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Figure 1: Comprehensive comparisons between our PointMamba and its Transformer-based counter-
parts [33, 6, 11]. (a) Without bells and whistles, our PointMamba achieve better performance than
the representative Transformer-based methods on the various point cloud analysis datasets. (b)-(d)
The Transformer presents quadratic complexity, while our PointMamba has linear complexity. For
example, with the length of point tokens increasing, we significantly reduce GPU memory usage
and FLOPs and have a faster inference speed compared to the most convincing Transformer-based
method, i.e., PointMAE [33].

Abstract

Transformers have become one of the foundational architectures in point cloud
analysis tasks due to their excellent global modeling ability. However, the attention
mechanism has quadratic complexity, making the design of a linear complexity
method with global modeling appealing. In this paper, we propose PointMamba

, transferring the success of Mamba, a recent representative state space model
(SSM), from NLP to point cloud analysis tasks. Unlike traditional Transformers,
PointMamba employs a linear complexity algorithm, presenting global model-
ing capacity while significantly reducing computational costs. Specifically, our
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method leverages space-filling curves for effective point tokenization and adopts
an extremely simple, non-hierarchical Mamba encoder as the backbone. Compre-
hensive evaluations demonstrate that PointMamba achieves superior performance
across multiple datasets while significantly reducing GPU memory usage and
FLOPs. This work underscores the potential of SSMs in 3D vision-related tasks
and presents a simple yet effective Mamba-based baseline for future research. The
code is available at https://github.com/LMD0311/PointMamba.

1 Introduction

Point cloud analysis is one of the fundamental tasks in computer vision and has a wide range of
real-world applications [47, 55, 8], including robotics, autonomous driving, and augmented reality.
It is a challenging task due to the intrinsic irregularity and sparsity of point clouds. To address the
issues, there has been rapid progress in deep learning-based methods [38, 33, 41, 44], consistently
pushing the performance to the new record.

Recently, Transformers have achieved remarkable progress in point cloud analysis. The key to the
Transformer is the attention mechanism, which can effectively capture the relationship of a set of
points. By integrating self-supervised learning paradigms with fine-tuning for downstream tasks,
these Transformer-based methods have achieved superior performance [60, 33, 42]. However, the
complexity of attention mechanisms is quadratic, bringing significant computational cost, which is
not friendly to low-resource devices. Thus, this naturally raises a question: how to design a simple,
elegant method that operates with linear complexity, thereby retaining the benefits of global modeling
for point cloud analysis?

We note the recent advance of the State Space Models (SSMs). As a pioneer, the Structured State
Space Sequence Model [17] (S4) has emerged as a promising class of architectures for sequence
modeling thanks to its strong representation ability and linear-time complexity (achieved by elimi-
nating the need to store the complete context). Another pioneer, Mamba [14], adopts time-varying
parameters to the SSM based on S4, proposing an efficient hardware-aware algorithm to enable highly
efficient training and inference with dynamic modeling. Recently, a few concurrent methods [71, 35]
successfully transfer the 1D-sequence Mamba from NLP to 2D vision tasks (e.g., image classification
and segmentation), achieving similar or surpass the Transformer counterpart [12] while significantly
reducing memory usage. However, regarding the more complex, unstructured data, e.g., 3D point
cloud, the effectiveness of Mamba remains unclear. The lack of early exploration of Mamba’s poten-
tial for point cloud-related tasks hinders further development of its capabilities across the diverse
range of applications in this domain.

Inspired by this, this paper aims to unlock the potential of SSM in point cloud analysis tasks,
discussing whether it can be a viable alternative to Transformers in this domain. Through a series of
pilot experiments, we find that directly using the pioneering SSM, Mamba [14], can not achieve ideal
performance. We argue that the main inherent limitation comes from the unidirectional modeling
employed by the default Mamba, as the context is obtained by compressing the historical hidden
state instead of through the interaction between each element. In contrast, the self-attention of the
Transformer is invariant to the permutation of the input elements. Given the three-dimensional nature
(e.g., unstructured and disordered) of point clouds, using a single scanning process often struggles to
concurrently capture dependency information across various directions, which makes it difficult to
construct global modeling for the RNN-like modes (e.g., Mamba).

Therefore, we introduce a simple yet effective Point Cloud State Space Model (denoted as Point-
Mamba ) with global modeling and linear complexity. Specifically, to enable Mamba to capture
the point cloud structure causally, we first use a point tokenizer to generate two types of point
tokens via a point scanning strategy, employing two space-filling curves to scan key points from
different directions. As a result, the unstructured 3D point clouds can be transformed into a regular
sequence. The first type of token has local modeling capabilities through sequential encoding, with
the latest token holding global sequence information. Consequently, the second type of token can
achieve global modeling by containing global information that comes from the first type. Besides, we
propose an extremely simple order indicator to maintain the distinct spatial characteristics of different
scanning when training, preserving the integrity of the spatial information.
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To make the model as simple as possible, PointMamba only employs plain and non-hierarchical
Mamba as the backbone to extract features for given serialized point tokens without bells and whistles.
We demonstrate that PointMamba is very flexible in the pre-training paradigm, where we customize
an MAE-like pertaining strategy to provide a good prior, which chooses a random serialization
strategy from a pre-defined serialization bank to perform mask modeling. It facilitates the model
to exact the general local relationships from different scanning perspectives, better matching the
requirement of indirection modeling of mamba.

Despite no elaborate or complex designs in the model, our PointMamba achieves superior performance
on various point cloud analysis datasets (Fig. 1(a)). Besides the superior performance, thanks to
the linear complexity of Mamba, we show the surprisingly low computational cost2, as shown in
Fig. 1(b)-(c). These notable results underscore the potential of SSM in 3D vision-related tasks.

In conclusion, the contributions of this paper are twofold. 1) We introduce the first state space
model for point cloud analysis, named PointMamba , which features global modeling with linear
complexity. Despite the absence of elaborate or complex structural designs, PointMamba demon-
strates its potential as an optional model for 3D vision applications. 2) Our PointMamba exhibits
impressive capabilities, including structural simplicity (e.g., vanilla Mamba), low computational cost,
and knowledge transferability (e.g., support for self-supervised learning).

2 Related work

2.1 Point Cloud Transformers

Vision Transformer (ViT) [12] has become one of the mainstream architectures in point cloud
analysis tasks due to its excellent global modeling ability. Specifically, Point-BERT [60] and
Point-MAE [38] introduce a standard Transformer architecture for self-supervised learning and is
applicable to different downstream tasks. Several works further introduce GPT scheme [6], multi-
scale [64, 61], and multi-modal [11, 42, 43] to guide 3D representation learning. On the other
hand, some researchers [20, 68, 51] focus on modifying the Transformers for point clouds. The
PCT [20] conducts global attention directly on the point cloud. Point Transformer [68] applies vector
attention [67] to perform local attention between each point and its adjacent points. The later Point
Transformer series [56, 55] further extends the performance and efficiency of the Transformer for
different tasks. OctFormer [51] leverages sorted shuffled keys of octrees to partition point clouds and
significantly improve efficiency and effectiveness.

Standard Transformers can be smoothly integrated into autoencoders using an encoder-decoder
design [25], which makes this structure ideal for pre-training and leads to significant performance
improvements in downstream point cloud analysis tasks [60, 38, 6, 62, 63]. However, the attention
mechanism has a time complexity of O(n2d), where n represents the length of the input token
sequence and d represents the dimension of the Transformer. This implies that as the input sequence
grows, the operational efficiency of the Transformer is significantly constrained.

In this work, we focus on designing a simple State Space Model (SSM) for point cloud analysis
without attention while maintaining the global modeling advantages of the Transformer.

2.2 State Space Models

Linear state space equations [15, 18], combined with deep learning, offer a compelling approach
for modeling sequential data, presenting an alternative to CNNs or Transformers. The Structured
State Space Sequence Model [17] (S4) leverages a linear state space for contextualization and
shows strong performance on various sequence modeling tasks, especially with lengthy sequences.
To alleviate computational burden, HTTYH [19], DSS [22], and S4D [16] propose employing a
diagonal matrix within S4, maintaining performance without excessive computational costs. The
S5 [48] proposes a parallel scan and the MIMO SSM, enabling the state space model to be efficiently
utilized and widely implemented. Recently, Mamba [14] introduced the selective SSM mechanism, a
breakthrough achieving linear-time inference and effective training using a hardware-aware algorithm,
garnering considerable attention. In the vision domain, Vision Mamba [35] compresses the visual

2Note that we removed the tokenizer of both Point-MAE and PointMamba , directly fed with a predefined
sequence, to better illustrate the structural efficiency.
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representation through bidirectional state space models. VMamba [71] introduces the Cross-Scan
Module, enabling 1D selective scanning in 2D images with global receptive fields. Besides, the
great potential of Mamba motivates a series of work across diverse domains, including graph [50, 3],
medical segmentation [36, 34], video understanding [30, 7] and generative models [29, 31].

To the best of our knowledge, there are limited works that study SSMs for point cloud analysis. In
this work, we delve into the potential of Mamba in point cloud analysis and propose PointMamba,
which achieves superior performance and significantly reduces computational costs.

3 Preliminaries

State Space Model. Drawing inspiration from control theory, the State Space Model (SSM) represents
a continuous system that maps a state xt to yt through an implicit latent state ht ∈ RN . To integrate
SSMs into deep models, S4 [17] defines the system with four parameters (A,B,C, and sampling
step size ∆). The sequence-to-sequence transformation is defined as:

ht = Aht−1 +Bxt, yt = Cht +Dxt, (1)

where C ∈ R1×N is a project parameter, and D ∈ R1×N represents a residual connection. The
parameters A,B are defined using the zero-order hold (ZOH) discretization rule:

A ∈ RN×N = exp(A∆), B ∈ RN×1 = (A∆)
−1

(exp(A∆)− I) ·∆B. (2)

However, the parameter (A,B,C,∆) are fixed across all time steps due to the Linear Time-Invariant
(LTI) property of SSMs, which limits their capacity to handle varied input sequences.

Recently, Selective SSM (S6) considers parameters B,C,∆ as functions of the input, effectively
transforming the SSM into a time-variant model. Our PointMamba adopts a hardware-aware imple-
mentation [14] of S6, showing linear complexity and strong sequence modeling capability.

Space-filling curve. Space-filling curves are paths that traverse every point within a higher-
dimensional discrete space while maintaining spatial proximity to a certain degree. Mathematically,
they can be defined as a bijective function Φ : Z → Z3 for point clouds. Our PointMamba focuses
on the Hilbert space-filling curve [27] and its transposed variant (called Trans-Hilbert), both of
which are recognized for effectively preserving locality, ensuring that data points close in Z space
remain close after transformation to Z3. We note that some methods [55, 51] utilize space-filling
curves to partition the point cloud for capturing spatial contexts, whereas our work mainly focuses on
transferring the point clouds to serialization-based sequences and combine with Mamba to implement
global modeling. The motivation and objective are different.

4 PointMamba

This paper aims to design a simple yet solid Mamba-based Point cloud analysis method. The pipeline
of our method is shown in Fig. 2. Starting with an input point cloud, we first sample the key points
via Farthest Point Sampling (FPS). Then, a simple space-scanning strategy is applied to reorganize
these points, resulting in serialized key points. Under a KNN and lightweight PointNet [40], we
obtain the serialized point tokens. Finally, the entire sequence is subsequently processed by a plain,
non-hierarchical encoder structure composed of several stacked Mamba blocks. Besides, to provide
a good prior for PointMamba, we propose a serialization-based mask modeling paradigm, which
randomly chooses a space-filling curve for serialization and mask, as shown in Fig. 4.

4.1 The structure of PointMamba

In this section, we introduce the structure of our PointMamba. The goal of this paper is to provide a
simple yet solid Mamba baseline for point cloud analysis tasks and explore the potential of plain and
non-hierarchical Mamba. Thus, in the spirit of Occam’s razor, we make the structure as simple as
possible without any complex or elaborate design.

Point scanning strategy. Building on the pioneer works [60, 38], we first utilize the Farthest Point
Sampling (FPS) to select the key points. Specifically, given an input point cloud P ∈ RM×3, where
M is the number of points, the FPS is applied to sample n key points from the original point cloud

4
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Figure 2: The pipeline of our PointMamba. It is simple and elegant, without bells and whistles.
We first utilize Farthest Point Sampling (FPS) to select the key points. Then, we propose to utilize
two types of space-filling curves, including Hilbert and Trans-Hilbert, to generate the serialized
key points. Based on these, the KNN is used to form point patches, which will be fed to the token
embedding layer to generate the serialized point tokens. To indicate the tokens generated from which
space-filling curve, the order indicator is proposed. The encoder is extremely simple, consisting of
N× plain and non-hierarchical Mamba blocks.

P , resulting in p ∈ Rn×3. In general, the order of the sampling key points p is random, without
specific order. This is not a significant problem for the previous Transformer-based methods, as the
Transformer is order-invariant when processing sequence data: in the self-attention mechanism, each
element at a given position can interact with all other elements in the sequence through attention
weights. However, for the selective state space model, i.e., Mamba, we argue that it is hard to model
the unstructured point clouds due to the unidirectional modeling. Thus, we propose to leverage the
space-filling curves to transform the unstructured point clouds into a regular sequence. Specifically,
we choose two representative space-filling curves to scan the key points: the Hilbert curve [27] and
its transposed variant, denoted as Trans-Hilbert. Compared with the random sequence, space-filling
curves like the Hilbert curve can preserve spatial locality well, i.e., along the scanned 1D serialized
point sequence, adjacent key points often have geometrically close positions in 3D space. We argue
that this property ensures that the spatial relationships between points are largely maintained, which
is crucial for accurate feature representation and analysis in point cloud data. As a complementary,
the Trans-Hilbert performs similarly but scans from different clues, which can provide diverse
perspectives on spatial locality. By applying Hilbert and Trans-Hilbert to the key points, we obtain
two different point serializations, ph and ph′ , which will be used to construct point tokens.

Point tokenizer . After obtaining the two serialized key points ph and ph′ , we then utilize the KNN
algorithm to select k nearest neighbors for each key point, forming n token patches Th ∈ Rn×k×3

and Th′ ∈ Rn×k×3 with patch size k. To aggregate local information, points within each patch
are normalized by subtracting the key point to obtain relative coordinates. We map the unbiased
local patches to feature space using a lightweight PointNet [40] (point embedding layer), obtaining
serialized point tokens Eh

0 ∈ Rn×C and Eh′

0 ∈ Rn×C , where the former is the Hilbert-based and the
latter is Trans-Hilbert-based.

Order indicator. Directly fed the two type serialized point tokens Eh
0 ∈ Rn×C and Eh′

0 ∈ Rn×C

into Mamba encoder might cause confusion as Eh
0 and Eh′

0 actually share the same center but
with different order. Maintaining the distinct characteristics of these different scanning strategies
is important for preserving the integrity of the spatial information. Thus, we propose an extremely
simple order indicator to indicate the scanning strategy used. Specifically, the proposed order indicator
performs the linear transformation to transfer features into different latent spaces. The formulation
can be written as follows:

Zh
0 = Eh

0 ⊙ γh + βh, Zh′

0 = Eh′

0 ⊙ γh′ + βh′ , (3)

where γh/γh′ ∈ RC and βh/βh′ ∈ RC refer to the scale and shift factors, respectively. ⊙ is the
Hadamard product and is implemented by the broadcast mechanism. We then concat Zh

0 and Zh′

0 ,
resulting in Z0 ∈ R2n×C .

5
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Mamba encoder. After obtaining the token Z0, we will feed it into the encoder, containing N
× Mamba block, to extract the feature. Specifically, for each Mamba block, layer normalization
(LN), Selective SSM, depth-wise convolution [10] (DW), and residual connections are employed. A
standard Mamba layer is shown in Fig. 2, and the output can be summarized as follows:

Z ′
l−1 = LN(Zl−1) , Z ′

l = σ
(
DW

(
Linear

(
Z ′

l−1

)))
Z ′′

l = σ
(
Linear

(
Z ′

l−1

))
, Zl = Linear (SelectiveSSM(Z ′

l)×Z ′′
l ) +Zl−1

(4)

Serialized point tokens 𝒁!"
from Hilbert

Serialized point tokens 𝒁!"
!

from Trans-Hilbert

Global 
information

… …

Modeling direction:

Figure 3: An intuitive illustration of global mod-
eling from PointMamba.

Zl ∈ R2n×C is the output of the l-th block, and σ
indicates SiLU activation [26]. The SelectiveSSM
is the key to the Mamba block, with a detailed de-
scription in Sec. 3. To better understand why the
proposed PointMamba has global modeling capac-
ity, we provide an intuitive visualization. As shown
in Fig. 3, after modeling the first group of point to-
kens (i.e., Hilbert-based), the accumulated global
information can improve the serialization process
for the next set of tokens (i.e., Trans-Hilbert-based).
This mechanism ensures that each serialized point
in the Trans-Hilbert sequence is informed by the
entire history of the previously processed Hilbert sequence, thereby enabling a more contextually
rich and globally aware modeling process. More discussions can be found in Appendix A.2.

In our study, we show that even a very simple Mamba block without specific designs, our Point-
Mamba can surpass the various Transformer-based point cloud analysis methods.

4.2 The serialization-based mask modeling

One intriguing characteristic of Transformers-based methods [33, 60, 6] is their improved perfor-
mance using the pre-training scheme, especially mask modeling [25]. In this paper, considering the
unidirectional modeling of Mamba, we customize a simple yet effective serialization-based mask
modeling paradigm, as shown in Fig. 4.

Specifically, after obtaining the key points, we randomly choose Hilbert or Trans-Hilbert curve to
implement serialization in each iteration, resulting in serialization-based key points, i.e., ph and
ph′ , are obtained from Hilbert and Trans-Hilbert, respectively. Such a scheme allows the model to
exact the local relationships from different scanning clues. Then, the KNN and the token embedding
layer are used to generate the point tokens. To discriminate the point tokens serialized from which
space-filling curves, we apply the order indicator to the point tokens, where different serialized point
tokens have different order indicators, which are similar to the mentioned Eq. 3. Next, we randomly
mask the serialization-based point tokens with a high ratio of 60%. Then, an asymmetric autoencoder,
consisting of several vanilla Mamba blocks, is employed to extract the point feature, and the final
layer of the autoencoder utilizes a simple prediction head for reconstruction. To reconstruct masked
point patches in coordinate space, we employ a linear head to project the masked token to the shape
of the masked input points. The Chamfer Distance [13] is then used as the reconstruction loss to
recover the coordinates of the points in each masked point patch.

We demonstrate that with such a simple serialization-based mask modeling paradigm, Point-
Mamba can easily achieve superior performance.

5 Experiments

5.1 Implementation details

SSM is new to 3D point cloud analysis, with no existing works detailing the specific implementation.
To handle different resolutions of the input point cloud, we divide them into different numbers of
patches with a linear scaling (e.g., M = 1024 input points are divided into n = 64 point patches), with
each patch containing k = 32 points determined by the KNN algorithm. The PointMamba encoder
has N = 12 vanilla Mamba blocks, each Mamba block featuring C = 384 hidden dimensions. For
the pre-training, we utilize ShapeNetCore [5] as the dataset, following previous methods [60, 38, 6].
In addition, we utilize 4 × Mamba blocks as the decoder to reconstruct the masked point clouds.

6
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Figure 4: The details of our proposed serialization-based mask modeling. During the pre-training, we
randomly choose one space-filling curve to generate the serialized point tokens for mask modeling,
and different serialized point tokens have different order indicators.

Table 1: Object classification on the ScanObjectNN dataset [49]. We evaluate PointMamba on three
variants, with PB-T50-RS being the most challenging. Overall accuracy (%) is reported. Param.
denotes the number of tunable parameters during training. † indicates that using simple rotational
augmentation [11] for training.

Methods Reference Backbone Param. (M) ↓ FLOPs (G) ↓ OBJ-BG ↑ OBJ-ONLY ↑ PB-T50-RS ↑

Supervised Learning Only

PointNet [40] CVPR 17 - 3.5 0.5 73.3 79.2 68.0
PointNet++ [41] NeurIPS 17 - 1.5 1.7 82.3 84.3 77.9
PointCNN [32] NeurIPS 18 - 0.6 0.9 86.1 85.5 78.5
DGCNN [52] TOG 19 - 1.8 2.4 82.8 86.2 78.1
PRANet [9] TIP 21 - - - - - 81.0
MVTN [23] ICCV 21 - 11.2 43.7 - - 82.8
PointNeXt [44] NeurIPS 22 - 1.4 1.6 - - 87.7
PointMLP [37] ICLR 22 - 13.2 31.4 - - 85.4
RepSurf-U [45] CVPR 22 - 1.5 0.8 - - 84.3
ADS [28] ICCV 23 - - - - - 87.5

Training from pre-training (Single-Modal)

Point-BERT [60] CVPR 22 Transformer 22.1 4.8 87.43 88.12 83.07
MaskPoint [33] CVPR 22 Transformer 22.1 4.8 89.30 88.10 84.30
Point-MAE [38] ECCV 22 Transformer 22.1 4.8 90.02 88.29 85.18
Point-M2AE [64] NeurIPS 22 Transformer 15.3 3.6 91.22 88.81 86.43
PointDif [69] CVPR 24 Transformer - - 93.29 91.91 87.61
Point-MAE+IDPT [63] ICCV 23 Transformer 1.7 7.2 91.22 90.02 84.94
Point-MAE+DAPT [70] CVPR 24 Transformer 1.1 5.0 90.88 90.19 85.08
Point-MAE† [38] ECCV 22 Transformer 22.1 4.8 92.77 91.22 89.04
PointGPT-S† [6] NeurIPS 23 Transformer 29.2 5.7 93.39 92.43 89.17
PointMamba† (ours) - Mamba 12.3 3.1 94.32 92.60 89.31

Training from pre-training (Cross-Modal)

ACT† [11] ICLR 23 Transformer 22.1 4.8 93.29 91.91 88.21
Joint-MAE [21] IJCAI 23 Transformer - - 90.94 88.86 86.07
I2P-MAE† [65] CVPR 23 Transformer 15.3 - 94.15 91.57 90.11
RECON† [42] ICML 23 Transformer 43.6 5.3 95.18 93.29 90.63

5.2 Compared with Transformer-based counterparts

This paper aims to unlock the potential of Mamba in point cloud tasks, discussing whether it can be a
viable alternative to Transformers. Thus, in the following experiments, we mainly compare with the
state-of-the-art vanilla Transformer-based point cloud analysis methods.

Real-world object classification on ScanObjectNN. ScanObjectNN [49] is a challenging 3D
dataset comprising about 15,000 objects across 15 categories, scanned from real-world indoor
scenes with cluttered complexity backgrounds. As shown in Tab. 1, we conduct experiments on
three versions of ScanObjectNN (i.e., OBJ-BG, OBJ-ONLY, and PB-T50-RS), each with increasing
complexity. When compared with the most convincing Transformer-based method, i.e., Point-
MAE [33], PointMamba surpasses it by 1.55%, 1.38% and 0.27% on OBJ-BG, OBJ-ONLY, and
PB-T50-RS respectively while using less computational costs. Besides, we also outperform the SOTA
PointGPT-S [6] by 0.93%, 0.17%, 0.14% across three variants on a comparable scale setting. Note
that our method follows Occam’s Razor, without auxiliary tasks like generation during fine-tuning
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Table 2: Classification on ModelNet40 [57].
Overall accuracy (%) is reported. The results
are obtained from 1024 points without voting.

Methods Param. (M) ↓ FLOPs (G) ↓ OA (%) ↑

Supervised Learning Only

PointNet [40] 3.5 0.5 89.2
PointNet++ [41] 1.5 1.7 90.7
PointCNN [32] 0.6 - 92.2
DGCNN [39] 1.8 2.4 92.9
PointNeXt [44] 1.4 1.6 92.9
PCT [20] 2.9 2.3 93.2
OctFormer [51] 3.98 31.3 92.7

with Self-supervised pre-training

Point-BERT [60] 22.1 2.3 92.7
MaskPoint [33] 22.1 2.3 92.6
Point-M2AE [64] 12.8 4.6 93.4
Point-MAE [38] 22.1 2.4 93.2
PointGPT-S [6] 29.2 2.9 93.3
ACT [11] 22.1 2.4 93.6
PointMamba (ours) 12.3 1.5 93.6

Table 3: Few-shot learning on ModelNet40 [57].
Overall accuracy (%)±the standard deviation (%)
without voting is reported.

Methods
5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

PointNet [40] 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
PointNet-CrossPoint [1] 90.9±1.9 93.5±4.4 84.6±4.7 90.2±2.2
DGCNN [52] 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN-CrossPoint [1] 92.5±3.0 94.9±2.1 83.6±5.3 87.9±4.2

with Self-supervised pre-training

Point-BERT [60] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint [33] 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-MAE [38] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-M2AE [64] 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0
PointGPT-S [6] 96.8±2.0 98.6±1.1 92.6±4.6 95.2±3.4
ACT [11] 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8
PointMamba (ours) 96.9±2.0 99.0±1.1 93.0±4.4 95.6±3.2

used in PointGPT [6]. Furthermore, compared to cross-modal learning methods [11, 42] that use
additional training data (cross-modal information) or teacher models, which is not a fair comparison,
our PointMamba still maintains highly competitive. We mainly want to introduce a new Mamba-
based point cloud analysis methods paradigm. Although using some complex designs can bring
improvement, they might be heuristics. More importantly, these heuristic designs will decrease the
objectivity of the evaluation of our method.

Synthetic object classification on ModelNet40. ModelNet40 [57] is a pristine 3D CAD dataset
consisting of 12,311 clean samples across 40 categories. As shown in Tab. 2, we report the over-
all accuracy without adopting the voting strategy. The proposed PointMamba achieves the best
results compared with various self-supervised Transformer-based methods [33, 60, 6]. In particular,
PointMamba surpasses Point-MAE [33] and PointGPT-S [6] by 0.4% and 0.3% respectively. It
is worth noting that the single-modal-learned PointMamba achieves comparable results with the
cross-modal-based ACT [11] while significantly reducing parameters and FLOPs about 44% and 38%,
respectively. Additionally, PointMamba demonstrates competitive performance against elaborately
designed Transformer models like OctFormer [51].

Table 4: Part segmentation on the ShapeNet-
Part [58]. The mIoU for all classes (Cls.) and
for all instances (Inst.) are reported.

Methods Cls. mIoU (%) ↑ Inst. mIoU (%) ↑
Supervised Learing Only

PointNet [40] 80.39 83.7
PointNet++ [41] 81.85 85.1
DGCNN [52] 82.33 85.2
APES [54] 83.67 85.8

with Self-supervised pre-training

Transformer [60] 83.4 85.1
OcCo [60] 83.4 85.1
MaskPoint [33] 84.6 86.0
Point-BERT [60] 84.1 85.6
Point-MAE [38] 84.2 86.1
PointGPT-S [6] 84.1 86.2
ACT [11] 84.7 86.1
PointMamba (ours) 84.4 86.2

Few-shot learning. We further conduct few-
shot experiments on ModelNet40 [57] to demon-
strate our few-shot transfer ability. Consistent
with prior studies [60], we utilize the "n-way,
m-shot" setup, where n ∈ {5, 10} denotes the
category count and m ∈ {10, 20} represents the
samples per category. Following standard proce-
dure, we carry out 10 separate experiments for
each setting and reported mean accuracy along
with the standard deviation. As indicated in
Tab. 3, our PointMamba shows competitive re-
sults with limited data, e.g., +1.0% mean ac-
curacy compared to the cross-modal method
ACT [11] on the 5-way 20-shot split.

Part segmentation on ShapeNetPart. Part seg-
mentation on ShapeNetPart [58] is a challenging
task that aims to predict a more detailed label for
each point within a sample. As shown in Tab. 4,
we report mean IoU (mIoU) for all classes (Cls.)
and all instances (Inst.). Our PointMamba model demonstrates highly competitive performance
compared to the Transformer-based counterparts [33, 6, 60]. These impressive results further prove
the potential of SSM in the point cloud analysis tasks.
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Figure 5: Different variant of PointMamba. (a) Directly removing the SSM part. (b) Replacing SSM
with attention. (c) Replacing SSM with MLP. (d) Ours PointMamba with Selective SSM.

Table 5: The effect of each component.

Hilbert Trans-Hilbert Order indicator OBJ-BG OBJ-ONLY

Random - 92.60 90.18
✓ - - 92.94 91.05
- ✓ - 93.46 91.74
✓ ✓ - 93.80 91.91
✓ ✓ ✓ 94.32 92.60

Table 6: The effect of different scanning curves.

Scanning curve OBJ-BG OBJ-ONLY

Random 92.60 90.18
Hilbert and Trans-Hilbert 94.32 92.60
Z-order and Trans-Z-zorder 93.29 90.36
Hilbert and Z-order 93.29 90.88
Trans-Hilbert and Trans-Z-order 93.29 91.91

Table 7: The effect of Selective SSM.

Setting Param. OBJ-BG OBJ-ONLY

w/ Identity 11.4 93.80 91.57
w/ Attention 39.8 92.77 91.22
w/ MLP 18.5 93.29 91.22
w/ Selective SSM 12.3 94.32 92.60

Table 8: The effect of Order indicator.

Setting OBJ-BG OBJ-ONLY

None 93.80 91.91
Using the same indicator 93.29 90.19
Using different indicator 94.32 92.60

5.3 Analysis and ablation study

To investigate the architecture design, we conduct ablation studies on ScanObjectNN [49] with both
pre-training and fine-tuning. Default settings are marked in gray .

The structural efficiency. We first discuss the efficiency of our method. To fully explore the potential
of processing the long point tokens (sequence), we gradually increase the sequence length until the
GPU (NVIDIA A800 80GB) memory explodes. The comprehensive efficiency comparisons are
present in Fig. 1(b)-(d), where Compared with the most convincing Transformer-based method [33],
our PointMamba demonstrates significantly improved inference speed and reduce the GPU usage and
FLOPs, especially when facing the long sequence. For example, when the length increases to more
than 32,768, we outperform PointMAE by 30.2×, 24.9×, and 5.2× in terms of inference speed, GPU
memory, and FLOPs, respectively. More importantly, even presenting impressive efficiency, we still
achieve impressive performance on various point cloud analysis datasets.

The effect of each component. We then study the effectiveness of the proposed components of
PointMamba as shown in Tab. 5. We can make the following observations: 1) Directly utilizing
random serialization, PointMamba only achieves 92.26% and 90.18% overall accuracy on OBJ-BG
and OBJ-ONLY, respectively. It is reasonable as Mamba is hard to model the unstructured point
clouds due to its unidirectional modeling. 2) By introducing the locality-preserved Hilbert or Trans-
Hilbert scanning, PointMamba’s ability to capture sequence information is enhanced, leading to
performance improvements compared to random serialization. Further applying both Hilbert and
Trans-Hilbert scanning curves, PointMamba surpasses the random serialization by 1.20% and 1.73%
on two datasets, respectively. 3) By using the order indicator to maintain the distinct characteristics
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of the two different scanning strategies, we achieve notable improvement, resulting in 94.32% and
92.60% on OBJ-BG and OBJ-ONLY, respectively. Note that the order indicator is extremely light
(only 1.5k parameters), which will not introduce additional computational costs.

The effect of different scanning curves. We further explore the effect of using different scanning
curves to construct serialized point tokens. Specifically, we select two widely used space-filling curves,
including Hilbert and Z-order, along with their transposed variants, i.e., Trans-Hilbert and Trans-Z-
order. As listed in Tab. 6, we empirically find that serializing point clouds with space-filling curves
scanning can achieve better performance compared to random sequences. We argue that scanning
sequences along a specific pattern of spatial locations offers a more logical sequence modeling order
for SSM. We choose the combination of Hilbert and Trans-Hilbert for PointMamba due to their
superior locality-preserving properties.

The effect of Selective SSM. The key of S6 models or Mamba [14] is the SSM with the selective
mechanism. We prove that as a unidirectional modeling method, SSM can be analogous to masked
self-attention, ensuring each position can only attend to previous positions (the detailed proof can be
found in the Appendix A.1). Thus, as shown in Tab. 7, we analyze the effect of selective SSM by
removing it (i.e., identity setting) or replace with masked self-attention or MLP (an illustration is
shown in Fig. 5). Compared with the identity setting, the selective SSM brings notable improvement,
indicating the effectiveness of introducing global modeling from SSM. Note that while a very recent
method, MambaOut [59], thinks the SSM of Mamba might negatively impact image classification
tasks, our findings demonstrate that this is not the case for point cloud analysis tasks. Another
interesting thing is that when Selective SSM is replaced with masked self-attention, the performance
is even lower than that of the identity setting. We argue the main reason is that masked self-attention
is hard to combine with the Gated MLP [46] used in default Mamba, leading to optimized difficulty,
which might need to be explored in the future.

Analysis on order indicator. This part analyzes the effect of the order indicator. PointMamba applies
Hilbert and Trans-Hilbert to recognize the key points, obtaining two types of serialized point tokens
Eh

0 and Eh′

0 . The order indicator is used to indicate the scanning strategy. As shown in Tab. 8, using
two different order indicators can improve 1.20% and 1.03% compared to no indicator on OBJ-BG
and OBJ-ONLY, respectively. However, using the same order indicator for both types of sequences
without distinguishing between different scanning strategies does not yield positive results.

5.4 Limitation

Although PointMamba achieves promising results, there are some limitations: 1) We only focus on
the point cloud analysis task in this paper while designing a unified Mamba-based foundation model
for various 3D vision tasks (e.g., 3D object classification/detection/segmentation) is a more appealing
direction. 2) We only use the point clouds as training data while combining them with 2D images or
language knowledge to improve the performance, which is also worthy of exploration. We left these
in our future work.

6 Conclusion

In this paper, we present an elegant, simple Mamba-based method named PointMamba for point
cloud analysis. PointMamba utilizes a space-filling curve-based point tokenizer and a plain, non-
hierarchical Mamba architecture to achieve global modeling with linear complexity. Despite its
structural simplicity, PointMamba delivers state-of-the-art performance across various datasets,
significantly reducing computational costs in terms of GPU memory and FLOPs. PointMamba success
highlights the potential of SSMs, particularly Mamba, in handling the complexities of point cloud
data. As a newcomer to point cloud analysis, PointMamba is a promising option for constructing 3D
vision foundation models, and we hope it can offer a new perspective for the field.
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Appendix A Theoretically Analysis

A.1 Closer look at Selective SSM

As described in Sec. 3, Selective SSM [14] considers parameters B,C,∆ in Eq. 2 as functions of
the input. To be specific, given the input sequence x̂ = [x1, · · · , xt, · · · , xL] ∈ RL×C , the per-time
matrices Bt,Ct,∆t can be computed as follows:

Bt = LB(xt), Ct = LC(xt), ∆t = softplus (L∆(xt)) , (5)

where LB , LC , L∆ are linear projection layers, and softplus(x) = log(1 + ex). The matrices
At,Bt,Ct,∆t can be obtained by taking Eq. 5 into Eq. 2.

To simplify, we ignore the residual connection D and expand Eq. 1, the output ŷ =
[y1, · · · , yt, · · · , yL] ∈ RL×C can be computed below:

yt = Ctht, ht =

t∑
i=1

 t∏
j=i+1

Aj

Bixi, (6)

which can be further described in matrix form below:
h1

h2

...
ht

 =


B1 0 · · · 0

A2B1 B2 · · · 0
...

...
. . .

...∏t
i=2AiB1

∏t
i=3AiB2 · · · Bt



x1

x2

...
xt

 . (7)

Drawing inspiration from the previous work [2], we further provide an intuitive understanding. The
Eq. 7 resembles the self-attention mechanism with a mask M , specifically causal self-attention. In
this context, M is a lower triangular matrix with elements set to 1. To further exam this, consider the
transfer matrix W between ŷ and x̂, i.e., (ŷ = Wx̂):

Wi,j = Ci

 i∏
k=j+1

Ak

Bj (8)

= Ci

 i∏
k=j+1

exp (∆kA)

Bj (9)

= Ci exp

 i∑
k=j+1

∆kA

Bj (10)

≈ Ci exp

 i∑
k=j+1

L∆(xk)>0

L∆ (xk)A

Bj , (11)

where Wi,j represents the element in the i-th row and j-th column, the approximation in Eq. 11 is
done using ReLU instead of softplus. Consider the notation below:

Qi := Ci, Ti,j = exp

 i∑
k=j+1

L∆(xk)>0

(L∆ (xk)A)

 , Kj =
(
Bj

)T
. (12)

Thus, the Eq. 11 can be simplified to:

Wi,j ≈ QiTi,jK
T
j . (13)

This shows that the Selective SSM captures the influence of xi and xj using Qi and Kj , respectively,
while Ti,j molding the token significance from xi to xj . Note that i ≤ j because W is a lower
triangular matrix, indicating a strong relationship with causal self-attention [4, 2].
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A.2 Global modeling of PointMamba

In this subsection, we explain the global modeling of our PointMamba. Let’s consider the total input
sequence as

[
l̂1; l̂2

]
=

[
x1, , · · · , xl/2;xl/2+1, · · · , xl

]
where the sequence has a length l and l is

even. l̂1 comes from Hilbert serialization and the other half, l̂2, comes from Trans-Hilbert. The large

matrix in Eq. 7 can be represented as a partitioned matrix
[
X 0
Y Z

]
as below:

B1

...
. . .∏ l

2
i=2AiB1 · · · B l

2∏ l
2+1
i=2 AiB1 · · · A l

2+1B l
2

B l
2+1

...
. . .

...
...

. . .∏l
i=2AiB1 · · ·

∏l
i= l

2+1AiB l
2

∏l
i= l

2+2AiB l
2+1 · · · Bl




(14)

Note that the block Y , highlighted in gray , is associated with both l̂1 (from B) and l̂2 (from A),

denoted as Y (l̂1, l̂2). The blocks X and Z only relate to half of the sequence, denoted as X(l̂1) and

Z(l̂2), respectively. Thus, the hidden space output
[
ĥ1; ĥ2

]T
=

[
h1, · · · , hl/2;hl/2+1, · · · , hl

]T
can be compressed as below: [

ĥ1

ĥ2

]
=

[
X(l̂1)l̂1

Y (l̂1, l̂2)l̂2 +Z(l̂2)l̂2

]
. (15)

As in Fig. 3 and Eq. 15, the serialized points from Trans-Hilbert can receive global information from
Hilbert serialization.

Appendix B Concurrent Related Works

Table 9: Classification performance comparisons with other state space model methods on three
variants of the ScanObjectNN [49]. All results are reported without voting.

Method Param. (M) FLOPs (G)
ScanObjectNN

OBJ_BG OBJ_ONLY PB_T50_RS

Point Cloud Mamba [66] 34.2 45.0 - - 88.10
Mamba3D [24] 16.9 3.9 93.12 92.08 88.20
PoinTramba [53] 19.5 - 92.30 91.30 89.10

PointMamba (ours) 12.3 3.1 94.32 92.60 89.31

Some works on state space models for point cloud analysis appeared recently. This section discusses
the differences between these methods and our PointMamba.

Point Cloud Mamba (PCM) [66] combines an improved Mamba module, i.e., Vision Mamba [71],
with PointMLP [37] (a strong point cloud analysis method), and incorporates consistent traverse
serialization at each stage. To enhance Mamba’s capability in managing point sequences with
varying orders, PCM introduces point prompts that convey the sequence’s arrangement rules. While
these techniques improve the performance of state space models, they also introduce additional
computational overhead and complexity in design.

Mamba3D [24] is another recently proposed method. To obtain better global features, Mamba3D
introduces an enhanced Vision Mamba [71] block, which includes both a token forward SSM and a
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Figure 6: The details of our PointMamba for segmentation task.

backward SSM that operates on the feature channel. And it proposes a Local Norm Pooling block to
extract local geometric features.

PointTramba [53] introduces a hybrid approach that integrates Transformers and Mamba. It segments
point clouds into groups and utilizes Transformers to capture intra-group dependencies, while Mamba
models inter-group relationships using a bi-directional, importance-aware ordering strategy.

As shown in Tab. 9, our PointMamba surpasses these concurrent methods by offering superior
performance with reduced computational overhead. Note that our method is extremely simple and
without complex design, which utilizes the vanilla Mamba block and abstains from incorporating
modular designs from other baselines, thereby maintaining simplicity and efficiency in our approach.
We believe such method can better illustrate the potential of SSM in point cloud analysis tasks.

Appendix C More experimental resutls

C.1 Implement details

Table 10: Implementation details for pre-training and downstream tasks.

Configuration
Pre-training Classification Segmentation

ShapeNetCore ModelNet40 ScanObjectNN ShapeNetPart

Optimizer AdamW AdamW AdamW AdamW
Learning rate 1e-3 3e-4 5e-4 2e-4
Weight decay 5e-2 5e-2 5e-2 5e-2
Learning rate scheduler cosine cosine cosine cosine
Training epochs 300 300 300 300
Warmup epochs 10 10 10 10
Batch size 128 32 32 16

Num. of encoder layers N 12 12 12 12
Num. of decoder layers 4 - - -
Input points M 1024 1024 2048 2048
Num. of patches n 64 64 128 128
Patch size k 32 32 32 32

Augmentation Scale&Trans Scale&Trans Rotation -

Pre-training Details. The ShapeNetCore dataset [5] is used for pre-training, including ∼51K clean
3D sample across 55 categories. The 1,024 input points are divided into 64 point patches, with each
patch consisting of 32 points. The pre-training process includes 300 epochs, with a batch size of 128.
More detail can be found in Tab. 10.

Downstream tasks Details. Fig 2 shows the pipeline of PointMamba for classification tasks. We
report the overall accuracy without voting on the challenging ScanObjectNN [49] using 2,048 input
points, and on ModelNet40 [57] using 1,024 input points. For segmentation on ShapeNetPart [58],
as shown in Fig. 6, we use random, Hilbert, and Trans-Hilbert serializations, with order indicators
applied on Hilbert/Trans-Hilbert serializations. Features from the 3-rd, 7-th, and last layer are pooled
as global features after a simple feature fusion. These global features are then concatenated with
per-point features and sent to the segmentation head. More detail can be found in Tab. 10.
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Table 11: The effect of masking strategy. The
pre-training loss (× 1000) along with fine-
tuning accuracy (%) are reported.

Masking ratio Loss OBJ-BG OBJ-ONLY

0.4 2.01 92.60 90.70
0.6 1.97 94.32 92.60
0.8 2.33 93.46 90.17
0.9 2.00 92.43 91.05

Table 12: The effect of classification token.
Fine-tuning accuracy (%) are reported.

Methods OBJ-BG OBJ-ONLY

Before the sequence 93.63 91.05
After the sequence 94.32 90.19
Middle the sequence 93.98 90.71
Max Pool 93.39 91.36
Average Pool 94.32 92.60

Input Masking Reconstruction Input Masking Reconstruction

Figure 7: The qualitative results of mask predictions of our PointMamba on ShapeNet validation set.

C.2 Additional ablation study

In this section, we do additional ablation studies on several hyper-parameters.

Masking strategy for pre-training. By employing a serialization-based mask modeling paradigm,
our PointMamba achieves superior performance. To find a proper masking strategy for our method,
we compare two types of masking with varying ratios. The block masking [60] masks geometrically
proximate point cloud patches, leading to a more challenging reconstruction target. In Tab. 11, we
experimentally find that masking 60% of point patches by randomly choosing can achieve good
performance.

Usage of classification token. Previous works [12, 60, 38] often use a classification token [CLS]
as a global token for classification. As in Tab. 12, we find that without [CLS] and utilizing only the
average pooling of the final block’s output yields the best results for PointMamba.

Appendix D Qualitative Analysis

D.1 Mask modeling visualization

As in Sec. 4.2, we customize a simple yet effective serialization-based mask modeling paradigm. By
randomly masking about 60% of serialization-based point tokens, an asymmetric vanilla Mamba
autoencoder is utilized to extract the point feature, with a simple prediction head for reconstruction.
In Fig. 7, we present qualitative results of mask modeling on ShapeNet validation set. Despite a
60% masking ratio, our PointMamba effectively reconstructs the masked patches, providing a strong
self-supervised knowledge for downstream tasks.

D.2 Part segmentation visualization

In this subsection, we present the qualitative results for part segmentation on the ShapeNetPart valida-
tion set, including both the ground truth and the predicted results. As in Fig. 8, our PointMamba shows
highly competitive results on part segmentation.
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Figure 8: The qualitative results of part segmentation of our PointMamba on ShapeNetPart.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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