
MG-Net: Learn to Customize QAOA with Circuit
Depth Awareness

Yang Qian1,† Xinbiao Wang2,‡ Yuxuan Du3,§ ∗ Yong Luo2,¶ Dacheng Tao3,♢
1School of Computer Science, Faculty of Engineering, University of Sydney

New South Wales 2008, Australia
2Institute of Artificial Intelligence, School of Computer Science, Wuhan University

Wuhan, China
3College of Computing and Data Science, Nanyang Technological University

Singapore 639798, Singapore
†qianyang1217@gmail.com ‡cyriewang@gmail.com §duyuxuan123@gmail.com

¶luoyong@whu.edu.cn ♢dacheng.tao@ntu.edu.sg

Abstract

Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit
immense potential in tackling combinatorial optimization challenges. However,
their practical realization confronts a dilemma: the requisite circuit depth for satis-
factory performance is problem-specific and often exceeds the maximum capability
of current quantum devices. To address this dilemma, here we first analyze the
convergence behavior of QAOA, uncovering the origins of this dilemma and elu-
cidating the intricate relationship between the employed mixer Hamiltonian, the
specific problem at hand, and the permissible maximum circuit depth. Harness-
ing this understanding, we introduce the Mixer Generator Network (MG-Net), a
unified deep learning framework adept at dynamically formulating optimal mixer
Hamiltonians tailored to distinct tasks and circuit depths. Systematic simulations,
encompassing Ising models and weighted Max-Cut instances with up to 64 qubits,
substantiate our theoretical findings, highlighting MG-Net’s superior performance
in terms of both approximation ratio and efficiency.

1 Introduction

Combinatorial optimization problems (COPs) [1], central to numerous scientific and engineering
disciplines [2, 3, 4], often defy efficient classical solutions due to their computational complexity [5, 6].
A promising strategy to overcome these computational challenges involves harnessing the power
of quantum computing, as these COPs can be mapped to Ising Hamiltonians whose ground states
denote optimal solutions [7, 8]. Leveraging this quantum representation, the Quantum Approximate
Optimization Algorithm (QAOA) [9] has emerged to address these COPs. In particular, theoretical
analyses [10, 11, 12, 13] underscore the potential of QAOA, suggesting its superiority over classical
counterparts in certain contexts, particularly with unlimited infinite circuit depth. Meantime, empirical
studies [14, 15, 16] affirm its applicability across a diverse spectrum of problems and devices.

Despite these advancements, QAOA’s practical efficacy is challenged by the quantum coherence
limits of modern quantum devices, as there is a ceiling on the allowable maximum circuit depth p.
As a result, standard QAOA often underperforms classical counterparts [18, 19]. This motivates
a research shift towards redesigning the mixer Hamiltonian HM , a key component of QAOA. As
illustrated in Fig. 1(a), supported by the results of quantum adiabatic evolution [20, 21], alternative

∗Corresponding authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

33691 https://doi.org/10.52202/079017-1061



HM may exist that guide the system along a more direct and efficient trajectory—a shortcut—to the
solution state, leading to a better performance compared to the standard QAOA. Besides, as shown
in Fig. 1(b), empirical evidence indicates that the form of HM promising a good performance is
varied with the allowable p. As such, diverse alternatives HM are proposed in past years, drawing
upon concepts from quantum annealing [22], incorporating additional trainable parameters [17] or
exploiting permutation symmetry [23]. However, these approaches require deep domain expertise
and often lack generalizability across different tasks and circuit configurations p.

Solution

(a) 

(b) 

Initial 

Figure 1: Mixer Hamiltonian affects the
performance of QAOA. (a) The optimiza-
tion trajectories of QAOA with varied mixer
Hamiltonians HM . Given a fixed circuit
depth p, a tailored HM (highlighted in pink)
can more effectively steer the quantum state
towards the exact solution compared to the
original HM used in QAOA. (b) Transition
of the effective dimension deff required in
QAOA with increasing p. ‘ma-QAOA’ de-
notes a case with independent parameters
[17], contrasted with ‘QAOA’ where param-
eters are fully correlated. The orange line
denotes the average effective dimension over
all samples.

In response to these challenges, here we first analyze the
convergence of QAOA on various mixer Hamiltonian con-
figurations and circuit depths with the tool of representa-
tion theory [24]. Our finding reveals that (i) the conver-
gence of QAOA can be enhanced through parameter group-
ing in the mixer Hamiltonian; (ii) the specific strategy for
parameter grouping is dependent on the particular problem
and the value of p. These two findings are instrumental in
understanding the interplay between p, parameter group-
ing, and the overall efficiency of the QAOA, providing
valuable insights for the design of the mixer Hamiltonian.

Envisioned by the achieved theoretical results, we pro-
pose an end-to-end learning framework, termed Mixer
Generator Network (MG-Net), to dynamically design the
mixer HamiltonianHM for a class of problems and distinct
circuit depth constraints. Conceptually, MG-Net takes the
problem’s description and the available circuit depth p as
input and directly outputs the optimal mixer Hamiltonian
for a p-QAOA. There are three distinguished features of
our proposal: (i) The ability to dynamically adjust HM

according to p, enhancing its compatibility with practi-
cal quantum devices; (ii) Fast customization of HM for
unseen problems and circuit depth p, attributed to the
multi-condition controlled generative network architec-
ture; (iii) Circumvent the need for the expensive collection
of a vast training dataset of optimal HM by employing an
estimator-generator structure alongside a two-stage train-
ing approach. Note that the developed techniques can be
flexibly extended to other variational quantum algorithms
(VQAs) [25, 26], which may be independent of interests.

The contributions of this paper are:
• We provide a rigorous theoretical analysis on the conver-
gence of QAOA with sufficient circuit depth, elucidating
the link between the performance and the parameter
grouping in QAOA circuits. This analysis offers guidance on the design of mixer Hamiltonian to
achieve a high approximation ratio for a specified circuit depth.
• We propose MG-Net, which dynamically tailors its predicted mixer Hamiltonian HM to suit the
given problem and circuit depth. Our model greatly reduces the cost of collecting labeled training
data, attributed to an estimator-generator framework and a two-stage training strategy.
• The proposed MG-Net demonstrates remarkable generalization ability from a limited dataset to a
broad spectrum of combinatorial problems, which facilitates rapid and efficient creation of HM for
unseen problems, advancing the practical utility of QAOAs.
• Extensive experiments on the Transverse-field Ising model and Max-Cut up to 64 qubits verify
our theoretical discoveries and demonstrate the advantage of MG-Net in achieving higher
approximation ratios at various circuit depths compared to other quantum and traditional methods.
The code is released at https://github.com/QQQYang/MG-Net.

2

33692https://doi.org/10.52202/079017-1061

https://github.com/QQQYang/MG-Net


2 Background

2.1 Quantum approximation optimization algorithm

Considering a COP defined on a set of N binary variables z = z1 · · · zN , where zi ∈ {±1}, our
objective is to identify a bit string z that maximizes a specific objective function C(z) : {±1}N →
R≥0. Intuitively, the solution space grows exponentially with N , rendering the exact solution
to many COPs intractable [1]. In practice, an alternative approximation algorithm is selected to
seek an approximate solution z to achieve a high approximation ratio r = C(z)/Cmax, where
Cmax = maxz C(z).

In response to this inherent complexity, Quantum Approximate Optimization Algorithm (QAOA) [9]
is proposed. In this framework, the bit string z is encoded into a quantum state |x⟩ = |x1 · · ·xN ⟩
with xi = (1 − zi)/2, and the objective function C(x) is encoded into the problem Hamiltonian
HC ∈ C2N×2N so that HC |x⟩ = C(x) |x⟩. Refer to Appendix A for the omitted details.

QAOA is a hybrid quantum-classical algorithm that combines a parameterized quantum circuit (PQC)
for state evolution and a classical optimizer for parameter updates. For a p-layer QAOA circuit shown
in Fig. 1(a), the quantum state |ψp⟩ is prepared by alternately applying the problem Hamiltonian HC

and the mixer Hamiltonian HM =
∑N
i=1Xi on the initial state |ψ0⟩, formulated as

|ψp(α,β)⟩ =
p∏
k=1

e−iβkHM e−iαkHC |ψ0⟩ , (1)

where α = (α1, ..., αp) and β = (β1, ..., βp) are 2p trainable parameters. These parameters are
optimized to maximize the expectation value of the problem Hamiltonian HC :

(α∗,β∗) = argmax
α,β

Fp(α,β), (2)

where Fp(α,β) = ⟨ψp(α,β)|HC |ψp(α,β)⟩ can be estimated by multiple measurements on the
quantum system. As Fp(α∗,β∗) approaches the optimal valueCmax of the objective function, we can
obtain the approximate solution to the combinatorial optimization problem with high probability by
measuring the state |ψp(α∗,β∗)⟩ in the computational basis. A metric for assessing the performance
of QAOA is the approximation ratio r = Fp(α

∗,β∗)/Cmax.

2.2 Symmetry in QAOA

Symmetry, ansatz design, and effective dimension. A symmetry S refers to the unitary operator
leaving the operator H invariant such that S†HS = H (or [S,H] = 0). All symmetries form a group
S where given any two symmetries S1, S2 ∈ S , the compositions S1S2 and S2S1 are also symmetries
in S. Among various symmetries, the most relevant one to our work is the permutation symmetry
π ∈ SN , with the subscript being the qubit count N and SN being the symmetric group. For example,
a permutation π with π(1) = 3, π(2) = 1, π(3) = 2 acting on the state |ψ1⟩ |ψ2⟩ |ψ3⟩ yields
π |ψ1⟩ |ψ2⟩ |ψ3⟩ = |ψ3⟩ |ψ1⟩ |ψ2⟩. Throughout the whole study, we denote the group of permutation
symmetries of the problem Hamiltonian HC as Per(HC) = {π ∈ SN | π†HCπ = HC}.
Consider an N -qubit PQC U(θ) =

∏p
j=1

∏K
k=1 e

−iHkθjk with θ ∈ Θ and d = 2N . We call U(θ)
a symmetric PQC with respect to the problem Hamiltonian HC if there exists a symmetry group
S of HC such that [U(θ), S] = 0 for any θ ∈ Θ and S ∈ S. This symmetry is determined by the
generators of PQCs A = {H1, · · · , HK} which is also called ansatz design, as [U(θ), S] = 0 holds
for any θ ∈ Θ if and only if [Hk, U(θ)] = 0 for any k ∈ [K]. Such symmetry can be quantified by
the effective dimension [27, 28].
Definition 2.1 (Effective dimension). Consider an N -qubit QAOA instance (|ψ0⟩ , U(θ), HC ) where
U(θ) acts on the vector space V . If there exists a direct sum decomposition V = ⊕kj=1Vj and
V ∗ ∈ {Vj}kj=1 such that U(θ) |ψ0⟩ ∈ V ∗ for any θ and the ground state of the problem Hamiltonian
|ψ∗⟩ satisfies |ψ∗⟩ ∈ V ∗, then the effective dimension deff ≤ 2N is defined as the dimension of V ∗.

Experimental and theoretical analysis has shown that symmetric ansatz design with a small effective
dimension contributes to better trainability [29, 28, 30].

3

33693 https://doi.org/10.52202/079017-1061



Symmetry and ansatz designs in QAOA. The PQC in Eqn. (1), adopted in the original QAOA,
fully groups (FG) the trainable parameters and has the ansatz design AFG = {HM , HC}, which is
symmetric with respect toHC under the permutation symmetry. This is because its mixer Hamiltonian
HM =

∑N
i=1Xi is invariant under an arbitrary permutation operator.

However, AFG fails to employ the specific symmetry group of HC . This issue can be addressed by
partially grouping (PG) trainable parameters in QAOA. For example, denote HC =

∑
(ik,jk)

ZikZjk
with Zjk being the Pauli-Z operator acting on the jk-th qubit. An alternative symmetric ansatz
design is APG = {HO1 , · · · , HO|O| , HOe

1
, · · · , HOe

|Oe|
} where HOk

=
∑
i∈Ok

Xi and HOe
k
=∑

(i,j)∈Oe
k
ZiZj refer to the generators respecting the permutation symmetry ofHC satisfyingHM =∑|O|

j=1HOj
and HC =

∑|Oe|
j=1 HOe

j
[23]. The ansatz design APG enables more free parameters than

the ansatz design AFG in each layer, and has been empirically shown with a faster convergence rate
than AFG given the same number of layers.

When HC is asymmetric, another typical ansatz design in QAOA is ANG =
{Zi1Zj1 , · · · , ZikZjk , X1, · · · , XN}, where the parameters of all parameterized gates are
independent and non-grouping (NG). Notably, the PQCs related to various ansatz design
AFG,APG,ANG employ the same parameterized gates but with different parameter grouping
strategies, where (β,α) in each layer can be fully grouped, partially grouped, and non-grouped [23].

3 Convergence theory of QAOA

In this section, we theoretically illustrate how employing appropriate parameter grouping corresponds
to better convergence performance. Similar to Refs. [27] and [28], our derivations are based on the
observation that the exploited PQC with highly-symmetric ansatz structure generally enables a faster
convergence rate.
Theorem 3.1 (Convergence). Consider a QAOA instance denoted as (|ψ0⟩ , U(θ), HC) with U(θ)
determined by the related ansatz design. Let AFG,APG,ANG be the ansatz designs of the circuits
with parameters fully grouped, partially grouped, and no-grouped. Their effective dimension yields

deff(AFG) = deff(APG) ≤ deff(ANG), (3)
where the equality in the inequality holds if there is no spatial symmetry in HC . Besides, there exists
a deff -dependent threshold C so that circuit depth p > C, the iterations T required to achieve the
same approximation ratio yield

TPG = TFG ≤ TNG. (4)

The proof of Theorem 3.1 and more elaborations are presented in Appendix B. The achieved results,
combined with the over-parameterization theory of PQCs [30], deliver the following two implications.
First, when the circuit depth p > C is sufficiently large such that all PQCs with various ansatz designs
reach the over-parameterization regime, performing the parameter grouping can effectively decrease
the effective dimension deff compared with the PQCs with no-parameter grouping, leading to a faster
convergence rate. Second, the over-parameterization of QAOA occurs when the number of trainable
parameters exceeds a critical point that is proportionally related to deff .

The above two implications indicate the selection of AFG, APG, or ANG is complicated and is both
depth- and problem-dependent. In particular, given a specified p, adopting a parameter grouping
strategy can simultaneously reduce the number of parameters and the effective dimension, making it
difficult to determine whether the QAOA reaches the over-parameterization regime. For instance, in a
scenario such that the parameter grouping strategy drastically reduces the number of parameters but
only slightly reduces the effective dimension, an over-parameterized QAOA could transform to an
under-parameterized QAOA, leading to a degraded convergence as the optimization can be easily
stuck in bad local minimal [31, 32].

4 MG-Net

The implication of Theorem 3.1 inspires us to devise a method for dynamically generating an
appropriate mixer Hamiltonian HM tailored to both the problem G at hand and the specified circuit
depth p. For this purpose, we harness the power of deep learning and devise an end-to-end learning
framework, dubbed Mixer Generator Network (MG-Net).

4

33694https://doi.org/10.52202/079017-1061



Problem
encoder

Depth
embedding

Cost
estimator

Mixer
encoder

(a) Train

Problem

0

5

1

4 3

2 Problem
encoder

Depth
embedding

Mixer
generator

Cost
estimator

Mixer
encoder

Problem

0

5

1

4 3

2

Problem graph
encoder

Depth embedding 

Mixer generator

(b) Inference

QAOA solverProblem

0

5

1

4 3

2

Stage 1 Stage 2

Figure 2: Framework of MG-Net. (a) Training Phase. Initially (left), the cost estimator is trained to precisely
predict QAOA performance for specific problem instances, circuit depths, and mixer Hamiltonians. In the
subsequent stage (right), with the cost estimator fixed, the mixer generator is trained through unsupervised
learning to derive the optimal mixer Hamiltonian that minimizes the cost estimator’s output. (b) Inference Phase.
Given a problem G and circuit depth p, the mixer generator produces a mixer Hamiltonian, subsequently utilized
in a QAOA solver to find the solution.

4.1 Framework of MG-Net

Before presenting the proposed MG-Net, let us first formalize the learning problem towards design-
ing the mixer Hamiltonian HM . To incorporate different Pauli operators and parameter grouping
strategies, we extend the definition of an N -qubit mixer Hamiltonian HM in Eqn. (1) to a more
generalized form, supporting flexible operators and parameter correlations by substituting the Pauli-X
operator with a selection of general Pauli operator and stratifying the N operators into K groups.
Mathematically, the refined mixer Hamiltonian yields

HM =

K∑
j=1

βj
∑
i∈Gj

Pi, (5)

where βj refers to the trainable parameter controlling the j-th group of operators, Gj contains the
indices of operators belonging to the j-th group such that ∪Kj=1Gj = [N ] and Gi ∩ Gj = ∅ for
∀i ̸= j, and Pi refers to a Pauli operator. This work focuses on Pi ∈ X,Y as the types of candidate
operators, rather than using only the single Pauli-X operator. Previous studies have demonstrated the
effectiveness of using Pauli-Y operators in mixer Hamiltonians [33, 34], as summarized in Tab. 1. In
this sense, operators in the same group are correlated with each other, sharing the same parameter.
In this way, the design of HM is decoupled into two distinct tasks: determine the parameter groups
{Gj}Kj=1; identify the appropriate operator types Pi. With the reformulation above, the decoupled
tasks can be accomplished by learning a mapping rule f : (G, p) → (G,P) with G = {Gj}Kj=1 and
P ∈ {X,Y }⊗N referring to the parameter correlation and mixer Hamiltonian.

Table 1: Previous works that have introduced the Pauli-Y operator as a candidate mixer Hamiltonian.

Works Mixer Hamiltonian

DC-QAOA [33] {X,Y, ZY, Y Z,XY, Y X}
ADAPT-QAOA [34] ∪i∈[N]{Xi, Yi} ∪ {

∑
i∈[N] Yi} ∪ {

∑
i∈[N] Xi} ∪i,j∈[N]×[N] {BiCj |Bi, Cj ∈ {X, Y, Z}}

Designing a model to learn f faces two main challenges:
(C-1) The variety of combinatorial optimization tasks leads to uncertain input formats for the model,
which necessitates a universal representation method and retains essential properties of the original

5

33695 https://doi.org/10.52202/079017-1061



data, such as permutation invariance;
(C-2) The exponential growth of the search space for both parameter correlation and operator types,
(i.e., scaling at O(NN ) and O(2N ), respectively), hurdles the design of an effective learning method.
For instance, directing training a learning model in the supervised learning paradigm may require
computationally unaffordable training examples to ensure good prediction accuracy.

We next present an end-to-end learning framework—Mixer Generator Network (MG-Net), as depicted
in Fig. 2, to address the above challenges. Particularly, to address C-1, we devise a problem encoder
which transforms each problem G into a unified directed acyclic graph GC , ensuring a consistent
and effective input format. Coupled with the mixer encoder, it maps both the problem and mixer
Hamiltonian to a shared hidden space. To address C-2, MG-Net features a unique estimator-generator
framework, supplemented by a two-stage training strategy. The role of these techniques is summarized
below and their implementation details are demonstrated in the subsequent subsections.

Role of estimator. Rather than directly seeking the optimal parameter correlation strategy G∗ and
operator type P∗ for a given (G, p), we devise a cost estimator to map the relationship between
(G,P) and the achievable minimal cost Fp of the corresponding QAOA in Eqn. (2).

Role of generator. We devise a generator to predict (G,P) that minimizes the cost estimator’s
output. This design requires only the cost of any mixer Hamiltonian as a label, thus avoiding the
exhaustive search of optimal pairs (G∗,P∗).

Two-stage training. The pipeline is visualized in Fig. 2(a).
• Stage 1 (Cost Estimator Training). This stage, marked in purple, focuses on training the
cost estimator using supervised learning. Inputs include the problem graph G, potential mixer
Hamiltonians HM , and the chosen circuit depth p, with the corresponding cost y as the target label.
• Stage 2 (Mixer Generator Training). This stage, marked in orange, freezes the cost estimator and
only updates the mixer generator to minimize the output of the cost estimator under the unsupervised
learning paradigm.

For inference on unknown problem instances (in Fig. 2(b)), MG-Net employs only the mixer generator
to predict the optimal mixer Hamiltonian, which is then fed into a QAOA solver to derive the final
solution. Distinguished by its ability to generalize effectively across a class of problems from a limited
learning set, MG-Net sets itself apart from previous studies. Refer to Appendix. C for discussion.

4.2 Implementation of MG-Net

Data encoder in MG-Net. MG-Net exploits three types of data encoder, i.e., the problem encoder,
mixer encoder, and depth encoder, which maps the given problemG, the candidate mixer Hamiltonian
HM , and the specified depth p to the same hidden feature space. The construction of these encoders
is introduced below and the omitted details are deferred to Appendix D.2.

Cost estimator in MG-Net (Stage 1). Recall Stage 1 in Sec. 4.1, the cost estimator takes the encoded
problem graph GC , the encoded mixer Hamiltonian GM , and the encoded circuit depth xp as inputs,
and outputs the prediction of the achievable minimum loss of the corresponding QAOA. Each input is
processed by an independent branch respectively: the problem graph branch, the mixer Hamiltonian
branch, and the circuit depth branch, as shown in Fig. 3(a). The concatenation of three types of
features is subsequently utilized by a multi-layer perceptron (MLP) to output the minimum loss ŷ
that the QAOA ansatz can achieve. Refer to Appendix. D.3 for details.

Mixer generator in MG-Net (Stage 2). The mixer generator in MG-Net takes GC and xp as input
and outputs a targeted mixer Hamiltonian HM . Specifically, the mixer generation is composed of two
separate sub-generators: the operator type generator and the parameter grouping generator defined in
Eqn. (5), shown in Fig. 3(b). The operator type generator is responsible for generating operator types
P , which is conceptualized as a graph node classification task. The parameter grouping generator is
responsible for predicting the sets of index groups {Gj}Kj=1 with an unspecified K, which is modeled
as a link prediction task. Refer to Appendix. D.3 for details.

4.3 Training strategy

The training process of MG-Net is varied for the first and second stages, under supervised and
unsupervised learning paradigms, respectively.

6

33696https://doi.org/10.52202/079017-1061



0

5

1

4 3

2

GNN

GNN MLP

GAP

GAP

GNN

GNN

Node
classification

Link prediction

(a)  (b) 

Figure 3: Structure of cost estimator and mixer generator. (a) Cost estimator. The cost estimator is
comprised of three distinct branches, each dedicated to processing different types of data: the original problem,
the candidate mixer Hamiltonian, and the circuit depth. Their outputs are then integrated to predict the cost value
achievable by the QAOA circuit. (b) Mixer generator. The mixer generation is divided into two distinct parts:
operator type generation and parameter grouping generation. The former is executed as a node classification
task, while the latter is approached as a link prediction task.

First-stage training. This stage involves constructing a labeled dataset DTr
ce =

{(G(i)
C , G

(i)
M ,x

(i)
p ), y(i)}Si=1, where the i-th sample consists of a tuple of features (i.e., the problem

description G(i)
C , the mixer G(i)

M , and the circuit depth feature x
(i)
p ), and the label y(i) representing

the minimum cost value achievable by this QAOA instance (i.e., determined by repeatedly executing
such a QAOA with varying initial parameters). Once DTr

ce is ready, the cost estimator is optimized by
minimizing the loss function

Lce = λeLe + λrLr, (6)

where λe ∈ [0, 1] and λr ∈ [0, 1] are two hyper-parameters of each loss, Le = 1
S

∑S
i=1(y

(i) − ŷ(i))2

is the mean square error, and Lr is the ranking loss

Lr =
1

S2 − S

S∑
i,j

max(0, 1− sign(y(i) − y(j))(ŷ(i) − ŷ(j))).

Second-stage training. This stage involves the training of the mixer generator via unsupervised
learning. The loss function of this stage is

Lmg =
1

S

S∑
i=1

C(G
(i)
C ,M(G

(i)
C ,x(i)

p ),x(i)
p ), (7)

where C(·) and M(·) represent the output of the cost estimator and mixer generator, respectively.
Note that only the parameters of the mixer generator are updated; the cost estimator parameters
remain fixed to ensure consistent evaluation criteria throughout the whole learning process.

5 Experiments

We evaluate the performance of MG-Net by two typical applications of QAOA: weighted Max-Cut
and Transverse-field Ising model (TFIM), each of which is elucidated below.

Weighted Max-Cut. Denote a weighted graph as G = (V,E,W ), where V is the set of vertices of
graph, E is the set of graph edges, W = {wij}(i,j)∈E is the set of weights assigned to each edge. The
problem Hamiltonian for the weighted Max-Cut problem is HMaxCut

C = 0.5 ∗∑(i,j)∈E wijZiZj ,
where Zi is a Pauli-Z operator acting on the i-th qubit.

TFIM. Our focus is a class of inhomogeneous TFIMs: HTFIM
C = −∑

(i,j) JijZiZj − h
∑
iXi,

where Jij is the interaction strength between neighboring spins (or qubits) (i, j), and h signifies the
strength of a global transverse field applied to each spin. In this model, the interaction strengths Jij
can vary between different pairs of spins, adding a layer of complexity to the system.

7

33697 https://doi.org/10.52202/079017-1061



5.1 Experiment configuration

Dataset construction.The Max-Cut problem focuses weighted 3-degree regular (w3r) graphs, where
the edge weights {wij} are uniformly sampled from [0, 1]. The TFIM focuses on 1D instances where
a qubit i ∈ [N − 1] has neighbors i± 1 (mod N). The strength Jij and h are uniformly sampled
from [0.5, 1.5] and [0.1, 2] respectively. The training dataset DTr

ce in Sec. 4.3 contains S = 100
instances for both two tasks with size up to N = 64 qubits, while The test dataset DTe contains
another 100 problem instances which are different from that of DTr

ce . Refer to Appendix D.1 for
details.

Optimization and training of MG-Net. The cost estimator and mixer generator are trained using an
Adam optimizer with a learning rate of 10−4, and hyper-parameters λe = 1 and λr = 1 in Eqn. (6).

Optimization of QAOA. After predicting the problem-hardware-tailored mixer Hamiltonian HM by
the trained mixer generator, a QAOA circuit with the initial state |+⟩⊗N and HM is optimized by
an Adam optimizer with a learning rate of 0.15. Each setting undergoes 10 independent runs with
varied random seeds and initial parameters to obtain the statistical results. Refer to Appendix D.4 for
detailed discussion about the selection of initial state.

5.2 Results

Cost estimator acts as an accurate performance indication for QAOA. The behavior of the
cost estimator on the test dataset with varying circuit depths p and two distinct parameter grouping
strategies NG and FG (defined in Theorem 3.1) is recorded in Fig. 4. In Fig. 4(a), we observed
a strong correlation between the estimated and minimum cost values, and the correlation strength
changes with p and parameter grouping strategy. Particularly, the cost estimator predicts a high
likelihood of finding the most accurate solution for QAOA circuits with FG parameters and a depth of
p = 92. This prediction aligns with the actual performance of QAOA under these specific conditions.
To further investigate the cost estimator’s behavior with more complex mixer operator types, we con-
ducted additional experiments using an extended set of candidate operators {X,Y,XX, Y Y }, which
includes two-qubit operators. As shown in Fig. 4 (b), the cost estimator continues to demonstrate its
efficiency and high performance, even as the complexity of the mixer Hamiltonian design increases.

(a)  (c) 

−5 −4 −3 −2
label

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

pr
ed

(b) 

Figure 4: Behavior of cost estimator. (a) The correlation between the estimated cost and the minimum
cost for Max-Cut (left) and TFIM (right). Each point represents the result of a problem instance. The dashed
line represents that QAOA can find the exact solution y = x. (b) Behavior of cost estimator with extended
mixer operator pool {X,Y,XX, Y Y }. ‘label’ represents the actual achieved approximation ratio, while ‘pred’
represents the result predicted by the cost estimator. (c) The achievable cost under various circuit depth p for
Max-Cut (left) and TFIM (right). The label ‘CE’ is the abbreviation of cost estimator. The dashed lines represent
the cost achieved by QAOA, while the solid lines represent the cost estimated by our model.

We next focus on the behavior of the cost estimator concerning p as shown in Fig. 4(c). We note that
for FG (standard QAOA), the estimated loss decreased monotonically with increasing p, aligning
with standard QAOA’s behavior. Under the NG scenario (multi-angle QAOA), a transition that QAOA
performance begins to decline is observed when the circuit becomes excessively long (p > 42). These
results indicate the reliability of the cost estimator as a performance indicator for QAOA and reveal
the complexities in QAOA performance under conditions of increased circuit length.

Mixer generator. We next evaluate the performance of the customized mixer Hamiltonian generated
by MG-Net. As shown in Fig. 5(a), the number of trainable parameters #P of the generated quantum
circuits aligns with the maximum in scenarios where all parameters are non-correlated (labeled as
‘NG’) for smaller circuit depths p < 20. This alignment indicates that MG-Net effectively enhances

8

33698https://doi.org/10.52202/079017-1061



the expressibility of the QAOA ansatz for limited-depth circuits without significantly increasing the
number of parameters, thereby avoiding potential trainability issues. As p increases, a transition
occurs. The growth rate of #P starts to decelerate, reaching a notable transition point at p = 62 for
Max-Cut (p = 52 for TFIM). Beyond this threshold, the generated mixer Hamiltonians gradually
converge towards the configuration seen in standard QAOA, with fully grouped parameters.

(a)  (b)  (c) 

Figure 5: The trainability of the quantum circuits generated by MG-Net for Max-Cut and TFIM. (a) The
number #P of trainable parameters of the quantum circuits with mixer Hamiltonian predicted by MG-Net. (b)
Comparison of the effective dimension deff of quantum circuits in standard QAOA and MG-Net driven QAOA
(labeled as ‘Ours’). The green and grey solid lines denote the average effective dimension deff of the predicted
circuits that can achieve an approximation ratio over 0.995 for Max-Cut and TFIM, respectively. It assesses
circuits achieving an approximation ratio r of at least 0.995. (c) The convergence of QAOA with FG, NG and
mixer Hamiltonian predicted by MG-Net for Max-Cut on 64-node weighted graphs.

Fig. 5(b) compares the effective dimension deff of quantum circuits achieving high approximation
ratio r ≥ 0.995 in standard QAOA and MG-Net driven QAOA. The results show that circuits
generated by MG-Net achieve r ≥ 0.995 across all values of p, even as low as p = 2, outperforming
standard QAOA, which only reaches this level for p > 50 for Max-Cut (p > 20 for TFIM). Besides,
the effective dimension of these high-quality quantum circuits gradually decreases with growing p, in
line with the convergence analysis in Theorem 3.1. These findings suggest that MG-Net dynamically
adjusts quantum circuits in response to changes in circuit depth p, thereby consistently ensuring high
performance.

Fig. 5(c) explicitly demonstrates the optimization behavior of 64-qubit QAOA with FG, NG and
the mixer Hamiltonian predicted by our MG-Net. The left panel displays the loss curves during the
optimization of quantum circuits with p = 2, revealing that our method achieves the most rapid
convergence. The right panel further explores the gradients of the three methods during optimization.
Notably, the parameter gradient norm of our method maintains a trainable level of 1, whereas the
gradient for FG and NG falls to 10−1 and 10−4, respectively, compromising their trainability.

Performance comparison. In evaluating the effectiveness of our proposed method for solving Max-
Cut problems, we conducted a comparative analysis against both classical and quantum algorithms.
The benchmarks included the greedy algorithm, the Goemans-Williamson (GW) algorithm [35],
alongside various quantum approaches such as QAOA, ADAPT-QAOA, and multi-angle QAOA
(ma-QAOA). Our analysis, based on the average results from 100 graphs in our test dataset, is
summarized in Tab. 2. The findings reveal that our method consistently outperforms other techniques
in achieving a higher approximation ratio, particularly in larger-scale problems. Refer to Appendix E.1
for comparison results on TFIM.

More numerical results. We have conducted additional analysis on the behavior of MG-Net and
additional experiments on more tasks. Refer to E for more details.

6 Conclusion

In this study, we analyze QAOA’s convergence on varied mixer Hamiltonians, focusing on parameter
grouping strategies. We introduce MG-Net for dynamically generating optimal mixer Hamiltonians
for various problems and circuit depths. Numerical experiments on Max-Cut and TFIM confirm
MG-Net’s efficacy in enhancing QAOA’s approximation ratio, particularly for large-scale problems,

9

33699 https://doi.org/10.52202/079017-1061



Table 2: Comparison of approximation ratio r among different methods for Max-Cut.

Method 6 qubits 16 qubits 64 qubits

Greedy 0.89± 0.104 0.91± 0.047 0.79
GW 0.94± 0.074 0.93± 0.052 0.91

QAOA 0.93± 0.027 0.35± 0.119 0.19
ADAPT-QAOA 0.75± 0.129 0.58± 0.154 -
ma-QAOA 0.98± 0.004 0.84± 0.129 0.0

Ours 0.99± 0.0004 0.95± 0.152 0.96

while ensuring low circuit complexity. This research advances the understanding and application of
QAOA across various circuit depths.

Despite these promising outcomes, our work has several limitations that need to be addressed in
future research. Firstly, training the cost estimator of MG-Net involves the construction of a labeled
dataset DTr

ce , which introduces additional resource consumption. Future work can focus on more
efficient training algorithms. Additionally, our current approach is specifically designed for QAOA
on early fault-tolerant devices, which limits the exploration of extending MG-Net to other quantum
algorithms and noisy devices. Addressing these limitations will further enhance the robustness and
scalability of MG-Net, offering potential for broader use in VQAs.

Acknowledgments and Disclosure of Funding

The proposed research is partially supported by Dr Tao’s NTU RSR and Start Up Grants.

References
[1] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-

Spaccamela, and Marco Protasi. Complexity and approximation: Combinatorial optimization
problems and their approximability properties. Springer Science & Business Media, 2012.

[2] Clayton W Commander. Maximum cut problem, max-cut. Encyclopedia of Optimization, 2,
2009.

[3] Tommy R Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.

[4] Karla L Hoffman, Manfred Padberg, Giovanni Rinaldi, et al. Traveling salesman problem.
Encyclopedia of operations research and management science, 1:1573–1578, 2013.

[5] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[6] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

[7] Andrew Lucas. Ising formulations of many np problems. Frontiers in physics, 2:5, 2014.

[8] Young-Hyun Oh, Hamed Mohammadbagherpoor, Patrick Dreher, Anand Singh, Xianqing Yu,
and Andy J Rindos. Solving multi-coloring combinatorial optimization problems using hybrid
quantum algorithms. arXiv preprint arXiv:1911.00595, 2019.

[9] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm. arXiv preprint arXiv:1411.4028, 2014.

[10] E Farhi and AW Harrow. Quantum supremacy through the quantum approximate optimization
algorithm (2016). arXiv preprint arXiv:1602.07674.

[11] Seth Lloyd. Quantum approximate optimization is computationally universal. arXiv preprint
arXiv:1812.11075, 2018.

10

33700https://doi.org/10.52202/079017-1061



[12] Mauro ES Morales, Jacob D Biamonte, and Zoltán Zimborás. On the universality of the quantum
approximate optimization algorithm. Quantum Information Processing, 19:1–26, 2020.

[13] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal Pandya,
and Alessandro Summer. A review on quantum approximate optimization algorithm and its
variants. Physics Reports, 1068:1–66, 2024.

[14] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G Rieffel. Quantum approximate
optimization algorithm for maxcut: A fermionic view. Physical Review A, 97(2):022304, 2018.

[15] Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S Collins, Arinjoy De, Paul W Hess,
Harvey B Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christopher Baldwin, et al. Quantum
approximate optimization of the long-range ising model with a trapped-ion quantum simulator.
Proceedings of the National Academy of Sciences, 117(41):25396–25401, 2020.

[16] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin. Quantum
approximate optimization algorithm: Performance, mechanism, and implementation on near-
term devices. Physical Review X, 10(2):021067, 2020.

[17] Rebekah Herrman, Phillip C Lotshaw, James Ostrowski, Travis S Humble, and George Siopsis.
Multi-angle quantum approximate optimization algorithm. Scientific Reports, 12(1):6781, 2022.

[18] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J
Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, et al. Quantum
optimization using variational algorithms on near-term quantum devices. Quantum Science and
Technology, 3(3):030503, 2018.

[19] Gian Giacomo Guerreschi and Anne Y Matsuura. Qaoa for max-cut requires hundreds of qubits
for quantum speed-up. Scientific reports, 9(1):6903, 2019.

[20] Michael Victor Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and
Theoretical, 42(36):365303, 2009.

[21] David Guéry-Odelin, Andreas Ruschhaupt, Anthony Kiely, Erik Torrontegui, Sofia Martínez-
Garaot, and Juan Gonzalo Muga. Shortcuts to adiabaticity: Concepts, methods, and applications.
Reviews of Modern Physics, 91(4):045001, 2019.

[22] Yunlong Yu, Chenfeng Cao, Carter Dewey, Xiang-Bin Wang, Nic Shannon, and Robert Joynt.
Quantum approximate optimization algorithm with adaptive bias fields. Physical Review
Research, 4(2):023249, 2022.

[23] Frederic Sauvage, Martin Larocca, Patrick J Coles, and Marco Cerezo. Building spatial
symmetries into parameterized quantum circuits for faster training. Quantum Science and
Technology, 2022.

[24] Edwin Williams. Representation theory. MIT Press, 2002.

[25] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke
Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

[26] Yang Qian, Xinbiao Wang, Yuxuan Du, Xingyao Wu, and Dacheng Tao. The dilemma of
quantum neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[27] Xuchen You, Shouvanik Chakrabarti, and Xiaodi Wu. A convergence theory for over-
parameterized variational quantum eigensolvers. arXiv preprint arXiv:2205.12481, 2022.

[28] Xinbiao Wang, Junyu Liu, Tongliang Liu, Yong Luo, Yuxuan Du, and Dacheng Tao. Symmetric
pruning in quantum neural networks, 2023.

[29] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J Coles,
and M Cerezo. Diagnosing barren plateaus with tools from quantum optimal control. Quantum,
6:824, 2022.

11

33701 https://doi.org/10.52202/079017-1061



[30] Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J Coles, and Marco Cerezo. Theory of
overparametrization in quantum neural networks. Nature Computational Science, 3(6):542–551,
2023.

[31] Xuchen You and Xiaodi Wu. Exponentially many local minima in quantum neural networks. In
International Conference on Machine Learning, pages 12144–12155. PMLR, 2021.

[32] Eric Ricardo Anschuetz. Critical points in quantum generative models, 2022.

[33] Pranav Chandarana, Narendra N Hegade, Koushik Paul, Francisco Albarrán-Arriagada, Enrique
Solano, Adolfo Del Campo, and Xi Chen. Digitized-counterdiabatic quantum approximate
optimization algorithm. Physical Review Research, 4(1):013141, 2022.

[34] Linghua Zhu, Ho Lun Tang, George S Barron, FA Calderon-Vargas, Nicholas J Mayhall,
Edwin Barnes, and Sophia E Economou. Adaptive quantum approximate optimization algo-
rithm for solving combinatorial problems on a quantum computer. Physical Review Research,
4(3):033029, 2022.

[35] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[36] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit
learning. Physical Review A, 98(3):032309, 2018.

[37] Louis Schatzki, Martin Larocca, Quynh T Nguyen, Frederic Sauvage, and Marco Cerezo.
Theoretical guarantees for permutation-equivariant quantum neural networks. npj Quantum
Information, 10(1):12, 2024.

[38] Barry Simon. Representations of finite and compact groups. Number 10. American Mathemati-
cal Soc., 1996.

[39] Ruslan Shaydulin and Stefan M Wild. Exploiting symmetry reduces the cost of training qaoa.
IEEE Transactions on Quantum Engineering, 2:1–9, 2021.

[40] Kaiyan Shi, Rebekah Herrman, Ruslan Shaydulin, Shouvanik Chakrabarti, Marco Pistoia, and
Jeffrey Larson. Multiangle qaoa does not always need all its angles. In 2022 IEEE/ACM 7th
Symposium on Edge Computing (SEC), pages 414–419. IEEE, 2022.

[41] Michelle Chalupnik, Hans Melo, Yuri Alexeev, and Alexey Galda. Augmenting qaoa ansatz
with multiparameter problem-independent layer. In 2022 IEEE International Conference on
Quantum Computing and Engineering (QCE), pages 97–103. IEEE, 2022.

[42] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide Venturelli, and
Rupak Biswas. From the quantum approximate optimization algorithm to a quantum alternating
operator ansatz. Algorithms, 12(2):34, 2019.

[43] Takuya Yoshioka, Keita Sasada, Yuichiro Nakano, and Keisuke Fujii. Fermionic quantum
approximate optimization algorithm. Physical Review Research, 5(2):023071, 2023.

[44] Jonathan Wurtz and Peter J Love. Counterdiabaticity and the quantum approximate optimization
algorithm. Quantum, 6:635, 2022.

[45] Andreas Bärtschi and Stephan Eidenbenz. Grover mixers for qaoa: Shifting complexity
from mixer design to state preparation. In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 72–82. IEEE, 2020.

[46] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational
quantum optimization from symmetry protection. Physical review letters, 125(26):260505,
2020.

[47] Javier Villalba-Diez, Ana González-Marcos, and Joaquín B Ordieres-Meré. Improvement of
quantum approximate optimization algorithm for max–cut problems. Sensors, 22(1):244, 2021.

12

33702https://doi.org/10.52202/079017-1061



[48] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Neural predictor based
quantum architecture search. Machine Learning: Science and Technology, 2(4):045027, 2021.

[49] Esther Ye and Samuel Yen-Chi Chen. Quantum architecture search via continual reinforcement
learning. arXiv preprint arXiv:2112.05779, 2021.

[50] Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran
Dunjko. Reinforcement learning for optimization of variational quantum circuit architectures.
Advances in Neural Information Processing Systems, 34:18182–18194, 2021.

[51] En-Jui Kuo, Yao-Lung L Fang, and Samuel Yen-Chi Chen. Quantum architecture search via
deep reinforcement learning. arXiv preprint arXiv:2104.07715, 2021.

[52] Fan-Xu Meng, Ze-Tong Li, Xu-Tao Yu, and Zai-Chen Zhang. Quantum circuit architecture
optimization for variational quantum eigensolver via monto carlo tree search. IEEE Transactions
on Quantum Engineering, 2:1–10, 2021.

[53] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit
architecture search for variational quantum algorithms. npj Quantum Information, 8(1):62,
2022.

[54] Kehuan Linghu, Yang Qian, Ruixia Wang, Meng-Jun Hu, Zhiyuan Li, Xuegang Li, Huikai
Xu, Jingning Zhang, Teng Ma, Peng Zhao, et al. Quantum circuit architecture search on a
superconducting processor. arXiv preprint arXiv:2201.00934, 2022.

[55] Zhimin He, Chuangtao Chen, Lvzhou Li, Shenggen Zheng, and Haozhen Situ. Quantum
architecture search with meta-learning. Advanced Quantum Technologies, 5(8):2100134, 2022.

[56] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Differentiable quantum
architecture search. Quantum Science and Technology, 7(4):045023, 2022.

[57] Wenjie Wu, Ge Yan, Xudong Lu, Kaisen Pan, and Junchi Yan. Quantumdarts: differentiable
quantum architecture search for variational quantum algorithms. In International Conference
on Machine Learning, pages 37745–37764. PMLR, 2023.

[58] Cong Lei, Yuxuan Du, Peng Mi, Jun Yu, and Tongliang Liu. Neural auto-designer for enhanced
quantum kernels. In The Twelfth International Conference on Learning Representations, 2024.

[59] Xudong Lu, Kaisen Pan, Ge Yan, Jiaming Shan, Wenjie Wu, and Junchi Yan. Qas-bench:
rethinking quantum architecture search and a benchmark. In International Conference on
Machine Learning, pages 22880–22898. PMLR, 2023.

[60] Linghua Zhu, Ho Lun Tang, George S Barron, FA Calderon-Vargas, Nicholas J Mayhall, Edwin
Barnes, and Sophia E Economou. An adaptive quantum approximate optimization algorithm
for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:2005.10258,
2020.

[61] Zeqiao Zhou, Yuxuan Du, Xinmei Tian, and Dacheng Tao. Qaoa-in-qaoa: solving large-scale
maxcut problems on small quantum machines. Physical Review Applied, 19(2):024027, 2023.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[63] Yang Qian, Yuxuan Du, Zhenliang He, Min-Hsiu Hsieh, and Dacheng Tao. Multimodal
deep representation learning for quantum cross-platform verification. Physical Review Letters,
133(13):130601, 2024.

[64] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu
Ajith, M Sohaib Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali Asadi, et al. Pen-
nylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

13

33703 https://doi.org/10.52202/079017-1061



[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

A Optimization of QAOA

In this section, we separately elaborate on the elementary notations in quantum computing, the
preliminary of Hamiltonian, and the optimization strategy of QAOA.

Basics of quantum computation. The elementary unit of quantum computation is qubit (or quantum
bit), which is the quantum mechanical analog of a classical bit. A qubit is a two-level quantum-
mechanical system described by a unit vector in the Hilbert space C2. In Dirac notation, a qubit state
is defined as |ϕ⟩ = c0 |0⟩+ c1 |1⟩ ∈ C2 where |0⟩ = [1, 0]⊤ and |1⟩ = [0, 1]T specify two unit bases
and the coefficients c0, c1 ∈ C yield |c0|2 + |c1|2 = 1. Similarly, the quantum state of n qubits is
defined as a unit vector in C2n , i.e., |ψ⟩ =

∑2n

j=1 cj |ej⟩, where |ej⟩ ∈ R2n is the computational

basis whose j-th entry is 1 and other entries are 0, and
∑2n

j=1 |cj |2 = 1 with cj ∈ C. Besides Dirac
notation, the density matrix can be used to describe more general qubit states. For example, the
density matrix of the state |ψ⟩ is ρ = |ψ⟩ ⟨ψ| ∈ C2n×2n , where ⟨ψ| = |ψ⟩† refers to the complex
conjugate transpose of |ψ⟩. For a set of qubit states {pj , |ψj⟩}mj=1 with pj > 0,

∑m
j=1 pj = 1, and

|ψj⟩ ∈ C2n for j ∈ [m], its density matrix is ρ =
∑m
j=1 pjρj with ρj = |ψj⟩ ⟨ψj | and Tr(ρ) = 1.

A quantum gate is a unitary operator that can evolve a quantum state ρ to another quantum state ρ′.
Namely, an n-qubit gate U ∈ U(2n) obeys UU† = U†U = I2n , where U(2n) refers to the unitary
group in dimension 2n. Typical single-qubit quantum gates include the Pauli gates, which can be
written as Pauli matrices:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (8)

The more general quantum gates are their corresponding rotation gates RX(θ) = e−i
θ
2X , RY (θ) =

e−i
θ
2Y , and RZ(θ) = e−i

θ
2Z with a tunable parameter θ, which can be written in the matrix form as

RX(θ) =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
, RY (θ) =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
, RZ(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
.

(9)
They are equivalent to rotating a tunable angle θ around x, y, and z axes of the Bloch sphere, and
recovering the Pauli gates X , Y , and Z when θ = π. Moreover, a multi-qubit gate can be either an
individual gate (e.g., CNOT gate) or a tensor product of multiple single-qubit gates.

The quantum measurement refers to the procedure of extracting classical information from the
quantum state. It is mathematically specified by a Hermitian matrix H called the observable.
Applying the observable H to the quantum state |ψ⟩ yields a random variable whose expectation
value is ⟨ψ|H |ψ⟩.
Hamiltonian and ground state. In quantum computation, a Hamiltonian is a Hermitian matrix that
is used to characterize the evolution of a quantum system or as an observable to extract the classical
information from the quantum system. Specifically, under the Schrödinger equation, a quantum gate
has the mathematical form of U = e−itH , where H is a Hermitian matrix, called the Hamiltonian
of the quantum system, and t refers to the evolution time of the Hamiltonian. Typical single-qubit
Hamiltonians include the Pauli matrices defined in Eqn. (8). As a result, the evolution time t refers to
the tunable parameter θ in Eqn. (9). Any single-qubit Hamiltonian can be decomposed as the linear
combination of Pauli matrices, i.e., H = a1I + a2X + a3Y + a4Z with aj ∈ C. In the same way, a
multi-qubit Hamiltonian is denoted by H =

∑4n

j=1 ajPj , where Pj ∈ {I,X, Y, Z}⊗n is the tensor
product of Pauli matrices. In quantum chemistry and quantum many-body physics, the Hermitian
matrix that describes the quantum system to be solved is denoted as the problem Hamiltonian HC .
Within the context of QAOA, the information of the graph is encoded in the problem Hamiltonian,
which is also called cost Hamiltonian. Another essential Hamiltonian in QAOA refers to the mixer

14

33704https://doi.org/10.52202/079017-1061



Hamiltonian HM , which is designed to facilitate transitions between different states (solutions),
allowing the algorithm to explore the solution space.

When taking the problem Hamiltonian as the observable, the quantum state |ψ∗⟩ is said to be the
ground state of problem Hamiltonian H if the expectation value ⟨ψ∗|H |ψ∗⟩ takes the minimum
eigenvalue of H , which is called the ground energy. The solution of the optimization problem is
encoded in the ground state of the problem Hamiltonian.

Optimization of QAOA. The loss function for QAOA with problem Hamiltonian HC is generally
defined as

L(θ = (α,β)) = ⟨ψ0|U(θ)†HCU(θ)|ψ0⟩ , (10)

where U(θ) refers to the parameterized unitary implemented on a quantum computer and |ψ0⟩ is an
easily prepared state, which is generally set as the computational basis state |0⊗n⟩. The optimization
of the loss function L(θ) can be completed by gradient-based methods. A plethora of optimizers
have been designed to estimate the optimal parameters θ∗ = minθ L(θ). Here we introduce the
implementation of the first-order gradient-based optimizer for self-consistency. Refer to [25] for a
comprehensive review.

Based on Eqn. (1), the trainable parameters of QAOA are denoted by θ = (θ⊤
1 , · · · ,θ⊤

L )
⊤ with

θℓ = (θℓ1, · · · , θℓK)T , where the subscript ‘ℓk’ refers to the k-th parameter of the ℓ-th layer Uℓ for
∀k ∈ [K] and ∀ℓ ∈ [L]. The corresponding update rule at the t-th iteration ∀t ∈ [T ] is

θ(t+1)

= θ(t) − η
∂L(θ(t))

∂θ

= θ(t) − η
(
⟨ψ0|U(θ(t))†HCU(θ(t)) |ψ0⟩ − E0

) ∂ (⟨ψ0|U(θ(t))†HCU(θ(t)) |ψ0⟩ − E0

)
∂θ

,

where η refers to the learning rate. The derivative in the last equality can be calculated via the
parameter shift rule [36]. Mathematically, the derivative with respect to the parameter θℓk for
∀ℓ ∈ [L] and ∀k ∈ [K] is

∂
(
⟨ψ0|U(θ)†HCU(θ) |ψ0⟩ − E0

)
∂θℓk

=
1

2 sinα

[ (
⟨ψ0|U(θ+)†HCU((θ+) |ψ0⟩ − E0

)
−
(
⟨ψ0|U((θ−)†HCU((θ−) |ψ0⟩ − E0

) ]
,

where θ+ = θ + αeℓk, θ− = θ − αeℓk, eℓk is the unit vector along the θℓk axis and α can be any
real number but the multiple of π because of the diverging denominator.

B Proof

The theoretical analysis of the convergence for symmetric QAOA is based on representation the-
ory. In this regard, we first introduce the foundation of representation theory related to QAOA in
Appendix B.1. The proof of Theorem 3.1 is elaborated in Appendix B.2.

B.1 Representation theory in QAOA

In general, an instance of QAOA is specified by a triplet (|ψ0⟩ , U(θ), H), where |ψ0⟩ and H refer
to the initial state and problem Hamlitonian, and U(θ) refers to the parameterized quantum circuit
(ansatz) with the form of

U(θ) =

P∏
j=1

K∏
k=1

e−iθj,kHk , (11)

where θ = (θ11, · · · ,θ1K , · · · ,θP1, · · · ,θPK) ∈ Θ ⊆ RPK is trainable parameters, j is the index
of layer, and A = {Hk}Kk=1 is set of Hermitian traceless operators called an ansatz design. The
difference of ansatz originates from the varied Θ and A. Given Θ and A, a set of ansatz forms a
subgroup of SU(2n) with UA = ∪∞

L=0{U(θ) : θ ∈ Θ}, which can be characterized by dynamical
Lie group with dynamical Lie algebra [29]

15

33705 https://doi.org/10.52202/079017-1061



Definition B.1 (Dynamical Lie algebra and dynamical Lie group, [29]). Given an ansatz design
A = {H1, · · · , HK}, the dynamical Lie algebra (DLA) g is generated by the repeated nested
commutators of elements in A, i.e.,

g = span ⟨iH1, ..., iHK⟩Lie , (12)

where ⟨S⟩Lie denotes the Lie closure, i.e., the set obtained by repeatedly taking the nested commuta-
tors of the elements in S. The set of unitaries UA that can be generated by the ansatz design A is
determined by its DLA through

UA = eg := {eH , H ∈ g}. (13)

Furthermore, the algebra structures of the ansatz design A can be characterized through the represen-
tation and the subrepresentation of Lie algebra on specific vector space.

Definition B.2 (Representation of Lie algebra). Let g be a Lie algebra on a finite-dimensional vector
space V . A representation r of g acting on V is a Lie algebra homomorphism r : g → gl(V ), i.e., a
linear map satisfying

r([X,Y ]) = [r(X), r(Y )], for all X,Y ∈ g. (14)

The dimension of the representation r is defined by dim(r) = dim(V ). If there exists a direct sum
decomposition of V into subspaces V = V1 ⊕ V2 ⊕ · · · ⊕ Vk such that r(g)vj ∈ Vj for any vj ∈ Vj
and any g ∈ g, then rj := r|Vj

is called the subrepresentation of r on the vector space Vj . Moreover,
rj is irreducible if there is no non-trivial invariant subspace of Vj . Then the representation of g on the
vector space V = V1 ⊕ V2 ⊕ · · · ⊕ Vk can be written as

r(g)(v) = (r1⊕· · ·⊕rk(g))(v1, · · · , vk) = (r1(g)v1, · · · , rk(g)vk), for all g ∈ g, v ∈ V. (15)

The dimension of the representation with irreducible representation in Eqn. (15) is dim(r) =∑k
j=1 dim(Vj)

The representation of DLA g refers to the natural representation r : g → g. In this regard, the
dimension of DLA refers to dim(g) = dim(r). While the dimension of DLA is employed to
characterize the threshold of over-parameterization [30] and the barren plateau [29], it does not
take into account the symmetry structure of the ansatz and the initial state concerning the problem
Hamiltonian. In particular, the symmetry operators of the DLA g refer to unitary operators S
satisfying SgS† = g for any g ∈ g, which is a subset of the commutant of g.

Definition B.3 (Commutant). Let g be a matrix algebra. Its commutant is defined as C(g) := {A :
[A, g] = 0,∀g ∈ g}.

We recall that the ansatz being symmetric with respect to the problem Hamiltonian means that there
exists a symmetry group of the problem Hamiltonian S = {S : S†HCS = HC} such that S is
also the symmetry group of the related DLA g, i.e., S ⊆ C(g). This indicates that the problem
Hamiltonian and the ansatz design have the same block diagonalization structure [37], namely the
acting vector space V = ⊕kj=1Vj . Moreover, when there exists a subspace V ∗ ∈ {Vj}kj=1 such
that the initial state lives in this space, then the optimization of the variational quantum state could
be constrained into this subspace V ∗ whose dimension refers to the effective dimension defined in
Definition 2.1. In this regard, the trainability of QAOA could be instead characterized by the effective
dimension deff = dim(V ∗) [28, 27]. The relation between the effective dimension and the dimension
of DLA is encapsulated in the following lemma.

Lemma B.4 (The relation between effective dimension and the dimension of DLA). Consider a
QAOA instance (|ψ0⟩ , U(θ), HP ) with DLA g. If there exists an invariant subspace Vg covering the
initial state |ψ0⟩ and the solution state |ψ∗⟩ = U(θ∗) |ψ0⟩, then the effective dimension deff of this
ansatz design A and the dimension of the corresponding DLA g yields deff ≤ dim(g).

Proof of Lemma B.4. The derivation of deff ≤ dim(g) could be directly obtained from the observa-
tion of deff ≤ maxj∈[k] dim(Vj) ≤

∑k
j=1 Vj = dim(g).

16

33706https://doi.org/10.52202/079017-1061



B.2 Proof of Theorem 3.1

The proof of Theorem 3.1 employs the following lemmas, whose proofs are deferred to Appendix B.3.
Lemma B.5 (Convergence, adapted from Corollary 5.4 in [27]). Consider a QAOA instance denoted
as (|ψ0⟩ , U(θ), HC) with the effective dimension deff . The unitary operator U(θ) follows the
Haar distribution over special unitary matrices. Let |ψ∗⟩ denote the solution state for problem
Hamiltonin HC and |ψ(t)⟩ be the state at the t-th iteration. There exists an deff -dependent over-
parameter threshold C(deff) and a PK-dependent learning rate η(PK) so that if the number of
the ansatz parameters PK ≥ C, then with high probability, under gradient flow with learning rate
η(PK), the output state |ψ(t)⟩ converges to the solution state with error ϵ = 1− | ⟨ψ(t)|ψ∗⟩ | after
Tϵ = O(log deff

ϵ ) iterations.
Lemma B.6. Let AFG,APG,ANG be the ansatz designs of the circuits with parameters fully
grouping, partially grouping, no-grouping, then the effective dimension related to AFG,APG,ANG

yields
deff(AFG) = deff(APG) ≤ deff(ANG), (16)

where the equality in the inequality holds if there is no permutation symmetry in the problem
Hamiltonian.

Proof of Theorem 3.1. To obtain the ordering relation of the convergence rate of various ansatz
designs, we first elucidate the relation between the convergence rate of the approximation ratio
and the effective dimension. Consider the problem Hamiltonian HC =

∑
(i,j) ZiZj ∈ Cd×d with

d = 2N and eigenvalues λ1 ≤ λ2 · · · ≤ λd and its corresponding eigenvector {|λi⟩}di=1. Preparing a
quantum state |ψ⟩ with overlap with the target ground state |ψ∗⟩: | ⟨ψ|ψ∗⟩ | = 1− ϵ, the lower bound
of the expectation value of ⟨ψ|HC |ψ⟩ is

⟨ψ|HC |ψ⟩ = ⟨ψ|
d∑
i=1

λi |λi⟩ ⟨λi|ψ⟩ (17)

= λ1(1− ϵ)2 +

d∑
i=2

λi| ⟨ψ|λi⟩ |2 (18)

≤ λ1(1− ϵ)2 + λd(1− (1− ϵ)2), (19)

where the first inequality works by scaling each eigenvalue λi to λd and following the fact∑d
i=2 | ⟨ψ|λi⟩ |2 ≤ 1− (1− ϵ)2. Then approximation ratio r is

r =
⟨ψ|HC |ψ⟩

λ1
≥ λd
λ1

− λd − λ1
λ1

(1− ϵ)2 ≥ (1− ε)2,

=⇒ ϵ ≤ 1−√
r (20)

where the first inequality in the first equation holds because λ1 < 0. Employing Lemma B.5, we have
that the output state |ψ(t)⟩ converges to the solution state with approximation ratio r ≥ | ⟨ψ(t)|ψ∗⟩ |2
after Tr = O(log( deff

1−
√
r
)) iteration steps. These achieved results indicate that a small effective

dimension leads to a faster convergence rate. In this regard, combining with Lemma B.6, the
convergence rate T related to various ansatz ANG,APG,AFG for achieving the same approximation
ratio yields TFG = TPG ≤ TNG.

B.3 Proof of Lemma B.6

The proof of Lemma B.6 employs the following lemmas, where the proofs of Lemma B.7 and
Lemma B.9 are deferred to Appendix B.4 and Appendix B.5.
Lemma B.7. Let g be a dynamical Lie algebra and r be the natural representation on the vector
space V satisfying r(g) = g for any g ∈ g. If there exists irreducible subrepresentations of r on V
such that r(g) = r1(g)⊕ · · · ⊕ rk(g) acting on the space V = V1 ⊕ · · · ⊕ Vk for any g ∈ g, then the
dimension of Lie algebra yields

dim(g) = dim(r) =

k∑
j=1

dim(rj) =

k∑
j=1

dim(Vj). (21)

17

33707 https://doi.org/10.52202/079017-1061



where the dimension of subrepresentation rj refers to dim(rj) = dim(Vj).
Lemma B.8 (Commutant structure [38]). Let r be a representation of a Lie algebra g on the Hilbert
space H and its decomposition into irreducible representation be

r(g) = ⊕kj=1Imj ⊗ rj(g), (22)

where mj is known as the multiplicity of the irreducible representation rj . Then the elements of its
commutant are of the following form

C(g) = ⊕kj=1Cj(g)⊗ Idim(mj), (23)

where Cj(g) denotes bounded operators in a mj-dimensional Hilbert space. Then the dimension of
representation r and subrepresentation rj yields

dim(r) = dim(C(g)), and dim(rj) = dim(Cj(g)) (24)

Lemma B.9. Let gFG, gPG, gNG be the Lie algebra related to the ansatz designs of the circuits
with parameters fully grouping AFG, partially grouping APG, no-grouping ANG. Then the related
commutants of the three Lie algebras yield

C(gNG) ⊆ C(gFG) = C(gPG), (25)

where the equality in the subset holds if there is no spatial symmetry in the problem Hamiltonian.

We now begin to present the proof of Lemma B.6.

Proof of Theorem B.6. Following Lemma B.7 with denoting r be the natural representation of g
on vector space V , the dimension of DLA g is equal to the sum of dimensions of irreducible
subrepresentations, i.e.,

dim(g) = dim(r) =

k∑
j=1

dim(rj) =

k∑
j=1

dim(Vj), (26)

where Vj is the irreducible invariant subspace related to the subrepresentation rj . For the symmetric
ansatz design A, there exsits an invariant space V∗ ∈ {Vj}kj=1 such that the effective dimension
deff(A) = dim(V∗).

To obtain Eqn. (16), we first show that the effective dimension of DLA g is inversely proportional
to the size of commutant of the DLA g, and then show that the commutant sizes related to ansatz
design AFG,APG,ANG are monotonically non-increasing. In particular, the commutant of Lie
algebra g, denoted as C(g) = {V ∈ SU(d) : [V, g] = 0}, includes all the symmetry operator of the
corresponding ansatz design. For any two Lie algebras g1, g2 with C(g1) ⊂ C(g2), then any block
diagonalization of the elements in C(g1) is also the block diagonalization of the elements in C(g2).
This indicates that any invariant subspace of C(g1) is also the invariant subspace of C(g2), leading to
dim(Cj(g2)) ≤ dim(Cj(g1)). Following Lemma B.8, we have

deff(g2) = dim(r∗(g2)) = dim(C∗(g2)) ≤ dim(C∗(g1)) = dim(r∗(g1)) = deff(g1), (27)

where ∗ ∈ [k] refers to the index of invariant space the optimization performs on and dim(r∗(gj)) with
j = 1, 2 refers to the effective dimension related to the DLA gj . In conjunction with Lemma B.9 and
Eqn. (27), we have C(gNG) ⊆ C(gPG) = C(gFG) and hence deff(gFG) = deff(gPG) ≤ deff(gNG).
This completes the proof.

B.4 Proof of Lemma B.7

Proof of Lemma B.7. The first equality in Eqn. (21) follows the fact that natural representation r is
bijective and does not change the dimension of pre-image space. the second equality follows the
definition of the dimension of representation in Definition B.2 such that

dim(r) = dim(V ) = dim(V1 ⊕ · · · ⊕ Vk) =

k∑
j=1

dim(Vj) =

k∑
j=1

dim(rj), (28)

where the last equality follows that rj is a representation of g on the space Vj . This completes the
proof.

18

33708https://doi.org/10.52202/079017-1061



B.5 Proof of Lemma B.9

Proof of Lemma B.9. We begin this proof by showing that the commutant of A = {H1 ⊗ I, I⊗H2}
is a subset of B = {H1 ⊗ I+ I⊗H2}, where H1, H2 are arbitrary Hermitian operators and B refers
to the set with imposing parameter grouping on A. In particular, for any matrix S which commutes
with the elements in A, we have

S(H1⊗I+I⊗H2) = S(H1⊗I)+S(I⊗H2) = (H1⊗I)S+(I⊗H2)S = (H1⊗I+I⊗H2)S. (29)

This indicates that C(A) ⊆ C(B). With this fact, we now derive the Eqn. (25). We first recall that
the generators of the Lie algebras gNG, gPG, gFG yield non-discreasingly restrictive parameters
grouping strategy, and are identity when there is no spatial symmetry in the problem Hamiltonian,
i.e., gFG = gPG = gNG. Moreover, the definition of gFG, gPG indicates that the related ansatzes
follow the same symmetry, namely, any unitary U commutes with the elements in gFG if and only
if U commutes with the elements in gPG. Hence we have C(gFG) = C(gPG) as the commutant
consists of the symmetry operator of the ansatz design.

On the other hand, the relation C(gPG) ⊆ C(gNG) in Eqn. (25) directly following the analog between
the set A and B and the generators related to the Lie algebra gPG and gNG, where the generators
related to gPG refers to the set with imposing parameters grouping on gNG. This completes the
proof.

C Related work

In this section, we embark on a concise literature review, focusing on conventional algorithms for
the Max-Cut problem, some variants of QAOA, and quantum circuit architecture search algorithms.
This examination sets the stage for a comparative analysis between these established methods and
our proposed model. In summary, our discussion underscores the distinctive strength of our model:
its exceptional ability to generalize.

C.1 Conventional algorithms

Greedy algorithm for Max-Cut problem. The greedy algorithm for solving the Max-Cut problem
operates on a simple principle: iteratively makes local, myopic decisions to construct a solution that
attempts to maximize the sum of weights of edges between two disjoint subsets of vertices. This
algorithm does not assure an optimal solution due to its greedy nature—making decisions based only
on immediate benefits without considering future consequences. The detailed procedure is introduced
in Alg. 1.

Goemans-Williamson (GW) algorithm for Max-Cut problem. The GW algorithm utilizes semidef-
inite programming to relax the original combinatorial problem into a continuous one that can be
solved efficiently. After solving the semidefinite program, the algorithm uses a random hyperplane to
split the vertices into two subsets, which form the cut. The GW algorithm achieves an approximation
ratio of at least 0.878 for the Max-Cut problem. The simplified pseudocode of GW algorithm is
described in Alg. 2.

C.2 Variants of QAOA

The studies of variants of QAOA aim to improve the convergence rate or reduce the computational
time by changing the PQCs or the problem Hamiltonian. Current progress has revealed that the per-
formance of QAOA could be improved by employing multi-angle QAOA [17] where the parameters
are no-grouped or partially grouped according to the permutation symmetry of problem Hamiltonian
[39, 40, 23], utilizing different mixer Hamiltonian obtained by searching from a given Hamiltonian
pool [34] or inspired by specific problem [41, 22, 42, 43] and other quantum algorithms [33, 44, 45].
Another type of the variant of QAOA focuses on modifying the problem Hamiltonian, either through
eliminating redundant qubits [46] to obtain a reduced problem Hamiltonian, or imposing conditional
rotations [47] to the Hamiltonian. In the following, we delve into the most relevant variants of QAOA
to our study and compare them with our model.

Multi-Angle QAOA (ma-QAOA) [17]. The ma-QAOA innovates on the traditional QAOA frame-
work by incorporating a larger set of parameters. It allows each operator within both the cost and

19

33709 https://doi.org/10.52202/079017-1061



Algorithm 1 Greedy Algorithm for weighted Max-Cut
1: Input: A graph G = (V,E) with weights wij on edges (i, j) ∈ E
2: Output: A partition of V into subsets S and S̄ maximizing the cut weight
3: Initialize S = ∅, S̄ = V
4: Initialize cutWeight = 0
5: for each vertex v ∈ V do
6: deltaWeight = 0
7: for each edge (v, u) ∈ E connected to v do
8: if u ∈ S and v /∈ S or u /∈ S and v ∈ S then
9: deltaWeight = deltaWeight− w(v, u)

10: else
11: deltaWeight = deltaWeight+ w(v, u)
12: end if
13: end for
14: if deltaWeight > 0 then
15: if v ∈ S then
16: Move v to S̄ and update cutWeight+ = deltaWeight
17: else
18: Move v to S and update cutWeight+ = deltaWeight
19: end if
20: end if
21: end for
22: return S, S̄, cutWeight

Algorithm 2 Goemans-Williamson Algorithm for Max-Cut
1: Input: A graph G = (V,E) with weights wij on edges (i, j) ∈ E
2: Output: A partition of V into subsets S and S̄
3: Formulate the Max-Cut problem as a semidefinite programming (SDP) problem.
4: Solve the SDP problem to find a vector representation v⃗i for each vertex i.
5: Choose a random hyperplane by selecting a random unit vector r⃗.
6: for each vertex i ∈ V do
7: if v⃗i · r⃗ ≥ 0 then
8: Assign vertex i to subset S
9: else

10: Assign vertex i to subset S̄
11: end if
12: end for
13: return S, S̄

mixer Hamiltonians to be governed by its own unique parameter, diverging from the conventional
approach where a single parameter is shared among all operators. In our experiment, attention is
focused exclusively on the modifications within the mixer Hamiltonian for fair comparison. The new
mixer Hamiltonian is expressed as

HM =

N∑
i=1

βiXi. (30)

where Xi denotes the Pauli-X operation applied to the i-th qubit and βi represents the corresponding
individual parameter. This adjustment significantly expands the parameter space in ma-QAOA,
scaling the total count from 2p in the standard QAOA to (N + 1)p. Despite empirical evidence
suggesting that ma-QAOA surpasses the original QAOA in achieving higher approximation ratios for
configurations with fewer layers, the complexity introduced by the augmented parameter space could
potentially impede its effectiveness in scenarios involving deeper circuits.

ADAPT-QAOA [34]. In ADAPT-QAOA, the mixer Hamiltonian is selected from a pre-defined
operator pool {Aj} step by step. For the k-step, the operators Aj is guided by maximizing the
following gradient:

−i ⟨ψk−1(α,β)|eiαkHC [HC ,Aj ]e
−iαkHC |ψk−1(α,β)⟩ , (31)

20

33710https://doi.org/10.52202/079017-1061



where |ψp(α,β)⟩ = (
∏p
k=1 e

−iβkAke−iαkHC ) |ψ0⟩. Following the selection of Aj , all parameters
undergo a subsequent optimization phase. This procedure is iterated until the gradient’s norm falls
below a set threshold, or the circuit reaches its predefined maximum depth. ADAPT-QAOA’s dynamic
mixer Hamiltonian selection aims to potentially discover a more direct path to adiabaticity, thereby
enabling accelerated convergence. However, its practicality for large-scale problems is hampered by
the increased measurement costs required for gradient evaluation, a factor contingent on the size of
the operator pool.

Contrasting with these QAOA variants, MG-Net uniquely offers a dynamic offline adaptation of
the mixer Hamiltonian, tailoring it to the specific problem and circuit depth without incurring extra
computational costs. Additionally, MG-Net demonstrates remarkable generalization capabilities,
effectively learning from a limited dataset to address a broad spectrum of problems. This facilitates
the rapid development of mixer Hamiltonians for new problems.

C.3 Quantum circuit architecture search

In the design of quantum circuits, quantum circuit architecture search methodologies have been
developed to autonomously identify optimal quantum circuit architectures [48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59]. In the following, we delve into several notable approaches and contrast them with
our MG-Net model.

Quantum architecture search (QAS) [53]. The QAS approach automatically seeks an optimal
quantum circuit architecture to balance the benefits and side effects of adding more quantum gates,
considering the noise in quantum systems. This method involves several steps: initializing a super-
structure (supernet) that defines the pool of potential architectures, optimizing parameters across
these architectures, ranking them based on performance, and finally refining the chosen architecture.

Differentiable Quantum Architecture Search (DQAS) [56]. DQAS introduces a novel approach by
employing differentiable programming techniques. This method enables the concurrent optimization
of both the structure and parameters of quantum circuits through gradient descent, streamlining the
search process.

QuantumDARTS [57]. The QuantumDARTS algorithm, which leverages the Gumbel-Softmax
technique for differential optimization of quantum circuit structure and parameters, aims to reduce
the search cost by following two search strategies: macro search for entire circuit optimization and
micro search for sub-circuit structures, improving its adaptability to large-scale problems.

Despite their advancements, these QAS methodologies share a fundamental limitation: they are
inherently designed to address singular, specific problems. Consequently, adapting these methods to
new problems necessitates repeating the resource-intensive architecture search process from scratch.
In contrast, MG-Net exhibits an unparalleled ability to generalize across a spectrum of problems
based on a minimal set of training examples. This capability enables MG-Net to rapidly design
optimal circuits for novel problems through a single feedforward computation, bypassing the need
for repeated, exhaustive searches. This unique advantage positions MG-Net as a highly efficient and
versatile tool in the quantum computing landscape, offering significant savings in computational
resources and time.

D Implementation details of MG-Net

In this section, we initially outline the methodology for constructing datasets used to train MG-Net
across various problem scales. Subsequently, we detail the implementation of the data encoder,
illustrated with a specific example.

D.1 Dataset construction

Operator types. The set of operator types for the mixer Hamiltonian is defined as {X,Y }⊗N in our
experiments. Note that the operator type pool can be flexibly adjusted according to specific problems
and hardware. For example, we can introduce two-qubit operators into the operator type pool to
further enhance the performance of QAOA, as done in [60]. Considering the exponential growth of
the search space in relation to the system size N , we have sampled only a subset from this pool in all

21

33711 https://doi.org/10.52202/079017-1061



our experiments. This approach is adopted to construct the training dataset while minimizing data
collection costs.

Construction of parameter group pool. A straightforward idea to construct the pool of parameter
group is to assume each Xi can be assigned an index j ranging from 1 to N , leading to a pool
P = {(j1 ∈ [N ], ..., jN ∈ [N ])} with size NN . However, there exist multiple duplicate candidates
in the pool P due to the disorder of the initial parameter pool. For example, for a two-qubit QAOA
ansatz, parameter index vectors (1, 2) and (2, 1) make no difference in the optimization of QAOA.
Based on these observations, we propose a recursive algorithm Alg. 3 to build a compact pool of
parameter groups.

Algorithm 3 Construction of parameter group pool
1: Input: The qubit number N , pool P = {}
2: Output: Pool P
3: Function grouping_pool(max_index, index_list,N )
4: if length(index_list) == N
5: Add index_list to P
6: return
7: end if
8: for i = 1, · · · ,max_index
9: Append i to index_list

10: grouping_pool(max(max_index, index_list[−1] + 2), index_list,N )
11: Delete the last element of index_list
12: end for
13: End Function
14: grouping_pool(2, empty_list, N )

In practice, we randomly selected 5 candidates from the parameter grouping pool for each operator
type. Although the training dataset only partially covers the entire space of operator types and
parameter groupings, our model is still capable of learning the intrinsic relationship between the
mixer Hamiltonian and its corresponding achievable cost.

To find the minimal cost that can be achieved by a QAOA circuit during the construction of the
training dataset in stage 1, we run the same QAOA circuit 10 times and record their cost values. For
each run, the QAOA circuit is initialized with different random parameters and optimized for 40
epochs. Finally, the minimum of these cost values is selected as the label that represents the minimal
achievable cost.

Large-scale dataset. To assess our method’s efficacy on large-scale problems, we concentrated
on the Max-Cut problem using weighted graphs with 64 nodes. Simulating larger-scale quantum
circuits on classical devices poses significant challenges. To overcome this, our approach employs a
divide-and-conquer strategy, simulating a large-scale circuit through multiple smaller-scale circuits.
We then integrate the results of these smaller circuits to estimate the performance of the original
large-scale circuit. For a detailed explanation of this methodology, refer to QAOA-in-QAOA [61].

In constructing the training dataset DTr
ce for 64-node graphs, we divide each 64-node graph into 8

sub-graphs, each containing 8 nodes. The max-cut of each sub-graph is computed using an 8-qubit
QAOA. To gather a comprehensive range of samples, we vary the operator types and parameter
groupings in the 8-qubit circuits, which in turn simulates the variation in mixer Hamiltonians for
64-qubit circuits. It is important to note that these 8-qubit circuits operate independently, with no
shared parameters, resulting in at least 8 independent parameters for each 64-qubit circuit in our
training dataset. For testing on the unknown graphs, we employ tensor network simulations to
accurately estimate the performance of the original 64-qubit QAOA.

D.2 Data encoder

Problem encoder. Our problem encoder is rooted on the problem Hamiltonian HC in Eqn. (1). More
precisely, to facilitate a consistent and unified representation for diverse combinatorial problems {G},
we initiate by converting the original problemG into the corresponding unitary UC = exp(−iαkHC),
which is subsequently transformed into a directed acyclic graph (DAG) GC .

22

33712https://doi.org/10.52202/079017-1061



0

5

0

1

4 3

2

1
6

2
9

3
7

4 10

5

8

11

12

13

14

15

16

17

18

19

20

Problem graph

Figure 6: Encoding of problem. The problem graph is first transformed into a quantum circuit, which is
subsequently encoded by a DAG.

Fig. 6 illustrates the problem encoding process for a regular graph with 6 nodes. Each node of the
problem graph corresponds to a qubit in the quantum system and each edge (i, j) is represented as a
two-qubit gate ZiZj , which is exactly the problem Hamiltonian of QAOA for the Max-Cut problem.
Based on this problem unitary, we construct the final graph representation GC , with each two-qubit
gate depicted as a node in the graph. In addition to these gate-induced nodes, two unique node types,
the input and output nodes which correspond to qubits, are introduced to denote the start and end of
GC , respectively. The edges of GC signify the temporal order of quantum gate execution, linking
consecutive gates and thereby dictating the flow of the quantum computation. The weights of edges
are encoded into the node feature.

0

5

1

4 3

2

Parameter sharing

Figure 7: Encoding of mixer Hamiltonian. Each qubit in the mixer Hamiltonian is represented as a node in
the encoded graph. The type of operator associated with each qubit is encoded in the node feature, while the
parameter grouping strategy is encapsulated in the edge features.

Mixer encoder. We define a one-to-one mapping to encode the candidate mixer Hamiltonian HM

as a graph GM . Recall Eqn. (5), two types of information about HM should be encoded in GM are
operators {Pi} and the parameter grouping strategy G. In MG-Net, each operator is modeled as a
node of GM , and the operator type is encoded as part of the node feature vector. Concretely, MG-Net
initially constructs GM as a fully connected graph, where the edge weight is a binary variable,
representing whether the two operators connected by the edge share the same control parameter.

The process of encoding a mixer Hamiltonian into a graph representation is illustrated in Fig. 7.
Here, we take the example of a 6-qubit mixer Hamiltonian encoded as graph GM . In this graph,
each qubit’s corresponding operator is depicted as a node, with the operator acting on the i-th qubit
represented by the i-th node in GM . The graph’s edges signify the parameter correlations among
these operators. Specifically, let wij ∈ {0, 1} be the weight of edge connecting node i and j. If the
operator i and j share the same parameter, then wij = 0; otherwise, wij = 1.

Depth embedding. The circuit depth p is encoded as a vector xp through position embedding [62].
Mathematically, xp is constructed as

xp[2k] = sin
p

100002k/dp
,xp[2k + 1] = cos

p

100002k/dp
,

where dp is dimension of xp and k = 0, ..., ⌊dp/2⌋.

D.3 Network structure

D.3.1 Cost estimator

In our experimental setup, the intricate architecture of the cost estimator is detailed in Fig. 8. Both
the problem and mixer Hamiltonian branches incorporate two layers of graph convolutions, utilizing

23

33713 https://doi.org/10.52202/079017-1061



ReLU activation functions to transform the initial node features from dimensions dC and dM to a
unified 128-dimensional space. Subsequently, the three extracted features—xC , xM , and xp—are
concatenated to facilitate the prediction of the attainable minimum cost ŷ for a given QAOA instance
through an MLP layer.

GraphConv GraphConvReLU GAP MLP

GraphConv GraphConvReLU GAP

Figure 8: Implementation of cost estimator. The term ‘GraphConv’ represents the graph convolution module.
‘ReLU’ is a commonly used activation function in neural networks. dC and dM represent the dimension of node
feature in graph GC and GM respectively. Pi represents the operator type for the i-qubit and eij represents the
weight for edge (i, j).

D.3.2 Mixer generator

Inspired by [63] which encodes a quantum circuit as a graph, the mixer generation is composed of
two separate sub-generators: the operator type generator and the parameter grouping generator, which
are respectively responsible for graph node and link prediction.

Operator type generator. The task of generating operator types P is conceptualized as a graph
node classification task. Specifically, we employ a GNN to process GC , identifying output nodes
to represent the operators corresponding to each qubit, while disregarding irrelevant nodes. To
incorporate the circuit depth p into the prediction, we enhance the feature set of each output node by
appending a feature vector xp. This enriched node feature set is then fed into an MLP to predict the
specific category of each operator.

Parameter grouping generator. Recall that the grouping strategy is traditionally represented by sets
of index groups {Gj}Kj=1 with an unspecified K, posing a challenge for neural network processing.
To address this, we extend the parameter grouping problem as follows: if an edge indicator eij = 1,
then the mixer operators Pi and Pj are correlated and share the same parameter; otherwise, they
are controlled by independent parameters. Furthermore, if eij = 1 and eik,k ̸=j = 1, then Pi, Pj
and Pk are correlated regardless of the value of ejk. In this way, the parameter grouping task is
translated into the prediction of the binary variable eij ∈ {0, 1}, as a link prediction task. This
modeling bypasses the need to predetermine the number of parameter groups and offers flexibility in
incorporating constraints related to qubit connections.

Analogous to the operator type generator, the parameter grouping generator employs another GNN to
process GC to extract features of output nodes, which are then extended with circuit depth feature
xp. For node i and j, their extended features xi and xj are used to determine the existence of an
edge (i, j) by evaluating eij = B(MLP(xi ◦ xj)), where B(·) signifies a binarization function. In
MG-Net, this function is realized using the Gumbel-Softmax trick, ensuring the differentiability.

In our experiment, the detailed structure of the mixer generator is depicted in Fig. 9. The mixer
generator integrates two specialized branches to analyze the input problem graph GC , with each
branch deploying two graph convolution layers to distill the feature vector xC with a dimensionality
of 128. This feature vector is then augmented with the circuit depth feature xp to enrich the predictive
capability of the model. For the precise prediction of operator types {Pi}Ni=1 applicable to each
qubit, the terminal nodes of GC are chosen for input into a Multi-Layer Perceptron (MLP) layer.
This step calculates the likelihood of each potential operator type. Concurrently, a separate MLP
layer is employed to ascertain the parameter sharing between operators Pi and Pj . This is achieved
through the equation eij = MLP(xi ◦ xj), where ◦ denotes the element-wise multiplication, and xi
symbolizes the enriched feature of the i-th node.

24

33714https://doi.org/10.52202/079017-1061



GraphConv GraphConvReLU
MLP

GraphConv GraphConvReLU
MLP

Figure 9: Implementation of mixer generator. The term ‘GraphConv’ represents the graph convolution
module. ‘ReLU’ is a commonly used activation function in neural networks. dC and dM represent the dimension
of node feature in graph GC and GM respectively.

D.4 Experiment settings

Hardware platform. All QAOA circuits are implemented by PennyLane [64] and run on classical
device with Intel(R) Xeon(R) Gold 6267C CPU @ 2.60GHz and 128 GB memory. MG-Net is
implemented by Pytorch [65] and is trained on a single NVIDIA GeForce RT 2080Ti with 12G
graphics memory.

Hyper-parameters. The hyper-parameters of optimizing MG-Net and QAOA circuit are listed in
Tab. 3.

Initial state. The initial quantum state of the QAOA circuit is consistently set to |+⟩⊗N , irrespective
of the mixer Hamiltonian chosen. Although this approach does not ensure that the initial state is
always the ground state of the predicted mixer Hamiltonian, it does not compromise the QAOA’s
performance and has the potential to outperform the traditional state initialization technique, which
can be partially explained by the physical intuition of counterdiabatic (CD) driving [33, 34].

Table 3: The hyper-parameters of optimizing MG-Net and QAOA circuit.

QAOA MG-Net

optimizer Adam Adam
learning rate 0.15 1 ∗ 10−4

epoch 40 250
λe - 1.0
λr - 1.0

E More numerical results

In this section, we initially show the results of comparing the approximation ratio achieved by
different methods for TFIM. Then we examine how the approximation ratio achieved by various
methods varies with different circuit depths p. Subsequently, we explore the convergence behavior of
the QAOA when enhanced by our approach.

E.1 Performance comparison among different methods for TFIM

In evaluating the effectiveness of our proposed method for solving TFIM, we conducted a comparative
analysis against QAOA, ADAPT-QAOA, and multi-angle QAOA (ma-QAOA). Our analysis, based
on the average results from 100 graphs in our test dataset, is summarized in Tab. 4. The findings
reveal that our method consistently outperforms other techniques in achieving a higher approximation
ratio for TFIM, particularly in larger-scale problems.

E.2 Experiments on asymmetric graphs and 2D-TFIM

We conducted additional experiments on the asymmetric graphs of 6 nodes and 2D lattice models of
6 spins. Their topological structure is shown in Fig. 10.

25

33715 https://doi.org/10.52202/079017-1061



Table 4: Comparison of approximation ratio r among different methods for TFIM.

Method 6 qubits 16 qubits

QAOA 0.990± 0.005 0.523± 0.083
ADAPT-QAOA 0.857± 0.245 0.742± 0.356
ma-QAOA 0.994± 0.001 0.921± 0.040

Ours 0.996± 0.001 0.963± 0.031

Asymmetric graph 2D TFIM

Figure 10: Topological structure of asymmetric graphs and 2D TFIM.

The comparison of the achieved approximation ratio at p = 42 over 100 random test samples is
summarized in the Tab. E.2. The result affirms that our model consistently outperforms both standard
QAOA and ma-QAOA in terms of approximation ratio on more general cases.

Tasks Max-Cut for asymmetric graphs 2D TFIM

QAOA 0.952± 0.026 0.977± 0.008
ma-QAOA 0.987± 0.008 0.980± 0.019

Ours 0.988± 0.005 0.988± 0.006

E.3 Approximation ratio with respect to p

In small-scale quantum systems, achieving the criteria set in Theorem 3.1 is more straightforward by
increasing circuit depth p beyond the threshold C. We analyze the approximation ratios achieved by
6-qubit QAOA circuits for Max-Cut and TFIM within the p range of 2 to 82. Figure 11 illustrates
that at lower p values, our method consistently records the highest approximation ratio r, clearly
outperforming both standard QAOA and ma-QAOA. As p increases from 2 to 62, standard QAOA
and ma-QAOA exhibit a rise in r, eventually matching our method’s performance. However, a
further increase in p leads to a performance decline in ma-QAOA, where the detrimental impact of
its numerous trainable parameters on convergence outweighs the benefits of enhanced expressibility.
In contrast, our method maintains stable performance, continually achieving the highest r. These
findings confirm our method’s superiority in optimizing approximation ratios across various circuit
depths compared to other approaches.

We further explore the specific configurations of mixer Hamiltonians generated by MG-Net. Table 5
presents examples of predicted mixer Hamiltonians for p values of 12, 52, 82. At a smaller circuit
depth of p = 12, the optimal parameter grouping strategy maximizes the number of parameters,
assigning each operator its independent parameter. This approach enhances the expressivity of
the QAOA circuit and, alongside the introduction of novel mixer operators, contributes to superior
approximation performance. For p = 52, which verges on the threshold of over-parameterization,
a trend towards grouping some operators is observed. At a higher circuit depth, such as p = 82,
the majority of operators are assigned the same parameter, aligning closer to the configuration of

26

33716https://doi.org/10.52202/079017-1061



0 20 40 60 80

p

0.4

0.6

0.8

1.0

r

Max-Cut

QAOA

ma-QAOA

Ours

0 20 40 60 80

p

0.80

0.85

0.90

0.95

1.00
TFIM

QAOA

ma-QAOA

Ours

Figure 11: Comparison of the approximation ratio achieved by 6-qubit QAOA, ma-QAOA and our model
for Max-Cut and TFIM with varying p.

a standard QAOA circuit. The evolution of the mixer Hamiltonian configuration with varying p
partially reveals the underlying design principle of mixer Hamiltonian across different problems and
circuit depths.

Table 5: Operator type and parameter group generated by MG-Net. ‘X’ and ‘Y’ represent Pauli-X and
Pauli-Y, respectively. Parameter groups are formatted as a1 − a2 − · · · − aN , with ai ∈ {0, 1, ..., N − 1}
indicating the parameter index for the i-th operator. Identical indices (ai = aj) imply shared parameters between
operators.

Task Max-Cut TFIM

p = 12
Operator type YYYYXX XXXXXX

Parameter Group 0-1-2-3-4-5 0-1-2-3-4-5

p = 52
Operator type XXXXXX XXXXXX

Parameter Group 0-1-2-0-4-4 0-1-1-3-4-5

p = 82
Operator type XXXXXX XXXXXX

Parameter Group 0-1-0-0-0-1 0-0-0-0-0-0

E.4 Convergence of QAOA with various mixer Hamiltonian

In our investigation, we conducted an analysis on a randomly selected 16-qubit Max-Cut and TFIM
problem from our test dataset, scrutinizing the convergence patterns of QAOA, ma-QAOA, and our
method across various configurations (p = 4, 6, 8, 10). Illustrated in Fig. 12, our methodology not
only achieves a notably lower loss value within a reduced number of iterations in comparison to both
QAOA and ma-QAOA but also consistently outperforms in terms of the final loss value attained by
the end of the optimization. Specifically, at p = 10, our approach necessitates merely 28 iterations
for Max-Cut and 22 iterations for TFIM to diminish the loss value to −8 and −15, respectively. In
contrast, ma-QAOA demands 40 iterations for both challenges, whereas QAOA fails to achieve this
loss value. This evidence underscores the superior efficiency and effectiveness of our method in
navigating the solution landscape for these quantum optimization tasks.

E.5 Experiments on extended candidate operator type set

In this section, we investigate the performance of our model when applied to a more complex set
of candidate operator types. Specifically, we expand the pool of mixer operator types from X,Y
to X,Y,XX, Y Y by incorporating additional two-qubit operators, thereby increasing the search
space for operator types to O(4N ). All other experimental conditions remain consistent with those
described in the main text. The behavior of the cost estimator under these conditions is illustrated
in Fig. 13. Our results indicate that the cost estimator continues to serve as a reliable performance
indicator for QAOA, even with the increased complexity of the mixer Hamiltonian design.

27

33717 https://doi.org/10.52202/079017-1061



0 10 20 30 40

−8

−6

−4

−2

0

L
os

s
(M

ax
-C

u
t)

QAOA

p=4

p=6

p=8

p=10

0 10 20 30 40

ma-QAOA

p=4

p=6

p=8

p=10

0 10 20 30 40

Ours

p=4

p=6

p=8

p=10

0 10 20 30 40

Iteration

−15

−10

−5

0

L
os

s
(T

F
IM

)

p=4

p=6

p=8

p=10

0 10 20 30 40

Iteration

p=4

p=6

p=8

p=10

0 10 20 30 40

Iteration

p=4

p=6

p=8

p=10

Figure 12: Comparison of the convergence of 16-qubit QAOA, ma-QAOA and our model for Max-Cut
and TFIM with varying p.

−5 −4 −3 −2

label

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

p
re

d

Figure 13: Behavior of cost estimator with extended mixer operator pool {X,Y,XX, Y Y }. ‘label’
represents the actual achieved approximation ratio, while ‘pred’ represents the result predicted by the cost
estimator.

28

33718https://doi.org/10.52202/079017-1061



E.6 Ablation study on the circuit depth embedding

MG-Net acts as an initial protocol and provides a flexible circuit-generation framework where model
components can be conveniently replaced by advanced techniques. Besides the position embedding
of circuit depth in the main text, we have also considered another two embedding strategies: integer
embedding and one-hot embedding. There are two key differences between the implementation of
position encoding and one-hot or integer encoding:

1. Feature vector length. The length of the one-hot-encoded vector xp depends on the
predefined maximum value of p, while the length of the integer-encoded vector xp is 1. In
contrast, we adjust the length of position-encoded vector xp according to the dimension of
xC and xM .

2. Feature integration strategy. When using one-hot or integer encoding, we employ con-
catenation as the integration strategy for the three features xC , xM and xp rather than
summation.

The achieved approximation ratios for 6-qubit MaxCut problems using different depth encoding
methods are shown below:

Table 6: Comparison of approximation ratio r among different circuit depth embedding strategies.

Depth embedding method Approximation ratio r

Integer 0.981± 0.004
One-hot 0.984± 0.003
Position 0.99± 0.0004

29

33719 https://doi.org/10.52202/079017-1061



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sec. 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Sec. 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

30

33720https://doi.org/10.52202/079017-1061



Justification: Sec. 3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sec. 1 and Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

33721 https://doi.org/10.52202/079017-1061



Answer: [Yes]
Justification: Sec. 1
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Sec. 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

32

33722https://doi.org/10.52202/079017-1061

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix. D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Sec. 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

33

33723 https://doi.org/10.52202/079017-1061

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix. D
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

34

33724https://doi.org/10.52202/079017-1061

paperswithcode.com/datasets


Answer: [Yes]
Justification: https://github.com/QQQYang/MG-Net
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

33725 https://doi.org/10.52202/079017-1061

https://github.com/QQQYang/MG-Net



