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Abstract

Internet of Things (IoT) sensing models often suffer from overfitting due to data
distribution shifts between training dataset and real-world scenarios. To address
this, data augmentation techniques have been adopted to enhance model robustness
by bolstering the diversity of synthetic samples within a defined vicinity of existing
samples. This paper introduces a novel paradigm of data augmentation for IoT
sensing signals by adding fine-grained control to generative models. We define
a metric space with statistical metrics that capture the essential features of the
short-time Fourier transformed (STFT) spectrograms of IoT sensing signals. These
metrics serve as strong conditions for a generative model, enabling us to tailor the
spectrogram characteristics in the time-frequency domain according to specific
application needs. Furthermore, we propose a set of data augmentation techniques
within this metric space to create new data samples. Our method is evaluated across
various generative models, datasets, and downstream IoT sensing models. The
results demonstrate that our approach surpasses the conventional transformation-
based data augmentation techniques and prior generative data augmentation models.

1 Introduction

IoT sensing applications aim to detect physical world phenomena in specific environments through
time-series data captured by sensors, such as inertial, acoustic, and bioelectrical signals. Given the
wide variety of real-world conditions, IoT sensing models often face potential domain shifts and
unpredictable variations when deployed [23]. Additionally, collecting and labeling IoT sensing data is
expensive because sensing signals are harder for annotators to interpret compared to images, videos,
and natural language [32, 34, 21, 22]. Consequently, enhancing model robustness across diverse
scenarios with minimal collection overhead becomes a key research focus in the IoT field [55, 56].

A spectrum of data augmentation techniques has been proposed to reduce the need for extensive data
collection. The objective is to diversify existing datasets while preserving a plausible data distribution.
Conventional data augmentation methods for IoT sensing signals generally apply manually-crafted
transformations to create different perspectives of the same sample [58, 12]. Typical transformations
include operations in the time domain (such as jittering, rescaling, rotation, and cropping) [12, 29, 39,
50] and the frequency domain (such as spectral flipping, warping, and masking) [58, 11, 38]. They
are designed to modify the original data to reflect possible real-world variations, guided by domain
knowledge in IoT. However, those transformations can be overly simplistic, failing to capture the
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nuanced low-level features of realistic IoT signal variance. The resultant artifacts may compromise
the authenticity of the synthetic samples, thus offering limited benefits for downstream tasks.

Generative data augmentation techniques have recently been introduced to synthesize highly realistic
IoT sensing data [9], such as variational autoencoders (VAEs) [24], generative adversarial networks
(GANs) [13], and diffusion models [46]. These techniques use inherent labels, such as activity types
in human activity recognition (HAR) and vehicle types in vehicle detection tasks as conditions, for
generating data. This process creates new samples with diverse characteristics under the same label,
thereby enriching the variety of the training dataset. Despite advances in generating high quality
signals, most existing works, if not all, fail to incorporate domain knowledge to guide the generation
process, often treating generative models as a black-box.
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Figure 1: An Application Example of Our Method. The insights of the potential variations in
the metric space of running signals can guide the generation process of augmented data, thereby
enriching the diversity that is missing in the original dataset.

In this paper, we introduce a novel data augmentation paradigm for IoT sensing data that combines
domain knowledge control with generative data augmentation methods to advance the synthesis
capabilities. We argue that a generative model with fine-grained control over the human-interpretable
characteristics of IoT sensing signals can enhance the data augmentation effectiveness on downstream
tasks. Our approach begins by leveraging domain expertise in IoT sensing to extract a set of statistical
metrics in the time domain, frequency domain, and time-frequency domain, which represent the
essential aspects of IoT sensing signals. We call the resultant space determined by those statistical
metrics as metric space. Subsequently, we develop a suite of data augmentation techniques designed
to operate within the metric space.

In Figure 1, we illustrate an application example of our method. Given real data of moderate running in
human activity recognition task, we speculate the potential real-world variations of running behaviors
and leverage domain knowledge to derive the changes of statistical metrics accordingly. These metrics
serve as conditions for a generative neural network to guide the synthetic data generation of other
running styles like energetic, cautious and on varied terrain. The generated data is then utilized to
augment the original dataset, thereby improving the robustness of downstream IoT sensing model.
The strength of our paradigm comes from the precise control over the generation process via the
metric space, while ensuring the authenticity of the generated samples through the generative model.

Empirically, we validate the versatility of our augmentation approach with various generative model
backbones including a diffusion model and a VAE. We test our approach in three distinct IoT
sensing applications: wearable-based human activity recognition, seismic and acoustic-based vehicle
detection, and EEG-based harmful brain activity recognition. Our results demonstrate that our method
outperforms conventional and generative data augmentations across various downstream models in
all the evaluated sensing tasks.

2 Related Work

Traditional Data Augmentation for IoT Sensing. Many traditional data augmentation methods rely
on manually crafted transformations to enhance dataset diversity. As IoT sensing signals typically
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involve temporal dynamics while exhibiting periodical patterns, transformations are designed in
both time domain [58, 12, 29, 39, 50] and frequency domain [58, 11, 38]. Implementing these
augmentation techniques requires specific domain knowledge to determine the variation range
that can enhance data diversity without compromising relevance to the intended task. Another
data augmentation approach involves similarity interpolation, where new samples are created by
interpolating between existing samples, maintaining task invariance in the generated outputs. Data
space interpolation techniques, which interpolate directly between raw data samples, have been
proposed [5, 63, 37]. Additionally, there has been research on feature space interpolation, which
occurs after data has been embedded into latent representations [10, 3, 35]. A primary challenge for
this line of work lies in the synthetic data quality. The transformations often represent straightforward,
linear variations and may introduce artifacts that reduce the realism of the generated data.

Generative Data Augmentation for IoT Sensing. Generative data augmentation utilizes generative
models to create varied data [48, 60, 64]. These models, including GANs [49, 31, 6], VAEs [36, 14,
53], and diffusion models [43, 44, 57], generate authentic samples that improve the performance of
downstream models and significantly lower the costs associated with collecting real data. However,
these prior work treat the generative model as a black box, using it to sample from the learned
data distribution with minimal control, typically only conditioned by the inherent labels from the
dataset. The lost of control makes the generated results unpredictable, and loses the chance to
benefit from domain insights and prior experience. This work is inspired by prior research on
conditional generation for human speech and singing signals [25, 4, 16, 33]. In these studies,
fine-grained conditions in vocal and/or linguistic features are applied to control acoustic signal
generation. However, unlike human speech, IoT sensing time series data carries entirely different
semantics and encompasses a broader range of modalities. Condition space interpolation involves the
application of interpolation techniques within a condition space, which is constituted by statistical
metrics[54]. These augmented metrics are then fed into a generative model to synthesize varied data.
Our work significantly advances prior research by redesigning the metric space and enhancing data
augmentation techniques within it. We also perform extensive evaluations across diverse generative
models and IoT sensing tasks, resulting in a more general data augmentation framework.

3 Method

3.1 Overview
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Figure 2: An overview of the three-stage pipeline. Given input data x and label y: Stage 1. Extract
statistical metrics m. Stage 2. Train a generative model G, conditioned on m (encapsulated within
condition vector c). Stage 3. Generate new data using the augmented metrics m′.

As shown in Figure 2, our fine-grained controllable generative data augmentation has three stages.

In Stage 1, we extract the predefined spectrogram metrics that reflect the critical characteristics of
IoT sensing spectrograms. The selection of these metrics is based on domain knowledge in general
IoT sensing, capturing essential facets in the IoT signal semantics. These metrics together define the
metric space that conditions the subsequent generative model.

In Stage 2, the metric values, along with the class label, are embedded into a condition tensor. This
tensor then conditions the training of the generative model, guiding it to synthesize spectrograms that
adhere to the specified metric values.

In Stage 3, we utilize the fine-grained controllable generative model to augment the original dataset
within the metric space. The metrics in this space act as control knobs, allowing for the directional
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generation of IoT sensing signals with specific characteristics in the spectrogram semantics. This
enables the application of domain knowledge about IoT sensing and downstream tasks to strategically
augment the original dataset. We introduce several data augmentation techniques that vary in their
reliance on domain knowledge. The augmented conditions (metric values) are input into the trained
generative model to produce synthetic samples. These samples, combined with the original dataset,
form the augmented dataset used to train the downstream IoT sensing models.

We introduce each stage in details in Section 3.2, 3.3, and 3.4.

3.2 Construction of Metric Space

We aim to design a set of statistical metrics which can effectively serve as fine-grained control knobs
for data augmentation and easy to be manipulated by the domain experts in IoT sensing.

As IoT sensing signals typically exhibit strong patterns in both time and frequency domain, we convert
the original time-series data into 2D spectrograms using short-time Fourier transformation (STFT).
We propose metrics as below in three domains: time domain, frequency domain, and time-frequency
domain.

Time domain metric: Temporal amplitude oscillation commonly exist in IoT sensing signals, which
is a strong indicator for the dynamics of the observed physical phenomena. To measure this essential
characteristic, we propose using the temporal amplitude range in a spectrogram as a metric for
controlling the volatility of the generated signal. It straightforwardly informs on the operational limits
of the IoT sensing signal, which is essential for a robust generation that must operate within specific
amplitude constraints.

Frequency domain metric: We introduce Fundamental frequency (F0) amplitude as the metric to
reflect the frequency domain characteristics of IoT sensing spectrograms. The fundamental frequency
is pervasive across various IoT sensing signals. It dictates the dominant periodicity of the signal and
is thus essential for capturing the signal’s primary oscillatory properties. For example, in a signal
captured by the accelerometer of a wearable device on the wrist when the human subject is walking,
the fundamental frequency corresponds to the walking cycle.

Time-frequency domain metrics: The information distribution across the time-frequency domain is
strongly correlated to phenomena such as environmental noises, signal interference, and the harmonic
characteristics of the signal source. To effectively capture these aspects, we introduce metrics
including contrast, flatness, and entropy that quantify the amplitude distribution and information
density within the spectrogram.

Contrast quantifies the difference in amplitude between peaks and valleys within the spectrogram.
This metric is critical for identifying the dominant signal patterns, allowing for a more nuanced
generation of spectrograms where both signal and noise components are realistically balanced.

Flatness measures how noise-like a spectrogram is by comparing the geometric mean to the arithmetic
mean of the power spectrogram values. A high flatness indicates a uniform distribution of power
across the spectrogram, typical of stochastic processes and ambient environmental noises. A low
flatness indicates concentration of energy at regions. This results in a spectrogram with interleaving
of peaks and valleys, reflecting the presence of tones or harmonics.

Entropy measures the randomness of the power distribution within the spectrogram. High entropy
suggests a complex, less predictable signal, while low entropy indicates a more structured and
tonal signal. This metric is crucial for generating data that mimics the variable information content
found in real-world IoT signals, from highly predictable periodic signals to complex, non-periodic
disturbances.

The formal definitions of the metrics above can be found in Appendix B.

3.3 Conditional Generative Model Training

Given the original dataset, we extract the metric values vector m from each data sample and embed it
with the class label as the condition tensor c. During the training of a conditional generative model
G, it takes the original data sample x and the condition tensor c as inputs. To enforce the alignment
of the generated data x′ with the characteristics defined by the given metrics m, a loss term Lmetric
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is taken as a penalty on the difference between the metric values m̂ calculated from x′ and m:

Lmetric =

M∑
i=1

wi(mi − m̂i)
2, (1)

where M is the total number of metrics, and wi is a hyperparameter as the weight for a specific metric
loss. The total loss L consists of the original generative model loss LG and the metric loss:

L = LG + Lmetric. (2)

In practice, to balance the two loss terms, we empirically adjust the weight w of each metric so that
LG : Lmetric approximately equals to 10:1 at the end of the first training epoch.

3.4 Data Augmentation Techniques in Metric Space

To fully leverage the fine-grained controllable generative model to synthesize diverse data samples,
effective data augmentation techniques are required. Different from prior approaches, our data
augmentation happens in the metric space where the extracted metric values from the original data
are manipulated to create variant data. As shown in Figure 3, we propose three data augmentation
techniques which require varying levels of IoT domain knowledge, ranging from low to high.

Figure 3: Data Augmentation Techniques in Metric Space. In the interpolation method, the green
dotted line represents the intermediate value range between two real samples. In the disturbance
method, blue circles indicate the range of disturbance. In the domain knowledge instruction method,
the red outline denotes specific metric value ranges derived from domain knowledge.

Interpolation: A vast amount of prior research has demonstrated that interpolation is an effective
data augmentation approach [5, 63, 37, 10, 3]. The intuition is that if the model can correctly classify
not only the original samples but also these in-between points, it is likely to perform better on unseen
data that fall within the same general manifold. Given a pair of randomly selected samples under
the same label xi and xj , we extract their metric values mi and mj . The interpolated metric value
minterp is defined as:

minterp = βmi + (1− β)mj , (3)

where β is a random number between 0 and 1, independently sampled from a Gaussian distribution
for each interpolation. One advantage of interpolation is that it does not require specific domain
knowledge to create new data samples.

Disturbance: Inheriting from the design of conventional transformation-based data augmentation
methods, we disturb the original metric value of a data sample within a predefined varying range
[a, b], where a and b are the minimum and maximum percentages of the original metric value. During
the metric disturbance, a random number r is sampled from the uniform distribution U(a, b). Given
all the metrics as control knobs for creating new samples, users of this augmentation technique can to
define the valid disturbance range grounded by domain insights.

Domain knowledge instruction: For many IoT sensing applications, deeper insights are available
about the downstream model and the potential diversity of the realistic data distribution. In contrast
to disturbance, these domain knowledge instructions provide a more precise scope for metric manipu-
lation. This accuracy allows for the synthesis of data that not only enhances the downstream model
but also avoids the production of unnecessary variants. To showcase the benefits of incorporating
domain knowledge in IoT sensing data augmentation, we present two case studies in Section 4.3.
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4 Experiments

We evaluate our data augmentation approach on three IoT sensing applications where domain
shift issues are prevalent: human-activity recognition, vehicle detection, and harmful brain activity
recognition.

4.1 Experimental Setup

Datasets: (1) Human-Activity Recognition (HAR): We use RealWorld-HAR dataset [47], which
aims at classifying 5 human activities based on the accelerometer and gyroscope signals. (2)
Vehicle detection: We detect 5 vehicle types by deploying a seismic and an acoustic sensor on the
ground, monitoring the sound and vibration caused by passing vehicles. This dataset is collected
by ourselves [30]. (3) Harmful brain activity recognition: We adopt Harmful Brain Activity
Classification [18, 19] dataset which comprises electroencephalography (EEG) signals from critically
ill patients in hospitals. The objective is to classify 5 types of harmful brain activities.

Generative Model Backbones: Technically, our fine-grained controllable generative data augmenta-
tion approach is compatible with any conditional generative model. We utilize two types of generative
model backbones to validate our approach: (1) Diffusion Model [42] (referred to as Diff hereafter),
and (2) VAE [51].

Baselines: We compare two categories of data augmentation methods as baselines. 1 Traditional
data augmentation: This category includes (1) data space interpolation [63], (2) feature space
interpolation [10], and (3) time and frequency domain transformation-based method [38]. 2 Label-
only conditional generative data augmentation: We compare with 3 generative models that are
only conditioned by the inherent label in the dataset, including (4) Conditonal Diffusion Model [42]
(cDiff), (5) Conditional VAE [51] (cVAE) and (6) Conditional GAN [1] (cGAN).

Downstream Models: We choose the following two downstream models: (1) DeepSense [61] is
a deep learning model designed for analyzing IoT signals in the time-frequency domain, featuring
multiple convolutional and recurrent layers. (2) Transformer (Encoder-Only) [52], which uses self-
attention mechanisms to process sequential data and can capture complex dependencies. We only use
the encoder component of the original Transformer architecture for classification tasks.

Data Augmentation Setup: Each method produce 5 times of synthetic samples comparative the
number of the original training samples. For our methods that utilize disturbance as the augmentation
technique, we set the adjustable range for each metric in between -20% to 20%. This range is
reasonably chosen to encompass substantial variance while maintaining invariance critical for the
downstream task.

More details about the experimental setup can be found in the Appendix C, D, E, and F.

4.2 Overall Performance
Table 1 reports the performance of the 3 variants of our fine-grained controllable generative aug-
mentation comparing with the baselines. Interp uses interpolation for augmentation, Disturb applies
metric disturbance, and Reconst generates augmented data by using the actual metric values from the
validation set as conditions, showcasing the potential upper bound performance of our method when
validation data metrics are perfectly predicted. We highlight the highest-performing cell in the table,
excluding the Reconst variant.

Across all datasets and two downstream models, our fine-grained controllable generative augmentation
consistently outperforms other methods. Typically, the performance improves with the integration
of more domain knowledge into the augmentation process. Interp operates on the premise that
interpolating between real samples enhances dataset diversity, requiring no specific domain knowledge.
Disturb, on the other hand, involves domain expertise to define the disturbance range, leading to
better performance than Interp. Reconst, which utilizes ground truth metric values from the validation
set, achieves the highest performance, illustrating the significant benefits of incorporating domain
knowledge about IoT sensing signal characteristics through our designed metrics into the generative
augmentation process.

Using the same augmentation technique, the diffusion model generally surpasses the VAE as a
backbone. As illustrated in Appendix G.1, VAE generates spectrograms that are less crisp and
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Table 1: General Performance. Average accuracy and F-1 score of 5 independent runs are reported.

Augmentation
Category

Augmentation
Method

Human Activity Recognition Vehicle Detection
Harmful Brain Activity

Recognition
DeepSense Transformer DeepSense Transformer DeepSense Transformer

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
No Augmentation N/A 0.7752 0.7961 0.7835 0.8041 0.7875 0.7768 0.7745 0.7631 0.7001 0.6893 0.6842 0.6633

Fine-grained
Controllable
Generative
Augmentation (ours)

Diff-interp 0.8125 0.8265 0.8242 0.8338 0.8093 0.8004 0.8005 0.7912 0.7201 0.6945 0.7225 0.7180
Diff-disturb 0.8307 0.8333 0.8205 0.8352 0.8200 0.8159 0.8008 0.7944 0.7511 0.7410 0.7335 0.7210
Diff-reconst 0.8618 0.8664 0.8591 0.8600 0.8205 0.8094 0.8118 0.8104 0.7588 0.7429 0.7398 0.7220
VAE-interp 0.8120 0.8123 0.8099 0.8292 0.7836 0.7733 0.7792 0.7653 0.6947 0.6683 0.6991 0.6838
VAE-disturb 0.8289 0.8441 0.8151 0.8240 0.7901 0.7785 0.7821 0.7696 0.7016 0.6845 0.7003 0.6801
VAE-reconst 0.8372 0.8493 0.8242 0.8377 0.8227 0.8123 0.7897 0.7796 0.7033 0.6837 0.7060 0.6886

Traditional
Data
Augmentation

Data Space
Interpolation

0.7894 0.7931 0.7732 0.7759 0.7745 0.7591 0.7410 0.7392 0.7119 0.7034 0.7225 0.7125

Feature Space
Interpolation

0.7656 0.7708 0.7534 0.7205 0.7730 0.7615 0.7688 0.7510 0.6903 0.7059 0.6821 0.6774

Time and
Frequency
Domain
Transformation

0.8011 0.8117 0.8155 0.8176 0.8024 0.7922 0.7721 0.7662 0.7228 0.7079 0.7097 0.6849

Label-only Conditional
Generative Data
Augmentation

cDiff 0.8034 0.8130 0.7921 0.8100 0.7833 0.7796 0.7660 0.7451 0.7374 0.7198 0.7225 0.7107
cVAE 0.8016 0.8124 0.7928 0.8150 0.7655 0.7538 0.7720 0.7615 0.6982 0.6772 0.6979 0.6810
cGAN 0.7531 0.7431 0.7221 0.7354 0.7322 0.7110 0.7082 0.6885 0.6721 0.6630 0.6514 0.6330
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Figure 4: Visualization of Metric Control Effects on Accelerometer Spectrogram Generation
from HAR Dataset. The inherent label of this signal is "running". We altered a single metric
condition while retaining the remaining metrics. (a) Increasing contrast enhances the distinction
between peak and valley values, while decreasing contrast reduces the differences, making high and
low energy areas less pronounced. (b) Higher flatness results in a uniform and consistent energy
distribution across the spectrum; lower flatness leads to pronounced interleaving between peaks and
valleys, exhibiting stronger harmonic patterns. (c) Higher entropy creates a more random or chaotic
energy distribution, whereas lower entropy results in a simpler and more predictable spectrogram
appearance. (d) Increasing the temporal amplitude range introduces greater dynamics over time,
whereas reducing it leads to a more uniform amplitude distribution throughout the timeline. (e)
Adjusting the F0 amplitude emphasizes the intensity of the fundamental frequency without affecting
the relative amplitudes of other harmonics. Additional visualizations are available in Appendix G.

realistic compared to those produced by the diffusion model, a finding supported by numerous
previous studies [28, 2]. We hypothesize that the inferior generative quality of the VAE limits the
effectiveness of data augmentation. This suggests that the success of our data augmentation method
depends significantly on the underlying generative model’s ability to synthesize authentic data.

To validate the fine-grained control over the generation process, we visualize examples of the
generation results in Figure 4. Results demonstrate the precise fine-grained control of our approach
over the IoT sensing signal generation.
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4.3 Data Augmentation with Domain Knowledge Instruction

We highlight the effectiveness of integrating domain knowledge to enhance data augmentation
through three case studies. In each case, we create a domain shifting scenario and aim to increase the
downstream model’s robustness to variations outside the training set. We utilize the diffusion model
as the generative model backbone and DeepSense as the downstream model.

Case study 1: Various Running Styles in HAR dataset. We use the RealWorld-HAR dataset for
our analysis. For the training set, we select 3 human subjects who demonstrated cautious style during
the data collection of the "running" activity. For the validation set, we choose other 3 human subjects
who exhibited energetic running patterns. The distinct running patterns of the subjects were assessed
by reviewing video footage recorded by an observer holding a camera and following the runners.
2 Based on IoT sensing domain knowledge, we hypothesize that the more forceful arm swings of
energetic runners produce more intense and varied acceleration signals. The dominant arm swing
frequency and its harmonics are also more pronounced. In spectrograms, these characteristics should
manifest as higher contrast, lower flatness, and stronger F0 amplitude compared to the cautious
runners. As shown in Figure 5a, our visual inspections of accelerometer spectrograms from each
participant confirmed these assumptions.

We then simulate a scenario where we only have the data from the 3 cautious runners, and need to
generalize the activity recognition to the running activity of the energetic runners. In our training
set, we have the data of all activities from the cautious runners, while the validation data comprises
running activities from the energetic runners. Leveraging our domain insights, we directionally
augment the data by intensifying the contrast and fundamental frequency amplitude and reducing the
flatness in the spectrograms of the cautious runners. We set the varying range of contrast, flatness,
and fundamental frequency amplitude at [10%, 40%], [-40%, -10%], and [10%, 40%] respectively,
while keeping the other metrics unchanged. Having these ranges, we employ the perturbation
augmentation method to create the augmented data. In Figure 5b, results show that our domain
knowledge instruction (noted as knowledge) substantially improves the results, closely approaching
the upper performance bound set by Reconst. This demonstrates that the generated data can more
precisely reflect the true characteristics of the diverse running styles.

(a) Visual Comparison of Spectrograms between Cautious and
Energetic Runners.

No Aug cDiff Interp Disturb Knowledge Reconst0.75

0.80

0.85

0.90

0.95 Accuracy
F1 Score

(b) Performance Comparison.

Figure 5: Case Study 1. Leveraging our insights into different running styles, our method enables
more precise data augmentation and enhances the downstream model’s performance on "running"
activity recognition.

Case Study 2: Various Road Types in Vehicle Detection Dataset. In the vehicle detection dataset,
the same vehicle driving on different road types exhibit various signal patterns. Our domain expertise
suggests that the uneven and shifting surface of a gravel road generates sound and vibration profile
with higher entropy compared to smoother concrete surface. As presented in Figure 6a, for the same
vehicle type, spectrograms exhibit more complex and disordered patterns when on gravel than on
concrete.

In this case study, we simulate a scenario where the training set only includes data collected on
the concrete road while the validation set is the data collected on the gravel ground. By applying
our knowledge about the effect of gravel surfaces, we generate synthetic data by increasing entropy
and flatness and decreasing contrast. We set the varying range of these 3 metrics as [10%, 30%],
[10%, 30%], and [-30%, 0] respectively, while keeping the other metrics unchanged. Then we
use perturbation augmentation to synthesize the data. In Figure 6b, the results show that our data

2Public information and video footage about the human subjects can be found at: https://www.uni-
mannheim.de/dws/research/projects/activity-recognition/dataset/dataset-realworld/
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augmentation informed by precise domain knowledge, significantly enhances the generalizability of
the downstream model from concrete road to gravel road.

(a) Visual Comparison of Spectrograms
between Concrete Road and Gravel
Road.

No Aug cDiff Interp Disturb Knowledge Reconst0.55

0.60

0.65

0.70

0.75 Accuracy
F1 Score

(b) Performance Comparison

Figure 6: Case Study 2. Enhanced by our method with domain knowledge instruction, the down-
stream model more effectively manages domain shift in road types.

Case Study 3: Various Seizure Patterns in Harmful Brain Activity Dataset. We observe that the
seizure signals from different patients can be divided into two categories regarding the fundamental
frequency patterns. One is with clear fundamental frequency, which might be associated with the
repetitive firing patterns of neurons in a specific brain region. We call it Clear Seizure. The other
category has chaotic, noisy signals and blury fundamental frequency, which might be related to
different brain regions contribute varying frequencies and patterns simultaneously. We call it Chaotic
Seizure. In this case study, we manually select 10 patients of clear seizure as the traing set, and
select 10 patients of chaotic seizure as the validation set. To augment the training data, we set the
varying range of contrast, entropy, and fundamental frequency amplitude at [10%, 25%], [10%,
40%], and [-25%, -10%] respectively, while keeping the other metrics unchanged. We show example
spectrograms in Figure 7a. The experiment results are shown in Figure 7b. Among all the baselines,
our domain knowledge instruction achieves the best performance, again proving the effectiveness and
generalizability of our approach.

(a) Visual Comparison of Spectrograms
between Clear Seizure and Chaotic
Seizure.

No Aug cDiff Interp Disturb Knowledge Reconst0.60

0.65

0.70

0.75

0.80 Accuracy
F1 Score

(b) Performance Comparison

Figure 7: Case Study 3. With domain knowledge instruction, our model achieves the best on bridging
the gap between seizure patterns between two groups of patients.

4.4 Number of Augmentation Data

We investigate the influence of the number of augmentation data on the downstream model per-
formance. Here we use diffusion model as the generative model backbone, and DeepSense as the
downstream model. As depicted in Figure 8, even though the ideal augmentation ratio varies in
different datasets, a steep climb in performance occurs from 50% to 500%. Among the 3 datasets,
human activity recognition has the smallest data volume, which is below 5000 training samples. We
envision that the generative capability is fully expressed at a lower augmentation ratio. Harmful brain
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activity recognition dataset has the largest number of training samples (≈ 80,000), where a tendency
of performance growing remains even at a higher augmentation ratio.

50% 100% 500% 750%1000%
Augmentation Ratio

0.750

0.775

0.800

0.825

0.850

Accuracy
F1 Score

(a) Human Activity Recogni-
tion

50% 100% 500% 750%1000%
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0.750
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0.800

0.825

0.850 Accuracy
F1 Score

(b) Vehicle Detection

50% 100% 500% 750% 1000%
Augmentation Ratio

0.65

0.70

0.75

0.80

Accuracy
F1 Score

(c) Harmful Brain Activity
Recognition

Figure 8: Impact of Augmentation Ratio on Downstream Model Performance. Augmentation
ratio = Number of generated samples / Number of real samples in the training set

4.5 Ablation Studies

Table 2: Ablation Studies. Results with 95% confidence interval.

Metrics
Human Activity

Recognition
Vehicle

Detection

Harmful Brain
Activity

Recognition
Acc F1 Acc F1 Acc F1

All metrics 0.8307±0.0171 0.8333±0.0145 0.7925±0.0053 0.7748±0.0095 0.7511±0.0116 0.7410±0.0143
No time domain metric 0.8290±0.0202 0.8305±0.0212 0.7745±0.0122 0.7691±0.0104 0.7233±0.0295 0.7058±0.0268
No frequency domain metric 0.8177±0.0155 0.8208±0.0166 0.7910±0.0068 0.7554±0.0066 0.7225±0.0151 0.7189±0.0144
No time-frequency domain metric 0.8112±0.0166 0.8146±0.0120 0.7880±0.0173 0.7753±0.0199 0.7133±0.0103 0.7021±0.0097

To investigate the impact of different metrics on our data augmentation approach, we ablate each
category of metrics and evaluate their effects using the disturb augmentation method with diffusion
model as the generative model backbone. Performance was evaluated using DeepSense as the
downstream model. As depicted in Table 2, excluding any metrics consistently results in diminished
performance, validating the effectiveness of our selected metrics. The results also indicate varying
importance of metrics across different datasets.

5 Conclusion

In this paper, we present a method of fine-grained control on generative augmentation in IoT sensing
applications. Our novel data augmentation technique merges the advantages of leveraging domain
knowledge specific with the production of highly authentic synthetic samples. Compared to traditional
transformation-based and generative data augmentation methods, our approach demonstrates superior
performance, particularly when domain-specific knowledge is available, which is a common scenario
in many IoT sensing tasks. Furthermore, the versatility of our method enables its application across
different generative models, allowing it to benefit from the inherent generative capabilities of these
models.
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Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for Parkinson’s disease
monitoring using convolutional neural networks. In Proceedings of the 19th ACM international
conference on multimodal interaction, pages 216–220, 2017.

[51] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Neural
Information Processing Systems (NeurIPS), 2020.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[53] Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi
Wang, Dachun Sun, Shuochao Yao, and Tarek Abdelzaher. Dydiff-vae: A dynamic variational
framework for information diffusion prediction. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, page
163–172, 2021.

[54] Tianshi Wang, Yizhuo Chen, Qikai Yang, Dachun Sun, Ruijie Wang, Jinyang Li, Tomoyoshi
Kimura, and Tarek Abdelzaher. Data augmentation for human activity recognition via condition
space interpolation within a generative model. In 2024 33rd International Conference on
Computer Communications and Networks (ICCCN), pages 1–9, 2024.

[55] Tianshi Wang, Denizhan Kara, Jinyang Li, Shengzhong Liu, Tarek Abdelzaher, and Brian
Jalaian. The methodological pitfall of dataset-driven research on deep learning: An IoT
example. In MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM),
pages 1082–1087, 2022.

[56] Tianshi Wang, Jinyang Li, Ruijie Wang, Denizhan Kara, Shengzhong Liu, Davis Wertheimer,
Antoni Viros i Martin, Raghu Ganti, Mudhakar Srivatsa, and Tarek Abdelzaher. SudokuSens:
Enhancing deep learning robustness for IoT sensing applications using a generative approach.
In Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems, pages
15–27, 2023.

[57] Yilin Wang, Sha Zhao, Haiteng Jiang, Shijian Li, Benyan Luo, Tao Li, and Gang Pan. DiffMDD:
A diffusion-based deep learning framework for MDD diagnosis using EEG. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 2024.

[58] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu.
Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478,
2020.

[59] Ruimin Xie, Nabil Magbool Jan, Kuangrong Hao, Lei Chen, and Biao Huang. Supervised
variational autoencoders for soft sensor modeling with missing data. IEEE Transactions on
Industrial Informatics, 16(4):2820–2828, 2020.

[60] Shin’ya Yamaguchi, Sekitoshi Kanai, and Takeharu Eda. Effective data augmentation with
multi-domain learning GANs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6566–6574, 2020.

[61] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. DeepSense: A
unified deep learning framework for time-series mobile sensing data processing. In Proceedings
of the 26th international conference on world wide web, pages 351–360, 2017.

[62] Kuang Yuan, Shuo Han, Swarun Kumar, and Bhiksha Raj. DeWinder: Single-channel wind
noise reduction using ultrasound sensing. arXiv preprint arXiv:2409.06137, 2024.

[63] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[64] Chenyu Zheng, Guoqiang Wu, and Chongxuan Li. Toward understanding generative data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

14

32800https://doi.org/10.52202/079017-1031



Appendix

A Limitations

Metric Selection: One major limitation of our current approach is that the metrics are selected em-
pirically rather than through a quantitative method. This means our choices are based on observation
and experience on the limited IoT sensing datasets, which might introduce bias or overlook potential
correlations within certain metrics and the data. Also, when new sensing applications are involved or
sensing modalities are introduced, the functionality of these metrics need to be empirically validated
again, which is inefficient. We envision the development of an improved method for assessing metric
importance to mitigate this issue. For instance, we could identify a broader set of potential metrics
and analyze their correlations with the discriminative features identified by the downstream model.
The strength of these correlations could then be used to rank the importance of each metric among all
candidates.

Introduction of Domain Knowledge: Even after we obtained the fine-grained control over the
generation process, deciding the proper augmentation strategy still requires deliberate considerations.
The introduction of domain knowledge is not straightforward and involves a nuanced understanding
of the underlying mechanisms of the target domain. Currently, this process relies heavily on the
expertise of practitioners who understand both the technical aspects of generative models and the
specific characteristics of the domain. This is an issue that pervasively exist in all the domain
knowledge-guided neural network design[8, 27]. We believe this is highly challenging and we look
forward to make advancements in future research.

B Metrics Design

We formally define the statistical metrics we proposed in constructing the metric space.

Let S ∈ Rf×t represent the STFT spectrogram, where f and t are the dimensions of frequency and
time, respectively.

B.1 Temporal Amplitude Range

The temporal amplitude range measures the variability in signal amplitude across time in a spectro-
gram after averaging over the frequency dimension. It is defined mathematically as:

Temporal Amplitude Range = max
t

(
A(t)

)
−min

t

(
A(t)

)
(4)

where A(t) = 1
f

∑f
i=1 S(i, t) represents the average amplitude at time t over all frequency bins f in

the spectrogram S. This metric captures the total temporal variation in signal strength and provides
insights into the operational limits of the IoT sensing signal.

B.2 Fundamental Frequency (F0) Amplitude

We define the fundamental frequency amplitude as the mean amplitude at the fundamental frequency
across all time bins. To calculate that, we first estimate the fundamental frequency f0 for each time
frame in the spectrogram using the Harmonic Product Spectrum (HPS) method.

This process involves the following 3 steps:

Step 1: Compute the HPS for Each Time Frame

For each time frame t in the spectrogram S(f, t), the HPS is computed by:

1. Generating downsampled versions of the spectrum for the given time frame, where the
downsampling occurs on the frequency dimension only:

Xd(f, t) = S(f ↓ d, t) for d = 1, 2, . . . , D (5)
where f ↓ d denotes downsampling the frequency index f by a factor of d, and D is the
maximum downsampling factor. This approach reduces the frequency resolution while
maintaining the temporal resolution intact.
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In practice, we set D for various datasets to accommodate different sampling rates and
harmonic patterns of the modalities. Specifically, for the HAR dataset, D = 2 is used for
both accelerometer and gyroscope signals. In the vehicle detection dataset, D = 3 is set
for acoustic signals and D = 2 for seismic signals. For harmful brain activity recognition,
D = 2 is applied to EEG signals.

2. Multiplying these downsampled spectra together to emphasize the fundamental frequency:

H(f, t) =

D∏
d=1

Xd(f, t) (6)

Step 2: Identify f0 for Each Time Frame

The fundamental frequency f0(t) at each time frame t is identified as the frequency corresponding to
the maximum value in H(f, t):

f0(t) = argmax
f

H(f, t) (7)

Step 3: Calculate Average F0 Amplitude

Once the fundamental frequencies are determined for each time frame, the average amplitude at these
frequencies is computed by averaging the amplitudes at f0(t) over all time frames:

F0 Amplitude =
1

T

T∑
t=1

S(f0(t), t) (8)

where T is the total number of time frames.

B.3 Contrast

Contrast calculates the distance between the amplitude peaks and valleys in the spectrogram. We
define the sets of peaks and valleys:

• Let P be the set of values in S that are in the top 5% of all values in S.

P = {S(i, j) | S(i, j) > quantile(S, 0.95)} (9)

• Let V be the set of values in S that are in the bottom 5% of all values in S.

V = {S(i, j) | S(i, j) < quantile(S, 0.05)} (10)

Contrast is defined as:
Contrast =

1

|P |
∑
p∈P

p− 1

|V |
∑
v∈V

v (11)

Where |P | and |V | represent the number of elements in the sets P and V , respectively.

B.4 Flatness

We first define the power spectral density, denoted as P (f, t), of the spectrogram S(f, t):

P (f, t) = |S(f, t)|2 (12)

Flatness of a spectrogram is defined as:

Flatness =
exp

(
1

TF

∑T
t=1

∑F
f=1 logP (f, t)

)
1

TF

∑T
t=1

∑F
f=1 P (f, t)

(13)

where T is the total number of time bins, F is the total number of frequency bins, and TF represents
the total number of elements in the spectrogram.
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B.5 Entropy

To calculate entropy, we first normalize the spectrogram to create a probability distribution:

p(f, t) =
S(f, t)∑F

f=1

∑T
t=1 S(f, t)

(14)

Here, p(f, t) represents the probability of observing the power value at time t and frequency f .

The entropy of the spectrogram is then defined as:

Entropy = −
F∑

f=1

T∑
t=1

p(f, t) log p(f, t) (15)

where the sum is taken over all time and frequency bins, and the logarithm is base 2.

C Datasets

We describe the details of each dataset in the following.

C.1 Human-Activity Recognition (HAR)

We utilize the Real-World HAR dataset [47], which consists of synchronized readings from multiple
wearable sensors on 15 human subjects. Specifically, we select data from the accelerometer and
gyroscope mounted on the upper arm, both of which record at a 100 Hz sampling rate. Each subject
performed five dynamic activities for approximately 10 minutes each, except for jumping, which
lasted about 1.7 minutes. These activities include climbing down, climbing up, jumping, running, and
walking. We divide the dataset randomly by subjects, assigning 10 subjects to the training set and
the remaining 5 to the validation set. We segmented the entire recording into 2.5-second segments.
This partition results in 4,959 training samples and 2,309 validation samples. Due to the individual
physical variations among subjects during the same activity, a domain shift occurs when the validation
dataset comprises human subjects not included in the training set.

C.2 Vehicle Detection

We created our own dataset by deploying 5 IoT sensing nodes, each equipped with a seismic sensor
(100 Hz sampling rate) and an acoustic sensor (800 Hz sampling rate), placed on the ground to
monitor the sounds and vibrations from passing vehicles. The goal is to develop a model that can
classify vehicle types based on this sensor data, with each segment being 5 seconds long. The
data was collected across 3 different locations: a city parking lot with a concrete surface, a state
park parking lot with a gravel surface, and a country road with a dirt surface. This dataset includes
the footage of 5 different vehicle types: a compact-size SUV, a mid-size SUV, a sports car, and a
convertible roadster. Each data collection session lasted for 40 minutes, during which a single vehicle
type traversed the testing field at speeds between 5 and 30 miles per hour along a random path. The
initial 30 minutes of data are used for training, while the final 10 minutes serve as validation. Data
segments where the vehicle was more than 65 feet from any sensor were excluded based on GPS
distance calculations. This process results in 8,015 training samples and 2,763 validation samples.

C.3 Harmful Brain Activity Recognition

We adopt Harmful Brain Activity Classification [18, 19] dataset which comprises EEG signals
obtained from hospitalized patients who underwent EEG monitoring as a part of their clinical care.
The sampling rate of the EEG sensors is 100 Hz. Each original recording, approximately 10 minutes
long, is segmented into 40-second intervals. The objective is to classify 5 types of harmful brain
activities using these data segments, including seizure (SZ), generalized periodic discharges (GPD),
lateralized periodic discharges (LPD), lateralized rhythmic delta activity (LRDA), and generalized
rhythmic delta activity (GRDA). The ground truth labeling was done by human experts manually[20].
We allocate 80% of the original EEG recordings to the training set and 20% to the testing set. This
partition results in 78,548 training samples and 19,532 validation samples.
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D Generative Models

D.1 Diffusion Model

Our diffusion model utilizes the architecture proposed in [42], which incorporates the U-Net as the
backbone [41], a design prevalent across many diffusion models. U-Net comprises multiple convolu-
tional layers, pooling, and up-sampling operations, all interconnected through skip connections that
maintain spatial hierarchies for detailed segmentation. When a 2D spectrogram gets into the U-Net,
it is first progressively downsampled through convolutional and pooling layers to extract features,
and then incrementally upsampled using transposed convolutions. Skip connections integrating
details from corresponding downscaled layers to the upscaled layers for precise localization. In our
implementation, we have 3 layers for downsampling and 3 layers for upsampling. Each downsam-
pling/upsampling rescales both the time and frequency dimension of the spectrogram by 2. We set
the intermediate channel dimension as 128 for the HAR and vehicle detection datasets, while 64 for
the harmful brain activity recognition dataset. Both the HAR and vehicle detection datasets have 45.5
million parameters, while the harmful brain activity recognition dataset has 11.32 million.

Our conditioning embedder begins by taking each metric value mi with a channel dimension di,
reshaping it to di × 1× 1. This reshaped tensor is then replicated T times along the third dimension
to align with the spectrogram’s time dimension. The tensor subsequently passes through a individual
linear layer which increases its channel dimension to F , altering its shape to di×F ×T . This process
is consistently applied to each metric value and the one-hot embedding of the data label. Following
this, all transformed tensors are stacked together on the channel dimension, resulting in a tensor of
dimensions

∑M
i di ×F × T , where M represents the total number of metrics and the label. We then

compute the average over the first dimension of this stacked tensor, yielding a final dimension of
1× F × T . This resulting tensor, denoted as c, serves as the condition tensor and is concatenated
along the channel dimension with either the input spectrogram x or noise ϵ, which is in shape of
D×F ×T , where D is the feature channel of the sensor signals. The concatenated tensor is in shape
of (D + 1)× F × T , and then fed into the U-Net described above.

During the training of the diffusion model, we compute the metric loss using the generated spectro-
grams. To accelerate the generation process, we employ a diffusion step of 10, which offers a balance
between moderate quality and rapid generation. For the data generation phase, however, we utilize a
diffusion step of 100 to produce augmented data of higher quality.

We train the diffusion model using an Adam optimizer with a learning rate of 0.0001, paired with
a cosine annealing learning rate scheduler. The model is trained for 1,000 epochs on the HAR and
vehicle detection datasets, and for 200 epochs on the harmful brain activity recognition dataset. The
batch size is set at 200 for the HAR and vehicle detection datasets, and at 64 for the harmful brain
activity recognition dataset.

We handle the multi-modal inputs from HAR (accelerometer + gyroscope) and vehicle detection
(acoustic + seismic) by employing two separate U-Nets, each dedicated to processing one modality.
Although we anticipate strong correlations between the modalities, no modality fusion occurs within
between the two U-Net architectures. We consider integrating modality fusion as a potential direction
for future research to enhance the diffusion model’s performance with multi-modal IoT sensing data.

Our model was trained on a desktop with Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz and 4
Nvidia GeForce RTX 2080 Ti. The training of the diffusion model on a single GPU lasts for around 2
days for HAR and vehicle detection datasets, and around 5 days for harmful brain activity recognition
dataset.

D.2 VAE

VAEs have been extensively applied to various IoT tasks in prior research. [45, 26, 59, 62]. To capture
the hierarchical features of the spectrogram, our VAE model is developed based on the NVAE [51].
The effectiveness of such hierarchical structure has been tested and verified in multiple prior studies
[7, 15, 17]. The original NVAE model constitutes of a 3-layer encoder and a 3-layer decoder, where
each layer is a residual cell, in order to model the long-range correlations in data[51]. Unlike the naive
VAE model [24], NVAE designs its reparameterization process as a 3-step dependent sampling where
each step is completed right before each layer of the decoder. Our conditional NVAE model remains
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most of the architecture and settings of the original NVAE with only a few changes. We replace
the prior trainable parameters in the first layer of NVAE’s decoder with our condition embedder,
following the same settings used in our diffusion model. Similarly, we also add a condition embedder
at the encoder to concatenate our conditioning embedding to the input data.

During the training process, we feed our conditions and ground truth data to the encoder to generate
the latent variables of each layer. Then we feed the conditions to the beginning of the decoder and the
latent variables to each layer’s sampling process respectively, to get the generated data. We calculate
loss as the mean squared error (MSE) between the ground truth and generated data, added by a
weighted KL divergence loss. The weighting for each dataset is as follows: 1 for the HAR dataset, 10
for the vehicle detection dataset, and 8 for the harmful brain activity recognition dataset.

We train the NVAE model using an Adam optimizer with a learning rate of 0.0005, paired with a
cosine annealing learning rate scheduler. Our model is trained for 200 epochs on the HAR dataset,
300 epochs on the vehicle detection dataset, and 600 epochs on the harmful brain activity recognition
dataset. The bacth size of all datasets is set as 64.

The total number of parameters for each dataset is 19 million. We trained our VAE model on the
same machine as our diffusion model. The training time of each dataset is 1 hour for the HAR dataset,
2 hours for the vehicle detection dataset, and 16 hours for the harmful brain activity recognition
dataset.

E Baselines

Data Space Interpolation: We follow the method called mixup proposed in [63]. Mixup conducts
interpolation within pairs of examples and their labels. The intuition is that mixup regularizes
the neural network to favor simple linear behavior in-between training examples, which reduces
undesirable oscillations when predicting outside the training examples.

Given a pair of randomly selected data samples (xi, yi) and (xj , yj), where xi and xj are data vectors,
while yi and yj are one-hot label encodings, the interpolated data sample (x′, y′) is constructed by:

x′ = λxi + (1− λ)xj ,

y′ = λyi + (1− λ)yj
(16)

In our implementation, we follow the original authors’ setup by randomly sampling λ from a beta
distribution:

λ ∼ Beta(0.2, 0.2) (17)

Feature Space Interpolation: As suggested by [10], we first train an autoencoder using an
unsupervised approach, followed by a linear interpolation of the intermediate feature maps from two
randomly chosen samples of the same activity to generate synthetic feature maps. The architecture
of the autoencoder largely follows our VAE design described in Appendix D.2, but only keep the
reconstruction loss during the training. These synthetic alongside the realistic feature maps are
subsequently utilized to train the downstream models.

Time and Frequency Domain Transformation: To augment a data sample, we first randomly apply
2 out of 7 time domain transformations to the data in time series form. Subsequently, we employ
short-time Fourier transform to convert the time-series data into 2D spectrograms, and apply 1 out
of 2 frequency domain transformations. We adopt the time domain transformations described in
[50], including jittering, scaling, negation, permutation, time warping, magnitude warping, rotation,
and cropping. For frequency domain transformations, we incorporate frequency masking[38] and
frequency perturbation[11].

Conditional Diffusion Model: This diffusion model has the same design depicted in Appendix D.1,
with the distinction that the condition vector comprises only the embedding of the inherent label.
During the generation phase, synthetic samples for each class are created by the trained diffusion
model using the respective class label as conditions. This approach facilitates a direct comparison to
assess the benefits of the fine-grained control and metric space augmentation we propose.

Conditional VAE: This method follows the design described in Appendix D.2, but differs in that the
condition vector includes only the embedding of the inherent label. This setup is designed to evaluate
the impact of label embedding on the generation process within the VAE framework.
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Conditional GAN: We utilize the deep convolutional generative adversarial network (DCGAN)
architecture[40] for this model. To enhance the stability and balance between the generator and
discriminator, we implement optimization strategies on the loss terms as suggested by [1]. Similar to
the other models, this GAN also uses only the inherent label as a condition for generation

F Downstream Models

DeepSense: [61] This is a deep neural network tailored for handling time series data from the IoT
sensing applications. This network operates in the time-frequency domain, transforming the data
using the short-time Fourier transform. To process data from multi-modalities, the model includes
two separate convolutional layers for each sensor, with the resulting intermediate feature maps being
merged subsequently. After that, it employs 2 2D-convolutional layers to extract spatial features from
the data. Following this, 1 Gated Recurrent Unit (GRU) layer is used to learn temporal patterns. Next,
2 linear layers are used for refining the feature dimensions and generate the final classification logits.

Transformer (Encoder-Only): [52] In the Transformer network, each input spectrogram from
different modalities is fed into a standard Transformer encoder layer, incorporating a self-attention
layer along with two linear layers. Here, the attention is applied to along the time dimension, while
the frequency and feature dimensions are multiplied, serves as the embedding dimension. Multimodal
features are subsequently integrated through concatenation followed by processing via a linear layer.
The classification mechanism at the end consists of a linear layer followed by a softmax function.

G Additional Visualization

G.1 Diffusion Model vs. VAE

We compare the generation quality of our method when using the diffusion model versus the VAE
as the generative model. For this analysis, we use accelerometer signals from the human activity
recognition dataset. Synthetic samples are generated under the same conditions as the original data
samples. We select two groups of the original spectrograms based on their complexity in patterns:
the first group has simpler and more pronounced patterns, while the second group has more complex
and chaotic patterns.

As illustrated in Figure 9, the VAE-generated results are comparable to those from the diffusion model
in the first group of the selected samples. Both the diffusion model and VAE successfully capture the
fundamental frequency and its harmonic patterns. This group of selected samples exhibits temporal
consistency with pronounced harmonic patterns that are straightforward to replicate. However, despite
the relatively simple structure of these realistic samples, the spectrograms produced by the VAE are
less detailed than those from the diffusion model, particularly in the higher frequency regions.

For the second group, which features more complex original spectrograms as shown in Figure 10, the
generation quality of the VAE significantly degrades. The findings indicate that the VAE struggles
to replicate the intricate textures present in the original spectrograms, whereas the diffusion models
continue to effectively capture and reflect these characteristics.
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Original Diffusion Model VAE
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Figure 9: Simpler Cases of Generation. The original spectrograms exhibit strong and consistent
patterns that are easier to capture. Both models capture the fundamental frequency and harmonics.
But VAE exhibits more blurry patterns.

The observation that VAE generates data with lower quality has been recognized in many prior
research[28, 2]. Consistent with these findings, our experiments also demonstrate that the VAE, in its
current implementation, exhibits lesser generative capabilities compared to our diffusion model.
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Figure 10: More Complex Cases of Generation. The original spectrograms are more chaotic and
textured. VAE fails in capturing those details and variations.

G.2 Visualization of Vehicle Detection Dataset

In Figure 11, we randomly select an acoustic sample from the vehicle detection dataset and visualize
the generated spectrograms when manipulating the metrics as conditions. Again, we change a single
metric condition while retaining the remaining metrics to show to control effects.
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Figure 11: Visualization of Metric Control Effects on Acoustic Spectrogram Generation from Vehicle
Detection Dataset.

G.3 Visualization of Harmful Brain Activity Recognition

In Figure 12, we randomly select an EEG sample from the harmful brain activity recognition dataset
and visualize the generated spectrograms. Like above, when manipulating a certain metric condition,
we keep the remaining metrics unchanged.
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Figure 12: Visualization of Metric Control Effects on EEG Spectrogram Generation from Harmful
Brain Activity Recognition Dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are clarified by detailed descriptions of the methodology and
validated by comprehensive experiments.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We put a discussion on the limitations of the work in Appendix A

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have any theoretical result in this paper.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed description on our proposed method as well as the model
implementation. We will release the code and our own collected dataset upon paper accep-
tance.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not plan to release our code or data before paper acceptance.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified the necessary details for training and testing in Appendix D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results of 5 independent runs.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the resources requirements in Appendix D.
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not anticipate that the work presented in this paper will be directly
applicable to negative societal uses.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not foresee a need to restrict access to our model. The datasets utilized
are either publicly available or consist of anonymized IoT sensing data related to vehicles,
posing no risk of misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the directly relevant papers and datasets used in this work.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not plan to release any asset from this paper before acceptance.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The two public datasets (Human Activity Recognition and Harmful Brain
Activity Recognition) employed in this paper are both thoroughly documented and accessible
online.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not directly conduct research on human subjects or involve
crowdsourcing. The two human related datasets we used in our work are fully public
resources.
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