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Abstract

3D Gaussian Splatting (3DGS) has become a crucial method for acquiring 3D
assets. To protect the copyright of these assets, digital watermarking techniques
can be applied to embed ownership information discreetly within 3DGS mod-
els. However, existing watermarking methods for meshes, point clouds, and
implicit radiance fields cannot be directly applied to 3DGS models, as 3DGS
models use explicit 3D Gaussians with distinct structures and do not rely on neural
networks. Naively embedding the watermark on a pre-trained 3DGS can cause
obvious distortion in rendered images. In our work, we propose an uncertainty-
based method that constrains the perturbation of model parameters to achieve
invisible watermarking for 3DGS. At the message decoding stage, the copyright
messages can be reliably extracted from both 3D Gaussians and 2D rendered im-
ages even under various forms of 3D and 2D distortions. We conduct extensive
experiments on the Blender, LLFF, and MipNeRF-360 datasets to validate the
effectiveness of our proposed method, demonstrating state-of-the-art performance
on both message decoding accuracy and view synthesis quality. Project page:
https://kevinhuangxf.github.io/GaussianMarker.

1 Introduction

3DGS [1] has introduced a new category of 3D assets that can be readily created and extensively
distributed online [2]. However, the ownership of these created 3D assets can be vulnerable if
malicious users distribute and manipulate the 3DGS without authorization. How can we effectively
protect the ownership of those created 3DGS models?

3DGS represents the scene via 3D Gaussian parameters, which can be standardized into point cloud
formats. Such formats can be easily shared and show strong compatibility with the mainstream
3D assets processing pipeline [3]. However, unauthorized users can exploit this convenience to
distribute 3DGS models and maliciously alter the 3D Gaussian parameters. These unauthorized
3DGS models can then be easily used to produce 2D images. Since ownership of 3DGS models can
be compromised through unauthorized manipulations of 3D Gaussian parameters and 2D images, an
effective ownership solution should enable owners to assert their rights over both the 3D Gaussian
parameters and the corresponding 2D images.

Similar to copyright protection for digital assets such as videos and images, protecting copyright for
3DGS models can be achieved via digital watermarking. Aligned with the established principles in
digital watermarking [4, 5], effective copyright protection methods for 3DGS models should satisfy
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Figure 1: Our proposed scenario for copyright protection over the 3DGS assets. Once users have
created 3DGS assets, they can apply our proposed 3DGS watermarking method to create watermarked
3DGS models. If unauthorized users maliciously apply 3D editing or different volume splatting
settings on the watermarked 3DGS model, the 3DGS model owners can reliably retrieve the copyright
message from the altered 3D Gaussian parameters or rendered 2D images to verify ownership.

two key standards. First, they should maintain invisibility, ensuring that the embedded copyright
messages do not cause significant distortion in both 3D Gaussian parameters and the rendered
2D images. Second, they should exhibit robustness, enabling reliable extraction of the copyright
messages even under various 2D or 3D distortions.

Although several methods [4, 6] have been investigated to protect the copyright of radiance fields,
these methods are specifically designed for Neural Radiance Field (NeRF) [7], a framework known
for its implicit property. For example, CopyRNeRF [4] embeds copyright messages via multilayer
perceptrons (MLPs) into the implicit neural parameters in NeRF [7] and extracts the copyright
messages from rendered 2D images. However, embedding messages into 3D Gaussian parameters via
MLPs can easily undermine the 3D Gaussian positions and lead to noticeable geometry distortions
in the rendered images, thereby degrading the invisibility. Additionally, since current copyright
solutions for NeRF can only extract messages from rendered images, 3DGS model owners lack
approaches to directly extract ownership messages from the 3D Gaussian parameters. This hinders
the direct assertion of ownership over 3DGS model, thereby undermining the robustness.

Rather than directly embedding the copyright messages into the 3D Gaussian parameters, we propose
an uncertainty-aware watermarking method to optimize the embedded copyright messages. We apply
Laplace approximation to estimate the uncertainty [8] in the radiance fields for determining how
large we can add perturbations to different 3D Gaussian parameters. From a Bayesian inference
perspective [9], 3D Gaussian parameters with high uncertainty can tolerate larger perturbations.
Thus, we keep the original 3D Gaussian parameters unchanged and densify 3D Gaussian parameters
with high uncertainty. These newly densified 3D Gaussians are regarded as the perturbations for
embedding copyright messages. Such perturbations can be transmitted into rendered 2D images with
unperceivable distortion, which ensures invisibility.

To ensure robust copyright message extraction on both 3D Gaussian parameters and rendered 2D
images, we utilize both 3D and 2D message decoders. The 3D message decoder extracts the copyright
messages on the 3D Gaussian parameters based on a PointNet [10] architecture. The 2D message
decoder based on the image watermarking method HiDDeN [11] extracts the copyright messages
on rendered 2D images. We incorporate 3D and 2D distortion layers into our training process to
ensure robustness of copyright message extraction against various malicious manipulations. The 3D
distortion layer is designed to defend against malicious 3D editing, such as noise, translation, rotation,
and cropping. Meanwhile, the 2D distortion layer is designed to withstand significant degradation in
the rendered images, such as noise, JPEG compression, scaling, and blurring.

Our whole framework is shown in Figure 2, we estimate the uncertainty for the 3DGS model to
add perturbations to different 3D Gaussian parameters. Then, we keep the original 3D Gaussian
parameters unchanged and densify 3D Gaussian parameters with high uncertainty. These newly
densified 3D Gaussians are regarded as the perturbations for embedding copyright messages and
can be verified via 3D Gaussian parameters and 2D images. Our contribution can be summarized as
follows:

2
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• A novel method to help claim the ownership of 3D Gaussian Splatting models.

• A uncertainty-aware message embedding strategy to incorporate 3D perturbations into
selected 3D Gaussian parameters to achieve invisibility.

• The copyright messages can be extracted from both 3D Gaussian parameters and rendered
2D images, showing robustness to different 3D and 2D distortions.

2 Related works

3D Gaussian Splatting. 3DGS has been rapidly adopted across multiple domains and has demon-
strated remarkable results. Unlike NeRF [7] and its variants [12–14] reply on the implicit neural
representation (INR) to reconstruction the 3D scene, 3DGS [1] has an explicit point cloud structure
and has been expanded to various developments and applications. Mip-Splatting [15] utilizes a
3D smoothing filter and a 2D Mip filter to address frequency constraints for effective anti-aliasing.
Dynamic 3DGS [16] represents the dynamic motion of the scene by processing the center location
and rotation of each Gaussian over time, which enables dense non-rigid 6-DOF tracking of the entire
scene. SuGar [17] reconstructs the mesh surface with a regularization term for the Gaussian Splatting
optimization to promote alignment of the Gaussians with the scene’s surface. 3DGS avatar [18] is
a brand-new way to create digital humans compared with traditional methods based on 3D human
meshes such as SMPL [19]. With the rapid development of point-based 3D Gaussian rendering, it is
necessary to develop an efficient copyright protection method for 3DGS [1] models.

2D digital watermarking. Traditional 2D watermarking methods typically embed information in the
least significant bits (LSB) of image pixels [20]. Other advanced methods encode information into the
frequency domains based on the Discrete Wavelet Transform (DWT) and Singular Value Decomposi-
tion (SVD) [21, 22]. Deep-learning [23–26] has made significant progress in image watermarking
[27–33]. HiDDeN [11] is one of the first deep image watermarking methods that outperformed
traditional methods. RedMark [5] introduces scalable residual connections for embedding binary
images in any transform domain. Robustness is a critical requirement for watermarking, ensuring
resilience against various distortions and even adversarial attacks [34, 35]. Deep-learning-based
watermarking methods have emerged as a crucial component in video copyright protection [5, 28, 36],
such as RivaGAN [36], which utilizes an attention-based mechanism for embedding hidden messages
in videos. However, the 2D digital watermarking methods for images or videos can differ significantly
from 3D digital watermarking methods for explicit 3D models.

3D digital watermarking. Most 3D digital watermarking approaches are designed for explicit 3D
models [37–41]. For example, Deep 3D-to-2D [41] can embed messages in 3D meshes [38, 42] and
retrieve them from 2D rendered views [43]. Recently, several 3D digital watermarking approaches
[4, 6, 44, 45] have emerged for NeRF [7] to watermark the implicit neural representation (INR) and
extract the hidden information from the rendered images. CopyRNeRF [4] generates watermarked
color representations to ensure the invisibility of hidden copyright messages. StegaNeRF [6] designs
an optimization framework for steganographic information embedding in NeRF renderings. However,
both explicit 3D watermarking [37, 38, 41] and NeRF watermarking approaches [4, 6] are not
applicable for 3DGS to simultaneously protect the explicit 3D Gaussians and the 2D rendered images.
This motivates us to develop digital watermarking for 3DGS models.

3 Preliminary of 3D Gaussian Splatting

Starting from a sparse set of Structure-from-Motion (SfM) [46] points, the goal of 3DGS [1] is to
optimize a scene representation that enables high-quality novel view synthesis. The scene is modeled
as a collection of 3D Gaussians:

G(x) = e−
1
2 (x−µ)

TΣ−1(x−µ), (1)

where x is any positions in the 3D scene, µ is the 3D Gaussian center position, and Σ is the 3D
Gaussian covariance matrix. By utilizing a scaling matrix S and rotation matrix R, we can determine
the corresponding Σ = RSSTRT and ensure Σ is positive semi-definite. The 3D Gaussians need
to be further projected to 2D Gaussians for rendering by volume splatting [47] method. During
rendering, 3DGS follows a typical neural point-based approach [48] to compute the color C of a

3
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pixel by blending N depth ordered points:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , (2)

where ci is the color estimated by the spherical harmonics (SH) coefficients of each Gaussian, and αi
is given by evaluating a 2D Gaussian with covariance Σ

′
[49] multiplied with a per-point opacity.

Consequently, the 3D Gaussians G contain parameters θ including five different properties {µ, R, S,
c, α} to represent a 3D scene.

4 Proposed method

Our scenario is shown in Figure 1. We propose embedding copyright messages into 3D Gaussian
parameters to protect the copyright of 3DGS models. These messages can be extracted from both the
3D Gaussian parameters and the rendered 2D images. The proposed uncertainty-aware watermarking
method can claim ownership over both 3D and 2D assets derived from 3DGS models. As mentioned
in Section 1, an effective watermarking algorithm for 3DGS models should achieve both invisibility
in rendered novel views, and robustness in decoded messages, via the optimization goal of:

L = d1{I, Î}︸ ︷︷ ︸
rendered view

+ d2{D[I], M}︸ ︷︷ ︸
message decoding

, (3)

where I is the rendered novel view, Î is the ground truth image, D is the message decoder and M is
the copyright message. We can use appropriate distance metrics d1 and d2 to estimate and minimize
the error in rendered views and decoded messages. A straightforward method could be embedding the
copyright messages as perturbations into the 3D Gaussian parameters. However, directly embedding
perturbations into 3D Gaussian parameters without constraints can easily undermine the position and
geometry of 3D Gaussians and cause obvious distortion in the rendered images. To solve this issue,
we propose an uncertainty-aware perturbation strategy to embed copyright messages, as illustrated
below.

4.1 Uncertainty-aware 3DGS watermarking

Estimating the uncertainty of Gaussian parameters. To ensure the invisibility of embedded
messages in both the 3D and 2D domains, we allow only a subset of the 3D Gaussian parameters
where ownership messages can be embedded. Specifically, as previous works [9] have already shown
that the Gaussian parameters with high uncertainty are more tolerant to external perturbations, we
select parameters with high uncertainty to incorporate ownership messages. If we estimate the model
parameter posterior p(θ|D), where θ is the model parameters of the 3D Gaussians model G and D is
the training dataset, then the predictive distribution p(I|V,D) can be computed by marginalize over
the model posterior:

p(I|V,D) =

∫
θ

p(I | V,θ)p(θ|D)dθ = Eθ∼p(θ|D)[p(I | V,θ)], (4)

where I is rendered image at a test view V. In this inference integration, for a converged model,
parameters θ∗ with larger uncertainty quantified by posterior variance can tolerate greater perturbation.
Therefore, we densify only the parameters above an uncertainty threshold τunc to add perturbations
for less impacting the rendered images. Laplace approximation provides an analytical expression for
a posterior distribution in the form of a Gaussian distribution with the mean equal to the maximum
a posterior (MAP) estimation θ = θ∗ [50], and the covariance equal to the reciprocal of observed
Fisher information: p(θ|D) ∼ N (θ∗,Γ). Thus, the uncertainty of the 3DGS parameters can be
estimated by the Hessian matrix H [I | V,θ∗] as the approximated Fisher information [51]:

H [I | V,θ∗] = ∇θf (V;θ∗)
T ∇2

f(V;θ∗)H [I | f (V;θ∗)]∇θf (V;θ∗) , (5)

where f (V;θ∗) is the rendered image with the converged 3D Gaussians parameters θ∗ at view V
and ∇2

f(V;θ∗)H [I | f (V;θ∗)] = 1 as we assume the covariance of RGB in images is equal to one

[8]. Hence, the Hessian matrix can be simplified as: H [I | V,θ∗] = ∇θf (V;θ∗)
T ∇θf (V;θ∗).

4
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Figure 2: The overview of our proposed uncertainty-aware 3DGS watermarking. We apply uncertainty
estimation to the created 3DGS model. The 3D Gaussians with high uncertainty will be densified.
These new densified Gaussians will be regarded as the 3D perturbations and embedded into the
original Gaussians to create watermarked 3D Gaussians. The copyright messages can be retrieved
from the watermarked 3D Gaussians via the 3d message decoder under various 3D editing. The
copyright messages can also be retrieved from the watermarked images via the 2D message decoder
against various 2D distortions.

As Fisher Information is additive, we compute the model uncertainty U by summing the Hessians of
model parameters across all different views in the training dataset D:

U =

N∑
i=1

H [I | V,θ∗] , (6)

where i is the index and N is the total samples in D, and all Gaussian parameters are used to calculate
the uncertainty of the 3DGS model: H [I | V,θ∗] = H

[
I | V,θ∗

µ

]
+H [I | V,θ∗

R]+H [I | V,θ∗
S]+

H [I | V,θ∗
c] +H [I | V,θ∗

α].

GaussianMarker. As shown in Figure 2, we demonstrate the overall framework of our proposed
uncertainty-aware 3DGS watermarking, aka GaussianMarker. By leveraging the quantified uncer-
tainty U of the created 3DGS model, we can effectively distinguish between parameters that are
resilient to perturbations and those that are vulnerable. Parameters exhibiting low uncertainty are
identified as highly sensitive to perturbations. Conversely, parameters characterized by high un-
certainty are more tolerant to perturbations, implying that perturbations can be embedded in these
areas with negligible impact on the quality of the final rendered images. By targeting 3D Gaussians
with high uncertainty, we can incorporate effective 3D perturbations that remain detectable by our
designated message decoders, and maintain invisibility on the 3D Gaussians and rendered images. To
achieve this, we retain the integrity of the original 3D Gaussians, denoted as G. We then densify those
3D Gaussians with high uncertainty. The new densified Gaussians are regarded as the perturbations
G̃ for copyright message embedding:

G̃ = {g(Gi) | Gi ∈ G,Ui > τunc}, (7)

where g(Gi) is the densified Gaussian with the densify function g(·) on the ith Gaussian Gi by random
sampling new position µ̃i under the distribution µ̃i ∼ N (µi,Σi) and other Gaussian parameters
are cloned, Ui is the uncertainty of Gi, and τunc is the threshold for uncertainty. We compute
the average uncertainty value of all original 3D Gaussians G as the default uncertainty threshold:
τunc = U/L, where L is the total number of the 3D Gaussians in G 2. We dub G̃ as our proposed
GaussianMarker for embedding the copyright messages. Similar to image watermarking methods
apply 2D perturbation on the cover images, we directly embed GaussianMarker G̃ into the original
Gaussians G to compose the watermarked Gaussians Ĝ = G ∪ G̃. Under the position sampling
distribution of µ̃i ∼ N (µi,Σi), GaussianMarker G̃ have a subtle geometry difference with the

2The influence of different uncertainty thresholds is further discussed in the supplementary materials.
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GaussianMarkerDifference (x10)Original 3DGS Watermarked 3DGS

Figure 3: Visualization of the results obtained by our proposed approach. For each row, we display
the original rendered image, the watermarked rendered image, the difference (×10) between the
watermarked and original rendered images, and our proposed GaussianMarker as 3D perturbations for
copyright message embedding. The scalings of GaussianMarker are adjusted for better visualization.
We provide more visualization examples in the supplementary material.

original Gaussians G. Moreover, GaussianMarker Ĝ can be effectively transmitted into the rendered
images based on the point-based rendering in Equation (2). We optimize GaussianMarker Ĝ in the
Section 4.3 so that such 3D perturbations can be effectively detected by both 2D and 3D message
decoders. In Figure 3, we present visualization results, which demonstrate its capability to embed
copyright messages as imperceptible 3D perturbations.

4.2 Message decoders

2D message decoder for rendered images. We select the classical HiDDeN [11] as the 2D message
decoder Dχ to retrieve copyright messages from the rendered 2D images. The HiDDeN [11] encoder
takes a cover image xo and a binary message M with length Nb as the inputs. The HiDDeN [11]
decoder outputs a residual image of the same size as 2D perturbation applied on the original image to
produce a watermarked image xw = xo + δ. Specifically, we first pre-train HiDDeN [11] encoder
and decoder to obtain a comprehensive understanding of image watermark embedding and extraction
processes. During training, similar to the settings in HiDDeN [11] for the robustness at the image
level, we apply several types of 2D distortions including Gaussian noise, random rotation, random
cropping, and JPEG compression. After training, the HiDDeN [11] encoder and the adversarial
network are discarded. We then use this pre-trained HiDDeN decoder to optimize our GaussianMarker
G̃ mentioned in Section 4.3.

3D message decoder for 3D Gaussians. The inherent complexity of the implicit neural representation
in NeRF [7] presents significant challenges for copyright message extraction directly from the neural
network parameters. On the contrary, 3DGS [1] represents the 3D scene by 3D Gaussian parameters
with an explicit geometry. Traditional 3D watermarking embeds and retrieves messages from 3D
meshes. The deep learning-based 3D watermarking methods utilize networks such as PointNet [10]
to enhance the message embedding process in 3D meshes[41]. Although 3D Gaussians have different
geometrical representations from the 3D meshes, the PointNet [10] architectures can be easily adapted
to 3D Gaussians by regarding the 3D Gaussian mean µ as the point position and other parameters
as the associated point features. Thus, we adopt the PointNet [10] as our 3D message decoder Dψ

to retrieve copyright messages from the watermarked 3D Gaussians Ĝ. In specific, we randomly
sample a subset Gaussians (from 10k to 50k) from the watermarked Gaissians Ĝ and treat these

6
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selected Gaussians as watermarked points Pw. A PointNet-like 3D message decoder Dψ is used to
decode the copyright message M̂ from these watermarked points as M̂ = Dψ(Pw). Similarly, we
also randomly sample a same number subset Gaussians on the original Gaussians G and treat these
selected Gaussians as original points Po. A PointNet-like discriminator Dξ is used to distinguish the
original points Po and the watermarked points Pw. The 3D message decoder Dψ uses a PointNet
[10] architecture, with a modified fully connected layer to predict the copyright messages. The 3D
discriminator Dξ also uses a PointNet [10] architecture with a fully connected output layer for binary
classification.

4.3 Optimization

Our optimization contains two phases. In the first phase, we distill the watermarking knowledge from
the 2D message decoder to the embedded GaussianMarker G̃ for predicting copyright messages on
rendered 2D images. In the second phase, we optimize the 3D message decoder with the watermarked
Gaussians Ĝ for predicting copyright messages on 3D Gaussian parameters.

Distilling watermarking knowledge. We keep the original 3D Gaussians G unchanged, and optimize
the embedded GaussianMarker G̃ via teacher-student knowledge distillation. As discussed in [52],
the pre-trained feature from 2D space can be distilled to the 3D space. Thus, we use the pre-trained
2D message decoder Dχ as the teacher network to distill watermarking knowledge from the 2D
perturbation on images to the 3D perturbation in GaussianMarker G̃. During the optimization for the
embedded GaussianMarker G̃, the copyright messages can be decoded from the watermarked image
Iw via the 2D message decoder Dχ as M̂ = Dχ(Iw), where M̂ is the copyright messages decoded
by Dχ, and Iw is rendered by the watermarked Gaussians Ĝ. We compute binary cross entropy (BCE)
between the original message M and the decoded message M̂ as the message loss Lmsg to ensure
watermarking capability:

Lmsg = −(M log(M̂) + (1−M) log(1− M̂)). (8)

We also use the photometric loss Lrec = ∥Iw − Io∥22 between the watermarked image Iw and the
original images Io for multi-view consistency. We combine the Lmsg and Lrec into the final 2D
watermarking loss L2D = λ1Lmsg + λ2Lrec, where λ1, λ2 are the weights for adapting the losses.

Optimizing 3D message decoder. Once the embedded GaussianMarker G̃ is optimized, we proceed
to train the 3D message decoder Dψ with the watermarked Gaussians Ĝ. To make our 3D message
decoding robust to different 3D distortions, we add a 3D distortion layer T during the 3D message
decoder optimization. Several commonly used 3D distortions are used: 1) additive random Gaussian
noise with parameter σ; 2) random axis-angle rotation with parameter r; 3) random translation with
parameter t; and 4) random cropout with parameter cr. The copyright messages M̂

′
can be decoded

from the randomly selected watermarked points Pw from the watermarked Gaussians Ĝ via the 3D
message decoder Dψ as M̂

′
= Dϕ(T (Pw)). We compute the BCE between the original message M

and extracted message M̂
′

as the 3D message loss Lmsg′ = −(M log(M̂
′
)+(1−M) log(1−M̂

′
)).

We also apply the adversarial loss Ladv to optimize the 3D discriminator Dξ for classifying the
original points Po and watermarked points Pw:

Ladv = log(1−Dξ(T (Po))) + log(Dξ(T (Pw))). (9)

We combine Lmsg′ and Ladv into the final 3D watermarking loss L3D = λ
′

1Lmsg′ + λ
′

2Ladv , where
λ

′

1, λ
′

2 are the weights for adapting the losses.

5 Experiments

5.1 Experimental settings

Dataset. We use three benchmark datasets for evaluation: Blender [7] (8 detailed synthetic objects),
LLFF [53] (9 real-world scenes), and Mip-NeRF360 [54] (9 real-world scenes). For Blender [7],
we directly follow the dataset splitting to use 100 viewpoints for training and 200 views for testing.
For LLFF [53], we follow the dataset splitting in NeRF [7]. In general, 1/8 images in each scene are

7
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used for testing and others for training. For Mip-NeRF360 [54], we use a train/test split suggested by
Mip-NeRF360, taking every 8th photo for testing and others for training. All testing viewpoints are
used to compute the average values during the evaluation session.

Implementation details. As our motivation is to protect the copyright of 3DGS that has already
been created, we define our training into two stages. In the first stage, we create 3DGS models by
training them on Blender [7], LLFF [53], and Mip-NeRF360 [54] datasets following standard settings
[1]. We also train HiDDeN [11] to obtain the pre-trained 2D message decoder. In the second stage,
we apply our proposed uncertainty-aware watermarking method to generate GaussianMarker G̃ via
Equation (7). We then freeze the original Gaussians G and use the pre-trained 2D message decoder to
supervise the training of our GaussianMarker G̃. We then train our 3D message decoder to retrieve
the copyright message from the watermarked 3D Gaussians Ĝ. We apply several types of 2D and
3D distortion layers on the watermarked 2D images and 3D Gaussians to achieve robustness. We
use the default optimization setting in 3DGS [1] to optimize our GaussianMarker G̃. We use the
Adam optimizer [24] to optimize the 3D message decoder Dψ and classifier Dξ with default values
β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a learning rate 1× 10−4 that decays following the exponential
scheduler during optimization. We set λ1 = 10.0, λ2 = 1.0 for 2D watermarking loss L2D and
λ

′

1 = 2.0, λ
′

2 = 1.0 for 3D watermarking loss L3D to adapt the training losses. The training takes
1000 (Blender, LLFF) or 2000 steps (MipNeRF360) and can finish within 20 minutes using a single
NVIDIA V100 GPU.

Baselines. We design experiments to validate the message extraction on both rendered 2D images
and 3D Gaussian parameters, demonstrating the effectiveness of our proposed method. For 2D
message extraction, we compare our proposed method with four baselines for a fair comparison:
1) CopyRNeRF[4]: A state-of-the-art method for protecting the copyright of NeRF [7] by using
watermarked color representation; 2) HiDDeN [11] + 3DGS [1]: Preprocessing images with the
classical image watermarking method HiDDeN [11] before the training of 3DGS [1]; 3) 3DGS with
message: Creating message embedding by MLPs and concatenating the message embedding with
3D Gaussian parameters; 4) 3DGS with fine-tuning: Fine-tuning all of the 3D Gaussian parameters
for embedding copyright messages. For 3D message extraction, since NeRF watermarking methods
do not have explicit 3D parameters, we compare our methods with the 3DGS baselines, including
HiDDeN + 3DGS, 3DGS with message, and 3DGS with fine-tuning.

Evaluation methodology. We evaluate the performance of our proposed method by comparing it
with other digital watermarking baselines using the standard of capacity, invisibility, and robustness
for both 2D images and 3D Gaussians. For capacity, we set the bit length of copyright messages
to 48 bits, aligning with the maximum length previously employed in 3D model watermarking
methods [41, 4]. For invisibility, we evaluate the reconstruction quality with PSNR, SSIM, and LPIPS
[55] for 2D images, and we evaluate geometry difference with the L1 norm of position difference
(L1Diff ), and signal-to-noise ratio (SNR) for 3D Gaussian positions. For robustness, we evaluate
whether the copyright messages in 2D images can remain consistent against various distortions,
including 2D Gaussian noise, JPEG compression, scaling, and Gaussian blur. We also evaluate
whether the copyright messages in 3D Gaussians can remain consistent against various 3D attacks,
including 3D Gaussian noise, translation, rotation, and crop-out.

3DGS w/ fine-tuning 3DGS w/ message OursGround truth CopyRNeRF HiDDeN + 3DGS

PSNR 24.03 / Acc 60.41%  PSNR 27.17 / Acc 48.33%  PSNR 26.62 / Acc 62.50% PSNR 24.82 / Acc 83.33% PSNR 28.61 / Acc 98.33%  

PSNR 30.29 / Acc 60.83%  PSNR 28.96 / Acc 50.19%  PSNR 28.17 / Acc 67.13%  PSNR 26.65 / Acc 80.22%  PSNR 31.53 / Acc 97.91%  

Figure 4: Comparisons between each baseline and our proposed method. We display the differences
(×10) between the synthesized results and the ground truth for each method. Our proposed Gaussian-
Marker demonstrates superior reconstruction quality and bit accuracy.
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Dataset Method PSNR/SSIM↑ LPIPS↓
Bit accuracy ↑ (%)

None Noise JPEG Scaling Blur
(ν = 0.1) (Q = 50) (s ≤ 25%) (ξ = 0.1)

Blender

CopyRNeRF [4] 30.29/0.8878 0.0813 60.83 59.92 58.52 57.44 60.22
HiDDeN [11] + 3DGS [1] 28.96/0.8812 0.0829 50.19 49.84 50.12 50.09 50.16

3DGS [1] w/ messages 22.65/0.8066 0.1584 80.22 78.66 75.80 78.08 79.64
3DGS [1] w/ fine-tuning 28.17/0.9047 0.0878 67.13 67.06 63.43 64.04 66.38

Ours 31.53//0.9082 0.0759 97.91 96.93 91.66 96.17 97.43

LLFF

CopyRNeRF [4] 24.03/0.7747 0.2575 60.77 60.23 58.06 58.89 60.35
HiDDeN [11] + 3DGS [1] 27.17/0.8543 0.1210 48.26 48.14 46.26 46.89 48.12

3DGS [1] w/ messages 24.82/0.8452 0.1310 83.33 82.39 79.17 81.04 83.18
3DGS [1] w/ fine-tuning 26.62/0.8566 0.1117 60.61 59.99 55.49 57.52 60.40

Ours 28.61/0.8930 0.0999 98.33 97.83 91.45 95.89 98.23

MipNeRF360

CopyRNeRF [4] 22.47/0.8053 0.4825 58.55 57.22 55.26 55.80 57.59
HiDDeN [11] + 3DGS [1] 27.20/0.8151 0.2143 48.75 48.03 45.93 47.75 48.56

3DGS [1] w/ messages 24.84/0.7992 0.1705 77.08 76.75 74.26 75.54 77.00
3DGS [1] w/ fine-tuning 27.04/0.8452 0.1357 61.67 61.45 59.94 60.56 61.51

Ours 29.16/0.8808 0.1197 97.32 97.01 90.77 95.32 97.18

Table 1: Reconstruction qualities and bit accuracy compared with different baselines. PSNR/SSIM
and LPIPS are computed between the original and watermarked rendered images. The results are
computed on the average of all examples.

Method
Geometry difference Bit accuracy ↑ (%)

L1Diff ↓ SNR↑ None Noise Translation Rotation Cropout
(σ = 0.1) (t = [0, 1000]3) (r = ±π/6) (cr = 0.1)

HiDDeN [11] + 3DGS [1] 0.00912 40.90 68.20 67.65 67.32 66.67 64.24
3DGS [1] w/ messages 0.10513 32.93 85.41 84.91 85.35 81.52 79.57

3DGS [1] w/ fine-tuning 0.01829 37.24 69.79 69.70 68.78 65.88 64.84
Ours w/ 2D decoder 0.00003 43.23 97.85 57.05 59.07 53.88 48.23
Ours w/ 3D decoder 0.00003 43.23 100 99.91 98.95 95.83 92.70

Table 2: Geometry difference and bit accuracy compared with different baselines. L1 distance and
SNR are computed between the original and watermarked 3D Gaussians. The results are computed
on the average of all examples from Blender, LLFF, and MipNeRF360.

5.2 Experimental results

Messages extraction with 2D images. We compare the reconstruction qualities and bit accuracies
with all baselines, and the qualitative and quantitative results are shown in Figure 4 and Table 1.
CopyRNeRF [4] can limitedly extract hidden messages from the renderings and show undermined
robustness to different image distortions. Although HiDDeN [11] + 3DGS [1] can achieve high
reconstruction quality, it fails to extract the copyright messages from the rendered 2D images. This
result is aligned with the previous method [4] and proves the message can not be transmitted from
the 2D images into the 3D Gaussians. 3DGS [1] with messages directly embed copyright messages
into 3D Gaussian parameters. It can retrieve the copyright message with relatively high accuracy, but
the reconstruction quality is poor and shows obvious distortions in the rendered images. 3DGS [1]
with fine-tuning shows better reconstruction quality, but the message extraction accuracy is limited.
This is because 3D Gaussians usually contain millions of parameters, and directly fine-tuning all
of the parameters without proper regularization can be less effective for message extraction. Our
method can achieve both high reconstruction quality and high decoding accuracy. Even with different
distortions to the rendered images, our method can still achieve high decoding accuracy to reliably
safeguard the 3DGS models.

Messages extraction with 3D Gaussians. We evaluate the geometry differences and the bit accuracies
with all 3DGS baselines, and the results are shown in Table 2. HiDDeN [11] + 3DGS [1] has small
geometry difference, but it has limited message decoding accuracy. 3DGS with messages shows
reasonable message decoding accuracy, but it displays high geometry differences. 3DGS with
fine-tuning shows a relatively small geometry difference, but it struggles to decode the message.
Our method has the smallest geometry difference, obtains accurate decoding accuracy, and shows
robustness to different 3D attacks. Furthermore, 3DGS can be easily edited in the 3D space to
influence the rendered 2D images. We conduct experiments to apply 3D attacks and then render the
2D images. As shown in Table 2, the 3D attacks can easily fool the 2D message decoder, while our
3D message decoder is robust to such 3D attacks and can reliably extract copyright messages.
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5.3 Ablation study

Perturb low-uncertainty Gaussians. We design ablation experiments to add perturbations into
3D Gaussian parameters with low uncertainty. We show qualitative results in Figure 5, the low-
uncertainty Gaussians corresponding to the fine details in the 3D scene, such as the halyard on the ship.
Adding perturbations to these areas can easily make the perturbation visible, thus undermining the
image quality. We evaluate the quantitative results in Table 3. Adding perturbations to 3D Gaussian
parameters with low uncertainty can easily undermine the reconstruction quality and degrade the
decoding accuracy. Our method preserves 3D Gaussians with low uncertainty, maintaining the
geometric structure to ensure imperceptible perturbations and high message extraction accuracy.

(a) Origin (c) Low-uncertainty(b) High-uncertainty

Figure 5: Qualitative results of applying perturbation into (b) high
uncertainty Gaussians and (c) low uncertainty Gaussians.

Metric Low High
PSNR 26.61 28.71
SSIM 0.8782 0.9016
LPIPS 0.0948 0.0763

Acc 76.56 97.07
Noise 75.51 95.83
Blur 76.27 96.30

Resize 73.92 93.22

Table 3: Quantitative results of
adding perturbation into low-
uncertainty Gaussians and high-
uncertainty Gaussians.

6 Conclusion

In conclusion, protecting the copyright of 3D Gaussian Splatting (3DGS) assets is crucial due to
their vulnerability to unauthorized distribution and manipulation. Existing methods for copyright
protection in the radiance field are not directly applicable to 3DGS. Our proposed method involves
using uncertainty estimation to add invisible 3D perturbations to the 3D Gaussian parameters, ensuring
both invisibility and robustness. Overall, our proposed approach introduces an effective solution with
a positive societal impact on the copyright protection of the 3DGS models.

Limitations. Our method is an effective technical solution for the copyright protection of 3DGS
models. However, as we discussed before, our mechanism may still face threats from some malicious
operations. More measures should be implemented for such malicious attacks beyond the technology.
Furthermore, we will explore enhancing the robustness of GaussianMarker in dynamic 3DGS
scenarios, via the motion transfer-based data augmentation approach, to maintain high bit accuracies
while improving robustness [56] in future work.
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A Additional visualization

Origin Watermarked Differences (x10) GaussianMarker

Figure 6: Visualization of our proposed method performance in LLFF and MipNeRF360 datasets. In
each line, we display the original rendered image, the watermarked rendered image, the difference
(×10) between the watermarked and original rendered images, and our proposed GaussianMarker as
3D perturbations for copyright message embedding. The scalings of GaussianMarker are adjusted for
better visualization.
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Origin Watermarked Differences (x10) GaussianMarker

Figure 7: Visualization of our proposed method performance in Blender dataset.
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B Additional quantitative results for real-world datasets

LLFF PSNR SSIM LPIPS Acc Noise JPEG Scale Blur

Fern 29.40 0.92 0.0867 1.0 1.0 0.8916 0.9791 1.0
Fortress 30.91 0.9084 0.1227 0.9375 0.9375 0.9166 0.9375 0.9375

Horn 27.46 0.8849 0.1094 0.9791 0.9791 0.9125 0.8958 0.9791
Orchids 25.177 0.8543 0.0853 1.0 1.0 0.9333 0.95833 1.0
Flower 30.09 0.8939 0.0952 1.0 1.0 0.9125 0.9791 1.0
Trex 28.165 0.9109 0.0734 1.0 1.0 0.8541 0.9791 1.0

Table 4: Quantative results on LLFF scenes.

MipNeRF360 PSNR SSIM LPIPS Acc Noise JPEG Scale Blur

Stump 28.95 0.8521 0.1364 0.9791 0.9791 0.8291 0.9375 0.9791
Bicycle 25.68 0.8028 0.1774 0.9583 0.9583 0.8750 0.9125 0.9583
Kitchen 29.87 0.8937 0.0946 0.9791 0.9791 0.8333 0.9583 0.9791
Counter 28.68 0.8948 0.1300 0.9583 0.9583 0.8916 0.9166 0.9583
Bonsai 30.41 0.9249 0.1002 0.9583 0.9583 0.9125 0.8958 0.9583
Garden 28.58 0.8825 0.0760 1.0 1.0 0.9125 0.9375 1.0
Room 31.97 0.9149 0.1232 0.9791 0.9791 0.8750 0.9583 0.9791

Table 5: Quantative results on MipNeRF360 scenes.

C The correlation between uncertainty and image watermarking

Original Watermarked Difference (x10) Uncertainty

Figure 8: Uncertainty heatmap visualization.

The uncertainty estimation in the 3DGS model inherently identifies model parameters that are more
robust to perturbations, making it highly suitable for the application of invisible watermarking in
3DGS. Additionally, the HiDDeN decoder [11], primarily focuses on decoding information along
the boundary regions. As illustrated in Figure 8, these boundary regions exhibit high uncertainty
values. This observation demonstrates the correlation between uncertainty and message embedding,
highlighting how areas of high uncertainty can be leveraged for effective watermarking.

D The influence of uncertainty threshold

In our experiments, we set the average uncertainty value as the default threshold. We show more
results to verify the influence of the uncertainty threshold. As shown Table 6, we select the ship
scene in the Blender dataset to study the influence of the uncertainty threshold. A lower threshold
can enhance the bit accuracy, though it slightly compromises image quality. Conversely, a higher
threshold results in better image quality and a more lightweight model but also slightly compromising
message decoding accuracy. However, in both situations, the compromises are moderate.

It is noteworthy that our method is also compatible with compressing the 3DGS model based on the
uncertainty value, similar to how LightGaussian compresses 3DGS using importance values [57].
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Threshold Original points Perturbation points PSNR SSIM LPIPS ACC

average × 3.7 340k 13k 26.44 0.9521 0.0396 92.08%
average × 1.0 340k 27k 26.37 0.9498 0.0397 95.21%
average × 0.24 340k 54k 26.31 0.9490 0.0399 96.88%
average × 0.13 340k 108k 26.17 0.9483 0.0399 96.31%

Table 6: The influence of uncertainty threshold.

This compatibility highlights that our approach can work seamlessly with existing 3DGS model
compression techniques, effectively mitigating the impact of the increasing number of 3D Gaussians
in our method.

E The geometry consistency

Front BackLeft Right

Figure 9: Visualization of our proposed GaussianMarker in MipNeRF360 Room scene. We select
four camera angles which are never used in the training dataset as the font, left, back, right views of
the scene to represent the multi-view consistency of incorporated perturbations.

Our method embeds watermarks into the 3DGS model by adding perturbations to 3D Gaussians
with high uncertainty. As shown in Figure 8, these areas cover most object boundaries in the 3DGS
scene. Figure 9 further illustrates geometry consistency by displaying the incorporated perturbations.
These perturbations effectively cover the scene’s general geometric structure. The geometry of
these perturbations remains consistent across different camera angles and can be transmitted into the
rendered images, which is essential for robust extraction from different viewing angles.

F Time analysis

Datasets 3DGS training Our message embedding

Synthetic datasets (Blender) 30k steps / 30mins 1k steps / 3 mins
Real-world scenes (LLFF) 30k steps / 40mins 1k steps / 5 mins

Real-world scenes (MipNeRF360) 30k steps / 45mins 2k steps / 10 mins

Table 7: Time analysis on different datasets.

We present a time analysis of our method’s training efficiency in Table 7. Compared to the original
3DGS model training, our method requires only 1,000 to 2,000 steps within a span of 10 minutes.
This demonstrates that our approach is not only efficient but also practical for watermarking 3DGS
models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction include the claims in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the main claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a "Limitation" section in the Conclusion to discuss the limitations
of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide complete proof for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the paper’s theorems, formulas, and proofs should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all information for reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide code implementation in our supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, our paper specifies all settings for training and testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We don’t think error bars are necessary for our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We list our training resources and training time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly follow the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impact in the conclusion and supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

22

33058https://doi.org/10.52202/079017-1040

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We have described all data and models we use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all referenced code, data and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

33060https://doi.org/10.52202/079017-1040




