢; > §/2, the output remains the same as X.

31598 https://doi.org/10.52202/079017-0992



e Case for G € Q:;. Let the input X be f7 .2(G), where G € 55 is not equal to G. According
to the Property 2 of Lemma E.4 and given a j € [L], u' fr.2(G).x, (k € [L]) differs from
u' f7,2(G). ; by at least 6. Then we have

G(ul fre(G) —u' frea(G). 1) = 0.
Thus the input is left untouched.
If G = G, then
G(u' frea(G) —u' fre(@).;11) = ()"

Thus we shift the j-th column of f7 .2(G) to
fre2(G).j + (Ag).i — f1.e2(G).j) = fr.e2(G).j + ((Ac). 5 — fr.e2(G). 5) = (Ag).j-

In other word, this layer maps the column fr .2(G).; to (Ag).;, without affecting any other
columns.

For each G € @;, we defer that we need one layer for each unique value of u " fr.c2(G). ;. Note that
there are O(6 ) such numbers, so we use O(d~4L) layers to finish our construction.

This completes the proof. O
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E.5.5 Proof of Lemma E.7

Proof of Lemma E.7. We restate the proof from [Yun et al., 2020] for completeness.
The proof follows two steps: (i) Approximate the modified self-attention layers. (ii) Approximate the
modified feed-forward layers.
» Step 1: Approximate the Modified Self-Attention Layers.
We achieve this by approximating the Softmax operator og with the Hardmax operator o.
Given a matrix X € RY*L we have
os(AX) = opg(X), as A — oo.

The operator is the only difference between the normal and the modified self-attention layers. We
approximate the modified self-attention layer in T;’mvl by the normal self-attention layer with the
same number of heads r and head size m.

Step2: Approximate the Modified Feed-Forward Layers.

We achieve this by approximating the activation function in ¥ with four ReL.U functions. From
Definition E.3, we recall that ¥ denotes three-piecewise functions with at least a constant piece.
We consider the following ¢ € W:

by if x < cq,
C(x) =< asx+by ifcy << e,
azx + bz ifecy <z,

where ag, agz, by, bs,b3,c1,c0 € R, and ¢; < co.

We approximate ¢ (z) by ((x) composed of four ReLLU functions:

E(;)j) =b; + MRE}LU(X —c1 + 6) + <a2 _

€

agCy + by — by
€

) ReLU(x — ¢1)

n ((IgCQ + b3 — GQ(CQ — E) — by
€

- a2> ReLU(x — c2 + ¢)

asca +bs —as(cy —€) — b
+<a332 3 62(2 ) 2

> ReLU(x — c3)

by iffE<Cl—6,
(ager +ba — b1)(z — c1)/e+ ager + by ifer —e<xz<e,

=< asx + by ifc; <z <co—e
(agca + b3 —ag(ca —€) —ba)(x —ca)/e+azca+by ifca—e<x<cy,
asx + bs if o < .

As e — 0, we approximate ¢(z) by ((z). The activation function is the only difference between
the normal and modified feed-forward layers. We approximate the modified feed-forward layer in

T;’m’l by the normal one.

Thus, for any f7 . € 72!, there exists a function f7 € 7,>"* to approximate fr .

This completes the proof. O

31600 https://doi.org/10.52202/079017-0992



F Proofs of Section 3

Our proofs are motivated by the approximation and estimation theory of U-Net-based diffusion models
in [Chen et al., 2023]. We use transformer networks’ universal approximation theory in Appendix E
and the covering number to proceed with our proof. Specifically, we derive the approximation error
bound in Appendix F.1 and the corresponding sample complexity bound in Appendix F.2. Then
we show that the data distribution generated from the estimated score function converges toward a
proximate area of the original one in Appendix F.3.

F.1 Proof of Theorem 3.1

Here we present some auxiliary theoretical results in Appendix F.1.1 to prepare for our main proof of
Theorem 3.1. Then we derive the approximation error bound of DiTs (i.e., the proof of Theorem 3.1)
in Appendix F.1.2.

F.1.1 Auxiliary Lemmas for Theorem 3.1.

We restate some auxiliary lemmas and their proofs from [Chen et al., 2023] for later convenience.

Lemma F.1 (Lemma 16 of [Chen et al., 2023]). Consider a probability density function p,(h) =
exp (—C’Hh||§/2) for h € R% and constant C' > 0. Let 75, > 0 be a fixed radius. Then it holds

2d()7Td0/2 do—9 )
< -2 p9% _
/|h|2>Th Pa(h)dh < CT'(do/2 + l)rh exp(=Cr},/2),

2 2d07'(d0/2 d )
P S ——C . 92).
/|h|2>rh Hh”2ph(h)dh - CI‘(dO/QJrl)Th eXP( Cry./ )

Lemma F.2 (Lemma 2 of [Chen et al., 2023]). Suppose Assumption 2.2 holds and g is defined as:

7o [ he(hlh)pn(h)

q(h,t) = fwt(ﬁ\h)ph(h)dhdh’ h=DB"z.

Given € > 0, with 1, = ¢ (\/ do log(do/To) + log(1/ e)) for an absolute constant ¢, it holds

la(h, OR{||R[ly = 7a}| oy ) < € fort € [To, 7).

Lemma F.3 (Theorem 1 of [Chen et al., 2023]). We denote

7(rp) = sup sup (h,t)

t€[To,T] helo,ry]d

Eq

With g(h,t) = [ h(R|R)pr(h)/([ ¢e(R|R)pr(h)dh)dh and py, satisfies Assumption 2.2, we have
a coarse upper bound for 7(rp,):

1= (5 ) o) ()

Lemma F.4 (Lemma 10 of [Chen et al., 2020b]). For any given € > 0, and L-Lipschitz function g
defined on [0, 1]d°, there exists a continuous function f constructed by trapezoid function, such that

lo=Fll <<
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Moreover, the Lipschitz continuity of f is bounded:

|F(@) = F(y)| <10doL|jx —y|l, forany =,y € [0,1]%.
F.1.2 Main Proof of Theorem 3.1

Proof of Theorem 3.1. With Vlogpl' (k) = B s (h,t), we have the following in (2.4)

q(h,t) = o(t)Vlogp, (h) + B'Z = o(t)B" (s4(h,t) + T). (E.1)

We proceed as follows:

» Step 1. Approximate q(h, t) with a compact-supported continuous function f(h, ).

* Step 2. Approximate f(h,t) with a transformer network.

Step 1. Approximate ¢(h,t) with a Compact-supported Continuous Function f(h,?). We
partition R% into a compact subset H; := {hH hH2 < rp,} and its complement Ho, where 7, is

to be determined later. We approximate g(h,t) on the two subsets respectively and then prove f’s

continuity. Such a step achieves an estimation error of v/dye between q(h, ) and f(h,t). We show
the main proof here.

« Approximation on Hs x [Ty, T). For any € > 0, we take 7, = ¢(+/dp log(do/Tp) — log €). From
Lemma F.2, we have

Hq(ﬁ,t)]l{”ﬁ”2 > rh}HLQ(Pt) <e for telTpT].

So we set f(h,t) = 0on Hy x [Tp,T).

* Approximation on H; x [Ty, T]. On H; x [Ty, T, we approximate g(h, t) by approximating each
coordinate gy, (h, t) respectively, where q(h,t) = [q1(h,t), q2(h,t), -+ , qa, (h,t)]. We rescale the
inputby ' = (h-+7,1)/2ry, andt' = t/T. Then the transformed input space is [0, 1]% x [Ty /T, 1].
We implement such a transformation by a single feed-forward layer.

By Assumption 2.3, on-support score s (h,t) is Ly, -Lipschitz in h. This implies g(h,t) is
(1 + L, )-Lipschitz in h. When taking the transformed inputs, g(y/,t') = ¢(2rpy’ — r,1,Tt)
becomes 27, (1 + L, )-Lipschitz in 3. Similarly, each coordinate gy, (3, t) is also 2ry, (1 + L )-
Lipschitz in 3. Here we take Lj, = 1 + L, .

Besides, g(y’,t') is T'r(rp)-Lipsichitz with respect to ¢, where

0 -
T(rp) = sup sup a—q(h,t)
t€[To,T) Tejo,ry) || O

2

We have a coarse upper bound for 7(r) in Lemma F.3. We restate it here for convenience

7(rn) = O (1;(6;)(” (Ls+ + Jgt)) \/cTorh> =0 (eT/2L3+rh\/%) :

In conclusion, each gy (y’, t) is Lipsichitz continuous. So we can apply Lemma F.4 to determine
fr(y',t) for approximating each coordinate. We concatenate f;’s together and construct f =
[f1, -, f dO]T. According to the construction in Lemma F.4 and for any given €, we achieve

sup |F' ) =gy, 8] <e
Y ¥ €[0,1)4x [To/T,1]

31602 https://doi.org/10.52202/079017-0992



Considering the input rescaling (i.e., h — 3y’ and t — t'), we obtain:

— The constructed function is Lipschitz continuous in k. For any hy, hy € H; and t € [Ty, T}, it
holds

| F(h1,t) = Fh2, )| < 10doLp||h1 — hal|,- (F2)

— The function is also Lipschitz in ¢. For any ¢, ts € [Ty, T] and H?LH2 < rp, it holds

[F(Rt1) = F(Rta)]| o, <107 (rn)llts — t2]l,.

Due to the fact that the construction of f(h, ) is based on trapezoid function, we have f(h,t) =0

for ||71||2 = rp and any ¢t € [Tp, T]. Thus, the two parts of f(h,t) can be joined together. To be
more specific, the above Lipschitz continuity in & extends to the whole R

+ Approximation Error Analysis under > Norm. The L? approximation error of f can be
decomposed into two terms:

H(](E, t) - f(ﬁv t)HLQ(Pth,)
= g, 1) = R )1 {UAly < i} o o + gL, > 73] o
The second term in the RHS above has already been bounded with the selection of r,:
o, OL{[Bll, > 73| g, < e
The first term is bounded by:

||(q(EVt) - f(ﬁ7t))1{‘|ﬁ‘|2 < rh}HL2(Pth)
<\/dy sup 17/ ) — g/ )|,
y/,t'€[0,1]¢x [Ty /T,1]

< Vdge.

Then we obtain

HQ(Bﬂt) - f(?L?t)HLz(pth) < (\/%4- 1)6.

If we substitute € with €/2, we obtain that the approximation error of f(h,t) is v/dpe.

Step 2. Approximate f(h,¢) by a Transformer. This step is based on the universal approximation
of transformers for the compact-supported continuous function in Lemma E.1. DiT uses time point
t to calculate the scale and shift value in the transformer backbone [Peebles and Xie, 2023]. It
also transforms an input picture into a sequential version. We ignore time point ¢ in the notation of
the transformer network in DiT. Recall the reshape layer R(-) in Definition 3.1, we consider using

f(:) =R~ o fr o R(-) to approximate f(-) := f(-,t), where fr € 724,

* Overall Approximation Error. ~ With Lemma E.1, we approximate f;(-) with ]?() =
R~ o fr o R(-). We denote

We have
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1/2
_ —~ 2
Rof,o R\ (H)— Rofo R—l(H)HFdh>

(],

) 1/2
(/ Rofio R\ (H) - fT(H)HFdh>
P

€. (F.3)

IN

Along with Step 1, we obtain

— o~ —

< Nl 1) = F O o gy + [ FBt) = FB|, ) < O+ Vo)

L2(P})

|ah,t) = 70|

L2(ph

The constructed approximator to V log p(z) is s = (Bf(BTm, t) — x)/o(t), and the approxi-
mation error is

L+ Vdo

HVlogpt(-) a SVT/("t)‘ rx(p) ~ ot

¢ forany te [Tp,T).

* Settling-down of Hyperparameters. We settle down the hyperparameters to configure our
network here. We refer to Appendix E.2 for some of the following calculations.

1. Model Architecture Depth K.

From Lemma E.6, we have K = O((1/8)*"). To achieve e-error approximation, we set
§ = O (€*/?) according to Lemma E.3. Thus we obtain

K=0(e?"). (F4)
2. Lipchitz Upperbound for Transformer: L.
We denote fy r(-) = Ro fi o R'(-). We get the Lipshitz upper bound for f7 € 7,7!* in the
following way
| Fr () = Fr ()| < || B (H0) = Fuom ()| + (| Fee (812) = Foor ()

+ Hft,R (H2) — fr (Hz)HF

<2+ || fr,r (H1) — fr.r (H2)|| (By (F3))
< 26+10d0L5+HH1 —H2||F. (By (F.Z))

Then we get
L1 =0 (doLs, ). (E5)

3. Model Output Bound for 87;;,1,4.

For the output of the constructed transformer fT(-), according to Lemma E.5, we have fT(O) =
O, where O = 0, .. Thus, with the Lipschitz upperbound O(do L, ), we have || fr(H)| r =
O(doLs, 1), where | H|| p < rp. With 7, = ¢(y/do log(do/Tp) + log(1/€)), we obtain

Or=0 (dOLS+ - /do log(doTo) + log(1 /e)) . (E6)

4. Model Parameters Bound: 0(2)"39, Cov, Cfoo, Cko,Cg.
By definition, we have:

1Wo) 00 < CEF

(W) |, < Cov,

Wil o < CK3 - |

Wicll, < Cra.
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where ¢ = 1, 2. For simplicity, we omit ¢ hereafter, which does not affect our discussion.

Recall that || Z||, . denotes the 2, co-norm, where the 2-norm is over columns and co-norm is
over rows. By the construction of modified attention layers (E.11) and (E.12) in Appendix E.5.3,
we consider Wy to have the largest norm, i.e.,

1 61 ... g§—d+1
Woy = Lo~ (E+Dd-1. 0 ;
0 0 0
We give the following upper bounds
Wy [ly o = Lds™H42% = O (5754) (E7)

HWOTVHQ = sup ]|W£Vx||2 — 5~ L+Dd-1
llzll,=1

d—1
5 =0(""). (8
=0

By (E.11) and (E.12) in Appendix E.5.3, and the self-attention layers in Appendix E.5.5, we
consider Wi to have the largest norm, i.e.,

1 1 51 s—d+1
ot 5-1 52 s—d
Wkq = . (1,(5‘1,--- ,6““’1) =
5—2-l+1 5—d+1 5_d 5—2d+2
Then we have
d—1
Wiqlly o = 4| D 07272442 = O(5727), (F9)
i=0
Wioll,= sup [Wiqzll, = 6722 = O(6729). (F.10)

lzll,=1

We substitute § with O (€2/9) (according to Appendix E.4) and get:

Cov = (1/e)°W,
Cov = (1/¢)°W,
Cry = (1/6)°W,
Cro = (1/)°W,

From the construction of positional encoder (E.4) in Appendix E.2, we have

01 L—1

01 L—1
FE =

0 1 L-1

We deduce
IET|], o = VLL = 1) = O(L*?).
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Thus we have

Cg = O(L%?). (F.11)

5. Parameters Bound in Feed Forward Layers: 7>, C.
Recall the construction of modified feed-forward layers in the proof of Lemma E.4, which
includes Definitions E.5, E.6 and E.8 to E.10. With the approximation by normal feed-forward
layers in Appendix E.5.5, we consider the weight parameters with the largest norm in the
feed-forward layers, i.e.,

1 1 5—1 6—d+1
1 _ _ 1 61 §—d+1
Wis= | | (L0767 ) = ) e g | €RP
1 1 571 5*d+1
Then we have
Cp> = Y 5| =067 (F.12)

(By setting 6 = O(¢*/?) according to Appendix E.4)

and
Cp = u srp1 Wiz, = O (679 (F.13)
all,=
= (1/€)°W), (By setting § = O(e*/?) according to Appendix E.4)
This completes the proof. O
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F.2 Proof of Theorem 3.2

Here we present the auxiliary theoretical results about the covering number of transformer networks
in Appendix F.2.1. The results are based on [Edelman et al., 2022, Theorem A.17]. Then we derive
the sample complexity bound of DiTs (i.e., the proof of Theorem 3.2) in Appendix F.2.

F.2.1 Auxiliary Lemmas for Theorem 3.2

Lemma F.5 (Lemma 15 of [Chen et al., 2023]). Let G be a bounded function class. Then there exists a
constant b such that the output of any g € G : Rdo [0, 0] is bounded by b. Let 21, 22, -+ , 2, € Rdo
be i.i.d. random variables. For any ¢ € (0,1),a < 1, and ¢ > 0, we have

(Suplz %)~ (1+QE[g(=)] > (1+3/G)BlogN(c’g""'°°>+<z+a>0>Sa,

geG N 3n )
. +6/a) N(C7gv ||||oo)
P (316121[5[ z:: = log 5 +(2+ a)c) <.

Now, we give the definition of the covering number as follows.

Definition F.1 (Covering Number). Given a function class F and a data distribution P. Sample
n data points {X;}? ; from P. For any € > 0, the covering number N (e, F, { X; }Z 15 |1-]]) is the

smallest size of a collection (a cover) C € F, such that for any f € F, there exists a f € C satisfying

~

max | £(X,) - (X))

Furthermore, we define the covering number with respect to the data distribution as

N(67f7||'||)={ sup PN(67f7{Xi}?:17II-||)-

ifi=1""
Then we give the covering number of the transformer networks.

Lemma F.6 (Modlﬁed from Theorem A.17 of [Edelman et al., 2022]). Let
T, UK, Cr, Cov ,Cov, CKQ ,Ckaq, C’ ,Cr,Cp, LT) represent the class of functions
of K-layer transformer blocks satisfying the norm bound for matrix and Lipsichitz property for
feed-forward layers. Then for all data point || X|[, ., < Cx, we have

IOgN(EmTT’mJ(Ka CTvcé\()/o’COVaCIZ{,%o’CKQaCIQJ‘,OOaCFvcE7LT)7 H”Z)

3
10 2 ,00 0o % 2 %
g <Za3 (d:s( 2 ) —|—d3 (Q(CF)ZCOVcIQ(’Q) +7Tms3 ((CF) COV) )) )

where o := Hj<i(CF)2COV(1 aF 4CKQ)(CX aF CE)

Remark F.1. We modify [Edelman et al., 2022, Theorem A.17] in seven aspects:

1. We do not consider the last linear layer in the model, which converts each column vector of the
transformer output to a scalar. Therefore, we ignore the item related to the last linear layer in
[Edelman et al., 2022, Theorem A.17].

2. We do not consider the normalization layer in our model. Because the normalization
layer [, mm(-) in the original proof only ensures that || ], . (X1) = [Thom (X2)lly oo <

| X1 — X2ll5 - ignoring this layer does not change the result.

3. Our activation function is ReL.U. Thus, we replace the Lipschitz upperbound of activate function
by 1.
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4. We consider the positional encoding (E.4). Then we need to replace the upperbound C'x for
the inputs with the upperbound C'x + Cg. Besides, for multi-layer transformer, the original
conclusion in [Edelman et al., 2022, Theorem A.17] uses 1 as the upperbound for the 2, co-norm
of inputs. We incorporate the upperbound for the inputs into the result stated in Lemma F.6.

5. We use (2.7) as the feed-forward layer, including two linear layers and a residual layer. Thus, we
replace the original upperbound for the norm of weight matrix with the upperbound for the norm
of Iy + W5W7 in Lemma E.6. In the following, we use O to estimate the log-covering number,
thus we ignore the item for I; here for converience. This is the same for the self-attention layer.

6. We use multi-head attention, and incorporate the number of heads 7 into our result, which is
similar to [Edelman et al., 2022, Theorem A.12].

1,4

7. In our work, we use the transformer 7;,2 ,ie, 7=2,m=1.

F.2.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Our proof is built on [Chen et al., 2023, Appendix B.2]. For one data sample,
we define the empirical score matching loss objective (2.1) as follows

1 r 2
5(95;5@) = T—T, /To By, jwg=zl|| Ve, log ¥ (2i|20) — 5@($t7t)H2]dt-

Then we define L(sg;) = Eznp, {E(x; sﬁ/)} .

Following [Chen et al., 2023, Appendix B.2], for any a € (0, 1), we have

L(sy) ) R
< LM (sg) = (L+a) L™ (s) + L(sp) = L7 (s) +(1+a) inf  Lisw),
I (11) T
where
L5 ) = By, [0 (@355) | = Banr, [ossp)Ulzlly < 1a}], 7a > B.
We denote

0= 4Cr(Cr +12)(ra/D)P 2 exp(—r2 (1)) /(To(T — Ty)),

ry =0 <\/d0 log dg + log Cr + log(n/é)) .

Then we have

1

nTo(T — Ty "1

n<

For any 0 > 0, according to Lemma F.5, the following holds for term (1) with probability 1 — 4,

(T=Ty) (=)
(L+6/a)(CF+12) ) N (esetimy Spzaa. )

(=0 nTo(T — Tp) 5

+2+a) |,

where ¢ < 0 is a constant, and ¢+ > 0 will be determined later.
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We set

2
CT R T(T — To)

where 0 < b < 1is a constant to be determined later.

Remark F.2 (Selection Criteria of 7). We have two criteria:

¢ Recall that the covering number used in our setting is N (%, Sr21.4, ||||5 ). Thus,

we must ensure ¢ > 7). According to (F.14), we consider ¢ satisfying the condition ¢ > (nTo(T —
Ty))~!. Therefore, we consider 0 < b < 1.

* For the exponent of (1" — Tj), although selecting a value smaller than 1 is possible, we find that
the convergence rate with respect to 7" is dominated by the 1/T term appearing later in the second
term of (F.18). Therefore, we continue to consider the exponent to be 1.

Then we have

(1+6/a) (CF +12) N((nb(C’T-‘rTx)To log(T/To))—l,sTpg,M,”.H2> 442

(=0 nWTo(T — To) log 3 TN (T = To)

with probability 1 — 6.
Following the proof structure of term (I7) in [Chen et al., 2023, Appendix B.2], we have

(II)=0 (1{00%7’3: eXp{Agri/2}> .

For any € > 0, let s3; be the transformer network approximator to the score function in Theorem 3.1.
For the term (I17), we have

(IT1) < L(sip) — (1 + a) L5 (s75) +(1 + a) L5 (s55) .

(I11), (I11)2

For any & > 0, according to Lemma F.5 and given that sy 1s a fixed function, the following holds for

term (117); with probability 1 — ¢,

log =

B (1+3/a)(C3+72) . 1
UHhO( o (T — o) J.

Following the proof structure of term (I17)5 in [Chen et al., 2023, Appendix B.2], we have

de?
UHb:O(Rg,Iw>+%,

where C} is a constant.

Putting (I), (I1), and (I11) together and setting a = €2, then we have

1 T
e /T s (1) = Vdogp ()2, dt

(€3 +12) N((nb(CT+rz)Tolog(T/To))*,STi,m,||'||2) 7 4 doe?

_ 1 _
© EnTo(T —To) 8 5 T (T = To)

, (F15)

with probability 1 — 36.

https://doi.org/10.52202/079017-0992 31609



Covering Number of S- 214 The next step is to calculate the covering number of S- 214, Sp21a
consists of two components (i) Matrix W with orthonormal columns; (ii) Network functlon fT

Suppose we have Wpi,Wpy and fi, fo, such that ||[Wpy —Wga|p, < 61 and
SUD 1 <, /Biog Dorelmor) 11T 1) = fa(@ t)lly < 05, where fi = RV o frio R, fy =
R~' 0o fr5 0 R. Then we have

sup ||SWBl7fT1(‘f7t> _SWBz,sz(-f,t)Hz
|Z|,<3rz4+/D log D,te[To,T]
1
o sup W1 f1 (Wi T, t) — W f2(Wh,T, 1),
TN 7)1, <8r0+/Dlog D, te[To,T)
< L S T = _ T =
up ||WBlf1(WBll'7t) WBlfl(WBQxyt)HQ
oft ) %)l <374 +1/Dlog D t€[To,T)

+ HWB1f1(ngf,t) - WB1f2(ngf,t)H2 + ||WB1f2(W1—3r25f7 t) — WBZfZ(Wgzxvt)HQ)

1
<5 (L761/do(3r, + /Dlog D) + 65 + 61K ) (F.16)

where L upper bounds the Lipschitz constant of fr.

For the set {Wp € RP*d0 . [Wg]|, < 1}, its d;-covering number is (1 + 2\/d0/61)Dd° [Chen
etal., 2020a, Lemma 8]. The d2-covering number of f needs further discussion as there is a reshaping
process in our network. The input is reshaped from i € R% to H € R?*%, and

||7z||2 <71y <= ||H|p < 7a.

Thus we have

sup | f1(h,t) = fa(h )], < 62
||E||2§3rm+,/D1ogD,te[To,T]
= sup Il fr1i(H) = fra(H)|y < 0o

| H|| <374 ++/D log D t€[To,T]

Then we follow the covering number of sequence-to-sequence transformer 7;2’174 in Lemma F.6. We
get the following d5-covering number

3
log (Z Ozf5 (dg (C?—JOO)% + d3 (2(CF)QCOVCIQ<’?QO>% n 2 ((CF)QC%‘(;O)i)) |

where

a; = [[(Cr)*Cov(1+ 4Ckq)(Cx + Ck).

j<i

According to the (F.4), (E5), (E7), (E8), (F9), (F.10), (F.12), (F.13), (F.11) and (F.6) in Ap-
pendix F.1.2, we derive the following with § = 0(62/ 4) (Appendix E.4) and d = 4 (Theorem 3.1):

K=0 () Ly =0 (doLs, ), C° = O(de™*F), Coy = O(e™5),
CRo =0(e™"), Ckq=0(*), CF= =0(c*), Cr=0(c %), Cg = O(L*?),  (F17)

Cr = (’)(do o, - \/dolog(do/To) + log(1/e ) —(9(\/dologdo+1ogCT+log(n/6)>

Each element of the input data is within [0, 1], as shown in Appendix E.
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For any d3 > 0, we get the log-covering number of 72"

—8K . [ Kd%log(nL
logN(6377;?’1v47||-|2):0(6 L logln ))

8K log(L/€) 42
_ o). (2 5d log(nL))'
3

According to (F.15), we adopt the following value for d3 in our setting

1

03 = .
> nb(Cr + 1r,)To log(T/To)

According to [Chen et al., 2023, Appendix B.2], the log-covering number of S;2.1.4 is

log A (53,5%2,1,4, I, )
GCTLT\F (3ry ++/Dlog D)) N 28K log(L/€) 42 log(nL)>

=0 <2Dd0 -log (

Tod3 1262
(By (F.16))
_0 (n2b28(1/e)L 108(L/9) D28 12, .10g(nL)> (By (E17))
0 (n%z(l/e)“DdzdﬁL? «log(nL)> (By (1/e)" > 8log(L/e))
-0 ( 2bo(1/e )2LDd2d6L2 ) (B\ ignoring the log f l(.l()l%)

-0 (nsz(I/G)ZLDdeSLi) .

Substituting the log-covering number into (F.15), we have

1 /T
T_TO Tg

2 2
:O(ﬂ(log/\/(és, Sz [Hla) + 108(1/3)) + s+ 7 )62)

2

dt
L2(Py)

s (+6) = Vlogpi(-)

EQTLTQ(T — To) leT()(T — To) TO (T — TO
C%—-i*?’? = 1 d(] 2
— O 02 (109 N (85, Sz, |- log(1/5 o ) F18
O( g (08N (B3, Spzt [H) +108(1/3)) + gz + 7o (R18)
——
1st term 2nd term

Recall the following parameters:

« 03 = (’)(dgLido log(do/Tp) + log(1/€)),
* 72 = O(dylog dy + log Cr + log(n/é)),

* §: probability error,

* ¢€: approximation error,

* n: sample size,

e To < T/2,

e D,d,dy > 1: feature dimension,

* L > 1: sequence length,

https://doi.org/10.52202/079017-0992 31611



e dy=1L-d,

* L, : Lipschitz coefficient.

Ignoring the log factors and poly(D, d, do, L, ), the first term in (F.18) becomes

1 1

L a0
nl=2v  T,T

The second term is simplified to

Thus, the final bound is

~ 1
o <n1—2b ’

1

1 2L
o/
+ an()T

T

L
T, T

To balance the first and second terms with respect to n, we select b = 1/3. Therefore, we give the

final bound as

/ot 1

(1 1
O<n1/3 "ToT

This completes the proof.
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F.3 Proof of Corollary 3.2.1

Our proof is built on [Chen et al., 2023, Appendix C]. The main difference between our work and
[Chen et al., 2023] is our score estimation error in Theorem 3.2. Consequently, only the subspace
error and the total variation distance differ from [Chen et al., 2023, Theorem 3].

First, we introduce the ground truth backward SDE and the learned backward SDE of the latent
variable. Recall from (D.2), v, denotes the backward process. We denote t}le backward latent variable
by hi~ = BTy,. Since we write the time index explicitly, we drop the 7, h notation for ¢ > 0.

Following [Chen et al., 2023, Appendix C.2], we have the following ground truth backward process

1 J—
dhi~ = | Shi + Viegpl_y(hi7) | dt +d(BTW),

where TV, denotes the reversed Wiener process (standard Brownian motion) at time ¢ (see Section 2
for more details).

We define P%O as the ground truth marginal distribution of A, .

For the learned process §i;, we consider i~ = W} ;. For any orthogonal matrix U € R >4 we
define the U transformed version of hj~ as h; U=y Thi~. Then the backward SDE for h;~ Vs

AR = [T 3t (T = o] e+ a(UTWET)

where

" [~ 1 - .
oy (R0t) = @[—hf’U +UTF(URT 1)),

We define ]3%0 as the estimated marginal distribution of iNL;] 'Y from above continuous SDE.
The discretized backward SDE of 71}_0 Yis

dhY = | W + 30 (e T — kﬂ)} At +d(UTWE W)t € [kp, (k+ 1)p).

We define ﬁ;(;dis as the estimated marginal distribution of E}:U 'Y from above discrete SDE.

Next, we present the auxiliary theoretical results in Appendix F.3.1 to prepare our main proof of
Corollary 3.2.1. Then we give a detailed proof of Corollary 3.2.1 in Appendix F.3.2.

F.3.1 Auxiliary Lemmas

Here we include a few auxiliary lemmas from [Chen et al., 2023] without proofs. Recall the definition
of Lipschitz norm: for a given function f, ||f()Hsz = supxiy(Hf(m) — fWlla/lle —ylly)-

Lemma F.7 (Lemma 3 of [Chen et al., 2023]). Assume that the following holds
Enp, |V1ogpa(B)|3 < Cany  AminBanp,[RhT] > co, Enwp,|lhll5 < Ch,

where A\, denotes the smallest eigenvalue. We denote

T

— = 1

Blo(t)] = | —Een 0BT, 0ldr (£19)
7, 0%(t)

Let To < min{2log(do/Csn), 1,21log(co),co} and T' > max{2log(C}/dp), 1}. Suppose we have

E||Wgf(W3E,t) — Ba(B'z,1)||2 < e. (F.20)
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Then we have
|WsW§ — BB |2 = O(eTo /<o),
and there exists an orthogonal matrix U € R% ¥ _such that:

E|UT f(UR, 1) — a(R,t)]|2

T max; || f(-, ¢ 21 -C
‘€'O<”co[<T1°gT0>do~mgxllf<-,t>|iip+csh e h).
0

Co

Lemma F.8 (Lemma 4 of [Chen et al., 2023]). Assume that P, is sub-Gaussian and that f (h,t) and
V log p?(h) are Lipschitz continuous with respect to h and ¢. For any orthogonal matrix U € Rdo*do,
we define
_ 1 _ _
~h T
h,t) = —h+U" f(Uh,t)].
By (1) = B+ UT F(UR, 1)

Assume that we have the latent score matching error-bound

T
/ EFLNP:" Hva}(}’f (E,t) - Vlogpf (?L) Hz dt < €latent (T — To),
To

where €jyene > 0. Then we have the following latent distribution estimation error for the continuous
backward SDE:

TV (Ph, Ph,) S vetwen (T — To) + VKL (BUlIN (0, 14,)) - exp(~T),

where 13%0 is the marginal distribution of the generated hr, using the continuous backward SDE.

Furthermore, let ]3;0’(“5 denote the marginal distribution of the generated A7, using the discretized
backward SDE. Then we have the following latent distribution estimation error for the discretized
backward SDE

TV (Pf, Pi™) S VewenT = To) + VEL (BN (0, 1u,)) - exp(—T) + /eas(T — To),

where

_ — 2
(s Ay | e G0N
€dis = p (TO) T02 n

2
maxe || f (-, ?)]|s, 2 2
et 1A Y ILip. E
+< o (Tp) 7 max{ ol ’do}+nd0’

and 7 is the step size in the backward process.
Lemma F.9 (Lemma 6 of [Chen et al., 2023]). Consider the following discretized SDE with step
size y satisfying T' — Ty = Kpp for some K7 € N,

1 1

=|z=——— B fi 1
Qv = |5 = | et + B, for 0 € [ )

where yo ~ N(0,1). Then, for T > 1and Ty + p < 1, we have yr_g, ~ N (0,021) with
0% <e(Tp+ ).
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Lemma F.10 (Lemma 10 in [Chen et al., 2023]). Assume that V log p (k) is Lj,-Lipschitz. Then we
have Ej,p, ||V log pp(R)||5 < doL.

F.3.2 Main Proof of Corollary 3.2.1

Proof. Recall the estimation error in Theorem 3.2 is £(n, €, L) /(TTy), where

1 2L 1
= .9(l/¢ 42
&(n,e, L) := Y 2 +n1/3+e .

* Proof of (i). By the definition of (F.19) and the estimation error in Theorem 3.2, the error bound in

(F.20) equals to &(n, e, L)(T — Tp)/(TTp) in Lemma F.7. By Lemma F.10, we set Csj, = doLp,.
Then, we have

Co

|WsW§ — BBT||% = O<M>

By substituting the value of £(n, ¢, L) and T' = O(log n) into the bound above, we deduce

T T2 _ 1 (1/6)2L 1 62
||WBWB — BB HF—O<COTL1/32 +Con1/3 +% .

* Proof of (ii). Recall that max; || f(-,¢)|;, < L7. Furthermore, according to Lemma F.7 and
Lemma F. 10, we have

E|UT f(UR,t) — q(h, )|, = Oetaen(T — To)),

where

e, L T, z.cC
e = 206D 0 (T (T —log To)do - L3+ do L] + ——") .
TTO Co Co

Following the proof structure in [Chen et al., 2023, Appendix C.4], we get

2

dt
2

UT f(URt) — T

o Vlesri(h)

T
E|UT f(UR,t) - q(h,t)|[2 = /T Lo
0

S 6lalent(T‘ - TO)

Following the proof structure in [Chen et al., 2023, Appendix C.4] and setting ' = O(log n), we
obtain

TV(P, P4 = O ( eratont (1 — TO))

~ 1 1
o<\/(nl/32<1/> +1/3+e).1ogn>,

where O hides the factor about D,dy,d, L

logn,and T — Ty

Sy

By definition, ﬁ#{)’dis = (U VVB)1;r 13T0, where ]3T0 is the distribution generated by s using the
discretized backward process. This completes the proof of the total variation distance.

* Proof of (iii). We apply Lemma F.9 due to our score decomposition. With the marginal distribution
attime 7' — T} and observing y < Ty, we obtain the last property.

This completes the proof. O
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G Proofs of Section 4

Our proofs are motivated by the observation of low-rank gradient decomposition in transformer-like
models [Alman and Song, 2024b, Gu et al., 2024]. With our simplifications and observations made
in Section 4, we utilize the fine-grained complexity results of transformer and attention [Hu et al.,
2024b, Alman and Song, 2024a,b] and tensor trick (Lemma D.1 and [Diao et al., 2019, 2018]) to
proceed our proofs. Specifically, we approximate DiT training gradients with a series of low-rank
approximations in Appendices G.1.1 to G.1.3, and carefully match the multiplication dimensions so

that the computation of g% forms a chained low-rank approximation in Appendix G.2.

G.1 Auxiliary Theoretical Results for Theorem 4.1

Here we present some auxiliary theoretical results to prepare our main proof of the Existence of
almost-linear Time Algorithms for ADITGC Theorem 4.1.

G.1.1 Low-Rank Decomposition of DiT Gradients

We start by some definitions. Recall that W € R%*? and W ¢ R? denotes the vectorization of
W € R¥*? following Definition D.1.

Definition G.1. Let A, Ay € R¥L be two matrices. Suppose A = AT ® A] € RL >4 Define
Aj, € RE*4” a5 an L x d? sub-block of A. There are L such sub-blocks in total. For each Jo € [L],
define the function u(W);, : RT — RL by u(W);, := exp(A;, W) € RE.

Definition G.2. Let Ay, A, € R¥L be two matrices. Suppose A = A] ® A] € RE*4*_ Define

A;, € RE xd* a5 an L x d2 sub-block of A. There are L such sub-blocks in total. For every index

Jo € [L], consider the function o(WW);, : R — R defined by a(W);, = (exp(A;, W), 1 ).
—_——

Lx1 Lx1

Definition G.3. Suppose that o(W);, € R and u(W),, € R” are defined as in Definitions G.1
and G.2, respectively. For a fixed j, € [L], consider the function f(W);, : R — RL defined by

f(w)jo = a(w)'fl u(w)jo c

Jo

scalar Lx1

Define f(W) € REXL as the matrix where the jo-th row is (f (W),

JO)T

Definition G.4. For every i € [d], define the function h(WW 5y, )i, : R% — RE by
h(wOV)io = Ai—’)r (WOTV)*JO :
Lxd dx1

Here, Woy € R4*? denotes the matrix representation of W, € R%, and (Wov ).l ;, represents the

io-th column of W,,. Define h(W /) € RE*? as the matrix where the io-th column is h(W 5y )i, -

Definition G.5. For each jo € [L], we denote f(W),, € R” as the normalized vector defined
by Definition G.3. For each iy € [d], h(W 5y )i, is defined as per Definition G.4. For every pair
(joio) € [L] x [d], define the function ¢c(W);, ;, : RY x R — R by

C(E)jo,io = <f(w)jo’ h(EOV)i0> - ij:)r,im
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where (Wov )j,.i is the element at the (jo, io) position of the matrix Woy € REX4,

form

¢(+) has matrix

i@ = fW)h(Woy) _X:

Lxd LxL Lxd Lxd

With the tensor trick (Appendix D.3), we compute the gradient i dg> of the DiT loss as follows:

dw——w 522 (G.1)

dg2

(G.1) presents a neat decomposition of . Each term is easy enough to handle. Thus, we arrive at

the following lemma. Let Z[i, ] and Z [ , ]] be the i-th row and j-th column of matrix Z.

Lemma G.1 (Low-Rank Decomposition of DiT Gradient). Let matrix Ay, Ao, Az, W, Woy, Y and
loss function £ follow Definition 4.1, and A := A] ® A, . It holds

(I1) (I11)
d L d —_— .
=3 Y W A, ((ding (FOX),) — D0 FAD, ) hWor g (G2)
— Jo=lip=1

)

Proof. Let Z[i,-] and Z[-, j] be the i-th row and j-th column of matrix Z.
With DiT loss Definition 4.1, we have

dgz 1 a= d
T =3 2o 2 Ty e (W)
- jo=11i=1 ——
L d
d 2 dC( )] i
= Z Z 76’071'00(&)]’071'0 P
jo=1i=1 dw ! dwlo
- LW, BW oy )iy)
- Z Z Wcio,ioc(w)jo,io ) Jctl)I;V OV (By Definition G.S)
Jo=1l1i=1 —— YV g
L d
d df (W),
= Z Z WC?O Zoc(w)joyio ’ < éW)J ah(WOV)m>
jo=1l1i=1 —— —1
L d 1 . .
= Z Z %cﬁmioc(w)jo,io . <da (wdl)}[j;_u(w)j“ , h(WOV)i0> (By Definition G.3)
Jo=1i=1 —— Vv
L d .
d o du(W);, | de(W);
Sl 2 1 du(W) _oda(W),,
=22 qp Govio W iosio - { @) =i W g~ WMo, M(Woy )ig ) -
Jo=1li=1 —— 0 o
(By chain rule)

For each jy € [L], we have
d(A;,, W) dw )
d]# Jo dW (A]U) [ 71]'

10
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Therefore, for each jy € [L], we have

du(W);,  dexp(Aj, W)

(By Definition G. 1)

dwio a dwzo
dA;, W
= exp (Aj E) 2= (By entry-wise product rule)
0 dwm
= Ajo ['a Z] © U(E)j(,. (By Definition G.1 again)

Similarly,

datl¥);, _ d{u(W), Lr) (By Definition G.2)

aw,. aw,
= (A [ 1] ©uW);,, 1) (B\ entry-wise product rulc)
= (Al 1], u(W),) - (By Definition G.1 again)

Putting all together, we have

de(W)j07i0
dw .

22 10

= [<h(WOV)l0’ Jo[ ) ] © f( ) > <h’(EOV)i07 f(w)Jb) ’ <Aj0[" i]7 f(w)h)] . C(E)jo,im

where

> <h(WOV)Zov f(E)jo) ’ <Aj0 [" i]v f(E)jo)
w)jo) - f(W)Jof(w) ) (WOV)io'

This completes the proof. O

<h(EOV)i0’ Ajo [" Z] © f(W)Jo
= A;, (diag (f(

Observe (G.2) carefully. We see that (I) is diagonal and (II) is low-rank. This provides a hint
for algorithmic speedup through low-rank approximation: If we approximate the other parts with
low-rank approximation and carefully match the multiplication dimensions, we might formulate the

computation of 4 d as a chained low-rank approximation.

Surprisingly, such an approach makes computing (G.2) as fast as in almost-linear time. To proceed,
we further decompose (G.2) according to the chain-rule in the next lemma, and then conduct the
approximation term-by-term.

To facilitate our proof, it’s convenient to introduce the following notations.

Definition G.6 (¢(-)). Define c(W) € RE*4 as specified in Definition G.5 and h(W /) € RE*4 as
described in Definition G.4. Define ¢(W) € RLXL by

qW) := c(W) h(ﬂov)T o
m/ dx L

In addition, q(w)JTO denotes the jo-th row of ¢(17/), transposed, making it an L x 1 vector.

Definition G.7 (p(-),p1(-), p2(-)). For each index jo € [L], we define p(W);, € R™ as follows:

p(W);, == (diag(f(W);,) — F(W) o f V) ) a(W)j,-
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We define p(W) € RL*L such that p(w);0 forms the jo-th row of p(WW). In addition, for every
index jo € [L], we define p1 (W);,, p2(W);, € RE as

(W), = diag (£ (W), ) aWso,  p2(W), = f (W), f (W), a(W)s,,

such that p(W) = p1 (W) — pa(W).

dga

aw in a neat form:

p(+) allows us to express

Lemma G.2. Define the functions f(W) € REXL, (W) € R*L, h(W ) € RE, g(W) €
REXL and p(W) € REXE as specified in Definitions G.3 to G.7, respectively. Let A;, Ay € R4*L

be two given matrices, and define A = A] ® AJ . Define g according to (O1), and let g2(W) , 4o
be as described in (G.1). It holds

dgo

T
ar = vec (Alp(E)AQ ) : (G.3)
Proof. By definitions, (G.1) gives
d(92)jo )
— G4
e (G.4)
= Cjoio * (<f(w)10 © Aj07i07h(wOv)io> - <f(w)ju7h(EOV)io> ’ <f(m)j07Ajo7io>) :
_A;FO i dlag(f(W)Jo)h(i()v) ig _A;IE) i f(ﬂ)m f(w);; h(wov)io
(B} (a ®b,c) =a diag(b)cfora,b,c € T')
Therefore, (G.4) becomes
d(g2) jo.i
= oo (A ding(FOV)jo)h(Woy )ig = Ay i (W0 f (W) H(Woy )iy
W,
= Cjosio - Ay i (diag(f(W)jo) = F(W)jo f(W) )W o )i (G.5)
Then, by definitions of ¢(-), p(+), we complete the proof. O

G.1.2 Low-Rank Approximations of Building Blocks Part I: f(-), ¢(-), and c(+)

The definitions of p, p1, p2, and Lemma G.2 show that the DiT training gradlent 92 involves
entry-wise products of f, ¢, and c. Therefore if we approximate these with inner- dlanSIOIl matched
low-rank approximations, computing d 2 itself becomes a low-rank approximation. In the following
sections, we present low-rank approximations for f, ¢, and c.

Lemma G.3 (Approximate f(-), Modified from [Alman and Song, 2023]). Let I' = o(y/log L)
and ki = L°W. Let Ay, Ay,€ R™*L, W € R¥4 and f(W) = D? eXp(ATXAg) with

= diag (exp (A] WAy) 1) follows Definitions G.1 to G.3 and G.5. If max (|| A] W||
F [ A2]lnax) < T, then there exist two matrices Uy, V€ RZ**1 such that |[U V" — f(W)
¢/poly(L). In addition, it takes L'°(*) time to construct U; and V;.

max —

Hmax -

Proof. By [Alman and Song, 2023, Theorem 3], we complete the proof. O

Lemma G.4 (Approximate c(+)). Assume all numerical values are in O(log L) bits. Letd = O(log L)
and c(W) € REL*4 follows Definition G.5. There exist two matrices Uy, Vi € REX*1 guch that
|[UViTh(Wov) =Y T —c(W)||,.... < €e/poly(L).
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Proof of Lemma G 4.

[V h(Wov) =Y T —c(W)| ... = [V h(Wov) =Y T = (F(W)h(Wov) =Y )| ..

(By Definition G.5)

max

= [V = FI)] h(Wov)|
< ¢/poly(L). (By [Alman and Song. 2023, Theorem SI)

max

O

Lemma G.5 (Approximate q(). Let ky = L°W, ¢(-) € RE*? follow Definition G.5 and let
qW) = c(W)h(W )" € REXL (follow Definition G.6). There exist two matrices Us, Vo €

RExk2 such that [|UaVy" — q(W)||, . < €/poly(L). In addition, it takes L'+°(!) time to construct
Uz, Va.

Proof of Lemma G.5. Our proof is built on [Alman and Song, 2023, Lemma D.3].
Let ¢(-) denote an approximation to ¢(-).

By Lemma G.4, U; V;" h(Woy) — Y approximates c¢(W) up to accuracy € = 1/poly(L).
Thus, by setting ¢(W) = h(Wov ) (U1 V" h(Wov ) — Y)T, we find a low-rank form for g(-):
q(W) = h(Wov) (h(Wov)) ' ViU = h(Wov)Y T,
such that
) = 4 s = [ (Wor) (U B(Wov) = )" = h(Wor)Y ||

< A R(Wov) || max U1V R(Wov) =Y — c(W)||
< ¢/poly(L).

max max

By ki,d = L°D), compute (h(Wov))' Vi U, takes only L'T°() time. This completes the
— L~

dx L Lxk1 kyxL
proof. O

G.1.3 Low-Rank Approximations of Building Blocks Part II: p(-)

Now, we use the low-rank approximations of f,q, c to construct low-rank approximations for

p1(-), p2(-), p(-).

Lemma G.6 (Approximate p; (-)). Let k;1 ky = L°W. Suppose Uy, Vi € REXF1 approximates
fW) € REXE such that || U V," — f(W)||,_ . < €¢/poly(L), and Uy, Vo € RE*F2 approximates
the ¢(W) € RE*L such that ||U2V2 — q(VV)”maX < ¢/poly(L). Then there exist two matrices

Us, V3 € REXks guch that ||U3V3, -p(W ||max < ¢/poly(L). In addition, it takes L'*°(}) time
to construct Us, V3.

Proof of Lemma G.6. By tensor trick, we construct Us, V3 as tensor products of Uy, V1 and Us, Vs,
respectively, while preserving their low-rank structures. Then, we show the low-rank approximation
of p1(+) with bounded error by Lemma G.3 and Lemma G.5.

Let © be column-wise Kronecker product such that A @ B = [A[,1] ® B[-,1] | ... | A[, k1] ®
B[.’ ]fl]] € RLxkik2 for A € RLXk17B c RLxk2

Let f(W) := Uy V;T and (W) := U, V" denote matrix-multiplication approximations to f(W) and
q(W), respectively.
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Lxkq Lxks Lxkq Lxko
. N A~ /=
For the case of presentation, let Us = U; @ Uy and V3= Vi @ V, . Itholds

[UV5" = pr (W),
= ||UsVs" = W) © qW)|| ...
= |wevyviow) - rw) eqw)|
= (W) © (Vy") — F(W) © ¢(W)|
= [IF (V) © GW) — f(W) © ¢(W)lmax
< |FW) © GW) — F(W) © (W) |lmas + | F(W) © (W) = F(IW) © g(I) e

<e/poly(L) <e/poly(L)
< e/poly(L). (By Lemma G.3 and Lemma G.5)

(By pr(W) = f(W) © g(W))

max

Computationally, by k;, ks = L°(Y), computing Us and V3 takes L' T°() time. This completes the
proof. O

Lemma G.7 (Approximate py(-)). Let k1, ko, ks = L°W). Let po (W) € REXE follow Definition G.7
such that its jo-th column is po(W),, = f(W); 0f(VV)jTOq(I/V)J for each jo € [L]. Suppose
Uy, Vi € REXF1 approximates the f(X) such that | U V" — || < ¢/poly(L), and Uy, V5 €
REXF2 approximates the ¢(W) € RE*E such that HUQV2 — q || < ¢/poly(L). Then there
exist matrices Uy, V; € RE*F4 guch that HU4V4 — paf Hmax < e/poly( ). In addition, it takes

L' time to construct Uy, Vi.

Proof of Lemma G.7. From Definition G.7,

p2(W)j, = f (W), f (W) q(W),, .
N——

For (I), we show its low-rank approximation by observing the low-rank-preserving property of the
multiplication between f(-) and ¢(-) (from Lemma G.3 and Lemma G.5). For (II), we show its
low-rank approximation by the low-rank structure of f(-) and (I).

Part (I). We define a function r(W) : R® — RL such that the jo-th component r(W);, =

(f(w) jO)T q(W);, for all jo € [L]. Let ¥(W) denote the approximation of (W) via decomposing
into f(-) and ¢(+):

?(W)JO = <f(w)jo7a(w)jg> = (Ul‘/l—r) [j07 } ' [(U2V2T) [j07 ]]T
= Uiljo, ] i' Vo (Ualio, DT (G.6)
~—~ "~
ki1 xL Lxk2

for all jo € [L]. This allows us to write po (W) = f(W) diag(r(W)) with diag(7(1¥/)) denoting a
diagonal matrix with diagonal entries being components of 7(1V).

Part (I).  With r(-), we approximate ps(-) with po (W) = f(W) diag(7(W)) as follows.

Since f(WW) has low rank representation, and diag(~(W)) is a diagonal matrix, pz(-) has low-rank

representation by definition. Thus, we set po(W) = U, V" with Uy = U; and Vy = diag(7(W)) V4.
Then, we bound the approximation error

[T2Va" = p2(W)|

max
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[P2(W) = p2(W)[
max Hf(w)joi;(w)jo - f(w)jor(w)jo

Jo€[L] max
< e [[|FO0)3 7)1, — )50, | || FO5 7005, — 7m0, | ]

(By triangle inequulily)
< ¢/poly(L).

Computationally, computing V;" V5 takes L'*°(1) time by k1, ks = L°Y). Once we have V" V;

precomputed, (G.6) only takes O(k1k2) time for each jo € [L]. Thus, the total time is O (Lk1ks) =

LY+°() Since U; and V; takes L'*°() time to construct and V; = diag(F(IW)) V; also takes
—_—

LxL Lxky
LYo time, U, and Vj takes L'*°(1) time to construct. This completes the proof. O

G.2 Proof of Theorem 4.1

Proof of Theorem 4.1. By the definitions of matrices p(+), p1 () and pa(+) (Definition G.7), we have
p(W) = p1 (W) — po(W).

By Lemma G.2, we have

d
ﬁ = vec (A;p(W)A]) . (G.7)

To show the existence of L'+°(1) algorithms for DiT backward computation Problem 1, we prove
fast low-rank approximations for A;p; (W)AJ and A;ps(W)AJ as follows.

Let p1 (W), p2 (W) denote the approximations to py (W), p2 (W), respectively.

By Lemma G.6, it takes L'T°(1) time to construct Us, Vi € RX**3 such that
AP (W) A3 = AU V5" A7

Then, computing \Afl’\Uf-/ L{{/étakes L't due to the fact that d, ki ks = LM,
dXL Lxks kgx L Lxd
Therefore, total running time for A;p; (W)AJ is L - L°(1) = [1+o(1),
For the same reason (by Lemma G.7), total running time for A;po(W)AJ is L - L°W) = [1+o(1),
Lastly, we have
o ~

55-0m
= ||vec (Aip(W)AJ ) — vec (A1p(W) A7) 1
I(4P) Az ) = (APAV)A; ) |

max

(By Lemma G.2>

max

(BV definition, || Al = max;, ; |A;;| for any matrix 4)
max < max o y J

< [(AL I (W) = 51 ()] A3 ) ||y + ([ (A [p2 (W) = B2(W)] Az ),
(By Definition G.7 and triangle inequulily)
< Al [ A2l (11 (W) = pr(WV)) | max + | (p2(W) = P2(W))| )
(By the sub-multiplicative property of |-|| X)
< ¢/poly(L). (By Lemma G.6 and Lemma G,7)
Set € = 1/poly(L). We complete the proof. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Our contributions and scope in Section 3 and Section 4 are reflected by the claims in
abstract and introduction.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: Yes. We include our proofs in the appendix and have made every effort to ensure the
correctness of our theoretical results.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [NA|
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and

data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions to

provide some reasonable avenue for reproducibility, which may depend on the nature of the

contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: This is a formal theory work without experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,

train/test split, initialization, random drawing of some parameter, or overall run with given

experimental conditions).

The method for calculating the error bars should be explained (closed form formula, call to a

library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they

were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources

10.

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes. We follow the code of ethics in this work.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: This theoretical work aims to shed light on the foundations of diffusion generative
models and is not anticipated to have negative social impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere

to usage guidelines or restrictions to access the model or implementing safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors should

describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA|
Justification: This is a formal theory work without experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|

Justification: This is a formal theory work without experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.
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14.

15.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA|

Justification: This is a formal theory work without experiments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: This is a formal theory work without experiments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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