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Abstract

Estimating the out-of-distribution performance in regimes where labels are scarce is
critical to safely deploy foundation models. Recently, it was shown that ensembles
of neural networks observe the phenomena “agreement-on-the-line”, which can
be leveraged to reliably predict OOD performance without labels. However, in
contrast to classical neural networks that are trained on in-distribution data from
scratch for numerous epochs, foundation models undergo minimal finetuning from
heavily pretrained weights, which may reduce the ensemble diversity needed to
observe agreement-on-the-line. In our work, we demonstrate that when lightly
finetuning multiple runs from a single foundation model, the choice of random-
ness during training (linear head initialization, data ordering, and data subsetting)
can lead to drastically different levels of agreement-on-the-line in the resulting
ensemble. Surprisingly, only random head initialization is able to reliably induce
agreement-on-the-line in finetuned foundation models across vision and language
benchmarks. Second, we demonstrate that ensembles of multiple foundation mod-
els pretrained on different datasets but finetuned on the same task can also show
agreement-on-the-line. In total, by careful construction of a diverse ensemble, we
can utilize agreement-on-the-line-based methods to predict the OOD performance
of foundation models with high precision.

1 Introduction

Foundation models (FM), or large models first pretrained on open world data then finetuned or
prompted for a specific downstream task, have proven to be powerful solutions for many common
machine learning problems. A notable trait about FMs is that they are far more robust to distribution
shift than other deep learning approaches — across image and language benchmarks, they suffer
a smaller performance degradation on out-of-distribution (OOD) data, that may vary substantially
from the in-distribution (ID) finetuning data [43, 42, 7, 60, 58, 14]. From clinical decision-making
in different hospitals to navigating robots through unseen terrains, FMs are increasingly utilized
for tasks prone to distribution shift. However, evaluating these models in OOD settings remains
difficult: in many cases, acquiring labels for OOD data is costly and inefficient, while unlabled OOD
data is much easier to collect. Although the field has explored other means for estimating OOD
accuracy without labeled data, they are not ideal for FMs. A reliable FM performance estimator has
the following desirable properties. First, the method must be computationally efficient to account
for FMs’ large model size. Second, FMs are leveraged for many different tasks (e.g., classification,
question-answering, regression), so the method should also be versatile across tasks. Third, as we
will see, methods for finetuned FMs may require different model assumptions from neural networks
trained from scratch.
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Figure 1: The ID vs OOD lines for accuracy (orange) and agreement (blue) for various datasets and
fine-tuned ensembles. Each blue dot corresponds to a member of the ensemble and represents the ID
(x) and OOD (y) accuracy. Each orange dot corresponds to a pair of these members and represents
the ID (x) and OOD (y) agreement. From CIFAR10 to CIFAR10C “Pixelate” in linear probed CLIP,
MNLI to SNLI in full fine-tuned OPT, and SQuAD to SQuAD-Shifts “Amazon” in full fine-tuned
GPT2, we observe that randomly initializing the head as the diversity source for generating ensembles
(columns) shows the closest agreement linear fit to accuracy.

Recently, [2] proposed a promising method for estimating the OOD accuracy of deep networks
using the agreement between pairs of these classifiers (i.e., how often two classifiers make the
same prediction). For distribution shifts where models observe a strong linear correlation in ID
versus OOD accuracy – a common phenomenon in vision and language benchmarks [39, 1] – a
strong linear correlation also holds for ID versus OOD agreement with extremely similar slopes and
intercepts. These effects are referred to as accuracy-on-the-line (ACL) and agreement-on-the-line
(AGL) respectively, and together they provide a simple method for estimating OOD accuracy via
unlabeled data alone. Namely, without any OOD labels, we can instead measure the linear fit of ID
versus OOD agreement as a proxy for the linear fit of ID versus OOD accuracy. With this linear fit,
we can verify whether ACL holds by using the correlation strength of agreement’s linear trend and
estimating each model’s OOD accuracy by linearly transforming ID accuracy. This simple approach
has shown to reliably predict the OOD accuracy of models within a few percentage points across
classification and question-answering tasks.

2
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Unfortunately, while the method has several practical advantages, it is unclear whether finetuned
FMs also observe the necessary AGL phenomena. Intuitively, a prerequisite to observing AGL is
a diverse ensemble of classifiers. Since OOD accuracy falls below ID accuracy, if the linear trend
in ID versus OOD agreement is to match that of accuracy, models must also agree much less OOD
than ID. For this to happen, errors between any two models must be sufficiently decorrelated. [2]
observes AGL in ensembles of neural networks trained for hundreds of epochs from scratch where it
is conceivable that the stochasticity between training runs leads to large divergences in the weight
space, and corresponding models have diverse OOD predictions. However, in the case of finetuned
FMs, models are much closer in the weight space. FMs are often either linear probed over the same
pretrained weights or full finetuned for a few epochs with a small learning rate and intuitively, such
light finetuning may lead to models that “revert back” to their pretrained behavior to make highly
correlated predictions OOD.

This raises the question: can we enforce AGL in this paradigm of lightly finetuning heavily pretrained
models? In this work, we conduct an extensive study across several modalities, e.g., CLIP-based
image classification and LLM-based question-answering, and training regiments, e.g., full finetuning
and linear probing, to understand when AGL holds for finetuned FMs. We first investigate whether
AGL appears in an ensemble of finetuned models from a single base FM. To collect a deep ensemble,
the following sources of diversity can be injected into the finetuning process: 1) random initialization
of the linear head; 2) random data ordering; and 3) random data subsetting. We find that not every
source of diversity during fine-tuning on ID data manifests in sufficient diversity OOD, breaking the
matching linear fits in ID versus OOD accuracy and agreement. Interestingly, finetuning models from
different random initializations of the linear head consistently induces AGL across benchmarks. In
contrast, neural networks trained from scratch observe AGL irrespective to these diversity sources.

Second, we show that finetuned models from multiple different base FMs can be leveraged for AGL-
based performance estimation. As base FMs can be pretrained with different datasets, architectures,
and training regiments, the linear trends in ID versus OOD accuracy and agreement may break
altogether in such ensembles. Indeed previous works indicate that on vision tasks, FMs pretrained on
different image corpora can have different levels of OOD robustness for the same ID performance
[17, 43, 51]. On the contrary, we find that on language tasks, FMs pretrained on different text corpora
observe both AGL and ACL across question-answering and text classification tasks.

In total, we develop simple techniques for applying AGL-based performance estimation methods to
predict the OOD performance of foundation models. We demonstrate that the AGL phenomenon is
not limited to ensembles of neural networks trained from scratch. By simply finetuning FMs from
random initializations of the linear head, we can observe the phenomena in FMs across a wide variety
of tasks (classification, question-answering) and modalities (vision, language) and training procedures
(linear probing, full finetuning). We find that AGL is the only method to accurately estimate the
performance of finetuned FMs across all tasks, surpassing other performance estimation baselines by
a significant margin as large as 20% mean absolute percentage error.

2 Background and related work

2.1 Setup

We are interested in evaluating models that map an input x ∈ X to a discrete output y ∈ Y. In
particular, we finetune foundation models. For a base model B, let f(B) denote a finetuned version
of B. In this work, we consider a variety of foundation models: GPT2 [42], OPT [65], Llama2 [53],
BERT [14], and CLIP [43].

Finetuning strategies. We have access to labeled data from some distribution DID that we use for
obtaining f(B) from B. In this work, we consider the following standard finetuning procedures.

1. Linear probing (LP): Given features from the base model Bθ, we train a linear head v such
that the final classifier maps the score v⊤Bθ(x) to a predicted class. We randomly initialize
v and update v via gradient steps on a suitable loss function. The base model parameters
remain frozen. We refer to v as either a linear probe (classification), or span prediction head
(question-answering) depending on the task.

3
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2. Full finetuning (FFT): We update all parameters of the backbone Bθ and the linear head v
using a small learning rate. When infeasible to update all parameters, we perform low-rank
adaptation (LoRA) [25] to reduce the number of trainable parameters while still effectively
updating the feature extractor Bθ. In this work, we do not distinguish between LoRA and
FFT as they conceptually achieve the same effect, and seem to show similar empirical trends
in our studies.

OOD performance estimation. Given access to a labeled validation set from DID and unlabeled
samples from a related but different distribution DOOD, our goal is to estimate performance on DOOD.
We consider the standard performance metrics for various tasks: Accuracy ℓ0-1 : Y 7→ [0, 1] for
classification, and Exact Match ℓEM : Y 7→ [0, 1] and Macro-averaged F1 score ℓF1 : Y 7→ [0, 1] for
question-answering. We use ℓ to denote the appropriate metric in the context.

2.2 Background on OOD accuracy estimation

There is rich literature on OOD performance estimation for deep networks, with a variety of proposed
approaches. Initial works focused on upper bounding the degree of distribution shift through data
and/or model dependent metrics, e.g., uniform convergence bounds using H-divergence [4, 37, 11, 30].
However, these bounds tend to be loose for deep networks [39]. The following works try to estimate
the performance exactly.

For classification, [23, 22, 19, 16, 21] leverage the model’s confidence to predict the OOD perfor-
mance. Since deep models are typically overconfident, these models are first calibrated in-distribution
by temperature scaling. Similar methods are uncertainty quantification works that directly calibrate
models under distribution shift [62, 67, 41]. Confidence based methods are commonly utilized in
practice, and favorable for foundation models as they are computationally light and model-agnostic.
However, they often fail for large shifts [19] and are often well-defined for accuracy but not other
common metrics like F1 score. These can be limiting factors for foundation models which are applied
to a broad array of tasks. Still, as they are the most common estimation methods, we utilize them as
the baselines in our work.

[49, 12, 13] also measure model behavior on known auxiliary tasks to understand model behavior
under the distribution shift at hand. However, these approaches tend to be overfit to specific datasets
or modalities. Similar to AGL, there are prediction methods that utilize information from ensembles.
Oftentimes a separate “reference” ensemble is trained on some objective to predict the performance
of a “target” model [10, 63, 8]. These methods have a higher computational cost than AGL. Although
AGL also requires at least 3 models to compute agreement, these models only undergo generic
finetuning. Thus, it is a better suited approach for evaluating foundation models, especially if
off-the-shelf finetuned models are readily available, e.g., from Huggingface (see Section 4).

Overall, there is growing attention towards understanding the safety and reliability of foundation
models. To understand the effective robustness of FMs under distribution shift, recent works focus
on studying the “accuracy-on-the-line” phenomena [39] (details in next subsection) and designing
benchmarks that expose different failure modes of large models [36, 54]. However, unsupervised
OOD performance estimation is underexplored in this modern setting, in terms of new methods and
the transferability of old methods to large pretrained models.

2.3 Accuracy and agreement on the line

We are interested in adapting the method “agreement-on-the-line” (AGL) [2] for OOD estimation
as it obtains state-of-the-art performance estimation across several distribution shifts. AGL is based
on an earlier observation called “accuracy-on-the-line” (ACL) — across common distribution shift
benchmarks, there is a strong linear correlation between the ID and OOD performance of models
[39, 45–47, 61, 51, 38]. ACL can also be observed in FMs for image classification, e.g., CIFAR10C
[22], ImageNetV2 [46], FMoW-WILDS [28], and question-answering, e.g., SQuAD-Shifts [38].
However, ACL does not always hold, e.g., Camelyon-WILDS [39] and SearchQA [1].

While ACL is a striking phenomenon, it does not immediately provide a practical method to estimate
OOD performance—computing the linear fit of ID versus OOD accuracy requires labeled samples
from DOOD. Alternatively, we can estimate this linear trend exactly using only the agreement between
neural networks [2]. Formally, given a pair of models f1 and f2 that map inputs to labels, accuracy
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and agreement is defined as

Acc(fi) = Ex,y∼D[ℓ(fi(x), y)], Agr(f1, f2) = Ex,y∼D[ℓ(f1(x), f2(x))], (1)

where ℓ is the appropriate performance metric of interest. While accuracy requires access to the
ground truth labels y, agreement only requires access to unlabeled data and a pair of models. [2]
observes that when ID versus OOD accuracy is strongly linearly correlated between neural networks,
i.e., ACL, then the ID versus OOD agreement of pairs of these models also observe a strong linear
correlation with the same linear slope and bias. Furthermore, when accuracies do not show a linear
correlation, agreements also do not. This coupled phenomenon is dubbed “agreement-on-the-line”
(AGL).

To use AGL for OOD performance estimation, one may obtain the slope and bias of the agreement
line with unlabeled data, and then estimate the OOD performance by linearly transforming the
ID validation performance. Specifically, with a collection of models F = {f1, f2, ..., fn}, AGL
suggests that ID versus OOD accuracy observe a strong linear correlation if and only if ID versus
OOD agreement observes a strong linear correlation and when they do, the slopes and biases match:
∀fi, fj ∈ F where i ̸= j

Φ−1(AccOOD(fi)) = a · Φ−1(AccID(fi)) + b

⇕
Φ−1(AgrOOD(fi, fj)) = a · Φ−1(AgrID(fi, fj)) + b

(2)

Φ−1 is the probit transform used to induce a better linear fit as used in [2, 39]. Provided access to
AccID(fi),AgrID(fi, fj),AgrOOD(fi, fj) ∀i, j, we can estimate AccOOD(fi) for all fi ∈ F . We refer
the reader to [2] for formal AGL-based performance estimation algorithms (ALine-S and ALine-D),
which we also provide in Appendix A.1.1.

3 Predicting OOD performance: single base foundation model

We first evaluate whether AGL appears in an ensemble of multiple finetuned runs of a single base
foundation model. This would enable precise OOD performance estimates for each ensemble member.
A practitioner may naively gather a finetuned ensemble by training a couple runs with different
seeds or hyperparameters. However, an overriding concern is that even with some randomness in
the finetuning process, linear probing or light full-finetuning over the same base model may lead
to solutions with very correlated predictions. We extensively evaluate the following methods of
introducing diversity into the finetuning process to see what approach (if any) can lead to AGL.

1. Random linear heads We initialize the last layer of the network (i.e., the linear head)
randomly, instead of via some zero-shot or pre-specified manner.

2. Data ordering We present the same training data to each model but shuffle the order of the
data, i.e., model observes different minibatches.

3. Data subsetting We i.i.d. sample p% subset of the data to train over. In the main body, we
report models trained on independently sampled 10% of the training data, other proportions
of 30% and 50% are reported in Appendix A.4.

We perturb one source of diversity at a time and study whether AGL occurs in each resulting model
ensemble. For each setting, we also vary the number of training epochs to collect models with
different ID performance, which is necessary to obtain a meaningful linear correlation in accuracy.
The additional randomness induced by different training epochs does not affect the observations we
make. We use at most four A6000’s for all experiments except for linear probing where we use one
RTX 8000.

3.1 VLM-based Image Classification

We first investigate the effect of diversity source on AGL behavior for vision benchmarks. For image
classification, a common pipeline is to finetune over a CLIP [43] pretrained foundation model.
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CLIP Linear Probing We finetune over OpenCLIP ViT-B/32 model trained on LAION-2B [26].
Given its well-established zero-shot capabilities, a popular method of finetuning CLIP is to simply
employ linear probing on top of the CLIP representation. We take particular interest in evaluat-
ing the OOD performance of an ensemble of linear models trained on top of frozen base model
representations.

Datasets We evaluate ensembles on synthetic corruptions (CIFAR10C, CIFAR100C, ImageNetC),
dataset replication shifts (CIFAR10.1, ImageNetV2), style shifts (OfficeHome), geographical
and temporal shifts (FMoW-WILDS, iWildCam-WILDS), and interlaboratory shifts in medicine
(Camelyon17-WILDS). iWildCam-WILDS exhibits weak ACL and Camelyon17-WILDS doesn’t
exhibit any ACL [39]. We test on iWildCam-WILDS and Camelyon17-WILDS to verify AGL’s
negative condition, i.e., when the linear correlation does not exist in ID versus OOD accuracy, it also
does not exist in agreement.

Table 1: We evaluate models on the following distribution shift benchmarks.
ID OOD

CIFAR10 [29] CIFAR10C [22], CIFAR10.1 [45]
CIFAR100 [29] CIFAR100C [22]
ImageNet [48] ImageNetC [22], CIFAR10.1 [45]
FMoW ID [28] FMoW OOD [28]

iWildCam ID [28] iWildCam OOD [28]
Camelyon17 ID [28] Camelyon17 OOD [28]

OfficeHome [56] All (ID, OOD) pairings of domains Art, ClipArt, Product, Real World
MNLI [59] MNLI-Mismatched [59], SNLI [6]

SQuAD [44] SQuAD-Shifts [38]
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Figure 2: In ensembles with diverse random initializations, ACL and AGL holds across benchmarks in
linear probed CLIP models. Similar to [2], neither ACL nor AGL holds for the Camelyon17-WILDS

Results Across vision benchmarks, linear probed CLIP models observe ACL, i.e. there is a strong
linear correlation in the ID versus OOD performance. Similarly, on the same datasets, we can observe
a corresponding strong linear correlation in agreement across ensembles injected with diversity in
linear head initialization, data ordering, and data subsetting (Figures 1). However, we find that only
ensembles with diverse initialization leads to AGL where the linear trend of agreement and accuracy
have a matching slope and bias (Figure 2). See Appendix A.3.2 for results on other datasets. In
model ensembles obtained by data ordering and data subsetting, we observe a consistent trend where
the agreement trend observe a much higher slope close to the diagonal y = x line. These results
are not specific to linear probing alone. In full finetuned CLIP models, we also observe that random
linear heads induce the most reliable AGL behavior (See Appendix A.3). Note that this setting is still
notably different from [2] where models are heavily trained for tens to hundreds of epochs often with
a large learning rate, which causes AGL behavior to be more robust to the source of diversity used to
induce the ensemble (See Appendix A.3.4).

3.2 LLM-based Question-Answering and Text Classification

We conduct a similar systematic investigation of AGL in finetuned runs of a single base language
model. Similar to CLIP linear probing, we find that AGL cannot be observed without random head
initialization in language models evaluated on text classification and extractive question-answering
tasks. While we mostly focus on tasks that require a linear head during finetuning, we also conduct a
diversity study on generative tasks where the base model is finetuned directly in Appendix A.6.1.
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Table 2: ALine-D MAPE (%) of different sources of diversity for CLIP linear probing and GPT2-
Medium/OPT-125M full finetuning. We average the score over all corruptions for CIFAR10C.

Source of Diversity CIFAR10C SQuAD-Shifts Amazon SQuAD-Shifts Reddit SNLI

Random Linear Heads 14.64 6.34 3.48 11.70
Data Ordering 37.01 10.30 9.59 15.40

Data Subsetting 35.85 16.21 13.94 15.50

Full Finetuned Language Models We evaluate over a collection of 450 full finetuned runs of
several base FMs: GPT2-Medium [42] and OPT-125M [65]. Models are full finetuned for up to 20
epochs with a small learning rate (≤ 1e−6). Hyperparameters specifics can be found in Appendix
A.2. We do not conduct a linear probing study for question-answering as it leads to poorly performing
models. For text classification, we also conduct a linear probing study in Appendix A.5.

Datasets We test models on a text classification shift from MNLI [59] in the GLUE benchmark [57]
to MNLI-Mismatched [59] and SNLI [6]. We also evaluate extractive question-answering models on
the shift from SQuAD v1.1 [44] to SQuAD-Shifts [38].

Results We evaluate models on accuracy for text classification and F1 score for question-answering.
Similar to our findings in CLIP, in both text classification and question-answering benchmarks,
ensembles of full finetuned LLMs observe AGL when models are trained from different randomly
initialized linear or span heads while data ordering and data subsetting observe an agreement trend
closer to the diagonal y = x line (Figure 1 and Appendix A.5). We note that with full finetuning,
the differences in AGL behavior between diversity sources are not as stark as with linearly probed
models. In some sense, how model diversity is achieved becomes increasingly less important for
observing AGL as the base model parameters also diverge, with ensembles of models heavily trained
from scratch at the extreme [2].

3.3 Summary and Implications

Across image and language modalities, we demonstrate that ensembles of finetuned FMs can also
observe agreement-on-the-line similar to heavily trained CNN’s [2]. In both domains and regardless
of the fine-tuning strategy, e.g. FFT and LP, or metric, e.g. F1 and Accuracy, employed, the diversity
induced via random head initialization yields AGL, while the diversity induced via data reordering or
data subsetting does not. This phenomenon can be observed across hyperparameters (Appendix A.7)
and different PEFT methods (Appendix A.8). With a single heavily pre-trained base FM, one
may think that light finetuning leads to downstream models with highly correlated behavior under
distribution shift. However, simply randomly initializing the linear head alone induces sufficiently
decorrelated models for observing AGL. The diversity in the ensemble becomes important when
predicting the OOD performance of models using downstream AGL-based methods. In Table 2,
we show that AGL-based methods can only accurately predict the OOD performance of models in
ensembles with diverse initialization, and cannot with data subsetting or ordering.

Furthermore, our findings contrast previous work that suggest AGL is a neural-network specific
phenomenon [2, 31], unlike ACL which is model agnostic [39]. Specifically, [2] report that linear
models trained on top of the flattened CIFAR10 images do not observe AGL. However, we find that,
on top of CLIP features, linear models can exhibit AGL with random initialization. Previous work
on the Generalization Disagreement Equality [27] contend that data subsetting leads to the most
diversity in model predictions for deep ensembles (neural networks, random forests). Specifically,
in-distribution, the agreement rate between pairs of models was shown to equal their expected
accuracy in ensembles obtained by data subsetting, while those that vary random initialization has
slightly higher agreement [27, 40]. On the other hand, in our problem setting of out-of-distribution
datasets on FMs, we found that ensembles induced by different random initialization achieves AGL,
while data ordering or subsetting cannot. Our setting is different from previous literature in two
ways: (1) AGL studies the OOD agreement rate relative to their ID agreement, in contrast to the
GDE phenomenon which only regards the models’ ID agreement. We hypothesize that random
initialization is much more important for observing the right levels of OOD agreement. (2) Models
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Figure 3: AGL can be observed between models finetuned from different base models (Llama, GPT,
OPT) for the F1 score for question-answering shift (SQuAD to SQuAD-Shifts) and accuracy for
text classification (MNLI-Matched to MNLI-Mismatched and SNLI). SQuAD-Shifts New Wiki,
SQuAD-Shifts NYT, and MNLI Mismatched show little drop in OOD performance because the
distribution shift is small compared to the corresponding ID dataset. Nonetheless, we observe that
AGL holds regardless of the degree of distribution shift.

are only lightly fine-tuned or linearly probed, unlike deep ensembles trained from scratch. Diversity
sources may behave differently in this circumstance.

4 Predicting OOD performance: multiple foundation models

Alternatively, we consider ensembling multiple base foundation models. First, ACL may not hold
because the base models are heavily pretrained on different data corpuses. This may cause respective
downstream models to have different ID versus OOD accuracy trends or “effective robustness” [17].
On vision tasks, for example, linear probing over CLIP, EfficientNet [50], ViT [15], and BYOL [20]
observe varying robustness trends [43]. Second, even when ACL does hold, it is unclear whether the
ensembles will also observe AGL. Here the problem is different from the single base model setting:
any pair of foundation models finetuned from different base models may agree too little, or OOD
agreement rate may vary across model pairs depending on the similarity of the pretraining corpus,
breaking the linear correlation of agreement entirely. Yet, we observe that for language models and
tasks, ensembles of finetuned FMs from a wide range of base models observe both ACL and AGL.

Models We finetune models from OPT-125M, OPT-350M, OPT-1.3B [65], GPT2, GPT2-Medium,
GPT2-Large, GPT2-XL [42], GPT-Neo-135M [5], Llama2-7B [53], Alpaca-7B [52], and Vicuna-7B
[9]. We fully finetune OPT and GPT models and LoRA finetune Llama, Alpaca, and Vicuna. These
models are pretrained on different mixtures of BookCorpus [66], Stories [55], PILE [18], CCNews
v2 corpus, and PushShift.io Reddit [3]. Alpaca and Vicuna are instruction-finetuned over Llama2.

4.1 Results

We investigate the AGL behavior of an ensemble of foundation models finetuned from diverse base
models in Figure 3 for question-answering. First note that base LLM models pretrained on different
text corpora lead to finetuned models that lie on the same linear trend in accuracy. Unlike the different
accuracy trends observed by different vision foundation models [42], we suspect that the pretraining
datasets for the language models in our study observe much more homogeneity. Second, the ID
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Table 3: The MAPE (%) of predicting OOD performance using AGL-based ALine and other baseline
methods. We collect a diverse ensemble by randomizing the linear initialization and including
multiple base models. ∗We filter out shifts with low correlation in agreement.

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DOC-Feat

CIFAR10C∗ 5.44 4.73 17.39 6.90 11.49 11.91
CIFAR10.1 v6 1.95 1.99 16.95 2.60 4.93 5.36
CIFAR100C∗ 7.17 6.79 17.66 8.18 17.58 14.96
ImageNetC∗ 15.03 14.17 32.27 15.90 22.83 13.42
ImageNetV2 MatchFreq 8.44 8.43 22.21 3.02 15.53 8.43
fMoW-WILDS 14.26 7.29 141.31 12.17 19.87 8.76
OfficeHome-Art 17.78 13.94 40.60 38.52 19.68 44.40
OfficeHome-ClipArt 14.04 11.70 33.44 33.81 14.97 28.77
OfficeHome-Product 14.64 11.78 39.88 84.18 63.05 75.44
OfficeHome-Real 12.65 10.18 36.20 27.72 21.85 28.85

SQuAD-Shifts Reddit 3.61 3.48 26.56 19.06 30.94 9.18
SQuAD-Shifts Amazon 3.61 4.93 26.46 24.35 34.93 7.31
SQuAD-Shifts NYT 1.64 1.75 23.46 4.01 25.96 2.80
SQuAD-Shifts New Wiki 6.33 6.58 25.24 5.18 25.96 7.50

MNLI Mismatched 0.55 0.41 0.55 12.00 0.63 0.51
SNLI 2.90 2.10 2.50 6.30 3.80 8.40

versus OOD agreement between pairs of models in this ensemble, including those between different
base foundation models, is also strongly correlated and the slope and intercept closely matches that of
accuracy. In other words, ensembles of different base models also observe AGL without any special
regularization for ensemble diversity. The same holds for generative QA tasks (Appendix A.6.2).

5 Estimating OOD Accuracy using AGL in Diverse Ensembles

By constructing a diverse ensemble of foundation models, we can leverage AGL to extract precise
estimates of model performances under distribution shift. We construct ensembles by collecting
models trained from randomly-initialized heads (Section 3) and different base models (Section 4).
For image classification, our model collection consists just linear models over CLIP representations.
For text classification and question-answering, we include GPT, OPT, and Llama models individually
finetuned from differently initialized heads. In Table 3, we compare the Mean Absolute Percentage
Error (MAPE) of AGL-based prediction algorithms, ALine-S and ALine-D [2], to other baselines.

We compare against confidence based methods ATC [19], AC [24] and DOC-Feat [21] and Naive
Agreement which directly uses agreement between model pairs [27, 35]. For confidence based meth-
ods, we first temperature scale the models using ID validation data, and pick the lower error rate from
the estimations obtained with and without temperature scaling. However, there are several limitations
when naively applying confidence baselines to estimate performance on question-answering, as they
estimate classification accuracy. First, there is no easy analogous formulation of confidence baselines
for the F1 score, so we estimate the exact-match score instead for fair comparison. On the other
hand, AGL can predict performance across metrics accuracy, F1, and exact-match. Second, extractive
question-answering is a joint classification task where models predict both the start and end token
index of the answer span in the context. More details for how we calibrate baselines for this setting is
provided in Appendix A.1.2.

Because ALine-S and ALine-D only provide estimation guarantees where the coefficient of deter-
mination R2 of the linear fit in agreement is strong ([2]), we filter out datasets with low R2 ≤ 0.95.
These shifts include iWildCam-WILDS, Camelyon-WILDS, and a few corruptions in CIFAR10C,
CIFAR100C, and ImageNetC. We evaluate ALine-S/D for these failure cases in Appendix A.1.3.
Across datasets with a high R2 in agreement, ALine-S and ALine-D provide precise OOD perfor-
mance estimates in finetuned FMs, surpassing other baselines by a large margin. This is noteworthy,
especially for shifts where the agreement line is significantly off y = x, further lending to the utility
of this method. Furthermore, they perform better on the question-answering task SQuAD, with the
next best confidence method achieving as large as 20% higher error.
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6 Limitations

Estimating the out-of-distribution performance of foundation models has rapidly grown in importance,
especially as these models are increasingly deployed in real-world use cases. Our work focuses on a
promising method to enable deployers to reduce the harm of machine learning systems when they
encounter OOD inputs. However, deployers should be careful to not use AGL as the only signal for
OOD performance. The correlation between agreement and accuracy is not guaranteed to hold for all
distribution shifts, so other metrics should additionally be used to monitor model performance. In
particular for foundation models, we observe that careful choices during fine-tuning is required to
observe AGL. In fact, if different pretrained checkpoints are evaluated zero-shot, without any fine-
tuning, AGL is not able to reliably predict the performance of FMs (Appendix A.3.5). Furthermore,
while we studied AGL closely for a wide array of classification/QA benchmarks, there remains other
important downstream tasks such as long-form generation that we leave for future study. We also
do not provide any theoretical guarantees to back our empirical findings, such as the importance of
random initialization, which we leave for future work.

7 Conclusion

We develop methods for extending AGL to foundation models to enable OOD performance prediction
in this emerging paradigm. We find that utilizing AGL for performance estimation requires a careful
tuning of ensemble diversity. Unlike the original paradigm of AGL, where models observed tens or
hundreds of epochs of training on the ID dataset, we find that randomness in specific optimization
choices, especially linear head initialization, is crucial for foundation models. In fact, in contrast to
[2], we find that linear models can also observe AGL, specifically in the CLIP representation space,
suggesting that AGL may not be a neural network specific phenomena. Our conclusion on AGL also
sheds light on the robustness of foundation models. First, our experiments show that light finetuning
alone can corrupt models to have diverse behaviors. Next, in contrast to vision models, where
previous works show different forms of pretraining lead to different slopes in the linear correlations
[43], we find that all the language models we evaluate, e.g., OPT, GPT2, GPT2-Neo, Alpaca, Llama,
and Vicuna lie on the same accuracy line. This is particularly intriguing because it goes against the
common wisdom that the pretraining data influences the models’ “effective robustness”. We leave
these questions for future analysis.
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A.1 Details Regarding OOD Performance Estimation Baselines

A.1.1 AGL-Based Estimation Methods: ALine-S/D

ALine algorithms are the AGL-based performance estimation methods proposed in [2]. When
the AGL phenomenon occurs, i.e., models observe a strong linear correlation in both ID versus
OOD agreement and accuracy with matching slopes and biases, algorithms ALine-S and ALine-D
effectively apply the linear transformation calculated using agreements to map the ID performances
to OOD performance estimates. We describe the algorithms in more detail below.

AGL Provided a collection of models F = {f1, f2, ..., fn}, AGL suggests that ID versus OOD
accuracy observe a strong linear correlation if and only if ID versus OOD agreement observes a
strong linear correlation and when they do, the slopes and biases match: ∀fi, fj ∈ F where i ̸= j

Φ−1(AccOOD(fi)) = a · Φ−1(AccID(fi)) + b

⇕
Φ−1(AgrOOD(fi, fj)) = a · Φ−1(AgrID(fi, fj)) + b

(3)

Φ−1 is the probit transform used to induce a better linear fit as used in [2] and [39]. Provided access
to AccID(fi),AgrID(fi, fj),AgrOOD(fi, fj) ∀i, j, we’d like to estimate AccOOD(fi) for all fi ∈ F .

ALine-S The algorithm ALine-S simply estimates the the slope a and bias b of accuracy by
computing the linear fit of agreement.

â, b̂ = arg min
a,b∈R

∑
i ̸=j

(
Φ−1(ÂgrOOD(fi, fj))− a · Φ−1(ÂgrID(fi, fj))− b

)2

(4)

With â and b̂, we estimate AccOOD(fi) ≈ â · AccID(fi) + b̂. This method is called Aline-S.

ALine-D This method instead constructs the following system of linear equations. Provided the
relation in Equation 2, one can derive that for any fi, fj ∈ F ,

1

2

(
Φ−1(AccOOD(fi)) + Φ−1(AccOOD(fj))

)
≈ Φ−1(AgrOOD(fi, fj)) + â ·

(
1

2
Φ−1(AccID(fi)) +

1

2
Φ−1(AccID(fj))− Φ−1(AgrID(fi, fj))

)
(5)

Treating AccOOD(fi) ∀i as unknown variables, note that the right hand side is known and we can
construct a linear system of equations using all

(
n
2

)
pairs of models. The algorithm employs least

squares to solve this approximate system of linear equations.
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A.1.2 Temperature Scaling for Confidence-Based Estimation Methods

We compare ALine against confidence-based methods ATC [19], AC [24], and Doc-Feat [21]. These
methods notably perform better after calibrating the models ID by temperature scaling.

Classification For classification tasks, we optimize a temperature T for each model f on the
cross-entropy loss over the in-distribution validation data.

min
T

∑
x,y

CE(σ(f(x) exp(T )), y) (6)

where σ(·) is the softmax.

Question-Answering For extractive question-answering tasks, the model has to predict two labels –
the start and end token index y = [ys, ye] of the context span that answers the question. For each
model, we attach a span prediction head v = [vs, ve] ∈ Rd×2 on top of the base Bθ(x) ∈ Rd×N

where N is the token length of x. s(x) = v⊤s Bθ(x) and e(x) = v⊤e Bθ(x) predict the start and end
token index, respectively.

We’re interested in evaluating question-answering models on the exact match (EM) objective,

EM(ŷ, y) = 1 [ŷs = ys] · 1 [ŷe = ye] (7)

EM treats question-answering as a classification problem over N ×N choices of start and end index
pairs. This allows us to utilize confidence-based methods that are designed for classification tasks.
We can calculate the model confidence for index pair [i, j] as σ(s(x))i · σ(e(x))j .

We jointly optimize a separate temperature for the start and end logits Ts and Te and we minimize
the cross-entropy loss over the in-distribution validation data.

min
T

∑
x,y

CE(σ(s(x) exp(Ts))σ(e(x) exp(Te))
⊤, y) (8)

A.1.3 Comparison to ProjNorm

In this section, we present a comparison with ProjNorm [63], a method that yields a score which
is shown to be correlated with the OOD performance of the model. We study the same setting as
presented in Section 4 where we estimate OOD performance of foundation models pretrained on
different text corpora. Unlike AGL, ProjNorm doesn’t provide an estimate of the OOD performance
hence we compare the linear correlation between the predicted value and OOD performance. From Ta-
ble 4 it can be seen that estimates from ALine-D are more strongly correlated with OOD performance
than ProjNorm.

Table 4: Correlation coefficient between OOD Accuracy and Prediction for ALine-D and ProjNorm
Method SQuAD-Shifts Amazon SQuAD-Shifts Reddit

ALine-D 0.98 0.98
ProjNorm 0.64 0.79

17

31870 https://doi.org/10.52202/079017-1002



A.1.4 Failure Datasets with Low Linear Correlation

In our comparison with baselines in Section 5, we filter out datasets with a low correlation coefficient
≤ 0.95 in ID vs OOD agreement. When the linear correlation of agreement is weak, AGL tells us
that the correlation is also low for accuracy, and AGL-based methods are not guaranteed to be reliable
in such circumstances. We provide ID vs OOD accuracy and agreement scatter plots for all datasets
in Appendix A.3.2.

Below, we separately provide the comparison with baselines for the excluded datasets. We generally
find that the baseline ATC [19] is significantly better in circumstances where AGL-based methods
are unreliable.

Table 5: The MAPE (%) of predicting OOD performance using AGL-based ALine and other baseline
methods. We collect a diverse ensemble by randomizing the linear initialization and including
multiple base models.
OOD Dataset Agreement R2 ALine-D ALine-S Naive Agr ATC AC DOC-Feat

CIFAR10C Gaussian Noise 0.85 65.59 56.67 41.85 42.77 74.60 75.40
CIFAR10C Glass Blur 0.89 44.24 44.97 31.24 33.58 79.45 80.36
CIFAR10C Shot Noise 0.89 45.02 37.60 27.70 28.25 49.23 49.90
CIFAR10C Speckle Noise 0.90 36.67 30.13 23.45 22.72 43.46 44.12
CIFAR100C Gaussian Noise 0.93 34.98 32.21 28.88 21.18 69.04 63.81
CIFAR100C Glass Blur 0.93 66.03 63.45 42.41 25.47 109.73 103.70
ImageNetC Gaussian Noise 0.89 50.10 47.26 73.47 13.21 54.86 42.66
ImageNetC Glass Blur 0.87 74.20 71.84 100.32 15.97 74.12 59.60
ImageNetC Impulse Noise 0.88 62.86 59.68 87.83 16.54 63.23 49.99
ImageNetC Shot Noise 0.88 53.89 51.12 78.37 14.66 57.47 44.58
iWildCam-WILDS 0.85 22.05 25.29 46.42 37.25 57.31 69.58
Camelyon17-WILDS 0.59 10.14 6.44 13.26 6.46 8.76 8.90
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A.2 Finetuning Hyperparameters

We state here the hyperparameters used to finetune the models for diversity experiments reported in
Section 3.

A.2.1 Linear Probing over CLIP for Vision Tasks

We train all linear probes using SGD. Models are trained for different timesteps to achieve an even
distribution of ID accuracies.

Table 6: CLIP Linear Probing
Dataset Hyperparameters

CIFAR10 Learning Rate: 5× 10−4

Batch Size: 1028

CIFAR100 Learning Rate: 1× 10−3

Batch Size: 1028

ImageNet Learning Rate: 1× 10−1

Batch Size: 1028

OfficeHome Learning Rate: 1× 10−3

Batch Size: 200

FMoW-
WILDS

Learning Rate: 1× 10−3

Batch Size: 200

iWildCam-
WILDS

Learning Rate: 1× 10−3

Batch Size: 200

Camelyon17-
WILDS

Learning Rate: 1× 10−3

Batch Size: 200

A.2.2 Full Finetuning GPT, OPT, BERT on Language Tasks

We use AdamW [34] to full finetune language models. We keep the learning rate small. Models are
trained for different timesteps to achieve an even distribution of ID accuracies.

Table 7: Full Finetuning GPT2-Medium on SQuAD
Source of Diversity Hyperparameters

Initialization + Ordering

Learning rate: 2× 10−7

Weight Decay: 1× 10−5

Batch Size: 32
Max Epochs: 20

Subsetting (10, 30 % of data)

Learning rate: 6, 4× 10−7

Weight Decay: 1× 10−5

Batch Size:
Max Epochs: 20
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Table 8: Full Finetuning OPT-125M on SQuAD
Source of Diversity Hyperparameters

Initialization + Ordering

Learning rate: 4× 10−7

Weight Decay: 1× 10−5

Batch Size: 32
Max Epochs: 20

Subsetting (10, 30, 50 % of data)

Learning rate: 40, 12, 8× 10−7

Weight Decay: 1× 10−5

Batch Size: 32
Max Epochs: 20

Table 9: Full Finetuning BERT-Uncased on SQuAD
Source of Diversity Hyperparameters

Initialization + Ordering

Learning rate: 2× 10−7

Weight Decay: 1× 10−5

Batch Size: 32
Max Epochs: 20

Subsetting (10, 30, 50 % of data)

Learning rate: 20, 6, 4× 10−7

Weight Decay: 1× 10−5

Batch Size: 32
Max Epochs: 20

Table 10: Full Finetuning GPT2-Medium on MNLI
Source of Diversity Hyperparameters

Initialization + Ordering

Learning rate: 5× 10−4

Weight Decay: 1× 10−5

Batch Size: 128
Max Epochs: 10

Subsetting (10% of data)

Learning rate: 5× 10−3

Weight Decay: 1× 10−5

Batch Size: 128
Max Epochs: 10

Table 11: Full Finetuning OPT-125M on MNLI
Source of Diversity OPT-125M

Varied Fixed

Initialization + Ordering

Learning rate: 1× 10−3

Weight Decay: 1× 10−5

Batch Size: 128
Max Epochs: 10

Subsetting (10% of data)

Learning rate: 1× 10−2

Weight Decay: 1× 10−5

Batch Size: 128
Max Epochs: 10
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A.3 More Experiments on the Effect of Diversity Source with CLIP

A.3.1 OfficeHome Linear Probing Diversity Experiments

In Section 3.1, we examine how diversity source impacts whether AGL is observed in linear probed
CLIP models from CIFAR10 to CIFAR10C. Here, we perform the same experiment on Office-Home
[56], which consists of 4 domains or image styles (“Art”, “Clip Art”, “Product”, and “Real World”)
for 65 common objects. We train models on one domain and treat the remaining three domains
as OOD. Similarly, only Random Initialization yields AGL or matching slopes in accuracy and
agreement, and as a result, the corresponding MAPE of estimating the OOD performance of this
diverse ensemble is the smallest.
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Figure 4: ID vs OOD accuracy and agreement of linear probed CLIP models on OfficeHome Art (top
row), Product (middle row), and Real World (bottom row). The figure title is the OOD domain.

Table 12: The ALine-S MAPE(%) for ensembles trained on each domain of OfficeHome.
OfficeHome ID domain Source of Diversity OOD Estimation MAPE(%)

Art Random Linear Heads 14.09
Data Ordering 20.67

Data Subsetting 120.85

ClipArt Random Linear Heads 12.23
Data Ordering 28.45

Data Subsetting 78.49

Product Random Linear Heads 13.63
Data Ordering 110.45

Data Subsetting 92.97

Real Random Linear Heads 9.95
Data Ordering 33.36

Data Subsetting 3078
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A.3.2 AGL appears in Random Head CLIP Ensembles across Datasets

We report the strength of AGL in linear probed CLIP models with randomly initialized linear heads
across all datasets discussed in Section 3.2.
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Figure 5: AGL and ACL for all C10C shifts with random head initialization finetuning.
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Figure 6: AGL and ACL for the C10.1 shifts with random head initialization finetuning.
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Figure 7: AGL and ACL for the C100C shifts with random head initialization finetuning.
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Figure 8: AGL and ACL for the ImageNetC shifts with random head initialization finetuning.
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Figure 9: AGL and ACL for the ImageNet V2 shifts with random head initialization finetuning.
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Figure 10: AGL and ACL for 3 benchmarks from the WILDS dataset with random head initialization
finetuning.

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

OfficeHome Clipart

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

OfficeHome Product

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

OfficeHome Real

Figure 11: AGL and ACL for the OfficeHome ClipArt, Product, Real shifts with random head
initialization finetuning over OfficeHome Art.
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Figure 12: ID vs OOD accuracy and agreement with OH ClipArt ID

Figure 13: AGL and ACL for the OfficeHome Art, Product, Real shifts with random head initialization
finetuning over OfficeHome ClipArt.
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Figure 14: AGL and ACL for the OfficeHome ClipArt, Art, Real shifts with random head initialization
finetuning over OfficeHome Product.
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Figure 15: AGL and ACL for the OfficeHome Art, ClipArt, Product shifts with random head
initialization finetuning over OfficeHome Real.
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A.3.3 Diversity Matters in Full Finetuned CLIP Ensembles

We show that light full finetuning over CLIP also observes similar effects of diversity source on the
strength of AGL. We verify this on shifts from CIFAR10 to CIFAR10C.

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

CIFAR10C (JPEG Compression)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

CIFAR10C (JPEG Compression)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

CIFAR10C (JPEG Compression)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

CIFAR10C (Pixelate)

(a) Random Head

10 30 50 70 90
ID

10

30

50

70

90
OO

D

Accuracy
Agreement

CIFAR10C (Pixelate)

(b) Data Ordering

10 30 50 70 90
ID

10

30

50

70

90

OO
D

Accuracy
Agreement

CIFAR10C (Pixelate)

(c) Data Subsetting

Figure 16: ID vs OOD accuracy and agreement of full finetuned CLIP models on shift from CIFAR10
to CIFAR10C “JPEG Compression” (top row) and “Pixelate” (bottom row) shifts. Only Random
Initialization (Column a) yields AGL or matching slopes in accuracy and agreement.

Table 13: The average MAPE(%) of ALine estimates of OOD performance of full finetuned CLIP
models across all 19 CIFAR10C shifts. As can be seen from Figure 4, only ensembles with diverse
random initialization consistently results in smallest MAPE values.

Source of Diversity CIFAR10C MAPE(%)

Random Linear Heads 29.37
Data Ordering 69.98

Data Subsetting 33.57
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A.3.4 Any diverse ensemble display AGL in models heavily trained from scratch

On the other hand, we demonstrate that in models heavily trained from scratch, AGL can be observed
irrespective of the diversity source. Consistent with the models in [2], we train ResNet18 on CIFAR10
from scratch, varying the different sources of randomness. These models are trained heavily with
SGD with learning rate of 1 × 10−2, batch size 128, and weight decay of 1 × 10−5 for up to 200
epochs. We do not use any data augmentation.

Figure 17: Effect of Diversity Source on ResNet18 from CIFAR10 to CIFAR10C-Snow

A.3.5 AGL in FMs under Zero-Shot and Few-Shot Settings
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Figure 18: Zero-Shot and Few-Shot Settings. (Left) We plot the ID versus OOD zero-shot per-
formances of OLMo7B checkpoints. We see that the linear correlation is weak in both F1 and
F1-Agreement. This means that the effective robustness of base models vary widely during pretrain-
ing. (Right) We train linear probes over CLIP embeddings on few-shot CIFAR10 (10 examples per
class) with random initialization. We similarly observe AGL and ACL with random initialization.
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A.3.6 Effect of Training Dataset Size

To rid of any confounding factors from data subsetting observing a smaller amount of data, we
evaluate all randomness sources on different training dataset sizes. We track the effect of diversity
in random initialization, data ordering, and data subsetting for different portions of the training
data (100%, 50%, 30%, 10%). For each percentage x%, Random Initialization and Data Ordering
ensembles are trained on the same randomly sampled x% proportion of the data while each model in
the Data Subsetting ensemble observe different randomly sampled x% portions
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Figure 19: ID vs OOD accuracy and agreement of linear probe CLIP models finetuned on 100% of
CIFAR10 training data evaluated on the CIFAR10C “JPEG Compression” (top row) and “Pixelate”
(bottom row) shifts
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Figure 20: ID vs OOD accuracy and agreement of linear probe CLIP models finetuned on 50%
of CIFAR10 training data evaluated on the CIFAR10C “JPEG Compression” (top) and “Pixelate”
(bottom) shifts
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Figure 21: ID vs OOD accuracy and agreement of linear probe CLIP models finetuned on 30% of
the CIFAR10 training data evaluated on the CIFAR10C “JPEG Compression” (top) and “Pixelate”
(bottom) shifts
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Figure 22: ID vs OOD accuracy and agreement of linear probe CLIP models finetuned on 10% of the
CIFAR10 training data and evaluated on the CIFAR10C “JPEG Compression” (top) and “Pixelate”
(bottom) shifts
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A.4 More Experiments on the Effect of Diversity Source for Extractive Question Answering

A.4.1 Single-Base Diversity Experiments Using OPT and BERT

In Section 3.2, we report the effect of diversity source in full finetuned GPT2-Medium models for the
extractive QA task SQuAD to SQuAD-Shifts. In this section, we also provide the same experiments
on OPT-125M and BERT. As observed in GPT, using Random Heads yields the strongest AGL
behavior and achieves the smallest ALine-D MAPE.

In Table 14 and 15, we report the MAPE of OOD performance estimation of models trained with
Random Initialization and Data Ordering using 100% of training data and Data Subsetting with 10%
of training data.

Table 14: The average MAPE (%) of ALine-D OOD performance estimates of OPT-125M models
full finetuned on SQuAD.

Source of Diversity SQuAD-Shifts Amazon SQuAD-Shifts Reddit

Random Head 6.54 5.43
Data Ordering 11.37 8.70

Data Subsetting 11.15 9.65

Table 15: The average MAPE (%) of ALine-D OOD performance estimates of BERT models full
finetuned on SQuAD.

Source of Diversity SQuAD-Shifts Amazon SQuAD-Shifts Reddit

Random Head 14.70 8.62
Data Ordering 16.55 9.16

Data Subsetting 22.13 18.64
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A.4.2 Diversity in Full Finetuned GPT2 for Different Data Portions

We track the effect of diversity in random initialization, data ordering, and data subsetting for different
portions of the training data (100%, 50%, 30%, 10%). For each percentage x%, Random Initialization
and Data Ordering ensembles are trained on the same randomly sampled x% proportion of the data
while each model in the Data Subsetting ensemble observe different randomly sampled x% portions.
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Figure 23: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained GPT2 model with 100% of the training data
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Figure 24: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained GPT2 model with 50% of the training data
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Figure 25: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained GPT2 model with 10% of the training data
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A.4.3 Diversity in Full Finetuned OPT for Different Data Portions

We track the effect of diversity in random initialization, data ordering, and data subsetting for different
portions of the training data (100%, 50%, 30%, 10%). For each percentage x%, Random Initialization
and Data Ordering ensembles are trained on the same randomly sampled x% proportion of the data
while each model in the Data Subsetting ensemble observe different randomly sampled x% portions.
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Figure 26: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained OPT-125m with 100% of the training data
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Figure 27: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained OPT-125m with 50% of the training data
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Figure 28: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained OPT-125m with 30% of the training data
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Figure 29: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained OPT-125m with 10% of the training data
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A.4.4 Diversity in Full Finetuned BERT for Different Data Portions

We track the effect of diversity in random initialization, data ordering, and data subsetting for different
portions of the training data (100%, 50%, 30%, 10%). For each percentage x%, Random Initialization
and Data Ordering ensembles are trained on the same randomly sampled x% proportion of the data
while each model in the Data Subsetting ensemble observe different randomly sampled x% portions.
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Figure 30: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained BERT with 100% of the training data
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Figure 31: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained BERT with 50% of the training data
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Figure 32: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained BERT with 30% of the training data
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Figure 33: ID vs OOD accuracy and agreement of models finetuned on SQuAD from a single
pretrained BERT with 10% of the training data
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A.5 More Experiments on the Effect of Diversity Source for Text Classification

A.5.1 Diversity Source for Linear Probing

In Section 3.2, we reported the effect of diversity source for full finetuned OPT. Here, we demonstrate
similar results on text classification shift from MNLI-matched to SNLI with linear probed GPT2-
Medium (Figure 34) and OPT-125M (Figure 35). Similarly, random initialization observes the
strongest AGL behavior. In Table 16, we report the average MAPE of OOD performance estimation
using ALine across models.
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Figure 34: ID vs OOD accuracy and agreement of models finetuned on MNLI from GPT2-Medium.
Random Head and Data Ordering ensembles are trained on 100% of the training data while Data
Subsetting ensemble is on 10%.
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Figure 35: ID vs OOD accuracy and agreement of models finetuned on MNLI from OPT-125M.
Random Head and Data Ordering ensembles are trained on 100% of the training data while Data
Subsetting ensemble is on 10%.

Table 16: The average MAPE (%) of ALine-D performance estimates of accuracy on SNLI.
Model GPT2-Medium OPT-125M

Random Linear Heads 5.9 5.4
Data Ordering 6.7 12.4

Data Subsetting 5.3 8.6
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A.6 Generative Question-Answering

We also test whether AGL appears for generative question answering, where models generate the
answer to the question instead of directly extracting a span from the provided context.

A.6.1 Experiments on the effect of Diversity Source

For generative tasks, it is common to finetune over the base model directly instead of attaching a
linear head on top. We again study different ways of achieving a diverse set of classifiers (e.g.,
Random Initialization, Data Ordering, Data Subsetting). However, we replace randomly initialization
of a linear head instead with randomly initializing the non-zero initialized LoRA weights.

Experimental Details We use a base model GPT2 and finetune models using cross-entropy loss
on the next token prediction objective over SQuAD. During training, we concatenate the context,
question, and answer together, and we apply the next token prediction objective on just the answer
tokens. We add a line break (\n) after the answer, which functions as a “stop token” that the models
also have to predict after answering the question. We train with the AdamW optimizer with a learning
rate of 1e− 4, weight decay of 1e− 2, and batch size of 16 up to a maximum of 4 epochs. As with
extractive QA, we measure the F1 score of the model’s answer (its output before a line break).

Conclusion We track the effect of diversity for 100% of the training data in random initialization
and data ordering, 50% of the training data in data subsetting. Figure 36 shows that all sources
of diversity are sufficient to show AGL. Diversity is different from extractive question-answering
because the search space of all tokens already provides enough diversity among models. We also
note the MAE in Table 17 and MAPE in Table 18.

Table 17: ALine-S MAE (%) of different sources of diversity for generative question-answering on
GPT2

Source of Diversity SQuAD-Shifts Amazon SQuAD-Shifts Reddit SQuAD-Shifts New-Wiki SQuAD-Shifts NYT

Random Linear Heads 0.0354 0.0170 0.0129 0.0148
Data Ordering 0.0296 0.0177 0.0165 0.0152

Data Subsetting 0.0312 0.0205 0.0178 0.0166

Table 18: ALine-S MAPE (%) of different sources of diversity for generative question-answering on
GPT2

Source of Diversity SQuAD-Shifts Amazon SQuAD-Shifts Reddit SQuAD-Shifts New-Wiki SQuAD-Shifts NYT

Random Linear Heads 13.93 6.6 4.88 5.06
Data Ordering 12.05 6.57 5.91 5.41

Data Subsetting 16.43 10.08 7.47 8.32
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Figure 36: ID vs OOD F1 and agreement of generative models finetuned on SQuAD from a single
pretrained GPT2
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A.6.2 Experiments starting from multiple foundation models

We also finetune base models of the GPT and OPT model families for generative question-answering
using the same hyperparameters mentioned in the previous section. Similarly, we evaluate models
using the F1 score. Figure 37 shows that AGL holds for all shifts in SQuAD-Shifts. Furthermore,
it also holds for the mlqa-translate-test.es test split of the MLQA dataset [32], which is the
English portion of English-Spanish translated MLQA questions.

Agreement GPT OPT

Figure 37: Generative models finetuned from different base models of the GPT and OPT family.
AGL holds for all SQuAD-Shifts splits and MLQA Spanish split.
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A.7 Diversity under different learning rates and batch sizes

We test the robustness of our observation across learning rate and batch size for single base FM on
CLIP embeddings. Figure 38 shows that AGL holds regardless of the learning rate or batch size used
for fine-tuning. That is, AGL holds with random initialization of the head and does when for shuffling
the data subset or randomizing the data ordering.
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Figure 38: Over CLIP embeddings, we test the diversity sources under different learning rates and
batch sizes. While all models lie on the same ID versus OOD accuracy line (red), only the set of
models trained with different random initialization (cyan) achieves ID versus OOD agreement with
the same slope and bias as ID versus OOD accuracy.
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A.8 Diversity Experiments for different PEFT methods

We compare full fine-tuning with different PEFT methods and observe that AGL holds for randomly
initialized heads and does not for data ordering or data subsetting. Figure 39 shows a single GPT2
trained with LoRA [25], IA3 [33], and BitFit [64]. The linear fit for the three PEFT methods aligns
with full fine-tuning for randomly initialized heads.

(a) Random Head (b) Data Ordering (c) Data Subsetting

Figure 39: ID (SQuAD) vs OOD (SQuAD-Shifts Reddit) Agreement trend from a single GPT2 for
different PEFT methods (LoRA, IA3, BitFit). The accuracy line of all methods combined is shown in
dotted gray while the agreement lines of each method is drawn as separate colors.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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address problems of privacy and fairness.
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Justification: There is no theory to be proven other than the AGL phenomenon. The original
work on AGL is cited throughout the entire paper. Specifically, the equations for calculating
agreement can be found here: Appendix A.1.1
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report MAE and MAPE throughout the paper. Specifically, they are in
Tables 2, 3, 4, 3, 12, 13, 14, 15, 16, 17, 18
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

50

31903https://doi.org/10.52202/079017-1002

https://github.com/kebaek/Agreement-on-the-line
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We implement safeguards
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All models, datasets, and methods are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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