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Abstract

Personalized Federated Graph Learning (pFGL) facilitates the decentralized train-
ing of Graph Neural Networks (GNNs) without compromising privacy while
accommodating personalized requirements for non-IID participants. In cross-
domain scenarios, structural heterogeneity poses significant challenges for pFGL.
Nevertheless, previous pFGL methods incorrectly share non-generic knowledge
globally and fail to tailor personalized solutions locally under domain structural
shift. We innovatively reveal that the spectral nature of graphs can well reflect
inherent domain structural shifts. Correspondingly, our method overcomes it by
sharing generic spectral knowledge. Moreover, we indicate the biased message-
passing schemes for graph structures and propose the personalized preference
module. Combining both strategies, we propose our pFGL framework FedSSP
which Shares generic Spectral knowledge while satisfying graph Preferences. Fur-
thermore, We perform extensive experiments on cross-dataset and cross-domain
settings to demonstrate the superiority of our framework. The code is available at
https://github.com/OakleyTan/FedSSP.

1 Introduction

Graph Neural Networks (GNNs) [56, 63, 48, 42] have demonstrated their superiority in modeling
graph data which frequently emerges in a variety of scenarios [73, 71], as exemplified by graph
clustering [45, 46, 44], graph contrastive learning [64, 80], anatomy detection [75, 88], knowledge
graph [79, 78, 38], structural inference [66, 68, 65, 67] and so on. However, large amounts of graph
data are generated by edge devices in reality, which brings in privacy concerns and the challenges of
data silos [89, 24, 28]. To address these difficulties, federated learning (FL) has recently been applied
to graph learning [18, 20, 25]. It allows models on various clients to collaborate without sharing
local data [26, 15, 23, 27, 83] and makes federated graph learning (FGL) a promising direction.
Nonetheless, the non-IID problem remains a major challenge in FGL, as graph data from different
clients usually vary significantly. In such scenarios, a single global model struggles to adapt well to
the local data of each client with inconsistent data distributions [60, 58]. To tackle these challenges,
personalized federated graph learning (pFGL) has emerged, offering customized GNNs for each
client to achieve satisfying local performance [1, 61].

However, pFGL still encounters substantial challenges from structural heterogeneity [29], especially
in domain shift tasks, for instance, between social networks [94, 95] and molecular structures [59, 55].
There are two significant drawbacks to previous algorithms as Fig. 1 demonstrates. For global
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Figure 1: Problem illustration. We illustrate the challenges of the cross-domain scenario. (a) Considering the
domain structural shifts, clients struggle with knowledge conflict caused by non-generic sharing which arises
from the shifts, thus leading to unpromising global collaboration. (b) The aggregated message-passing scheme
suffers from inconsistent preferences that remain unsatisfied of specific datasets in this scenario. Consequently,
it leads to unsuitable features of graphs in local applications. (c) The heat map of Jensen-Shannon divergence
of algebraic connectivity [17] and eigenvalues distributions among six datasets from three different domains.
Spectral characteristics exhibit significant biases across domains but are more similar within a same domain.

collaboration, the considerable domain structural shifts inevitably lead to non-generic knowledge,
thus resulting in knowledge conflict. Both current methods suffer from conflict and are trapped in
unpromising collaboration. Specifically, [61] share non-generic structural encoding and struggle with
structural knowledge conflict, while strategy [77] mitigating conflicts by limiting the potential for
collaboration. The key to addressing knowledge conflict is pursuing a way to share generic knowledge
that benefits all clients. Based on this observation, we raise the question: 1) how to address the
knowledge conflict under domain structural shift by extracting and sharing generic knowledge?

For local applications, each client owns its specific dataset with distinct structural characteristics in
this cross-dataset scenario. Due to the GNN message-passing nature, distinct graph structures stored
in different clients prefer different message-passing schemes. Consequently, the scheme provided by
aggregated GNN exhibits biases from the optimum when applied locally, thus leading to unsuitable
features. Both current methods neglect the preferences of various clients for specific graph structures.
This deficiency leads us to consider: 2) how to design personalized plans to deal with inconsistent
preferences of specific graph datasets from various clients?

To address problem 1), given that structural shifts make it hard to directly achieve generic sharing
at the structural level, we propose to explore the structure shifts from another spectral perspective
since previous works have demonstrated the strong correlation between graph structure and spectra
[2, 81, 43, 32]. The major advantage of spectra is the detailed propagation and processing of graph
signals on the graph structure, thus facilitating the discovery of generic knowledge in several certain
processes unaffected by structural shifts. To validate our assumption, we first conduct experiments
and explicitly reveal the domain spectral biases that directly reflect domain structural shifts on spectra
as Fig. 1 demonstrates. To tackle these spectral biases directly to overcome structural shifts, we
design Generic Spectral Knowledge Sharing (GSKS) to share generic spectral knowledge extracted
from spectral encoders. It enables clients to benefit from others through collaboration without
knowledge conflict. Conversely, other components containing non-generic knowledge are retained
locally. Correspondingly, clients can customize powerful graph convolutions for their local graph
characteristics while benefiting from generic knowledge without conflict. Through this strategy, we
promote the sharing of generic spectral knowledge and the personalizing of non-generic knowledge,
thus achieving effective collaboration against knowledge conflict.

Moreover, we attempt to achieve target 2) and design suitable personalized plans for each client graph
structure locally. Specifically, we explore the message-passing nature of GNN [5, 16, 62]. From
the spectral perspective, spectral encoders strongly affect message transmission. Therefore, when
aggregated spectral encoders are applied to distinct graph structures locally, they tend to deviate from
the optimal message-passing scheme for the client [49]. Consequently, GNNs extract inappropriate
frequency messages which lead to unsuitable features. To meet the inconsistent graph preferences,
we innovatively configure a learnable preference for each client and propose Personalized Graph
Preference Adjustment (PGPA). These personalized preference modules apply adjustments to the
feature extracted with the participation of global spectral encoders. It allows the feature to suit the
specific graph structures of each client. Moreover, to address the issue of over-reliance when applying
the preference module independently, a regularization term is introduced. Combining both strategies
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for effective global collaboration and personalized local application, we propose our pFGL framework
FedSSP. In conclusion, our key contributions are:

• We are the first to reveal domain structural shifts through spectral biases, as well as consider
the inconsistent preferences of distinct datasets from various clients.

• We propose FedSSP, which innovatively overcomes knowledge conflicts from a spectral
perspective and implements personalized graph preference adjustments for each client.

• We conduct experiments in various cross-dataset and cross-domain settings, proving that our
approach outperforms several current state-of-the-art methods and achieves optimal results.

2 Related Work

2.1 Spectral GNNs

Spectral GNNs [4, 12] are based on spectral graph filters set in the spectral domain, providing
powerful models for graph neural networks [76, 87, 86, 47, 72, 10, 70, 8, 69, 7]. Spectral GNNs can
generally be categorized into two types: those with fixed filters and those with learnable filters. Fixed
filter spectral GNNs, such as APPNP [19], utilize personalized PageRank (PPR) [53] to construct
their filtering functions. GNN-LF/HF [96] designs filter weights from the perspective of graph
optimization functions. Learnable filter spectral GNNs include subclass that approximates arbitrary
filters using various types of orthogonal polynomials, including Bernstein [22], Chebyshev [21], and
Jacobi [74]. Another subclass parameterizes the filters by neural networks, including LanczosNet
[40] and Specformer[3]. The robust modeling capability of spectral graph neural networks on data
inspires us to leverage this foundation to tackle the issue of structural heterogeneity across domains.

2.2 Personalized Federated Learning

Federated learning [84, 34, 28, 14, 82] facilitates privacy-preserving collaborative learning on local
data, introducing methods like FedAvg [51] to address this. Yet, it struggles with non-IID data
across clients. Several techniques aim to address the challenge [33, 35, 30], but achieving a global
model that suits all local data remains difficult [29]. Personalized Federated Learning (pFL) has
attracted increasing attention for its ability to address the non-IID problem [13, 39, 60]. Research
has approached improvements from various aspects. In personalized-aggregation-based methods,
FedPHP aggregates the global model and old personalized models locally to preserve historical
information [36], FedALA achieves personalized aggregation through personalized masks [91], and
APPLE uploads only core models and employs directed relationship vectors for downloading [50]. In
model-splitting-based approaches, FedRoD [6] learns with a global feature extractor and two heads
for both global and personalized tasks. FedCP decouples features suitable for global and local heads
through a conditional policy scheme [92]. Moreover, methods based on regularization and knowledge
distillation have also been utilized to enhance pFL. However, pFL methods lack targeted strategy
designs for graphs, making them not particularly suited for pFGL scenarios.

2.3 Federated Graph Learning

Recent studies have utilized the FL framework for distributed training of GNNs without sharing graph
data [20, 41, 28, 9]. Current Federated Graph Learning (FGL) research can be categorized into two
types: intra-graph and inter-graph FGL. In inter-graph FGL, each client has distinct graphs, and they
jointly participate in federated learning to either improve GNN modeling of local data or achieve a
model that can generalize across different datasets [77, 61]. Intra-graph FGL, on the other hand, aims
to deal with challenges such as missing link prediction [11], subgraph community detection [93, 1],
and node classification [25, 37]. However, most FGL methods lack specific design considerations
for our scenario. More precisely, there is a general absence of consideration for the heterogeneity
of graph-level structures and the personalized needs of different clients brought about by structural
characteristics. In this paper, we focus on inter-graph FGL, taking into account spectral domain
biases and the uniqueness of graph structures that result in client-specific preferences, to customize a
personalized optimal model for each client specifically for graph classification tasks.
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3 Preliminary

3.1 Graph Signal Filter

Assume that we have a graph G = (V, E), where V represents the node set with |V| = n and E is
the edge set. The corresponding adjacency matrix is defined as A ∈ {0, 1}n×n, where Aab = 1 if
there is an edge between nodes a and b, and Aab = 0 otherwise. The normalized graph Laplacian
matrix is defined as L̃ = In −D−1/2AD−1/2, where In denotes the n× n identity matrix and D
is the diagonal degree matrix. We assume G is undirected. L̃ is a real symmetric matrix, whose
spectral decomposition can be written as L̃ = UΛUT , where the columns of U are the eigenvectors
and Λ = diag(λ1, λ2, . . . , λn) are the corresponding eigenvalues ranged in [0, 2]. The Graph Fourier
transform of a signal x ∈ Rn×d is defined as x̃ = UTx ∈ Rn×d. The inverse transform is defined as
x = Ux̃ [57]. The i-th column of U denotes a frequency component corresponding to the eigenvalue
λi. Let x̃λ = UT

λ x, where Uλ represents the eigenvector corresponding to λ, be the frequency
component of x at λ frequency. We can use a function g : [0, 2] → R to filter each frequency
component by multiplying g(λ). By defining Λ = diag(λ), g implements filtering on Λ , thus
ultimately implementing filtering on the graph signal x. The whole process is defined as follows:

Ug(Λ)UTx. (1)

By defining g(L̃) =
∑K

k=0 αkL̃
k, where g is often set to be a polynomial of degree K for parameter-

izing the filter, the filtering process can be rewritten as follows:

Ug(Λ)UTx = g(L̃)x. (2)

3.2 Federated Learning and Personalized Federated Learning

Traditional FL leverages isolated data of distributed clients and collaboratively learns models M for
a generalizable global model without leaking privacy. Specifically, the goal is to minimize:

min
θ
fg(θ) = min

θ

N∑
i=1

wiMi(θ), (3)

where fg(·) denotes the global objective. It is computed as the weighted sum of theN local objectives,
with N being the number of clients and wi ≥ 0 being the weights. The local objective Mi(·) is often
defined as the expected error over all data under local data Di.

In the context of personalized federated learning, the global objective takes a more flexible form:

min
Θ

fp(Θ) = min
θi,i∈[N ]

N∑
i=1

wiMi(θi), (4)

where fp(·) is the global objective for the personalized algorithms, and Θ = [θ1, θ2, . . . , θN ]
is the matrix with all personalized models. In this work, we aim to obtain the optimal Θ∗ =
argminΘ fp(Θ), which equivalently represents the set of optimal personalized models θi, i ∈ [N ].

4 Methodology

4.1 Generic Spectral Knowledge Sharing (GSKS)

Motivation. Current methods suffer from knowledge conflict arising from non-generic sharing under
domain structural shifts. Since structural shifts impede the direct generic sharing at the structural level,
we are the first to reveal and resolve knowledge conflicts from the spectral perspective. To explicitly
address the spectral biases that reflect structural shifts in Fig. 1, we base our pFGL strategy on spectral
GNNs and further propose Generic Spectral Knowledge Sharing (GSKS). Effective collaboration
that overcomes spectral bias and structural shift is achieved, thereby addressing knowledge conflict.
Details of GSKS are presented in Fig. 2 (a).

Eigenvalue filtering. Aiming at more expressive representations of frequency information, the
eigenvalues are firstly mapped from scalars to meaningful vectors for subsequent learning of frequency
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Figure 2: Architecture illustration of FedSSP. The left box (a) refers to Generic Spectral Knowledge
Sharing (GSKS), where we address knowledge conflict and promote effective global collaboration by sharing
generic spectral knowledge extracted from spectral encoders ϕe and ϕf while retaining non-generic in other
components. The right box (b) represents Personalized Graph Preference Adjustment (PGPA), where we leverage
preference module guided by LPGPA

i for satisfying inconsistent preferences and achieving suitable feature of
datasets locally. These two boxes correspondingly refer to the two core strategies of our framework FedSSP.

interrelation in the multi-head attention module as follows:

ϕe(θe;λ) =

{
sin(βλ/cq/d), if q is even,
cos(βλ/c(q−1)/d), if q is odd,

(5)

where c keeps eigenvalues within a suitable numerical range to distinguish different eigenvalues for
trigonometric functions. q ∈ Z ∩ [0, d − 1] is the index for dimension d while β controlling the
importance of λ with defaulted value 10000. Moreover, θe denotes parameters of the eigenvalue
encoder ϕe, by which eigenvalues are mapped from scalars to vectors for richer frequency information.
Consequently, they are more expressive for filtering by the attention module and decoder through
R1 → Rd. The initial representations are the concatenation of eigenvalues and their encodings:
λ′ = [concat[λ1, ϕ

e(θe;λ1)], . . . , concat[λn, ϕ
e(θe;λn)]]

T ∈ Rn×(d+1). Then the multi-head
attention module is leveraged. After stacking multiple transformer blocks, spectral decoder ψd for
eigenvalue decoding can learn new eigenvalues from the expressive representations of spectra:

λm = ψd(Attention(QθQm,Kθ
K
m , V θ

V
m)), (6)

Where the representations learned by the m-th head are fed into ψd, while ψd denotes a combination
of liner and optional activation. λm ∈ Rn×1 is the filtered eigenvalues by the m-th head. The whole
process in Eq. (6) acts as a spectral filter g for the origin eigenvalues in Eq. (1).

To address the challenge of knowledge conflict, we attempt to explore the functionality of each
module. The eigenvalue encoder ϕe captures multi-scale representations of eigenvalues and provides
meaningful vectors of distinct frequencies. Since the mapping from eigenvalues to vectors by ϕe
is independent of the domain characteristics, θe of ϕe is considered to contain generic knowledge.
In contrast, as the spectral biases we reveal in Figure 1 demonstrate, biases exist in eigenvalue
distribution across domains. In contrast, spectral characteristics within the same domain are more
similar. Therefore, the attention module learns the non-generic magnitudes and relative dependencies
specific to the spectral characteristics of each client. Correspondingly, the eigenvalue decoder focuses
on decoding the most suitable message-passing scheme and client-specific frequency components
from the representation processed by the attention module. Attention module and decoder together
formed g in Eq. (1), aiming at designing personalized filtered eigenvalue that guides message-passing
at a personalized suitable frequency. Therefore, θe is shared in our strategy to achieve generic spectral
knowledge sharing and effective collaboration unaffected by knowledge conflict.

Specifically, client i uploads its update of θei . At the t-th iteration (t ≥ 0), the central server distributes
global spectral encoder weights θtg. Accordingly, client i updates local GNN weights including θei
with their dataset Di and send these updates as ∆θti = θti − θtg to the central server. Then the server
aggregates the received local updates and modifies the global weight θt+1

g as follows:

θt+1
g = θtg +

∑N
i=1 ∆θ

t
i

N
(i ∈ [1..N ]), (7)

notably, aggregation based on sample size is unsuitable in this scenario for effective collaboration
across various domains and datasets. Since clients here possess specific datasets with significant
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quantitative variance, those with larger datasets tend to dominate the collaboration. Thereby prevent-
ing them from benefiting from the spectral and frequency knowledge of clients with fewer samples.
Correspondingly, clients with fewer graphs are almost entirely dominated by knowledge that does
not originate from their local data. To address the problem, we leverage a direct average of spectral
encoder weights from all clients to achieve fair collaboration and cross-dataset knowledge sharing.

Personalized graph convolution constructing. After getting M filtered eigenvalues, filter encoder:
ϕf (θf ;B) RM+1 → Rd is leveraged to construct the bases for personalized graph convolution. To
avoid confusion and distinguish from the mentioned filter g on eigenvalues in Eq. (1), filter here in
filter encoder refers to the filtering on feature message-passing through bases in graph convolution.
New bases are first reconstructed and concatenated along the channel dimension. Specifically, by
defining Λm = diag(λm), they are fed into filter encoder ϕf as follows:

Bm = UΛmUT , ∀m ∈ {1, . . . ,M}, (8)

B̂ = ϕf (θf ;B), (9)

where B = [B1, B2, . . . , BM ] ∈ Rn×n×M while Bm ∈ Rn×n is the m-th new basis and B̂ ∈ Rn×d

is for feature filtering in graph convolution ultimately. The original bases Bm are initially constructed
from the eigenvectors U and the filtered eigenvalues λm, with ϕf (θf ;B) responsible for the learnable
transformation of bases from original to new. This transformation facilitates learning more suitable
schemes for graph message-passing and processing at various frequencies. Filter encoders ϕf (θf ;B)
in clients encapsulate knowledge of various frequency components which affects how much graph
signal varies from nodes to their neighbors for better graph convolution construction. Due to
restrictions on the sample size for certain clients, they are unable to adequately learn message-passing
techniques for handling specific frequency components. As a solution, the filter encoder is shared
among clients, enabling them to fully acquire the graph signal processing methods for frequencies
that are challenging to learn locally. Specifically, collaboration on filter encoder can aid ϕf (θf ;B) of
each client in learning how to construct suitable graph convolution from various message-passing
schemes. Therefore, we design client i to upload the weights θfi of its ϕfi the same way as ϕei
Eq. (7), thereby achieving a comprehensive understanding of different frequency messages in graphs.
Subsequently, it enables the construction of powerful personalized graph convolutions as follows:

x′v = σ
(
(B̂ · xv)θConv

)
+ xv, (10)

where xv is the node v representation from the previous layer, while x′v represents the output of the
current layer. θConv denotes weights of graph convolution, and σ refers to the optional activation.
Ultimately, the representations of all nodes within a graph are aggregated by an average pooling layer
to form the overall feature representation of graph Gl in dataset Di of client i as follows:

hl =
1

|V|

|V|∑
v=1

xv, ∀l ∈ {1, . . . , |Di|}, (11)

where hl is defined as the average of all node features in graph Gl, namely the graph feature, while V
refers to the node quantities in graph l here. By sharing generic spectral knowledge and retaining
client-specific knowledge we successfully achieve effective collaboration that overcomes spectral
bias, thereby domain structural shift from the spectral perspective.

4.2 Personalized Graph Preference Adjustment (PGPA)

Motivation. Due to the GNN message-passing nature, distinct graph structures prefer different
message-passing schemes, especially when meeting the specificity of datasets in cross-dataset and
cross-domain scenarios. Consequently, The spectral encoders under global collaboration fail to
satisfy the inconsistent local preferences of graphs. Correspondingly, graph convolutions tend to
learn biased message-passing schemes, thereby extracting unsuitable graph features. Our approach
provides personalized adjustments to address this challenge based on client preference. Moreover,
we solve the over-reliance issue that arises from the process of satisfying various preferences. Details
of GSKS are presented in Fig. 2 (b).

To satisfy the various preferences and make the graph features more suitable for graphs, we propose
a learnable preference module that adjusts to features extracted by client i to satisfy local graph

6

34566https://doi.org/10.52202/079017-1090



structure preference explicitly. The module includes learnable parameters matched in size with the
feature space, thus acting as a refined tool to flexibly satisfy the preferences of each client during
local training. Considering local model M including feature extractor F(θF ;G), classification head
C(θC , h), and preference module P(δ), where G represents graphs contained in dataset D of a client.
The whole graph feature-extracting process can be defined as follows in our strategy:

h = F(θF ;G), h′ := h+ δ, (12)

by integrating the original feature h with preference adjustments δ, h′ becomes the ultimately suitable
feature that satisfies client preference. Now we leverage adjusted feature h′ for z′ = C(θC ;h′) instead
of the original unsuitable representation h . Specifically, the local loss for client i is:

Li = E(z′
i,yi)∼Di

LCE
i = E(z′

i,yi)∼Di
CE(z′i, yi), (13)

where the Cross-entropy (CE) loss measures the difference between the predicted probability and the
true label. Nevertheless, the preference module learns not only the client-specific preference but also
aspects that should be handled by the feature extractor F without a guide for preference. As a result,
the local feature extractor F might overly rely on adjustments provided by the preference module
during training, thereby hindering its capability. Correspondingly, this over-reliance can negatively
impact federated collaboration. When the capability of F is degraded, the shared spectral encoders
fail to convey beneficial knowledge to others, leading to unpromising collaboration.

Therefore, it is essential to guide the preference module to focus solely on the aspects of client
preferences, rather than interfering with the feature extraction guided by collaboration. We achieve
this by guiding the output of the feature extractor to align more closely with global graph features.
Consequently, the PGPA module is directed to concentrate on client preferences. To implement this,
we first calculate the mean of local graph features in each iteration:

h̄i = (1− µ) · h̄pre
i + µ · h̄cur

i , (14)

where µ denotes the momentum we introduce for bringing graph modeling patterns from previous
batches to the current batch in the same local epoch. hpre

i and hcur
i represent the local mean graph

feature of the previous batches and the current batch. It is necessary to distinguish between mean and
prototype. In this scenario, clients own various datasets, thus the class information is client-specific.
Correspondingly, the mean hi which represents the average modeling for graphs in client i is unrelated
to class information. After local training, client i uploads its mean to the server for global consensus
aggregation. Based on our exploration of Eq. (7), a direct average is leveraged here:

h̄g =

∑N
i=1 h̄i
N

, (15)

where h̄g refers to the global graph modeling consensus calculated from all samples across all clients.
Accordingly, we employ the Mean Squared Error (MSE) to measure the distance between the local
graph feature mean and the global graph mean obtained from the previous round. This measurement
serves as a regularization term to encourage the local graph feature to align closer to the global
modeling consensus, thus guiding the preference module to focus on preference and correspondingly
address the over-reliance issue. Specifically, local feature extractors are encouraged to extract certain
frequency messages in graphs that reflect the global modeling consensus, making the PGPA only
responsible for client-specific preference. The local loss of client i is now defined as:

Li = E(z′
i,yi)∼Di

(LCE
i + LPGPA

i ) = E(z′
i,yi)∼Di

[CE(z′i, yi) + τ · MSE(h̄i, h̄g)]. (16)

By implementing MSE(h̄i, h̄g), we explicitly align local graph modelings with the global consensus,
thus guiding the preference module P to focus on preference and addressing the considered issue of
over-reliance by forcing the preference module to focus on client-specific graph preference.

5 Experiments

5.1 Experimental Setup

We perform experiments on graph classification tasks in various cross-dataset and cross-domain
scenarios to validate the superiority of our framework FedSSP.

Datasets. Follow the settings in [61], we use 15 public graph classification datasets from four
different domains, including Small Molecules (MUTAG, BZR, COX2, DHFR, PTC_MR, AIDS,
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NCI1), Bioinformatics (PROTEIN, OHSU, Peking_1), Social Networks(IMDB-BINARY, IMDB-
MULTI), and Computer Vision (Letter-low, Letter-high, Letter-med) [52]. Node features are available
in some datasets, and graph labels are either binary or multi-class. We create six different settings:
(1) cross-dataset setting based on seven small molecules datasets (SM); (2)-(6) both cross-dataset and
cross-domain settings based on datasets from two different domains(BIO-SM, SM-CV) and three
different domains(BIO-SM-SN, BIO-SN-CV, CHEM-SN-CV)

Baselines. We compare ours with several SOTA federated approaches. (1)Local as the first baseline;
(2)FedAvg [51]; (3)FedProx [35] which address heterogeneity issues in FL; (4)APPLE [50] and
(5)FedCP [92], two state-of-the-art pFL method;(6)FedSage [93], (7)GCFL [77] ,(8)FGSSL [25],
and (9)FedStar [61], four state-of-the-art FGL methods.

Implementation Details. The experiments are conducted using NVIDIA GeForce RTX 3090 GPUs
as the hardware platform, coupled with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz. For each
setting, every client holds its unique graph dataset, among which 10% are held out for testing, 10%
for validation, and 80% for training. We leverage the AdamW optimizer [31] for local GNNs with
learning rate 0.001, the default parameter of ϵ = 1e− 8, and (β1, β2) = (0.99, 0.999), as suggested
by [54, 85]. The number of communication rounds is 200 for all FL methods. We report the results
with an average of over 5 runs of different random seeds.

5.2 Experimental Results

Performance Comparison We show the federated graph classification results of all methods under
six different non-IID settings, including one cross-dataset setting (SM), two cross-double-domain set-
tings (BIO-SM, SM-CV) cross-multi-domain settings (BIO-SM-SN, BIO-SN-CV, SM-SN-CV). We
summarize the final average test accuracy in Tab. 1. These results indicate that FedSSP outperforms
all other baselines in five out of the six settings. Notably, traditional FL algorithms such as FedAvg
and FedProx failed to outperform self-training due to the strong cross-datasets and cross-domain
non-IID challenge of this scenario. Correspondingly, algorithms such as FedStar and FedCP which
are designed specifically for pFGL or pFL scenarios perform better here.

Table 1: Comparison with the state-of-the-art methods on one cross-dataset and five cross-domain
settings. Best in bold and second with underline. In each setting, each client owns a unique dataset.

single-domain double-domain Multi-Domain
Methods

SM SM-BIO SM-CV SM-BIO-SN BIO-SN-CV SM-SN-CV

Local 77.33 ± 1.15 72.52 ± 1.86 82.24 ± 1.73 71.13 ± 1.32 72.59 ± 2.70 77.83 ± 0.54

FedAvg [ASTAT17] 74.12 ± 2.10 67.82 ± 1.63 81.21 ± 1.00 67.31 ± 2.56 70.93 ± 2.91 75.33 ± 1.06

FedProx [arXiv18] 69.35 ± 3.36 67.27 ± 4.17 70.02 ± 2.27 63.89 ± 4.33 69.32 ± 1.75 67.15 ± 2.25

FedSage [NeurIPS21] 75.61 ± 1.16 72.60 ± 3.18 76.23 ± 0.49 70.84 ± 0.88 69.69 ± 1.11 73.36 ± 0.86

GCFL [NeurIPS21] 77.71 ± 1.53 72.05 ± 2.20 72.64 ± 0.71 70.43 ± 1.39 67.91 ± 2.15 71.79 ± 0.21

APPLE [IJCAI22] 74.29 ± 1.89 70.40 ± 2.13 76.07 ± 2.55 71.07 ± 1.64 72.52 ± 1.03 72.33 ± 0.42

FedCP [KDD23] 77.58 ± 2.00 71.15 ± 1.77 81.59 ± 0.40 71.32 ± 1.23 73.74 ± 2.53 78.17 ± 1.78

FGSSL [IJCAI23] 77.90 ± 0.85 72.47 ± 2.15 82.60 ± 0.48 68.13 ± 1.71 73.44 ± 1.33 77.90 ± 0.62

FedStar [AAAI23] 78.63 ± 2.11 72.71 ± 1.22 78.84 ± 1.07 72.60 ± 2.45 69.51 ± 3.24 75.94 ± 0.40

FedSSP (ours) 79.62 ± 2.23 73.66 ± 2.34 84.29 ± 0.68 72.37 ± 2.18 75.07 ± 2.70 79.12 ± 1.23

Convergence Analysis Fig. 3 shows the curves of the average test accuracy with standard deviation
during the training process across five random runs of three settings (SM, SM-CV, SM-SN-CV)
representing single-domain, double-domain, and multi-domain scenarios, including the results of
various baselines. As is shown, traditional FL methods such as FedAvg or FedProx own higher
standard deviations and are more unstable while methods designed specifically for pFGL scenarios
such as GCFL and FedStar are more stable with lower standard deviations.

5.3 Ablation Study

Effects of Key Components Mechanism of FedSSP To better understand the impact of specific
design components on the overall performance of FedSSP, we conducted an ablation study in which
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(a) single-domain (SM) (b) double-domain(SM-CV) (c) Multi-domain (SM-SN-CV)

Figure 3: Test accuracy curves of FedSSP and six other methods along the communication rounds on our three
different settings(SM, SM-CV, SM-SN-CV). The y-axis range is from 65 to 85 for all settings.

we varied these components of single, double, and multi-domain settings(SM, SM-CV, SM-SN-CV).
As shown in Tab. 2, compared to FedAvg, GSKS significantly enhances accuracy when applied
independently. Correspondingly, as a further exploration of the nature of GNN message passing,
PGPA achieves noticeable success in adjusting client preferences.

Effects of Key Component Mechanism of GSKS Tab. 3 discuss the key component of GSKS.
We demonstrated the impact of different sharing strategies. Specifically, sharing only non-generic
spectral GNN components or all components often fails to outperform self-training, while GSKS
successfully dominates all the strategies. Accordingly, the results fully validate the effectiveness of
GSKS in sharing universal knowledge and promoting effective collaboration in this scenario.

Table 2: Ablation study of key components of
FedSSP on single-domain, double-domain, and multi-
domain settings (SM, SM-CV, SM-SN-CV).

Setting
GSKS PGPA

SM SM-CV SM-SN-CV

✗ ✗ 74.12 81.21 75.33
✓ ✗ 77.83 82.78 78.54
✗ ✓ 74.59 81.33 76.12
✓ ✓ 79.62 84.29 79.12

Table 3: Ablation study of key components of
GSKS on a single-domain, double-domain, and
multi-domain settings (SM, SM-CV, SM-SN-CV).

Setting
Ours Other

SM SM-CV SM-SN-CV

✗ ✗ 77.33 82.24 77.83
✓ ✓ 74.12 81.21 75.33
✗ ✓ 77.21 81.64 78.17
✓ ✗ 77.83 82.78 78.54

5.4 Hyper-parameter Study

We compare the graph classification performance under different values of PGPA parameter τ ,
momentum µ, number of attention heads, and hidden dimension. Where Fig. 4 shows the results
when these hyper-parameters are fixed at different scales and values. It indicates that the choosing of
τ can affect the strength of PGPA while performance is not influenced much unless they are set to
extreme values. All studies of τ and µ here outperform the baseline. We also test the performances
under different values of attention heads and hidden dimensions. For results in Tab. 1, we set up 4
heads for the multi-head attention mechanism while 128 for the hidden dimension.

(a) PGPA Parameter τ (b) Momentum µ (c) Attention Heads (d) Hidden Dimension

Figure 4: Analysis on hyper-parameter in FedSSP. Graph classification results under different τ , µ, attention
heads, and hidden dimensions. Colors green, blue, and yellow refer to performance on single, double, and
multi-domain settings (SM, SM-CV, SM-SN-CV). The dashed lines of corresponding colors represent the
baseline test accuracy for each setting, which includes only the GSKS strategy.
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6 Discussion

Even though FedSSP has achieved significant success in cross-domain federated graph learning
collaborations, it still faces certain limitations as a spectral GNN-based approach. Compared to
spatial GNNs, while spectral GNNs have the advantage of overcoming structural heterogeneity from
the spectral domain, many spectral GNNs require eigenvectors and eigenvalues, which adds to the
computational overhead of data preprocessing and subsequent storage burden.

Furthermore, we notice a similar approach in DBE [90] which employs static global consensus in
FL to separate personalized and global information. Nevertheless, it inevitably struggles to handle
scenarios where the message-passing of multiple GNNs is continuously updated. It merely provides
a static anchor point, making it difficult to establish a global graph modeling consensus that could
guide the local GNNs in capturing graph signals. Instead, we align the GNN backbone with dynamic
global graph modeling to avoid the preference module from overly extracting features that should
be captured by the GNN itself, which could lead to decreased GNN performance and hinder global
collaboration. This approach allows for real-time adjustment of message-passing across different
client GNNs, focusing the preference module solely on personalization. Additionally, to address
issues such as sample size disparity between domains and dominance of large domains in model
parameter aggregation, we adopt a direct averaging strategy in dynamic global aggregation instead of
conventional weighted averaging to mitigate these concerns.

7 Conclusion

In this paper, we pioneer an innovative exploration of cross-domain personalized Federated Graph
Learning. To achieve this goal, we achieve improvements in two aspects: seeking effective global
collaboration and suitable local application, thus proposing a novel framework FedSSP. For global
collaboration, GSKS is leveraged to facilitate the sharing of generic spectral knowledge, overcoming
knowledge conflict by domain structural shift from a spectral perspective. For local applications,
we design PGPA to satisfy inconsistent preferences of specific datasets contained in clients. By
integrating these two strategies, FedSSP outperforms various state-of-the-art methods on various
cross-dataset and cross-domain pFGL scenarios in graph classification.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

We discuss the limitations in Sec. 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experi-
mental results in this paper and our code. We are convinced that the obtained results can be
reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is accessible in this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are included in Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Statistical significance of the experiments is considered and included in
Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper strictly adheres to the NeurIPS Code of
Ethics, ensuring that all aspects of the work are in compliance with the guidelines provided.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research presented in this paper is foundational. It is not directly tied to
any specific applications or deployments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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