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Abstract

Distributed learning has emerged as a leading paradigm for training large machine
learning models. However, in real-world scenarios, participants may be unreliable
or malicious, posing a significant challenge to the integrity and accuracy of the
trained models. Byzantine fault tolerance mechanisms have been proposed to
address these issues, but they often assume full participation from all clients, which
is not always practical due to the unavailability of some clients or communication
constraints. In our work, we propose the first distributed method with client
sampling and provable tolerance to Byzantine workers. The key idea behind the
developed method is the use of gradient clipping to control stochastic gradient
differences in recursive variance reduction. This allows us to bound the potential
harm caused by Byzantine workers, even during iterations when all sampled clients
are Byzantine. Furthermore, we incorporate communication compression into the
method to enhance communication efficiency. Under general assumptions, we
prove convergence rates for the proposed method that match the existing state-of-
the-art (SOTA) theoretical results. We also propose a heuristic on adjusting any
Byzantine-robust method to a partial participation scenario via clipping.

1 Introduction

Distributed optimization problems are a cornerstone of modern machine learning research. They
naturally arise in scenarios where data is distributed across multiple clients; for instance, this is typical
in Federated Learning (FL) (Konecny et al., 2016; Kairouz et al., 2021). Such problems require
specialized algorithms adapted to the distributed setup. Additionally, the adoption of distributed
optimization methods is motivated by the sheer computational complexity involved in training modern
machine learning models. Many models deal with massive datasets and intricate architectures,
rendering training infeasible on a single machine (Li, 2020). Distributed methods, by parallelizing
computations across multiple machines, offer a pragmatic solution to accelerate training and address
these computational challenges, thus pushing the boundaries of machine learning capabilities.

To make distributed training accessible to the broader community, collaborative learning approaches
have been actively studied in recent years (Kijsipongse et al., 2018b; Ryabinin and Gusev, 2020;
Atre et al., 2021; Diskin et al., 2021a). In such applications, there is a high risk of the occurrence
of so-called Byzantine workers (Lamport et al., 1982; Su and Vaidya, 2016)—participants who can
violate the prescribed distributed algorithm/protocol either intentionally or simply because they are
faulty. In general, such workers may even have access to some private data of certain participants and
may collude to increase their impact on the training. Since the ultimate goal is to achieve robustness
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in the worst case, many papers in the field make no assumptions limiting the power of Byzantine
workers. Clearly, in this scenario, standard distributed methods based on the averaging of received
information (e.g., stochastic gradients) are not robust, even to a single Byzantine worker. Such a
worker can send an arbitrarily large vector that can shift the method arbitrarily far from the solution.
This aspect makes it non-trivial to design methods with provable robustness to Byzantines (Baruch
et al., 2019; Xie et al., 2020a). Despite all the challenges, multiple methods are developed/analyzed
in the literature (Alistarh et al., 2018; Allen-Zhu et al., 2021; Wu et al., 2020; Zhu and Ling, 2021;
Karimireddy et al., 2021, 2022; Gorbunov et al., 2022, 2023; Allouah et al., 2023).

However, literally, all existing methods with provable Byzantine robustness require the full (or close
to full) participation of clients or rely on extra assumptions. The requirement of full participation
is impractical for modern distributed learning problems since they can have millions of clients
(Bonawitz et al., 2017; Niu et al., 2020). In such scenarios, it is more natural to use sampling of
clients to speed up the training. Moreover, some clients can be unavailable at certain moments,
e.g., due to a poor connection, low battery, or simply because of the need to use the computing
power for some other tasks. Although partial participation of clients is a natural attribute of large-
scale collaborative training, it is not studied under the presence of Byzantine workers. Moreover,
this question is highly non-trivial: the existing methods can fail to converge if combined naively
with partial participation since Byzantine can form a majority during particular rounds and, thus,
destroy the whole training with just one round of communications. Therefore, the field requires the
development of new distributed methods that are provably robust to Byzantine attacks and can work
with partial participation even when Byzantine workers form a majority during some rounds.

Our Contributions We develop Byzantine-tolerant Variance-Reduced MARINA with Partial Par-
ticipation (Byz-VR-MARINA-PP, Algorithm 1) — the first distributed method having Byzantine
robustness and allowing partial participation of clients without strong additional assumptions. Our
method uses variance reduction to handle Byzantine workers and clipping of stochastic gradient
differences to bound the potential harm of Byzantine workers even when they form a majority during
particular rounds of communication. To make the method even more communication efficient, we
add communication compression. We prove the convergence of Byz-VR-MARINA-PP for general
smooth non-convex functions and Polyak-f.ojasiewicz functions. In the special case of full participa-
tion, our complexity bounds recover the ones for Byz-VR-MARINA (Gorbunov et al., 2023) that are
the current SOTA convergence results. Moreover, we prove that in some cases, partial participation is
theoretically beneficial for Byz-VR-MARINA-PP. We also propose a simplified version of Byz-VR-
MARINA-PP with better neighborhood term in the convergence bounds (Byz-VR-MARINA-PP+,
Algorithm 3) and a heuristic on how to use clipping to adapt any Byzantine-robust method to the
partial participation setup and illustrate its performance in experiments.

1.1 Related Work

Below, we overview closely related works. Additional discussion is deferred to Appendix A.

Byzantine robustness. The primary vulnerability of standard distributed methods to Byzantine
attacks lies in the aggregation rule: even one worker can arbitrarily distort the average. Therefore,
many papers on Byzantine robustness focus on the application of robust aggregation rules, such as
the geometric median (Pillutla et al., 2022), coordinate-wise median, trimmed median (Yin et al.,
2018), Krum (Blanchard et al., 2017), and Multi-Krum (Damaskinos et al., 2019). However, simply
robustifying the aggregation rule is insufficient to achieve provable Byzantine robustness, as illustrated
by Baruch et al. (2019) and Xie et al. (2020a), who design special Byzantine attacks that can bypass
standard defenses. This implies that more significant algorithmic changes are required to achieve
Byzantine robustness, a point also formally proven by Karimireddy et al. (2021), who demonstrate that
permutation-invariant algorithms — i.e., algorithms independent of the order of stochastic gradients at
each step — cannot provably converge to any predefined accuracy in the presence of Byzantines.

Wu et al. (2020) are the first who exploit variance reduction to tolerate Byzantine attacks. They
propose and analyze the method called Byrd-SAGA, which uses SAGA-type (Defazio et al., 2014)
gradient estimators on the good workers and geometric median for the aggregation. Gorbunov
et al. (2023) develop another variance-reduced method called Byz-VR-MARINA, which is based on
(conditionally biased) GeomSARAH/PAGE-type (Horvith et al., 2023; Li et al., 2021) gradient
estimator and any robust aggregation in the sense of the definition from (Karimireddy et al., 2021,
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2022), and derive the improved convergence guarantees that are the current SOTA in the literature.
There are also many other approaches and we discuss some of them in Appendix A.

Partial participation and client sampling. In the context of Byzantine-robust learning, there exists
several works that develop and analyze methods with partial participation (Data and Diggavi, 2021;
El-Mhamdi et al., 2021; Boubouh et al., 2022; Allouah et al., 2024a). However, these works rely
on the restrictive assumption that the number of participating clients at each round is larger than
the number of Byzantine workers. In this case, Byzantines cannot form a majority, and standard
methods can be applied without any changes. In contrast, our method converges in more challenging
scenarios, e.g., Byz-VR-MARINA-PP provably converges even when the server samples one client,
which can be Byzantine. If the number of participating clients is such that Byzantine clients can form
majority, these methods have a certain probability of divergence and this probability grows with each
communication round. We provide a more detailed discussion in Appendix A.

2 Preliminaries

In this section, we formally introduce the problem, main definition, and assumptions used in the
analysis. That is, we consider finite-sum distributed optimization problem’

mingcpd {f(fU) = é Zieg fz(@} , filw) = % 27:1 fi,j(x) Vieg, (H

where G is a set of regular clients of size G := |G|. In the context of distributed learning, f; : R — R
corresponds to the loss function on the data of client 7, and f; ; : R? — R is the loss computed on the
j-th sample from the dataset of client 7. Next, we assume that the set of all clients taking part in the
training is [n] = {1,2,...,n} and G C [n]. The remaining clients B := [n] \ G are Byzantine ones.
We assume that B := |B| := et < On, where dyey is an exact ratio of Byzantine workers and 0 is
a known upper bound for d;,. We also assume that 0 < §ey1 < § < 1/2 since otherwise Byzantine
workers form a majority and problem (1) becomes impossible to solve in general.

Notation. We use a standard notation for the literature on distributed stochastic optimization.
Everywhere in the text ||z denotes a standard /3-norm of x € R%, (a,b) refers to the standard
inner product of vectors a,b € R?. The clipping operator is defined as follows: clip,(z) :=
min{1, »/|z||}z for z # 0 and clip, (0) := 0. Finally, Prob{ A} denotes the probability of event A,
E[¢] is the full expectation of random variable &, E[¢ | A] is the expectation of ¢ conditioned on the
event A. We also sometimes use Ey €] to denote an expectation of £ w.r.t. the randomness coming
from step k.

Robust aggregator. We follow the definition from (Gorbunov et al., 2023) of (4, ¢)-robust aggrega-
tion, which is a generalization of the definitions proposed by Karimireddy et al. (2021, 2022).

Definition 2.1 ((§, ¢)-Robust Aggregator). Assume that {x1, s, ..., 2y} is such that there exists
asubset G C [n] of size |G| = G > (1 — §)n for 6 < dpmax < 0.5 and there exists o > 0 such

that G(G;—l) > itec B |llzi — xl||2} < o2 where the expectation is taken w.r.t. the randomness
of {x;},cg. We say that the quantity Z is (, c)-Robust Aggregator (d, c)-RAgg) and write T =
RAgg (21,...,x,) for some ¢ > 0, if the following inequality holds:

E[|Z - z[?] < cdo?, @)

ieg Ti- If additionally 7 is computed without the knowledge of 02, we say that ©

is (9, ¢)-Agnostic Robust Aggregator (d, ¢) -ARAgg and write T = ARAgg (21, ..., Zy).

where T := ﬁ >

One can interpret the definition as follows. Ideally, we would like to filter out all Byzantine workers
and compute just an average x over the set of good clients. However, this is impossible in general
since we do not know apriori who are Byzantine workers. Instead of this, it is natural to expect that
the aggregation rule approximates the ideal average up in a certain sense, e.g., in terms of the expected
squared distance to Z. As Karimireddy et al. (2021) formally show, in terms of such criterion (E[||Z —
Z||?]), the definition of (§, ¢) -RAgg cannot be improved (up to the numerical constant). Moreover,

>For simplicity, we assume that all regular workers have the same size of local datasets. Our analysis can
be easily generalized to the case of different sizes of local datasets: this will affect only the value of £+ from
Assumption D.3 for some sampling strategies.
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standard aggregators such as Krum (Blanchard et al., 2017), geometric median, and coordinate-wise
median do not satisfy Definition 2.1 (Karimireddy et al., 2021), though another popular standard
aggregation rule called coordinate-wise trimmed mean (Yin et al., 2018) satisfies Definition 2.1 as
shown by Allouah et al. (2023) through the more general definition of robust aggregation. To address
this issue, Karimireddy et al. (2021) develop the aggregator called CenteredClip and prove that it fits
the definition of (4, ¢)-RAgg. Karimireddy et al. (2022) propose a procedure called Bucketing that
fixes Krum, geometric median, and coordinate-wise median, i.e., with Bucketing Krum, geometric,
and coordinate-wise median become (J, ¢) -ARAgg, which is important for our algorithm since the
variance of the vectors received from regular workers changes over time in our method. We notice
here that § is a part of the input that should satisfy dyeq) < § < dppax-

Compression operators. In our work, we use standard unbiased compression operators with
relatively bounded variance (Khirirat et al., 2018; Horvath et al., 2023).

Definition 2.2 (Unbiased compression). Stochastic mapping Q : R? — R? is called unbiased
compressor/compression operator if there exists w > 0 such that for any » € R? E[Q(x)] =
z, E[||Q(z) —z|?] < w|z|| For the given unbiased compressor Q(x), one can define the
expected density® as g := sup,cga E [||Q(2)]|0], where ||y]|o is the number of non-zero components
of y € RY,

In this definition, parameter w reflects how lossy the compression operator is: the larger w the
more lossy the compression. For example, this class of compression operators includes random
sparsification (RandK) (Stich et al., 2018) and quantization (Goodall, 1951; Roberts, 1962; Alistarh
etal.,2017). For RandK compression w = % —1,{o = K and for ¢>-quantization w = Vid—1, Co =

\/E, see the proofs in (Beznosikov et al., 2020).

Assumptions. Up to a couple of assumptions that are specific to our work, we use the same
assumptions as in (Gorbunov et al., 2023). We start with two new assumptions.

Assumption 2.3 (Bounded ARAgg). We assume that the server applies aggregation rule A such that
A'is (6, c)-ARAgg and there exists constant F4 > 0 such that for any inputs 1, ...,z, € R the
norm of the aggregator is not greater than the maximal norm of the inputs: ||A (z1,...,z,)| <
Famaxefp) |li|.

The above assumption is satisfied for popular (J, c)-robust aggregation rules presented in the literature
(Karimireddy et al., 2021, 2022). Therefore, this assumption is more a formality than a real limitation:
it is needed to exclude some pathological examples of (4, c)-robust aggregation rules, e.g., for any A
that is (8, ¢)-RAgg one can construct unbounded (6, 2c)-RAgg as A = A + X, where X is a random
sample from the Gaussian distribution A/(0, c6o?).

Next, for part of our results, we also make the following assumption.

Assumption 2.4 (Bounded compressor (optional)). We assume that workers use compression operator
Q satisfying Definition 2.2 and bounded as follows: || Q(z)|| < Dg|lz| Vz € R<.

For example, RandK and /5-quantization meet this assumption with Dg = % and Do = Vd
respectively. In general, constant Do can be large (proportional to d). However, in practice, one can
use RandK with K = -2 and, thus, have moderate Do = 100. We also have the results without

; 100 )
Assumption 2.4, but with worse dependence on some other parameters, see Section 4.

Next, we assume that good workers have (2-heterogeneous local loss functions.

Assumption 2.5 ((2-heterogeneity). We assume that good clients have (2-heterogeneous local loss
functions for some ¢ > 0, ie., & Y, |V fi(x) = VF(2)|* < ¢ Va e R

The above assumption is quite standard for the literature on Byzantine robustness (Wu et al., 2020;
Karimireddy et al., 2022; Gorbunov et al., 2023; Allouah et al., 2023). Moreover, some kind of
a bound on the heterogeneity of good clients is necessary since otherwise Byzantine robustness
cannot be achieved in general. In the appendix, all proofs are given under a more general version of

8This quantity is well-suited for sparsification-type compression operators like random sparsification (Stich
et al., 2018) and 1-level £2-quantization (Alistarh et al., 2017). For other compressors, such as quantization with
more than one level (Goodall, 1951; Roberts, 1962), (o is not the main characteristic describing their properties.
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Algorithm 1 Byz-VR-MARINA-PP: Byzantine-tolerant VR-MARINA with Partial Participation

1: Input: vectors z°, g° € R?, stepsize ~, mini-batch size b, probability p € (0, 1], number of
iterations K, (9, c)-ARAgg, clients’ sample size 1 < C' < C' < n, clipping coefficients {c, }r>1
cfork=0,1,..., K —1do
Get a sample from Bernoulli distribution with parameter p: ¢, ~ Be(p)
Sample the set of clients Sy, C [n], |Sk| = C if ¢, = 0; otherwise |Si| = C
Broadcast gk, ¢, to all workers
for i € G N Sy, in parallel do
ohtl = 2% — ygF and A\py1 = apy||2F T — 2
Vfi(karl)’ if Cr = ].,
Set gF 1 = & . N (k1 ok i
g" +clip,, | (Q (Az(x , T ))) , otherwise,

where A; (2%, 2*) is a mini-batched estimator of V f;(z¥+1) — V f;(z¥), Q(-) for i €
G N S, are computed independently
9:  end for

k+1

A A

ol

(o]

ARAgg ({gi ™ Yies,) s ifep =1,

10: bl — ~
g g* + ARAgg <{clipAk+1 (Q (Ai(xk+17xk))> } . > , otherwise
1€S5E

11: end for

Assumption 2.5, see Assumption D.5. Finally, the case of homogeneous data ({ = 0) is also quite
popular for collaborative learning (Diskin et al., 2021b; Kijsipongse et al., 2018a).

The following assumption is classical for the literature on non-convex optimization.

Assumption 2.6 (Smoothness (simplified)). We assume that for all ¢ € G and j € [m] there exists
L > 0 such that f; ; is L-smooth, i.e., for all z,y € R?

IVfii(x) = Vi@l < L]z =yl A3

Moreover, we assume that f is uniformly lower bounded by f* € R, i.e., f* := inf,cpa f(2).

For the sake of simplicity, we do not differentiate between various notions of smoothness in the
main text. However, our analysis takes into account the differences between smoothness constants,
similarity of local functions, and sampling strategy (see Appendix D.1).

Finally, we also consider functions satisfying Polyak-t.ojasiewicz (PL) condition (Polyak, 1963;
Lojasiewicz, 1963). This assumption belongs to the class of assumptions on the structured non-
convexity that allows achieving linear convergence (Necoara et al., 2019).

Assumption 2.7 (PL condition (optional)). We assume that function f satisfies Polyak-Lojasiewicz
(PL) condition with parameter ;1 > 0, i.e., for all z € R there exists f* := inf,cga f(x) such that

IVf@)IP = 20 (f(z) — £7).

3 New Method: Byz-VR-MARINA-PP

We propose a new method called Byzantine-tolerant Variance-Reduced MARINA with Partial Partici-
pation (Byz-VR-MARINA-PP, Algorithm 1). Our method extends Byz-VR-MARINA (Gorbunov
et al., 2023) to the partial participation case via the proper usage of the clipping operator. To illustrate
how Byz-VR-MARINA-PP works, we first consider a special case of full participation.

Special case: Byz-VR-MARINA. If all clients participate at each round (Sx = [n]) and clipping
is turned off (A = +00), then Byz-VR-MARINA-PP reduces to Byz-VR-MARINA that works

as follows. Consider the case when no compression is applied (Q(z) = z) and A;(z*+!, zF) =
V fi (@) — V£ . (2F), where ji, is sampled uniformly at random from [m], i € G. Then,
regular workers compute GeomSARAH/PAGE gradient estimator at each step: fori € G

ki1 [V fi(z*1),  with probability p,

LG + Vi (@) = Vi (2F),  otherwise
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With small probability p, good workers compute full gradients, and with larger probability 1 — p they
update their estimator via adding stochastic gradient difference. To balance the oracle cost of these
two cases, one can choose p ~ /m (for b-size mini-batched estimator — p ~ b/m). Such estimators
are known to be optimal for finding stationary points in the stochastic first-order optimization (Fang
et al., 2018; Arjevani et al., 2023). Next, good workers send gF ™! or Vf; ;, (zF+1) — V f; j, («¥) to
the server who robustly aggregate the received vectors. Since estimators are conditionally biased,
ie., E[ght! | af*1 a¥] £ Vfi(*+1), the additional bias coming from the aggregation does not
cause significant issues in the analysis or practice. Moreover, the variance of {gf“}ieg w.r.t. the
sampling of the stochastic gradients is proportional to ||z**! — 2¥||2 — 0 with probability 1 — p
(due to Assumption D.3) that progressively limits the effect of Byzantine attacks. For a more detailed
explanation of why recursive variance reduction works better than SAGA/SVRG-type variance
reduction, we refer to (Gorbunov et al., 2023). Arbitrary sampling allows the improvement of the
dependence on the smoothness constants. Unbiased communication compression also naturally fits
the framework since it is applied to the stochastic gradient difference, meaning that the variance of
{ gf“ }ieg w.r.t. the sampling of the stochastic gradients and compression remains proportional to
|zE Tt — 2*||2 with probability 1 — p.

New ingredients: client sampling and clipping. The algorithmic novelty of Byz-VR-MARINA-PP
in comparison to Byz-VR-MARINA is twofold: with (typically large) probability 1 — p only C
clients sampled uniformly at random from the set of all clients participate at each round, and clipping
is applied to the corllpressed stochastic gradient differences. With a small probability p, a larger
number’ of clients C' < n takes part in the communication. The main role of clipping is to ensure
that the method can withstand the attacks of Byzantines when they form a majority or, more precisely
when there are more than 6C Byzantine workers among the sampled ones. Indeed, without clipping
(or some other algorithmic changes) such situations are critical for convergence: Byzantine workers
can shift the method arbitrarily far from the solution, e.g., they can collectively send some vector
with the arbitrarily large norm. In contrast, Byz-VR-MARINA-PP tolerates any attacks even when
all sampled clients are Byzantine workers since the update remains bounded due to the clipping. Via
choosing Ay 41 ~ ||[2**! — 2¥|| we ensure that the norm of transmitted vectors decreases with the
same rate as it does in Byz-VR-MARINA with full client participation. Finally, with probability 1 — p
regular workers can transmit just compressed vectors and leave the clipping operation to the server
since Byzantines can ignore clipping operation.

4 Convergence Results

We define G, = G N S and G = |G¢| and () = gty represents the binomial coefficient. We
also use the following probabilities:

G\ (n—G
pa =Prob {G& > (1-0)C} = Y _sor<i<c %

1z e} c = npa [1-s)c1<t<c =)

These probabilities naturally appear in the analysis and statements of the theorems. When c;, = 0,
then server samples C' clients, and two situations can appear: either G’é is at least (1 — 0) C' meaning

that the aggregator can ensure robustness according to Definition 2.1 or G’g < (1 —0) C. Probability
pg is the probability of the first event, and the second event implies that the aggregation can be spoiled
by Byzantine workers (but clipping bounds the “harm”). Finally, we use ng in the computation of
some conditional expectations when the first event occurs. The mentioned probabilities can be easily
computed for some special cases. For example, if C' = 1, then pg = &/n and ng = 1/g;if C = 2,

then pg = G(G=1)/n(n-1) and ng = 2/g; finally, if C' = n, then p = 1 and ng =1.

The next theorem is our main convergence result for general unbiased compression operators.

7As one can see from our analysis, it is sufficient to take C > max{1, %ean/s} similarly to (Data and Diggavi,
2021). However, in contrast to the approach from Data and Diggavi (2021), Byz-VR-MARINA-PP requires
such communications only with small probability p.
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Theorem 4.1. Let Assumptions 2.3, 2.5, 2.6 hold, A\p11 = 2L ||gck‘|r1 — ka, and
max{1, dran/s}. Assume that 0 < vy < 1/£(1+VA), where constant A is defined as

32pcGPgr, 16(1 — pe)(1 + 4F3)
200 (30w + 11) (1 + 2¢6) + o . 4)

Then for all K > 0 the iterates produced by Byz-VVR-MARINA-PP (Algorithm 1) satisfy

~K) |2 29° 4D¢?
E [HW @)l } SRy T o )
. 257) k — ~ Y ~ 'ng G
where D = 50 (G%G +p) + D, where D = 0 when C =n, D = - 5)6 when C = n, and TX
is chosen uniformly at random from 2° ', ... 2%, and ®° = f (ﬂco) — [+ 2% ||g0 - Vf (wo) H .

If, in addition, Assumption 2.7 holds and 0 < ~v < 1/£(1+v24), then for all K > 0 the iterates
produced by Byz-VR-MARINA-PP (Algorithm 1) with p = min {7/1, %} satisfy

E[f (#5) = £ (@9)] < (1 - p) @0 + 222, ©6)
where ®° = f (2°) — f* + % ||90 v (xO)HQ.

The above theorem establishes similar guarantees to the current SOTA ones obtained for Byz-VR-
MARINA. That is, in the general non-convex case, we prove O(1/k) rate, which is optimal (Arjevani
et al., 2023), and for PL-functions we derive linear convergence result to the neighborhood depending
on the heterogeneity. The size of this neighborhood matches the one derived for Byz-VR-MARINA
by Gorbunov et al. (2023). However, since our result is obtained considering the challenging scenario
of partial participation of clients, the maximal theoretically allowed stepsize in our analysis of
Byz-VR-MARINA-PP is smaller than the one from (Gorbunov et al., 2023).

In particular, the second term in the constant A appears due to the partial participation, and the
whole expression for A is proportional to 1/p®. In contrast, a similar constant A from the result for
Byz-VR-MARINA is proportional to 1/p, which can be noticeably smaller than 1/p2. Indeed, to make
the expected number of clients participating in the communication round equal to O(C'), to make
the expected number of stochastic oracle calls equal to O(b), and to make the expected number
of transmitted components for each worker taking part in the communication round equal O({g),
parameter p should be chosen as p = min{C/n, b/m, Ce/a}, where the latter term in the minimum
often equals to ©(1/(w+1)) (Gorbunov et al., 2021). Therefore, in some scenarios, p can be small.

Next, in the special case of full participation, we have C = 5 =n, pg = ng = 1, meaning
that A = ©((1+w)(1+¢8)/p2) for Byz-VR-MARINA-PP. In contrast, the corresponding constant for
Byz-VR-MARINA is of the order ©((1+w)/pn + (14+w)ed/p?), which is strictly better than our bound.
In this special case, we do not recover the result for Byz-VR-MARINA.

Such a complexity deterioration can be explained as follows: the presence of clipping introduces
additional technical difficulties in the analysis, resulting in a reduced step size compared to Byz-VR-
MARINA, even when C' = C' = n. To achieve a more favorable convergence rate, particularly in
scenarios of complete participation, we also establish the results under Assumption 2.4.

Theorem 4.2. Let Assumptions 2.3, 2.4, 2.5, 2.6 hold, \gy1 = DoL ||a* — ¥ |, and C >
max{1,%xan/s}. Assume that 0 < y < 1/c(1+v/A), where constant A equals

_ 4paGPgy (w2 L B(5w + )ed) | 8(1 —pc)(2+ F3D3) .

p(1—0)C \(1—-46)C D p? '

Then for all K > 0 the iterates produced by Byz-VVR-MARINA-PP (Algorithm 1) satisfy

o~ 2 2¢° 2D
E[IVF @] < 78 + 25 ®
~ 26?9’2 ~ ~ P k G
where D = ——¢ (6CG+p)—|—D where D = 0 when C =n, D = i 6)0 whenC—n and T

is chosen uniformly at random from z°, 2", ... ¥, and ®° (xo) — % ||gO -Vf (9:0) || .
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If, in addition, Assumption 2.7 holds and 0 < ~v < 1/c(1+v24), then for all K > 0 the iterates
produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy with p = min {’y,u, %}

E[f (%) £ (27)] < (1 - p)" @° + 252, ©)

where ®° = f (mo) -+ 2?7 Hgo -Vf (xo)Hz'

With Assumption 2.4, vectors { Q(A; (z*+1, *))}icgs, can be upper bounded by Do £ ||+ — z*||.
Using this fact, one can take the clipping level sufficiently large such that it is turned off for the
regular workers. This allows us to simplify the proof and remove 1/p factor in front of the terms not
proportional to § or to 1 — p¢ in the expression for A that can make the stepsize larger. However,
the second term in (7) can be larger than (4), since it depends on potentially large constant Dg,.
Therefore, the rates of convergence from Theorems 4.1 and 4.2 cannot be compared directly. We also
highlight that the clipping level from Theorem 4.2 is in general larger than the clipping level from
Theorem 4.1 and, thus, it is expected that with full participation Theorem 4.2 gives better results
than Theorem 4.1: the bias introduced due to the clipping becomes smaller with the increase of the
clipping level. However, in the partial participation regime, the price for this is a decrease of the
stepsize to compensate for the increased harm from Byzantine clients in situations when they form a
majority. Further discussion of the technical challenges we overcame is deferred to Appendix E.3.

Nevertheless, in the case of full participation, we have C' = C = n, pg = Pgé = Pge =1,
C

meaning that A = ©((1+w)/pn + (1+w)cd/p?) in Theorem 4.2. That is, in this case, we recover the

result of Byz-VR-MARINA. More generally, if pc = 1, which is equivalent to C' > max{1, éxan/s},

then Pgr = Prob{i € G&} = min{1,¢/c}, Pgx = Prob{i € gg} = min{1,%/c} and we
C

have A = O((1+w)/pc 4 (1+w)ed/p?). Here, the first term in A is »/c worse than the corresponding
term for Byz-VR-MARINA. However, the second term in A matches the corresponding term for
Byz-VR-MARINA. Moreover, this term is the main one if ¢0 > »/c, which is typically the case since
parameter p is often small (p = min{C/&,/m, ¢e/a}). In such cases, Byz-VR-MARINA-PP has the
same rate of convergence as Byz-VR-MARINA while utilizing, on average, just O(C) workers at
each step in contrast to Byz-VR-MARINA that uses n workers at each step. That is, in some cases,
partial participation is provably beneficial for Byz-VR-MARINA-PP.

Byz-VR-MARINA+: simplified version of Byz-VR-MARINA. In Appendix F, we propose a
simplified version of Byz-VR-MARINA called Byz-VR-MARINA+ (Algorithm 3). The only dif-
ference is related to Line 10 of the method: when ¢, = 0, Byz-VR-MARINA+ computes just the
average of {clip/\kJrl (Q (Ai(xk“, x’“))) } s instead of robust aggregation, while keeps using
ARAgg when c;, = 1. Of course, when ¢, = 0 and at least one Byzantine worker is sampled, then
the step can be useless, but the “harm” of this step is bounded due to the clipping. However, in
certain regimes (e.g., when C' is small enough and the number of Byzantine workers is much smaller
than the number of regular workers), the probability of sampling only regular workers is larger than
sampling at least one Byzantine worker when ¢, = 0, meaning that with high enough probability the
resulting estimator has no additional bias coming from the robust aggregation. We formally analyze
Byz-VR-MARINA+ and show that such a modification of the method leads to better theoretical
results (especially when C' is small). In particular, in the settings of Theorem 4.2, we prove that
Byz-VR-MARINA+ exhibits the same O(1/k) rate but converges to O(1/p) smaller neighborhood

when C' = n, i.c., the neighborhood term for Byz-VR-MARINA+ is optimal (Karimireddy et al.,

2022; Allouah et al., 2024b). Moreover, our results for Byz-VR-MARINA+ allow larger stepsizes
when C' is small enough. For further details and complete proofs, we refer to Appendix F.

Extensions without full-batch gradient computations. The proposed methods — Byz-VR-
MARINA and Byz-VR-MARINA+ — have a common limitation related to the full-batch gradient
computation with probability p. Although this probability is typically small, even one full-gradient
computation can be very expensive for certain problems. To address this issue, we propose the modifi-
cations of Byz-VR-MARINA and Byz-VR-MARINA+ without full-batch gradient computations at all
(see Algorithms 4 and 5 in Appendix G). That is, these modifications differ from Byz-VR-MARINA
and Byz-VR-MARINA+ in Line 8 only: when ¢, = 1, every good worker ¢ from S}, computes

and sends to the server b'-size mini-batched stochastic gradient estimator V f; (z*1) of V f; (25 +1).
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Figure 1: The optimality gap f(z*) — f(z*) for 3 different scenarios. We use coordinate-wise mean
with bucketing equal to 2 as an aggregation and shift-back as an attack. We use the a9a dataset,
where each worker accesses the full dataset with 15 good and 5 Byzantine workers. We do not use
any compression. In each step, we sample 20% of clients uniformly at random to participate in the
given round unless we specifically mention that we use full participation. Left: Linear convergence
of Byz-VR-MARINA-PP with clipping versus non-convergence without clipping. Middle: Full
versus partial participation, showing faster convergence with clipping. Right: Clipping multiplier A
sensitivity, demonstrating consistent linear convergence across varying A values.

Under the additional assumption that the variance of V f;(2*+1) is uniformly bounded by ¢/&’, which
is a standard assumption for variance-reduced methods without full-batch gradient computations
(Fang et al., 2018; Cutkosky and Orabona, 2019; Li et al., 2021; Gorbunov et al., 2021), we prove that
both methods converge similarly as in the case of the (periodical) full-batch gradient computations

but to the neighborhood having an additional term proportional to (05 + Pg 5 G/ 62) o* /. For further
details and complete proofs, we refer to Appendix G.

Heuristic extension of Byz-VR-MARINA-PP. 1In this short remark, we illustrate how the proposed
clipping technique can be applied to a general class of Byzantine-robust methods to adapt them to
the case of partial participation. Consider the methods having the following update rule: 21 =
a* —~ - Agg({gF }icn)), where {gF} ;e[ are the vectors received from workers at iteration k and
Agg is some aggregation rule. A vast majority of existing Byzantine-robust methods fit this scheme.
In the case of partial participation of clients, we propose to modify the scheme as follows:

2FHl =2k — gk where ¢F == gF ! 4 Agg ({clipxk (9f - gk_l)}iesk) ) (10)

where Sy, C [n] is a subset of clients participating in round & and {Ax } x>0 is sequence of clipping
parameters specified by the server. In particular, Byz-VR-MARINA-PP can be seen as an application
of scheme (10) to Byz-VR-MARINA (up to a minor modification when ¢, = 1 in Byz-VR-MARINA)
with Mg 1 = AJz*+L — 2¥||. We suggest to use \y11 = A||z**1 — 2| with tunable parameter
A > 0 for other methods as well.

5 Numerical Experiments

Firstly, we showcase the benefits of employing clipping to remedy the presence of Byzantine workers
and partial participation. For this task, we consider the standard logistic regression model with
ly-regularization, i.e., f; j(x) = —y; log(h(x,ai;)) — (1 — yi ;) log(1l — h(z,a;;)) + nllz|?,
where y; ; € {0,1} is the label, a; ; € R represents the feature vector, 7 is the regularization
parameter, and h(z,a) = 1/(1+e~*' =). This objective is smooth, and for 1 > 0, it is also strongly
convex, satisfying the PL-condition. We consider the a9a LIBSVM dataset (Chang and Lin, 2011)
and set 7 = 0.01. In the experiments, we focus on an important feature of Byz-VR-MARINA-PP: it
has linear convergence for homogeneous datasets across clients even in the presence of Byzantine
workers and partial participation, as shown in Theorems 4.1 and 4.2.

To demonstrate this experimentally, we consider the setup with 15 good workers and 5 Byzantines,
each worker can access the entire dataset, and the server uses coordinate-wise median with bucketing
as the aggregator (see also Appendix C). For the attack, we propose a new attack that we refer to as
the shift-back attack, which acts in the following way. If Byzantine workers are in the majority in the
current round k, then each Byzantine worker sends z° — z*. Otherwise, they follow protocol and act
as benign workers. Further experimental details are deferred to Appendix H.
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Figure 2: Training loss of 2 aggregation rules (CM, RFA) under 2 attacks (BF, SHB) on the MNIST
dataset under heterogeneous data split with 20 clients, 5 of which are malicious. Additional experi-
ments on CIFAR10 are provided in Appendix H.

We compare our Byz-VR-MARINA-PP with its version without clipping. We note that the setup
that we consider is the most favorable in terms of minimized variance in terms of data and gradient
heterogeneity. We show that even in this simplest setup, the method without clipping does not
converge since there is no method that can withstand the Byzantine majority. Therefore, any more
complex scenario would also fall short using our simple attack. On the other hand, we show that
once clipping is applied, Byz-VR-MARINA-PP is able to converge linearly to the exact solution,
complementing our theoretical results.

Figure 1 showcases these observations. On the left, we can see Byz-VR-MARINA-PP converges
linearly to the optimal solution, while the version without clipping remains stuck at the starting point
since Byzantines are always able to push the solution back to the origin since they can create the
majority in some rounds. In the middle plot, we compare the full participation scenario in which
all the clients participate in each round, which does not require clipping since, in each step, we are
guaranteed that Byzantines are not in the majority, to partial participation with clipping. We can see,
when we compare the total number of computations (measured in epochs), Byz-VR-MARINA-PP
leads to faster convergence even though we need to employ clipping. Finally, in the right plot, we
measure the sensitivity of clipping multiplier \. We can see that Byz-VR-MARINA-PP is not very
sensitive to A in terms of convergence, i.e., for all the values of A, we still converge linearly. However,
the suboptimal choice of A leads to slower convergence.

Furthermore, we also realize that other attacks and more complicated experiments could potentially
damage clipping more than methods not using clipping. Therefore, we provide additional experiments
with neural networks and different attacks in heterogeneous settings. For our experimental setup,
we follow (Karimireddy et al., 2021). However, when working with neural networks, the choice of
standard variance reduction is not effective (Defazio and Bottou, 2019). Therefore, we use Byzantine
Robust Momentum SGD (Karimireddy et al., 2021) as an underlying optimization method; see (10).

We consider the MNIST dataset (LeCun and Cortes, 1998) with heterogeneous splits with 20 clients,
5 of which are malicious. For the attacks, we consider A Little is Enough (ALIE) (Baruch et al.,
2019), Bit Flipping (BF), and aforementioned Shift-Back (SHB). For the aggregations, we consider
coordinate median (CM) (Chen et al., 2017) and robust federated averaging (RFA) (Pillutla et al.,
2022) with bucketing.

From Figure 2, we can see that clipping does not lead to performance degradation. On the contrary,
clipping performs on par or better than its variant without clipping. Furthermore, we can see that no
robust aggregator is able to withstand the shift-back attack without clipping.

6 Conclusion and Future Work

This work makes an important step in the direction of achieving Byzantine robustness under the
partial participation of clients. However, some important questions remain open. First of all, it will
be interesting to understand whether the derived bounds can be further improved in terms of the
dependence on w, m, and C'. Next, it would be interesting to rigorously prove that our heuristic works
for SGD with client momentum (Karimireddy et al., 2021, 2022) and other Byzantine-robust methods.
Finally, studying other participation patterns (non-uniform sampling/arbitrary client participation) is
also a very prominent direction for future research.
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A Extra Related Work

Further Comparison with Data and Diggavi (2021). As we mention in the main text, Data and
Diggavi (2021) assume that 3B is smaller than C'. More precisely, Data and Diggavi (2021) assume
that B < eC, where € < % — ¢’ for some parameter ¢ > 0 that will be explained later. That is, the
results from Data and Diggavi (2021) do not hold when C' is smaller than 3B, and, in particular,
their algorithm cannot tolerate the situation when the server samples only Byzantine workers at some
particular communication round. We also notice that when C' > 4B, then existing methods such as
Byz-VR-MARINA (Gorbunov et al., 2023) or Client Momentum (Karimireddy et al., 2021, 2022)
can be applied without any changes to get a provable convergence.

Next, Data and Diggavi (2021) derive the upper bounds for the expected squared distance to the
solution (in the strongly convex case) and the averaged expected squared norm of the gradient (in
the non-convex case), where the expectation is taken w.r.t. the sampling of stochastic gradients

only and the bounds itself hold with probability at least 1 — % exp (—6/2(117:)0), where H is the

number of local steps. For simplicity consider the best-case scenario: { = 1 (local steps deteriorate
the results from Data and Diggavi (2021)). Then, the lower bound for this probability becomes
negative when either C' is not large enough or when K is large or when ¢ is close to %, e.g., for

K=100e=¢ = %, C = 5000 this lower bound is smaller than —720, meaning that in this case,
the result does not guarantee convergence. In contrast, our results have classical convergence criteria,
where the expectations are taken w.r.t. the all randomness.

Finally, the bounds from Data and Diggavi (2021) have non-reduceable terms even for homogeneous

. 2 . .
data case: these terms are proportional to -, where o2 is the upper bound for the variance of the
stochastic estimator on regular clients and b is the batchsize. In contrast, our results have only
decreasing terms in the upper bounds when the data is homogeneous.

Byzantine robustness. There exist various approaches to achieving Byzantine robustness (Lyu
et al., 2020). Alistarh et al. (2018); Allen-Zhu et al. (2021) rely on the concentration inequalities for
the stochastic gradients with bounded noise to iteratively remove them from the training. Karimireddy
et al. (2021) formalize the definition of robust aggregation and propose the first provably robust
aggregation rule called CenteredClip and the first provably Byzantine robust method under bounded
variance assumption for homogeneous problems, i.e., when all good workers share one dataset. In
particular, the method from (Karimireddy et al., 2021) uses client momentum on the clients that helps
to memorize previous steps for good workers and withstand time-coupled attacks. This approach is
extended by He et al. (2022) to the setup of decentralized learning. Allouah et al. (2023) develop
an alternative definition for robust aggregation and propose a new aggregation rule satisfying their
definition. Karimireddy et al. (2022) generalize these results to the heterogeneous data case and derive
lower bounds for the optimization error that one can achieve in the heterogeneous case. Based on the
formalism from Karimireddy et al. (2021), Gorbunov et al. (2022) propose a server-free approach
that uses random checks of computations and bans of peers. This trick allows the elimination of all
Byzantine workers after a finite number of steps on average. There are also many other approaches,
e.g., one can use redundant computations of the stochastic gradients (Chen et al., 2018; Rajput et al.,
2019) or introduce reputation metrics (Rodriguez-Barroso et al., 2020; Regatti et al., 2020; Xu and
Lyu, 2020) to achieve some robustness, see also a recent survey by Lyu et al. (2020).

Variance reduction. The literature on variance-reduced methods is very rich (Gower et al., 2020).
The first variance-reduced methods are designed to fix the convergence of standard Stochastic Gradient
Descent (SGD) and make it convergent to any predefined accuracy even with constant stepsizes. Such
methods as SAG (Schmidt et al., 2017), SVRG (Johnson and Zhang, 2013), SAGA (Defazio et al.,
2014) are developed mainly for (strongly) convex smooth optimization problems, while methods like
SARAH (Nguyen et al., 2017), STORM (Cutkosky and Orabona, 2019), GeomSARAH (Horvéth
et al., 2023), PAGE (Li et al., 2021) are designed for general smooth non-convex problems. In
this paper, we use GeomSARAH/PAGE-type variance reduction as the main building block of the
method that makes the method robust to Byzantine attacks.

Partial participation and client sampling. In the context of Byzantine-robust learning, there exists

one work that develops and analyzes the method with partial participation (Data and Diggavi, 2021).
However, this work relies on the restrictive assumption that the number of participating clients at each
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round is at least three times larger than the number of Byzantine workers. In this case, Byzantines
cannot form a majority, and standard methods can be applied without any changes. In contrast, our
method converges in more challenging scenarios, e.g., Byz-VR-MARINA-PP provably converges
even when the server samples one client, which can be Byzantine. The results from Data and Diggavi
(2021) have some other noticeable limitations that we discuss in Appendix A.

Communication compression. The literature on communication compression can be roughly
divided into two huge groups. The first group studies the methods with unbiased communication
compression. Different compression operators in the application to Distributed SGD/GD are studied
in (Alistarh et al., 2017; Wen et al., 2017; Khirirat et al., 2018). To improve the convergence rate by
fixing the error coming from the compression Mishchenko et al. (2019) propose to apply compression
to the special gradient differences. Multiple extensions and generalizations of mentioned techniques
are proposed and analyzed in the literature, e.g., see (Horvath et al., 2023; Gorbunov et al., 2021; Li
et al., 2020; Qian et al., 2021; Basu et al., 2019; Haddadpour et al., 2021; Sadiev et al., 2022; Islamov
et al., 2021; Safaryan et al., 2022).

Another large part of the literature on compressed communication is devoted to biased compression
operators (Ajalloeian and Stich, 2020; Demidovich et al., 2023). Typically, such compression
operators require more algorithmic changes than unbiased compressors since naive combinations
of biased compression with standard methods (e.g., Distributed GD) can diverge (Beznosikov et al.,
2020). Error feedback is one of the most popular ways of utilizing biased compression operators in
practice (Seide et al., 2014; Stich et al., 2018; Vogels et al., 2019), see also (Richtarik et al., 2021;
Fatkhullin et al., 2021) for the modern version of error feedback with better theoretical guarantees for
non-convex problems.

In the context of Byzantine robustness, methods with communication compression are also studied.
The existing approaches are based on aggregation rules based on the norms of the updates (Ghosh
et al., 2020, 2021), SignSGD and majority vote (Bernstein et al., 2019), SAGA-type variance
reduction coupled with unbiased compression (Zhu and Ling, 2021), and GeomSARAH/PAGE-type
variance reduction combined with unbiased compression (Gorbunov et al., 2023).

Gradient clipping. Gradient clipping has multiple useful properties and applications. Originally it
was used by Pascanu et al. (2013) to reduce the effect of exploding gradients during the training of
RNNSs. Gradient clipping is also a popular tool for achieving provable differential privacy (Abadi
et al., 2016; Chen et al., 2020), convergence under generalized notions of smoothness (Zhang et al.,
2020a; Mai and Johansson, 2021) and better (high-probability) convergence under heavy-tailed
noise assumption (Zhang et al., 2020b; Nazin et al., 2019; Gorbunov et al., 2020; Sadiev et al.,
2023; Nguyen et al., 2023). In the context of Byzantine-robust learning, gradient clipping is also
utilized to design provably robust aggregation (Karimireddy et al., 2021). Our work proposes a novel
useful application of clipping, i.e., we utilize clipping to achieve Byzantine robustness with partial
participation of clients.

Byzantine-robust asynchronous methods. Byzantine-robust asynchronous methods are also
very relevant to the problem of partial participation in the Byzantine-robust learning. Indeed, the
asynchronous methods like Asynchronous SGD (Agarwal and Duchi, 2011; Nedi¢ et al., 2001)
naturally have partial participation since whenever some worker finishes the computation (of the
stochastic gradients), this worker immediately sends the update to the server and the server applies
this update without waiting all other clients. However, without extra assumptions asynchronous
methods cannot be tolerate Byzantine attacks: Byzantine clients could immediately send any vector
to the server to guarantee that their update is received earlier than the updates from regular clients.
Clearly, such a behavior of Byzantine workers leads to the divergence of the method unless the server
has additional information that can be used for acceptance/rejection of the update or some other
alternation of the communication protocol preventing the situations when some client updates the
model too many times in a row is applied.

Therefore, the existing approaches addressing this important problem rely on extra assumptions.
Damaskinos et al. (2018) propose to use Lipschitz filter and frequency filters in order to filter out
Byzantine workers. Next, Xie et al. (2020b); Fang et al. (2022) use additional validation data on the
server to decide whether to accept the update from workers. This assumption is restrictive for many
FL applications when the data on clients is private and is not available on the server. Yang and Li
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(2023) propose so-called BASGD (and its momentum version) where the key idea is to split workers
into the buffers and wait until each buffer gets at least one gradient update. In the case when the
number of buffers is sufficiently large (at least 25, where B is the number of Byzantine workers), the
authors show that BASGD converges. However, this means that to make the step BASGD requires
to collect sufficiently large number of gradients such that the good buffers form majority, which is
closer to full participation than to the partial participation in the worst case.

We emphasize that in our work we consider a different setup of synchronous communications with
partial participation. The approaches discussed in the above paragraph cannot be directly applied to
the problem considered in this paper without extra assumptions.
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B Useful Facts

For all a,b € R? and a > 0,p € (0, 1] the following relations hold:

2(a, b) = llall* + [b]* — lla — b]>
la+bl* < (1 + e)flall* + (1 +a~") bl

1 1
—lla = b|* < ————lla]]* + 5Hb||2,

- 14«
10 (42)

IN

1-— p=>0

2’

p p p
1-p) (1+8) (1+2) <12 p=0.
A-p)(1+35)(1+7)=s1-7 »20
Lemma B.1. (Lemma 5 from (Richtdrik et al.,, 2021)). Let a,b > 0. If0 < v < \/El+b’
ay? + by < 1. The bound is tight up to the factor of 2 since \/Eler < min {ﬁ, %} < \/52+b.
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C Justification of Assumption 2.3

Algorithm 2 Bucketing Algorithm (Karimireddy et al., 2022)

Input: {z1,...,2,}, s € N - bucket size, Aggr — aggregation rule
Sample random permutation = = (w(1),...,m(n)) of [n]
mln{sz n}

Compute y; = 3 >3 7)) ) @rry fori =1, [7/s]
Return: 7 = Aggr(yl, . ,y[n/ﬂ)

v e

Krum and Krum o Bucketing. Krum aggregation rule is defined as

Krum(zy,...,z,) = argmin Z lz; — =i,
z; €{x1,..., z"}jES
where S; C {x1,...,z,} is the subset of n — B — 2 closest vectors to z;. By definition,
Krum(zy,...,z,) € {xl,...,xn} and, thus ||[Krum(zy,...,2,)|| < maxcp ||z, ie., As-

sumption 2.3 holds with F4 = 1. Since Krum o Bucketlng applies Krum aggregatlon to av-

erages y; over the buckets and ||y;|| < % Zflz{fz 711} 1

|[Krum o Bucketing(z1, . .., 2, )| < max;c, H%H

el < max;epy ||z, we have that

Geometric median (GM) and GM o Bucketing. Geometric median is defined as follows:

GM(z1,...,2y) = argmlnz [l — . (16)
z€R? 7
One can show that GM(zy,...,z,) € Conv(zy,...,z,) = {z € R | z =
Yo, oy for some g, ..., > 1suchthat Y " | a; = 1}, ie., geometric median belongs to the
convex hull of the inputs. Indeed, let GM(z1, ..., z,) = ¢ = & + &, where & is the projection of z
on Conv(zy,...,x,) and & = x — &. Then, the optimality condition implies that ( — z,y — &) > 0
for all y € Conv(zy,...,2y,). In particular, for all i € [n] we have ( — z,z; — &) > 0. Since
1 1 1
p—wai—d) = (B&-a) = g|E+a -l o - L aif?

1
= Sle— il = Sl - 5l — o)

1
< Slla—ail - 50—l

we get that ||z — ;|| > ||& — 2;]| for all ¢ € [n] and the equality holds if and only if & = 0.
Therefore, argmin from (16) is achieved for x such that = &, meaning that GM(z1,...,z,) €
Conv(zy, ..., x,). Therefore, there exist some coefficients 1, . .., ay, > 0 such that Z" jop=1
and GM(x1, ..., 2,) = >+, oyx;, implying that
IGM (21, .., 2) || < ail|a] < maXHffzII
i=1

That is, GM satisfies Assumption 2.3 with F'4 = 1. Similarly to the case of Krum o Bucketing, we
also have [|GM o Bucketing(x1, ..., 2, )| < max;ep,) [|z;]|.

Coordinate-wise median (CM) and CM o Bucketing. Coordinate-wise median (CM) is formally
defined as

CM(z1,...,2n) = argmlnz le — xi||1, (17
z€R? 7
where || - || denotes ¢;-norm. This is equivalent to geometric median/median applied to vectors
z1,...,Z, component-wise. Therefore, from the above derivations for GM we have
ICM (@1, s zn)lloo = max oo,
€[n]
||[CM o Bucketing(z1, ..., Tn)||oo < rréz[u]( 1 || oo
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where || - || oo denotes £.-norm. Therefore, due to the standard relations between ¢5- and £.-norms,
i, |lalle < |lall < Vd|a||s for any a € R%, we have

[CM(z1,...,2,)| < Vdmax |z,
i€[n]

||ICM o Bucketing(z1, ..., z,)|| < ﬂm?)]( [l |l
i€ln

i.e., Assumption 2.3 is satisfied with F 4 = V.
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D General Analysis

D.1 Refined Assumptions

For simplicity, in the main part of our paper, we present simplified versions of our main results.
However, our analysis works under more general assumptions presented in this section.

Assumption on 6 In all the results of this paper, we assume that n > 6’ > max{1, d=n/s}. This
condition ensures that the robust aggregation makes sense when ¢, = 1, i.e., at least 1 — & proportion
of sampled workers are not Byzantine ones when ¢, = 1.

Refined smoothness. The following assumption is classical for the literature on non-convex
optimization.

Assumption D.1 (L-smoothness). We assume that function f : R? — R is L-smooth, i.e., for all

x,y € R we have

IVf(z) = VWl < Lz -yl (18)
Moreover, we assume that f is uniformly lower bounded by f* € R, i.e., f* := inf cga f(z). In
addition, we assume that f; is L;-smooth for all i € G, i.e., for all 2,y € R

IVfi(x) = Vi)l < Liflz = yll. (19)

We notice here that (19) implies L-smoothness of f with L < é ZZ cG L;, i.e., smoothness constant
of f can be better than the averaged smoothness constant of the local loss functions on the regular
clients.

Following Gorbunov et al. (2023), we consider refined assumptions on the smoothness.

Assumption D.2 (Global Hessian variance assumption (Szlendak et al., 2022)). We assume that
there exists L1 > 0 such that for all z,y € R4

1
& 2 IVFi@) = VEQI® = IVF(@) = VI)I® < Lz -yl (20)
i€g
We notice that (19) implies (20) with L1 < max;cg L;. Szlendak et al. (2022) prove that L4 satisfies
the following relation: L2, — L? < L3 < L2, where L2, := £ Y., L7. In particular, it is

. 4 avg’ :
possible that L1 = 0 even if the data on the good workers is heterogeneous.

Assumption D.3 (Local Hessian variance assumption (Gorbunov et al., 2023)). We assume that there
exists £+ > 0 such that for all 2,y € R?

1 ~ 2 [ 9
& L E|Aiwy) - A y)| < ol - ol e
i€g
where A;(z,y) := V fi(z) — Vf;(y) and A, (, y) is an unbiased mini-batched estimator of A;(z, y)
with batch size b.

This assumption incorporates considerations for the smoothness characteristics inherent in all func-
tions { f; j}icg,je[m)- the sampling policy, and the similarity among the functions { f; ; }icg,jecim)-
Gorbunov et al. (2023) have demonstrated that, assuming smoothness of { f; ;}icg,je[m]» Assump-
tion D.3 holds for various standard sampling strategies, including uniform and importance samplings.
For part of our results, we also need to assume smoothness of all { f; ; }icg, je[m] explicitly.
Assumption D.4 (Smoothness of f; ; (optional)). We assume that for all i € G and j € [m] there
exists L; ; > 0 such that f; ; is L; j-smooth, i.e., forall z,y € R4

IV fij(x) = Vil < Lijlle =yl (22)

Refined heterogeneity. Instead of Assumption 2.5, we consider a more generalized one.

Assumption D.5 ((B, (?)-heterogeneity). We assume that good clients have (B7 ¢ 2) -heterogeneous
local loss functions for some B > 0, > 0, i.e.,

LS VA e) — VH@)I < BIVA@IE 4 Vo e RS
i€G
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When B = 0, the above assumption recovers Assumption 2.5. However, it also covers some situations
when the model is over-parameterized (Vaswani et al., 2019) and can hold with smaller values of (2.
This assumption is also used in (Karimireddy et al., 2022; Gorbunov et al., 2023).

D.2 Technical Lemmas

Lemma D.6. Let X be a random vector in R% and X = clip, (X). Assume that E[X] = z € R
and ||z|| < \/2, then

E [Hf( - x||2] <10E | X —z|?.

Proof. The proof follows a similar procedure to that presented in Lemma F.5 from (Gorbunov et al.,
2020). To commence the proof, we introduce two indicator random variables:

_1 _ L XA 1, WX -2 >3
XZHXIXIZAY =0, otherwise  * T H{XiIX=al>3} T (0, otherwise '

/2

Moreover, since | X || < ||z]| + || X — :1:|| 2 + ||X — 2|, we have x < . Using that we get

§

)?:min{ } WX—F( - x)X.
2
=3

By Markov’s inequality,

E X —
=P {1 ol > 5} - e
Using | X — 2| < || X|| + ||z] < A+3=

EHX—ﬂ}=EJW—vaHﬁ—xWO—m}

2 2 4 2
X —zf?> }< SE[IX -2 (23)

, we obtain

2

=E |x

X —=x

Ik
<E XQ“QHXWHWD2+<X—$WO—Xﬂ

lel<3 30\ 2
< (E X <2> + ||X_33||2]> ,

where in the last inequality we applied 1 — x < 1. Using (23) and x < 7 we get

X —al?(1 - x)]

v 2 9A? ? 2
E (1% - o] < 25 (5) E1X - al?) + E[1X - 2]
< 10E [ X — 7.
O
Lemma D.7 (Lemma 2 from Li et al. (2021)). Assume that function f is L-smooth (Assumption D.1)
and £F 1 = 2% — yg*. Then

T <76 - 3197 @I - (35 -5 ) It =1+ et - 91 )

Lemma D.8. Let Assumptions D.1, D.2, D.3 hold and the Compression Operator satisfy Definition 2.2.
Let us define "ideal” estimator:

Gk > Vfi(z k+1) e =1, [1]

1690
gt =< g"+ Vf( k“) Vi (), cn =0and Gf, < (1-6)C, 2]
gk + Gk > clipy ( (ﬁz k+1 xk )) , e =0and GE > (1-96)C. [3]

ZGQO
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Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

A, Mgkﬂ v (l,k+1)||2]

< (=) (1) B[l = VAEH]] + 'PC)E[BW( P+ ¢

4 2 ngn
+ (1 -p)pc <1 + 7> CC (IOwL + (10w + 1)L +

10(w + 1)£3
—— = B[l -],

where p; = Prob {Gg, > 6)C} and Pgr, = Prob {iegé|Ge>(1-6)C}.

Proof. Let us examine the expected value of the squared difference between ideal estimator and full
gradient:

Ay =E [[¢"" = V1 ()]
=B [B [Jg* - Vs )]

2

= (1-p)pcE |Ey | ||g" + 7]5 Zezgzo clipy ( (31 (xkﬂvf”k))) — Vf (a5) | [3]
2
+ (1)1~ pe)E B [llg* — V7] 112)] + 2B || 5 30 VG - Vit

C' zEgl‘

Using (12) and V f (xk) - Vf (xk) = 0 we obtain
2

B, =E |Eg

=E [Ek

<1+ DYl - v @)
+(1+%>]E ]Ek|:

- (1+2) [l - s

g* + — Z clip, ( (31 (xk“,xk))) - Vf (ka)

zEgc

| (3]

)
)]

2

¢ gr e (@8 () - v () £ 9 () - v ()
icgk

G% Z clip, (Q (31 (1k+17xk))) - (Vf(;vk+1) - Vf(wk))

*(”i)ﬁ o Hlechm (Q(Birahy)) — Ay | 113)] -

C iegk,

Let us consider the last part of the inequality:

B, =E |Ex

Z clip, ( (31 (xk“,ack))) - A (mk+1,xk)

zEg’”

=FE |Eg, |Es Hle Z clip, (Q (&' (l.k—&-l,xk))) — A (21, 2%
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Note that G% > (1 — §)C in this case:

. 1
&SWJFFJZM{

i€gg,

i (05 ()= ] ]|

< g [ ] [ (08 (4.0 -2 ()16
e [ o [l (o(3 (#+))) -a () 1]

where Zgy is an indicator function for the event {i € G¢ | G& > (1—0)C} and Pgy

Prob {i € G& | G& > (1 — ) C} is probability of such event. Note that Eg, {Igg} Pk -
case of uniform sampling of clients we have

< 1

Vie g ng—Prob{zegc|GC (1-96)C

e 2O EDE))
om 2 (D EDE))

Now we can continue with inequalities:

> [Jers (@ (3 (+,44))) =2 ()] 11
ity [ [fa Jesen (8, (+.#4))) - (. 4) [ ]] 1]
< ot [z o [mo Jesns (2 (8 (+,44))) - &0 (o o9) ] ]

ch

ch- 5)]E lé 2E |:||Az' (z",2%) — A (xkﬂ,zk)‘ﬂ | [3}] .

Using Lemma D.6 we have

2 T [ o 5 () - () ] ]
%E@MMA“lkAW%w%ﬂ
—?T%EZM[MQ k“@)&Wﬂwﬂ]ﬂ
Y N GIL
e m e [lo(a (]| - S () 10
Sl [Zm I .25 - 2 2] 1)

B, < gc "

’ch

< E

+

2. ch

20 ng
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Applying Definition 2.2 of Unbiased Compressor we have

U c . k+1 _ k+1
Bi< gt ;(l—i—w)EkHAl (a H ZHA )P 11 ]
2-Pge k1 ok B
+C(1_5)E %g:”Al(x T )_ ( )H | [3
20 - Pge N (k1 ok sy
“ea-a" E(”“’)E’“ (@) - ol
20 - Pgk
+01_g§1a 3 (1 w)E [ A (@ ) )P = SO B || (25 2|7 | 3]
( ) i€g i€G
2-Pgy k+1 K e
+C(1_5)E ;HAZ(:E 2t) = Az )H |3
Now we combine terms and have
2 ~
/ LRk R
s z [N
20 - Pgr
b o T | S (a8 P | ]
i€g
Q'Pgé k+1 K B
+C(175)E ;HAi (@ a%) = A (w )H B
20- Pgp s k ZF
= o R [ 3 @) - )| 1
20- ch s k k+1 k|2 k+1 kY 12
+ 5 E > flai (@™ ak) = A (@ ab) [P+ 1A (24, 2%) | |[3]]
1€
2'7)95 k1 _k B
+C(1_5)]E ;HAl(I 2t) = A )H |3

Rearranging terms leads to

20 - Pgs
/ k+1 _ k+1
B < Gy (1 +eE ZE;C[HA 2k M 1
2. Pgs
gy 109+ UE ;HAmx“%wk)— AL
20 - Pk
e INCas )H2|[3]]-
i€

Now we apply Assumptions D.1, D.2, D.3:

2
9 (1 4+ wW)E [Gﬁbixkﬂ _ $k||2]

!
By < C(1-9)
+ ca _g)(10w+ DE [GLA|jz" T — 2F)?]
20 - Pgy 20|, kt1 k|12
+C(1—5)WE [GL Hx - H }
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Finally, we have

2 P
Bl_C(

Let us plug obtained results:

B < (1 + ) [llg" = V)]

G
% <1OwL2 + (10w +1)L% +

10(w + 1)L£3
b

7] -

> E [”karl _ xk

2-Pgy - G 2 o, 10(w+1)L% k1 k)2
2
Let us consider the term E | || == > Vfi(a*™) — V f(2*1)
C iegk
C
2
2
E k Z va k+1 Vf($k+1) Z vaz k7+1 vf(l.k+l)|‘
5 i€Gk C i€GY
1 2
<1 & Z [V £i(1) = T
(1-9)C i€Gk
L' -7 ¢
1 2
= ~E Ton ||V fi(2F ) — V(2P
o [ ST VA - v
Using definition of ng we get
2
K1) k1 ng 2 k+14 (|2
E|l5e Z V@) = V| | < ——S=E D [[VAEET) = VEEE)|
6 egk (1_6 i€G
<« Y5 G- kt1) k+14]|2
< E > ||V = Vi)
( i€G
Using Assumption D.5 we get
2
1 k+1 k+1 G- Pgy 2 2
E|lop Do V@) = V)| | < ———SE[BIVf(@)]* + ]
C icgt (1-6)C
(5rea[n ng [ 9 2]
< 5 EBIVI(@)"+¢
(1— §)dman
=2 g v s + ¢ (5)
- 5)
34929
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Also, we have
_ 2
[H B g ()| }

- Pgr
< (1= ppaB+ (1= p)(1 - pe)E [lg* ~ V@M *] +p ggEUNVf@NF+Cﬂ
< (1 =ppe (14 7) E |[lg ~ v5h)|[|
4N 2 Pgr -G 2 2 10(w+1)LE k41 k2
+ (1 -p)pe <1+ )Tfé)(lom +(10w+1)Li+T>E{Hx+ . ”]
Pg,i,
+(1=p)(1 = pe)E[[lg" = V1)’ +p 5 E BIVI@I+ ).

To simplify the bound we use (1 + & > 1) and obtaln

Pgr
C)lE [BIVF(@)]* +¢?]

10(w + 1)£3
(w - ) i) E [I‘wk+1 _ IkH2]

A1 < (1 - p)pe (1+) [Hg ~Vf(x M

4>2 Por -G

g
c (10@2 + (10w + 1)LE +

+(1_p)pG (1+ m

+(1=p)(1 - pa)E[[lg* - V)]

< (-ppe (1+2)E[|lg" - V@)

2Py, - G " )

+ (1 -pe (1 + 4) 0(1973;) <10wL2 + (10w + 1)LE + W) E [ka+1 _ mk‘lz]
kN (12 ng 2 9
+ (1= -pe) (1+2)E[|o" - V1 )|\]+p A= SEBIVF @I+

- Pg

<(1-9) (14 8) Bl - V1] +p = SE BIVA@I + ¢

2-P kN

2
+ (1 - p)e (1 + %) (mﬁ + (10w + 1)L3 + w) E 2" — 2*2].

b

O
Lemma D.9. Let us define "ideal” estimator:
Gk > Vfi(a*th), cn =1, [1]
i€gh
g ={g"+Vf(x k‘“) Vf(z*), cn=0and Gf, < (1-6)C, 2]
g" +Gk clzp/\( (Al bt gk )), cn=0and G¥, > (1 -6)C. [3]

iegh

Also let us introduce the notation

ARAGglS" = ARagg (czz‘pml (Q (ﬁl(ajlﬂrl’xk))) oo clipy, (Q (ﬁc(a:kﬂ’xk)))) .
Then for all k > 0 the iterates produced by Byz-VVR-MARINA-PP (Algorithm 1) satisfy

A, =E {Hgk-&-l _§k+1H2}

< pE [Ex ||[4R4gg ({9 Vies,) — V@] 1 1]

+ (1 —p)pcE |Eyg Hle Z clip, (Q (ﬁi (xk+17xk))) - ARAggk+1 | 3]

C iegk

+(1=p)(1 = po)E [Ek [HVf o) V() — ardggly” 1| H
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where pe; = Prob {GE > (1-6)C}.

Proof. Using conditional expectations we have

Ay =E [By [[lg"+ = 7]

= pE [B, || 4Rage ({o+ Yies,) = VA || | 1]

+(1 - p)pcE [Ek [ ] | [3}]

+L- L~ polE By [Hg’“rvf(wk“)—vf(w) (o# + smngety ) ] 1121

After simplification, we get the following bound:

Z clip, ( (31 (xk+1,mk))) (g —I—ARAgggH)

ZEQC

As < pE [By [[[aRagg ({9 Hies,) = VA1) 1]
2
+(1—=p)pcE |Eg GL’“ Z clip, (Q (ﬁi (xk+17xk))) 7ARAggk+1 | 3]

C iegk,

=)0 polE B |[776H) - Vi) - amaggl™ | 1]

Lemma D.10. Let Assumptions D.I and D.5 hold and Aggregation Operator (ARAgg) satisfy Def-
inition 2.1. Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1)
satisfy

T = E [Ex [|[4Ragg ({9} Yies,) = VA D] 1]

8G7ng coB 2 2 4G7Dgli C(SCQ -
——C—— 4 2B | B[V (@8)|]" + L2 l* - ]+ — =+
(1- 5)0 (1-6)C
- - _ o PGB P GC
where B := 0 and (? := 0 when C' = n, and B := o 5)0 and (* := 1 50 when C < n.
Proof. Using the definition of aggregation operator, we have
k+1 E+1y]|2
Ty = E [y [||aRage ({9 bies,) — VA)°] 1 1]
2
12 +1 k1
< E |Ey |||ARAgg ({9 " }ies,) — ar Z Vfi(x | 1]
G& i€gk
~ 2 -
+E |Eyg Z Vi@ = v

zegk
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Since g Y, Vfi(a") = Vf(z**1) with probability 1 when C = n, we can estimate the last

€ iegk
term as
2
1
E |E; ar Z vfi(xk—&-l) . Vf(:L‘k'H) (1]
C iegk
0, ifC=n
= E |2 E [ (k1 k4142 =~
g X B ||[VAEY) = V| ]|, ifC<n
¢ iegk
0, ifC=n
< Pgk. 5 .
=)0 g:gE [vai(xkﬂ) — V(a1 ] , ifC<n
R oo BE [||V f(«* )] + ¢
= Pox e A = T + 2,
56 BE[IVE*DIP] +¢%), ifC<n
where
~ ]9 it 0 =n, = |0 if C = n,
B = 'PQEGB PN and <2 = pglgGCQ N
96 5 '
(1—5)67 1fC'<Tl, W’ ifC <n

34932 https://doi.org/10.52202/079017-1102



Using the above bound, we continue the estimation of 7} as follows:

(Def. 2.1) S
T < E G%(Gc']ﬂ—l) Z E; [HVfl (q;k+1) -V (J;k+1)H2 | [1]]

C i,1€GL
il
+ BE [|Vf(="*)|1?] + ¢*

(12)

<E G = & BRIVAEH) =9 @ ]
C 4 lEQk
z;él
0
2l 3 BRIVA e v )
z7leg5
il

+ BE[|Vf (@ )I1P] + ¢

_ ka“m( ) =V f @) P T ] |+ BE[IVA ) + ¢

C zegk

Z e [V 5 @) = 97 @[] + BE[IV A2 +

1 - C zEg
s.D. 4GP kOB 4GPgr cdC?
g 97& FB)E [V @)7] + e 4 2
(1-6)C (1-6)C
8G7jgk C5B 1 & 2
WﬂL?B {va W19/ (@ )—Vf(ﬂf)M
2
(1-6)C
8GPgrcdB 4GPgr c6C®
9 9B E 95 @) + 22 bt = o)) + e L
(1-06)C (1-6)C

which concludes the proof. O

Lemma D.11. Let Assumptions D.1, D.2, D.3 hold and the Compression Operator satisfy Defini-
tion 2.2. Also let us introduce the notation

ARAggl™ = ARAgg (clipAH] (Q (ﬁl(x’““,x’“))) L clipy, (Q (ﬁc(mkﬂ,xk)))) .

Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

2

o 3 cvim (Q(Bu6.01)) —anasst” | 11

T, = E | K,
C iegk,

8GPgk L2
< - 59)00 (10(1 + “’)Ti + (10w + 1) L3 + 1OwL2) OB [[J" T — 2¥|1?]

where Pgr. = Prob {iegt|GL>(1-06)C}.
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Proof. By the definition of robust aggregation, we have

‘k > ctipy (Q(&: (#.a4)) ) — anage™

TQ]E{IE;C { Gl
C

]

R el m}}

where Dy = G%(GE, — 1). Next, we consider pair-wise differences:

T, 1) = By, [Hclip/\ (Q (ﬁi (x’““,xk))) — clip, (Q( 2t k) ))H | ]

(12
< 2t [fenen (0 (81 (++24))) s (7 24) 4 84 (o47410%) — i (2 (B4 (=4+4.24))) [ 111

2By [[| A (&5, ) = A (252N 13)]

(1_<2) AE, [ clip, (Q ; (mk+17xk))) —A; (g;k+17xk)H2 | [3]]

+4E, MAZ (xkﬂ,xk — clip, (Q (ﬁl (xk+1,xk))> H2 | [3]}

)
+ 2, [HAZ (xk-&-l’xk) -~ sl )H I }

crsp, (2 (zl 2,)) = ) [ 9]

(1§2) IE, [
o () = i (2 (B w’“>>>H2 1]
B (A (241,2) - A 2 3}
) ( k+1’xk)H2 | [3]]

+ 4FE {HAZ (ac]”l, xF
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Now we can combine all parts together:

~ 1
To=E |7 Ty (i1
2 G’é(G’é — 1) zgg:é 2(2 )
L il
<E DL Z 4, [ clip, (Q (31 (xk+1,zk)>) —A; (xk+179:k)H2 | [3]]
2 ilegk,
il
B (o Y am At - catpy (0 (B @) 18]
2 i,1€GE,
L il
FE | 3 m 80 - 8 b))
zlEQc
L il -
FE| oo 37 am [l (e ah) - A a0 | | 3]
2 i,l€GE,
L il -

Rearranging the terms, we obtain

clip, (Q <ﬁ1 (a:k+1,a:k)>) — A (mkH,xk)H2 | [3]]

T,<E|— ZSEk[

ZZGQC
i#l

1
P RN
2. k
nggc

It leads to
fg <E [ Z SEy, [HclipA (Q (31 (m’“‘l,xk))) —A; (xk+1,xk)"2 | [3]}]
zEgc

_|_

Gk ZSEk [HA (@, 2%) = A (25 )H I }]

Legc

Lemns D6 [ 3" 80E, [HQ( LR xk)) —A; (xk+1’;,;k)H2 | [3]}]

i€gl,

+

G’f Z8Ek [HA (21 2b) — A (ahH, )H I }]

1690
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Using variance decomposition we get

T <E { Z 80, Mg( k+1’xk))H2 | [3}]]

ZE C

~B| g 3 SB[ (@, a4 [31}]

| g X SE I8 @) - a ) P | ]].

ZEQC

Using properties of unbiased compressors (Definition 2.2) we have

T,<E {le > 80(1 + w)Ey, M& (a:’““,ar’“)H2 | [3]]]

C iegk,

_E Gk > 80By [[|as (a5, k)||2|[3]}]
1690

| g X SE I8 @) - a ) P | ]]-

zégc

Also we have

T, <E [le > 80(1 +w)Ey U

C iegk,

Bi(xk-‘rl?xk) ZF H K u

+E | g X 800+ 0B [ o k“,wk)rmg]}]

zEgk

_E Gk ZSOlEk [l (241, 2%) [3]]}

iR Gk Z8Ek [HA ( k41 xk)_ (k+1 )H | }]

zegc

Let us simplify the inequality:

- 1
T, <E |-
GC

> 80(1 +w)Ey [

ieGy

5 1) - o 1)

+E Z S0wE [ [ ("4, 2%) || [3]}]
1€gc

+E GkZ&Ek[HAW PNl ]]

1690
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Using a variance decomposition once again, we get

TQ <E [G}k Z 80(1 + w)Ek |:H£l (mk-&-l’xk) — A (wk+1’xk)”2 ‘ [3]:|]
C iegk,

+E Gk > S0wEx [[[As (#57,aF) = A (1,28 |* | 13]]
zEgk

+E Gk Z S8Ey [HA (z k1 xk) —A(ka,xk)HQ | [3]}
zEgk

+E Gk Z 80wy, [HA( kot xk)H2 | [3]]
zegk

Using a similar argument to the one used in the previous lemma, we obtain

B < (17’5280 o |8 24 - 2ot ]
+E _ ZSOwEk [HA b)) — A(xk"’l,xk)Hz | [3]”
+E Z&Ek [l (241, 2%) A(xkﬂ,xk)ymgﬂ
+E :u_gg)c;sowm [l (@41, |* ) 3]

Using Assumptions D.1, D.2, D.3:

80(1 + w)GPgs L2 8(10w + 1)GPgx L2

f< k+1 k2 e ke
=T e
80GPgi wL?
E | YCc™ " jpk+1 _ k2|
el o
Finally, we obtain
2
= N (k1 ok bt
T, =E |Eg chlp,\< (Al ("2 ))) ARAgg; | [3]
zegc
= ﬁ (10(1+w) , (10w + )L3E+10wL2) ¢OE [ — 2* 2] .

Lemma D.12. Let Assumptions 2.3 and D.1 hold. Also let us introduce the notation
ARAggk‘L1 = ARAgg (clip)\k+1 (Q (ﬁl(ac’”l, xk))) soeeselipy, (Q (ﬁc(x’”l, xk)))) .

Assume that A1 = ax,,,||z"T1 — 2¥||. Then for all k > 0 the iterates produced by Byz-VR-
MARINA-PP (Algorithm 1) satisfy

72— 8 [B |97+ - 970 - amaggly 121

2L + F503,,,)E [[|o**! - o*|]
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Proof.

Ty =E

s |[7rt) - vst) - mngely 1121

B (B 2Vt - V1) + 2 anagely 121

Using L-smoothness and Assumption 2.3 we have
(12)

Ty < E By [202 |5 — o |* + 27502, | 2

<E[B [202||s"+ -

< L* + Fio3, ,)E |+ -

xk||2].

ka + QFiaikH ||x]€+1 —

]
221 12]]]

Lemma D.13. Let Assumptions 2.3, D.1, D.2, D.3, D.5 hold and Compression Operator satisfy

Definition 2.2. Also let us introduce the notation

AE:Agg’grl = ARAgg (cl.z'pklc+1 (Q (ﬁl(atkﬂ, xk))) ey

clipy, ., (Q (ﬁc(xkﬂ,xk)))) .

Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E[llg*t v @) < (1-F) Efla* -V (@

517

~ A
+ BE [||V7 (a%)[°] + D¢? + E5 Jat 1 - ok,
where
4 SOpGPgm GPgr cd -~ 4 160  GPg
z +24—C _B+6B+-(1—p o G—C cow | L2
p( (1-0)C PR “a-ecC
4 8pc7’g 16 GPgx
+ - -——— (10w+1)+ pccélOw—l—l)L2
e e ettt ) B
4 10 GPg 80 n\ £%
4 /4
+5 <p(1—pG FAOZ,\HI>7
. _0Pgr  12:G ~ . O0Pg r6eq -
_ _ c [ 2
B=2 153( G +p>+6B, D_216(6+p>+D’
PQ&GB 'ngG
and where B := 0 and D *OwhenC’fn and B = = 6)0 and D = = 6)6 whenC<n,
PG :Prob{G’é > C’}, andPgé :Prob{zegc | Gk >(1-94 C’}

34938
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Proof. Let us combine bounds for A; and A, together:

ho=& [l =97 )]

( ) {H*kﬂ £z k+1)||2} n (1 . ;) E |:Hgk+1 _gkﬂnz}
< (1+ )A1+<1+>A2
(

1+2)(1—p)(1+ ) [Hg —Vf( )‘ﬂ

+ (1 + 5) (1 - p)pe (1 + 4) Pcén (10wL2 + (10w + 1) LY + w> E[ll2*+ - o*)?]

1 p 5PE]EBV 2 2
+5)p (T EBIVI@I? +¢]

2

_|_

(1 n >pE [Ek [HARAgg (VA @), ... Vi) - Vf(xkﬂ)\ﬂ | [1}}

4 (1 4 %) (1= p)peE [E | [3]”

(142) @ =058 B [[Vrt) - Vo) - amaggl 1121

Gik > clip, (Q (&- <$k+1$k))) — ARAgg),!

c iegh

Finally, we obtain the following bound:

(12)
A < (1-7)B[ls" - v ]
+ §ch'$ (10wL2 + (10w +1)L% + 10+ 1)Le Jg l)ﬁi) E [l — «*?]
§- Pgs
+2p ( T _g(;clE [BIV f@)]* + Cﬂ)

+(p+2)E [Ey [[aRagg (VA ("), .., Vfu(a) = )] 1]

2

| (3]

+ %pG]E Eg Hle ZZ clip, (Q (ﬁz (:vkﬂ,ask))) ARAggk+1

C iegk

+2(1=po)E [Ek [HVf o) — v p(a) — anagely” | 1| H
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Now, we can apply Lemmas D.10, D.11, D.12:
= v

< (1=-BYE[lo" - 97 (*)II]

§7) gn

10(w +1)£3
b:t) F [||.1‘k+1 _ kaQ]

e (10wL2 + (10w + 1)L3 +

) 8GPgr c6 B 25 £ v 2 L2k 2

+(+2) W+ [H FE+ 127 —zM
GP kC(S

+4(p+2)(1—76)A< +(p+2)C

2 [ Gch Ei k1 k(2
Jr};pg]E _80(1+w)( ~5)C b cl||lx T — 2| ]

2 GPgr .
+ EPGE 8(10w + 1)ﬁLicéHwk+l - ku}

2 [ Gpgk
2o ¢ L2 k+1 k2
-|-ppG _80(1 _6)0(.0 ez |
+ 21— pe)2(L? + F3od, E [[laF* — oF|?
p ba A AXg41
0Pgir s s
—<E[BIV/@?+¢7].
Finally, we have

E [l = Vs @) < (1-F) B{llg* 97 )]

+BE[|Vf ()] + D + PRB [Jak+ - o))

where

32pa Pgr.n
P C

GP,

A:

10(w + 1)L3% )
b

(10wL2 + (10w + 1) L3 +

k 2
ﬁpmé (80(1 + w)% +8(10w + 1) LY + 80wL2>

8

p?

4 24Gpgk cOB
i

16(1 — pc)(
(1-6)C

- ()‘B) L*+ 2 L* + F4a3,,,)

and

. 5ng I O0Pgr _
B=2—XB %4—1} +6B, D= e %4—1) + D,
1-0 C C
Poi G

where D := 0 when C = n,and D := (1g;)A when C < n. Once we simplify the equation, we

SOPGngn GPgr cd ~ 4 160  GPg 5
7000(50.1 L

obtain

+24— _B+6B+ —(1— + —
(1-6)C U et ra )

pG kT 16 GPgx

TET9ET (Qow + 1) + ;pcﬁd(l&u + 1)) 2
80 L%

(1 4+ w)ed + » pGPgL (1 —|—w)0) b

(
(ppG(l—é)C
(
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D.3 Main Results

Theorem D.14. Let Assumptions 2.3, D.1, D.2, D.3, D.5 hold. Setting Apy1 =
2max;eg L; ||xk+1 — ka Assume that

1 ~
0<y< , 4B <p,
T=T1Va P

where
4 SOPGngn GPge o 4 160  GPg
- 24— ¢ _pBL6B4 - 1 —pg) + —pg—scdw | L?
p( (1-6)C P (e
4 (8pcPgrn 16 GPg > )
+ - - (10w + 1) + —2 (10w +1) | L
S (At )+ D s ea(10w +1)) 23
4 (160  GPgs 80 L3
+ 5 ( gc (1 + w)ed + pGng (1 +w)c> -
4 (4
+5 <p (1-pa) FAozAHl)7
o 0Pgr 112G - . 0Pg r6eq ~
B=2 °B — B, D=2 €| — D
-4 (C p>+6’ 1—6<c+p>+ ’
ngGB N ngG
and where B := 0 and D —OwhenC—n and B = (1—6)6 and D = = 6)6 whenC<n,
and

Then for all K > ( the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy

290 N 4D¢?
4B _ 4B’
- 7) (K+1) p—A4B

E[||vf @] < T

where X is chosen uniformly at random from 2°,z',... 2%, and ®° = f (xo) - f*+

e = s )
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Proof of Theorem D.14. For all k > 0 we introduce ®F = f (2%) — f* + 2?7 lg* =V f (:Ek)Hz
Using the results of Lemmas D.13 and D.7, we derive

B0 "< B[ @) -1 - (- 5) I -+ -9 @]
2
=BV @O+ el v ]

(D.13)
R -1 (- 5) b= S et - s @)

=3B (19 @I + 3 (1= ) Bl - vs @]

+ 21 (BB (|95 (a4) 7] + D+ Lo+ — a¥1?)
L AR (G R CIARE S

o - a2 - ] (1 2 g oy )”2}

2DC2 B E4+1 k|2
L b o (1= Ly = A B a1 - 2]

-3 (1= ) e o).

Using choice of stepsize and second condition: 0 < 7 <

=E [®F] +

L+\/Z’ 4B < p and lemma B.1 we have

for ) <z o+ 220 2 (1 22 oy (o]

Next, we have (1 — %) > 0 and ®**! > 0. Therefore, summing up the above inequality for
k=0,1,..., K and rearranging the terms, we get
D (L7t o S— Y ¥ YR
k=0 Y (1 - 7) (K + 1) k=0
4D¢?
p— 4B
2] B[] | abe
v ( ) (K+1) p-— 4B
2E [0 4D¢?
(@] 4D

_7( f%) (K+1) p—4B
0

Theorem D.15. Let Assumptions 2.3, D.I, D.2, D.3, D.5, 2.7 hold. Set \yy1 =
maxieg L; ||2F T — 2¥||. Assume that

0<y< 8§<p

1
L++24°
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where

% (80pGngn 4(G7i §;23+6B+ (1_pG)+ 160 (1GP§§OC§°J> 12
+% (ZS)PGPQC (10w +1) + pr(lGP;’fC §(10w + 1)) L
+i<120 GP Qc 1—|—f.u)<:5—|—Ojl)gpgk(1—|—u.))g>b2i
o mor..).

. 0Pgk - 0Pgk -
B=2 s B<122G+p>+63, D:21 s (6%G+p>+D,

1-6 -9
and where B := 0 and D —OwhenC—n and B = (176)5 and D := i 6)6 whenC<n,

and

Pas = &'(léétw (( vy ) ( oY ) (( ¢ >)_1)’

pc = Prob {Gf > (1-6)C}

f<1—6>%:gtgc << ; ) < c_¢ ) < 61 >_1>-

Then for all K > 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy

KY _ 0 413’742
E[f(=")-f@)] <-p~e R

where p = min [7# (1 — 85) ’g} and ®° = f (xO) ey 477 Hgo —Vf (.’L‘O)HQ.

Proof. For all k > 0 we introduce ®* = f (z¥) — f* + % |g* = V[ (2%) H2 Using the results of
Lemmas D.13 and D.7, we derive

B[] <R[ @) - - (5 ) I - e - v @)
— SB[V @] + %E g+ = w7 ()]
e L e G L R i
LR [Ivs @) + 2 (1- )Rl - v 4]
+ 2 <§E (195 @) 7] + Dz + B2 s - m’“|2)
=06 14 (- D)+ DBl - vl

L (- Ly - 24 E [ — 24P — ’27 (1 - 85) E [||Vf (xk)ﬁ .

2y
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Using Assumption 2.7 we obtain
4D¢*y
p

B0 <5 [ () - ]+ (1-2) 2z [l - vr ()] +
L % (1= Ly — 2493) E [|a*+ — 2%|2]
_W<Lff>ﬁuwﬂ—fl
Finally, we have

E [@k'H] < <1 — min |7,u (1 — B) ,ZZ
P 8

Unrolling the recurrence with p = min {ylu ( — Q) , %} , we obtain

4Dy
.

)E[@k]-i-

p

E[®] < (1-p)" E[0°] +
<(1-p)"E[@] + —

= (1-p)"E[2°] + —=

Taking into account &% > f (xk) — f (z*), we get the result. O
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E Analysis for Bounded Compressors

E.1 Technical Lemmas

Lemma E.1. Let Assumptions D.1, D.2, D.3 and 2.4 hold and the Compression Operator satisfy
Definition 2.2. We set A\,11 = Dgmax; j L; ;. Let us define "ideal” estimator:

gr o VA, Cn =1, 1]

1€gk
gt =g+ Vf( k+1) Vf(a*), cn=0and GE, < (1 -0)C, [2]
g~ + Gk > elip, ( (31 bt gk )) , Cn=0and Gt > (1-96)C. [3]

ieghk

Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

—E[lg* - £ ()]

< (1= pE[[l¢" = ViEh)|*] +p )E[BIIVf(x)||2+C2]
Per G w 2
+(1- )pgicq( S (wL2 +(w+ 1)L+ 7( +b1)£i> E [||:v’“rl — xk||2].

where p; = Prob {Gg, > §)C} and Pgr, = Prob {iegh|GE>(1-6)C}.

Proof. Similarly to general analysis, we start from conditional expectations:

A =E|[g - v ()]
) [Ek [||§k+1 —vf (xkﬂ)H?H

= (1-p)pcE |Ey || g" + Gl’g > clip, (Q (Ai (ﬂkaaxk))) — V(|| B8]
ieGy
+(1=p)(1 = pa)E [Ex [[lg* - V") 1 121]
2
+PE || = Z V(M — v . (26)

C i€k

Using (12) and V f (xk) - Vf (xk) = 0 we obtain

2

B, =E |E;

g+ Z CllpA( (3 (x k+1 xk))) vy ($k+1)

k
Czegc

| (3]

i

g 5 e (2B (1) <o () v () -1 ()
iegl,
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k1

Using A1 = Dgmax; ; L; j||z x¥|| we can guarantee that clipping operator becomes

identical since we have

G| B D ante]

< Doy 30 Vhisaht) ~ Vi)
JjEM
< DQ% > Vi@ = Vi)
JjEM

< DgmaxL; ; sz+1 - zkH
J

< Dgmax L; ; H:ck+1 - ka .
1,

Therefore, we can continue as follows
2

By =E |Eg

| I

Moreover, we can avoid application of Young’s inequality and use variance decomposition instead:

B <El|l¢" - V1 ()]

g* +— > QA (@ ak)) — v @ )| |11

zEgc

P e QA () - () 9 () - 9 ()

iegh,

+E | { > e (Bi(aMab)) - (VreM T - viEh) ] |[311
C?EQk
<Els" - v@ah’]
2
+E |Ey Gk > QA (M ah)) A M) | | 1B @7
i€GE

Let us consider the last part of the inequality. Note that G% > (1 — §)C in this case and

r 2
Bl =E | || 3 @A ah) - a )| | 1
i zegc J
= r 2
=& |Es, B || 3 QA (ah) —a e |16
zegc

< o[£ 2 ota 6 s 9f]
et zEsk[zgg}m[\p(&(wkﬂwk)) () o]
e[S o Jlo(d () -a e rm]. e

where Zg. is an indicator function for the event {iegGl|GEL>(1-6)C} and Pgs =
Prob {i € G& | GE > (1 — §) C'} is probability of such event. Note that Eg, {Igg} = Pg In the
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case of uniform sampling of clients, we have

Vi€ G Pgs = Prob{ieGé|GE >

(72

Cl
n pag

>

(1-8)C<t<C

Now, we can continue with inequalities:

B} < > Ei -
Li€G -
> Ex |Eeq
Li€G -
<__9% g S E —

Li€g

|
Q
O
—~
i

|
>,
=
©

|
Q
o
—~
[

|
>,
=
©

+
Q=
&=

Using variance decomposition, we have

!
31—021—5

[m Ea [ (3,

+

Y

ZEk [HA 2P k) -

(1-0)C}

()]

( k:+1

Applying the definition of unbiased compressor, we get

i€G

: 2
i mE lZ(l +w)Eg [|A; (27, 2%)||” - ZEk |A; (2", 2F

i€G

https://doi.org/10.52202/079017-1102

S+ By A (2

k+17xk) _

i€g

34947

_;g’

;|<} ]

P )| 1

3l (240 - A ) ]

A (xk-‘rl’xk) H2 | [3]:|

) T s )
ZHA k+1 :Ck ( k+1 )|| | ]

)IE m]



Next, we rearrange terms and derive

P
Bifcg(il‘ﬂd Z]Ek [HA k“w _ ey H} 1
b e | X L) P | ]
i€g
e P N BNl ]
PG’“ k+1 k k+1
P 2
e EE:HZ> 2P b)) — A (2t 4-13(wk*1,xk)2|[3ﬂ
i€G
+ lz ||A o xk _A (l,k:Jrl’xk)HQ | [3]1 )
i€G

Rearranging terms leads to

P
Bi < C’Q(L (1+w)E ZEk |:HA s mk — A (;Ck-‘rl,xk)HQ] | [3}]
i€g
PQ pas k k+1
qugfw+1 o[l (k) — A (2 )| f8]
€@
1) INER Y ]
1€G

Now we apply Assumptions D.1, D.2, D.3:

ng L2

/ k1 k2

Bl*C’Q( )2 (1+w)E{Gb |E3 x|}
L(u +1)E [GL3 [|z*H — a:k||2] + &wﬂﬂ [GL2 kaH - xk’ﬂ
ma—) + C2(1 - 6)2 '

Finally, we have

/ Pgs - G 2 o (w+1LE k k|2

Let us plug the obtained results in (27):

&<Emg—Vf )]
ng ) 2 2 (w+ 1)53: k41 k2
+7C2(1—5)2 (WL +<W+1)Li+7b )E[Hx —x ||]
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Also, we have
A =E [ - i)

(26),(25)
< (1—ppaBi+ (1 =p)(1—po)E||lg" — VI@")|]

5 Pgs
+ s B [BIVS @) + )
<(1-p) ch[Hg ~ V] +p ) E [BIV @) +¢7)

PQ’“ G 2 s (w+1LE k41 k2

+ (1= p)(1 = pa)E [[lg* - V5]

Rearranging the terms, we get

A1 0 pE [t 5]+ e (BT + ¢
Pgy G E (wL2 F (w12 + wbl)ﬁ?t) E [||lz**" — 2*)?].

1 _ C
T =Prean 5
O
Lemma E.2. Let Assumptions D.1, D.2, D.3, D.4, 2.4 hold and the compression operator satisfy
Definition 2.2. Also, let us introduce the notation

ARAggly" = ARAgg (cupml (Q (ﬁl(xm’xk))) oo clipy, | (Q (Ac(ggkﬂ’xk)))) :
Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

2

T, =E |E; H > clzp,\( (& (x’““,xk))) — ARAgg;tH || 1 (3]
zEgC
< gt (L4 @) 55 + (o DI + oI B[4~ a¥P),
where Pgi = Prob {ieGé|GE>(1-6)CH.
Proof. By definition of the robust aggregation, we have
2
N, (kL Kk k+1
T, =E |Es H Z Cllp)\( (Ai (" 2 ))) — ARAgg,, | [3]

<5 |8 5w [ (0 (8 (7)) e (2 (3 (D) 1]

i‘zegé
i#l

where Dy = GE(GE, - 1).
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Using A1 = Dgmax; ; LZ'J|\3L"’CJrl — z¥|| we can guarantee that clipping operator becomes
identical since we have Vi € G

o 8.t 2)] < Do .5+,

< Doy 3 Vi) - Vi (ah)

JEM

1
< Doy Y Vi) = Vit
JjEM
< Dgmax L; ; Hack'H — ka . 29)
J

Let us consider pair-wise differences: Vi,l € G

Ti(i,1) = By { cip, (Q (A (e*1,a%))) = c1ip, (Q (B (a4, 2") ))H B ]

=5 o (8 ) - @ (B )1

= o (8 (7)) - &0 (k) 1 80 (65 4) 0 (81 (4 a)) 1]

+ By [[|A; (4 24) — A (@20 [P (3]
Lmflo@en ) ]
+2m <wk+%w'f>—9( et )H 3]
+ By [[[ A (@4 2F) = A, (@) | 18]))
2o [lo(ae zk>> a0 1]

+ 2E, [HA; (xk+1,xk) -Q (ﬁl (J:Hl,ask)) H2 | [3]}

2By A (2, 0F) - A @) A @b - A ) 8]
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Now we can combine all the parts together:

~ 1
T=F | T (i1
2 G’é(Gé—l) Lg@ 2(2 )
L il
<E Di oF, [HQ (& (mk+1’xk)> YN (xk+1’xk)H2 | [3]}
Qi,zegé
L i£l
B[ 3 om e e o (Bt )| )
D, ’
i,1eGE
L il
v gy 3 2 at) - A ) ]
zlegc
L i#l -
B |5 At - A ) 1]
zligc

Rearranging the terms, we get

T, <E o Z Ey [HQ(& (xk+1,xk)) A, (2 g;k)H [3]}]
C iegk,
+E Gk > B [[|a (25 ) = A @R }]
zegc

Using variance decomposition, we get

T, <E {G}ng 4E, [HQ (B a9 [31}]
_E Z 4B ([ (=42 [3}}]

1690

| g X AR 8 ) - A ) | ]]

zégc
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Using the properties of unbiased compressors, we obtain

T, <E [le Z 4(1 + w)Eyg [H& (:zrk+1’xk)H2 | [3]}
C iegk
B k1 2
| g 3 [ ) [3@]
ZGQC
IE Gk Z4Ek [HA ( k+1 xk)_
L ZGQC
<E |:le Z 4(1 + w)Ey, U ﬁz (,’Ek+17xk) —A; (
C iegk
+E Gk Z 1+wEk{HA (k+1 )H2|[3]}
zEgC
ZFHL gk 2
_E Gk 3 4B [ ( )| [3}}]
zegc
FE | g 2 4B [8 (40 -
zegc

Let us simplify the inequality:

T, <E {1;@ 3 41+ w)E, [H& (eH,2%) — A, (o
C iegk
+E G’“ > dwRy [HA (Cans k)H2 \ [3]}}
zegc
+E Gk > B (A (o5 2") -
zegc

Using variance decomposition once again, we get

. 1 -~
T,<E {G’g Zk 4(1 + w)Ey [HAi ("1, 2*) —
zegc
VB | g 3 B [ (R a8) - 8
zegc
+E Z 4B [ A (244, 2%) -
1690
+E Z 4By, { (@ 2| | [3]]] .
ZGQC

34952

|

@) | }]
xk+1’xk)H2 | [3}]]

|

A | | }]

k+1’xk>H2 | [3}]

|

A )P | | }]

S ]]
L }]

A1) | }]
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Then, we apply similar arguments to the ones used in deriving (28):

T, <E C,Zj_Zéller]Ek [HA oM k) — A, (xk+1,x’f)H2|[3]H
+E Z%Ek{IIA (a*,2%) - A(wk+1,xk)\!2[31}]
+E- Z%{HA (a4, 2) - A(m’““,wk)lfusﬂ
+E Cffé)zm a2 ]

Using Assumptions D.1, D.2, D.3:

~ GPgr L2 GPgr
I <E {4(1 +W)C(17305)Ti 2P+t — ask||2] +E {4(0} + l)ﬁwljiﬂxlﬁl - xkﬂ

GPg:
& 20kl k)2
—I—E{ﬁlc(l_a)wL |5 x||]

Finally, we obtain
2

1 ~
T, =E |Eg HGk Z clip, (Q (Ai (mk"’l,xk)))—ARAgng | [3]
Ciegk
Gpgk [.:2
<4 o 1 ~£ 1) 12 L2 ) E [||zF ! — 2%)2] .
< 0(1_5)c5<( +w) T+ (WL +w > (= "%
O

Lemma E.3. Let Assumptions 2.3, D.1, D.2, D.3, D.4, D.5, 2.4 hold and the compression operator
satisfy Definition 2.2. We set \.41 = Dg max; ; L; ;|21 —a*||. Also, let us introduce the notation

ARAgngrl = ARAgg (cl,ip)\k+1 (Q (ﬁl(ackﬂ,xk))) soeeelipy, (Q (ﬁc(ack“,xk)))) .
Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E[[lg" = vs @] < (1-2)E[llg" - V5 @)
4 BE[|[V7 (@9)7] + De? + B2t — o2,
with

A=

w+ B +6B+—(1— + —po——"C_cow | L?
<C2(1—5) (1—5)0 p( rc) Péca—yo)

pcPgrG 8 GPg ., L2
<C2(1 — )2 (w—|—1)—|—ppgc(1_§)c§(w+l)> (Li+b>

SEES @wx

B‘r—*
[=)

2
(1 —pg)FA (DQ IIZ_IE}XLL]')

-~ 6ng 12 ~ ~ (573in ~
B=2 B( CG+p>+6B, D= C(&AGij)jLD,
1-96 C C

Pgr GB ~ ng G

where B := 0and D := 0 when C = n, and B = (1—06)5 and D = = 6)5 when C <n,

pe = Prob{G¢ > (1 - 6)C} and Pgy = Prob{i € G¢ | GE > (1 -6) C}.
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Proof. Let us combine bounds for A; and A, together:
Ay =E Mgkﬂ v (karl)HZ}
2

< (e e[l - v @]+ (14 2) Bl -]

(

< (e 5 (1+2) 4
( p
(

1+ )(1— [Hg ~Vf(z II} ( )p(i?i)E[BIIVf(I)VﬂLCQ]

gk, 2 s, (w+DLE k41 _ kg2
1- I’)Pcm (WL +(w+ 1)L + 5 E [Hf -z ]

)pE [Ek [HARAgg (VA ), V() = Vf(xkﬂ)uz} | [1]}

of

(*+) ~ V(") — anagels” | | [2 ”

Z clip, ( (ﬁ, (wkﬂ,xk))) — ARAgggJrl

i€gk,

+ (1 + ;) (1—p)(1—pe)E {Ek {

Using Lemma E.2 and lemmas from General Analysis (Lemmas D.10 and D.12) we have

Ay =E [+ 5 ()]

< (1- D)8l -5 (D] + 2y B [BIVSEIE +

Por G (w+1)£2
p G& + : :
+(1- )pgim 7 (WL2 + @+ DI+ ) E [[lz5+ — 2*||?]
o) (PPN B [vs @) + 22 - o]
+(+2) W+ [z T -
GP kC(S
+4(p+2 =+ (p+2
(p )(1—5) ¢+ (p+2)¢
2 [ GPQ@ ﬁi k1 k|2
+ 29 (100 4 ) g2 b S et = P

o T GPys
2 4 1 & 2 1kl k2
-i-png- (w+ )0(176)05[/:&“1‘ |

2 [ Gpgk 2 2
ZonFE |4 S SL2|IER Y — k)2 21— UL2 + F2a2 IE[ k+1 _ k ]
pal e e [l w7+ S (1= pa)2(L7 + Faas, ) [ ="

Finally, we have

E[[lg - vs @) < (1-2)E[llg" - Vs @)

+ BE[|[V7 (@)7] + D + BR et — o2,

where
4 Gng G SGng C(S 4 8 Gng
A=- w+ _B+6B+ - + = € _cdw | L?
p <02(1—6) (1-6)C pU TPt e e )

pcPgr G 8 GPgr L2
<g_c 5 (w+ 1)+ EpGC’(l —C(S) cd(w~+ 1)> (Li + bi>

2
+ = (1 —pa)Fi (DQ maxLi,j>
2,
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and

~ &P’i ~ ~ (573& _
B =2 ch(12CfG+p>+6B, D=9 Y0 (G(iG+p>+D.

1-96 1-6\ O
O
E.2 Main Results
Theorem E4. Let Assumptions 2.3, D.1, D.2, D.3, D.4, D.5, 2.4 hold. Setting \py1 =
max; ; L; ; Hx’“‘l — x’““ Assume that
1 ~
0<~y< , 4B <p,
T va P
where
4 pG’ng G SGng co 4 8 Gng
A= - W+ _B+6B+ —(1—pg) + -pa——°—céw | L?
p<02<16> =0 P Pe) b P )
4 ( p6PgrCG ] GPgr, cx
I 2 Fe ¢ .5 1 2 4+ ==
o (g o 1+ o Syt + ) (224 5
16 2
+ (1= pa)F; | DgmaxL;
p? 2y
~ 0Pgr /112G e ~
B=2 < —~ B, D= < | —= D
1-9 (0 +p>+6’ 1—5<0+p>+ ’
~ - N . PgGB ~ PQkG
where B :=0and D := 0 when C = n, and B .= (156)6 and D = - 5)A when C < n, and
C G-1 n—G n -
e 2 ((EDED(())
(1-8)C<t<C
¢ =Prob {Gg > (1 - 5)C}
_ Z G n—G n\
- t C—t C )
[1-9)Cl<t<C
Then for all K > 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy
2 240 2D¢?
E||[vr @)|°] < = + =,
7(1—7) (K+1) p—4B
where ZX is chosen uniformly at random from z°,z',... 2%, and ®° = f (xo) - f*+
2
2" =V @)
Proof. The proof is analogous to the proof of Theorem D.14. O

Theorem E.5. Let Assumptions 2.3, 2.4, D.1, D.2, D.3, D.4, D.5, 2.7 hold. Setting \p4+1 =
max; j L; j ||e*T! — a*||. Assume that

0<y< 8B < p,

1
L++24°

pcPgr G 8GPgrcd 4 8 GPg
w+ B+ 6B + - + —pa—CS<cdw | L?
<02(1—5) (1-6)C pU TPt e e )

pcPgrG 8 GPgs, , L2

2
(1 —pa)F5 (DQ max Lm’)

where

A=

SR @\_m

%‘H
=N
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e 57Dg73 — ~ (SPgIg ~
B=2—2F¢ (12626:4—;0)4—63, D=2 C<6(§+p>+D,

1-46 1-46
_ _ N N Pgr GB _ Pgr G N
R o— — — C — C
where B := 0and D := 0 when C = n, and B := 100 and D := =50 when C < n, and

where p; = Prob {GE > (1 —0)C'} and Pgx, = Prob {ie Gt | GE > (1—6)C}. Then forall
K > 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy
i} 2D¢?
BIS ()~ £ @] < (1) 20+ 20

. B N 2
where p = min {7;1 (1 — %) ,%} and ®° = f (sco) -+ 277 Hgo - Vf (xO)H .
Proof. The proof is analogous to the proof of Theorem D.15. O

E.3 On the Technical Non-Triviality of the Analysis

As we explain in the main part of the paper, the main reason why we propose to use clipping
is to handle the situations when Byzantine workers form a majority during some communication
rounds since the existing approaches are vulnerable to such scenarios. However, the introduction
of the clipping does not come for free: if the clipping level is too small, clipping can create a
noticeable bias to the updates. Because of this issue, existing works such as (Zhang et al., 2020b;
Gorbunov et al., 2020) use non-trivial policies for the choice of the clipping level, and the analysis in
these works differs significantly from the existing analysis for the methods without clipping. The
analysis of Byz-VR-MARINA is based on the unbiasedness of vectors Q(A;(z*1, z¥)), i.e., on

the following identity: E[Q(A; (2% 1, 2%)) | 2F 1, 2] = A, (xF 1, ) = Vfi(aF 1) — V fi(a).

Since E[clip,, (Q(A;(zF 1, 2%))) | a* 1, %] # Vfi(zFT1) — V fi(2*) in general, to analyze
Byz-VR-MARINA-PP we also use a special choice of the clipping level: A\g11 = agqq|zF Tt —2F|.
To illustrate the main reasons for that, let us consider the case of uncompressed communication

(Q(x) = ). In this setup, for large enough a1 we have clip/\wAi(azzk'“7 a*) = Ay(xF k)
for all ¢ € G (due to Assumption 2.6), which allows us using a similar proof to the one for Byz-VR-
MARINA when good workers form a majority in a round. Moreover, when Byzantine workers form
a majority, our choice of the clipping level allows us to bound the second moment of the shift from
the Byzantine workers as ~ ||z¥T1 — 2¥||? (see Lemmas D.9 and D.12), i.e., the second moment
of the shift is of the same scale as the variance of {g; };cg, which goes to zero. Next, to properly
analyze these two situations, we overcame another technical challenge related to the estimation of the
conditional expectations and probabilities of corresponding events (see Lemmas D.9 and D.10 and
formulas for pg and ng at the beginning of Section 4). In particular, the derivation of formula (24)
is quite non-standard for stochastic optimization literature: there are two sources of stochasticity —
one comes from the sampling of clients, and the other one comes from the sampling of stochastic
gradients and compression. This leads to the estimation of variance of the average of the random
number of random vectors, which is novel on its own. In addition, when the compression operator is
used, the analysis becomes even more involved since one cannot directly apply the main property
of unbiased compression (Definition 2.2), and we use Lemma D.6 in the proof to address this issue.
It is also worth mentioning that in contrast to Byz-VR-MARINA, our method does not require full
participation even with a small probability p. Instead, it is sufficient for Byz-VR-MARINA-PP to

sample a large enough cohort of C' clients with probability p to ensure that Byzantine workers form a
minority in such rounds.
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F Byz-VR-MARINA-PP+: Simplified Version of Byz-VR-MARINA-PP

In this section, we present a simplified version of Byz-VR-MARINA-PP called Byz-VR-MARINA-
PP+ (see Algorithm 3). The only difference between the two methods is in Line 10: Byz-VR-
MARINA+ does not apply robust aggregation when ¢, = 0 and just averages the clipped vectors
received from the set of clients Si. Nevertheless, when ¢, = 1, i.e., a large cohort of clients is
sampled, the method still uses robust aggregation.

Algorithm 3 Byz-VR-MARINA-PP+: Simplified Byz-VR-MARINA-PP

1: Input: vectors 29, gO € R4, stepsize +y, mini-batch size b, probability p € (0, 1], number of
iterations K, (9, ¢)-ARAgg, clients’ sample size 1 < C' < C' < n, clipping coefficients {cvg }r>1

2: fork=0,1,...,K —1do
3:  Get a sample from Bernoulli distribution with parameter p: ¢, ~ Be(p)
4:  Sample the set of clients Sy, C [n], |Sk| = C if ¢ = 0; otherwise |Sy| = C
5:  Broadcast gk, ¢, to all workers
6: fori € G NSy in parallel do
7: oFtt = 2% — vgF and A\jy1 = gy ||2FFE — 2P|
Vfi(ilkarl), lf C = 1,
8: Setgi ™l =1 ; A (gh+1 ok -
g" +clipy, ., (Q (Az(z , T ))) , otherwise,

where A; (zF1, 2*) is a mini-batched estimator of V f;(z*+1) — V f;(z*), Q(-) for i €
G N S, are computed independently
9:  end for

vor [ ARaze ({97 Yies,) if cx =1,
10 " =9 gh 4 & Zs clip,,,, (Q (Ai(;ck+17xk))) , otherwise
1€Sk

11: end for

The key idea behind this modification can be explained as follows. For simplicity, let us assume that
C'is small and 6, is also small. Then, for the communication rounds with ¢, = 0, with a large
probability, only good clients will be sampled. In this case, the method can use just an average of the
received vectors and benefit from the lack of bias appearing due to the robust aggregation. Moreover,
when ¢, = 0 and at least one of the sampled clients is Byzantine, the method will tolerate due to
the clipping. That is, when C' is small, the method can potentially benefit from the lack of robust
aggregation when c;, = 0. However, for the rounds with ¢, = 1, in the worst case, C = n, meaning
that all Byzantines workers are guaranteed to be sampled. To tolerate such situations, we keep the
robust aggregation in the method when ¢, = 1.

F.1 Analysis for Bounded Compressors

For simplicity, we analyze Byz-VR-MARINA-PP+ for bounded compressors only. The analysis
is very similar to the one we provide for Byz-VR-MARINA-PP, but several steps are significantly
simpler. In particular, the central part in the analysis of Byz-VR-MARINA-PP is in deriving a
good recursive inequality for E[||g¥ — V f(2*)||?], which requires several quite technical steps. For
Byz-VR-MARINA-PP+, one can obtain a similar inequality much easier as shown in the next lemma.

Lemma F.1. Let Assumptions D.1, D.2, D.3, D.4, D.5, 2.4 hold and the compression operator satisfy
Definition 2.2. Assume that C' < G. We set \+1 = Dgmax; ; L; ;||z*Tt — 2*||. Then for all k > 0
the iterates produced by Byz-VR-MARINA-PP+ (Algorithm 3) satisfy

E[[lg" = v @] < (1-2)E[l" - vr @[] (30)

+BE[|VS (2)|7] + DE + PRt — o),
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with

4 (8pBGPgecd (1 —ppkw  6(1—p)(1—pk
P £ L gppy LPpgw | 60 =P =pg) ) 1o
p\ (1-9)C C
4(1 - p)p wy o A1 —ppg(l+w) L3
IS A I =3
LA (1+ 0) = oC b
24(1 — p)(1 — p 2
+ ( p)g( ud (DQ max Li,j) ;
p 4]
. 8GPgrcdBp _ . 4GPg cop -
(1-6)C (1-6)C
where B, D, p’é, Pgr are defined in Lemma D.13.
C
Proof. From the update rule of g**', we have
2 2
E [l = Vi@ || = pE || arage ({95 Yies,) = VA [ on = 1] (1)
T
2
ko, L : N (kL K k+1
+(1=pE||d" + 5 Y cliny,,, (Q(Bil@*ah)) = Vi) e =0
1E€Sk
T
Next, we bound 73 and 75 separately. From Lemma D.10, we have
8GPgr c6B - 4GPgr c6C*
1< (S + 2B | E[||VS (@) + L2 [|o™ - b [F] + —— -+
(1-96)C (1-96)C

As for T, we consider two possible situations: either Sy N B = @ (no Byzantine workers are among
sampled ones) or Sy, N B # & (at least one Byzantine worker is sampled). Then, T equals

2

1 ~ X
Ty = péE gk + E Z Clip/\k+1 (Q (Ai(xk+17xk))) - Vf($k+1) | ¢k =0, SpNB=0o
1€Sk
Ty
) 2
+(1-P)E || + 5 D clipy,, (Q (B ah)) — VI e =0.5nB#2|,
1E€Sk
T
where

y ::Prob{SkﬁB:Q\ck:O}:@: (G-CH+DG-C+2)-....(n-C)

(&) G+1)(G+2)-...-n
The choice of the clipping level A1 = D¢ max; ; L; ;|1 — 2*|| and inequality (29) imply that

clipAk_+1 (Q (ﬁi(x’”l, aﬂc))) for all 7 € G. Therefore, for fg, we have
2

N 1 ~
T, —FE gk+5ZQ(Ai(xk“,xk))—Vf(xk“) ler=0,SNB =0

1€S

=E[|lg" - Vf(=")]?]

2

VE (| LS @ (Bt ah) - () - V)| [e=0.51B=2].

1€Sk
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where we use that E {% Yies, @ (ﬁi(xkﬂ xk)) |k =0,S,NB = @] = Vfrt) -
Vf(x*).  Moreover, since E {é ZiESk 9 (A;(x k+1,xk)) | ek =0,S,NB=a,5
% ZiESk (vfi(szrl) - sz(xk)) = C Z’LESk Ai ( w

in the upper-bound for fg as follows:

,z¥), we can decompose the last term

T, =E [Ig* - V("))
I 2
1 —~
+E |E [ o ieZSk (Q (Ai(karl,:ﬂk)) - Ai(l’kJrl,xk)) | Sk] |k =0,5:NB = @]

2
+E

53 At — (V) - V)

1E€Sk

|Ck-0,SkﬂB®].

Since the compression operator computations are independent on each client, we have

=E[lg" - VF(=")?]
[Z HQ( ! xk)) _ Ai(xk+17xk)“2 S

1E€Sk

Z Ai(IkJrl,xk)

1E€Sk

+—E

: { 1
]E[Hgk_vf(xk)H?}
[Z HQ( ot xk)) — &(xkﬂ,xk)HQ | Sk] lex =0, NB=2

|Ck=O,SkﬁB=®

2

lcp =0,8,NB= @] ~E [I!Vf(xk“) - Vf(fk)m

1ESk

E [Z “Ai(,’ﬂk-‘y—l’xk) _ Ai(:pk-‘rl’ajk)‘r | Sk] ler=0,S,NB=0
1€Sk
2
[ S AEMTL M) e =0,9%nB= @] -E [HVf(ka) — Vf(xk)]ﬂ
lGSk

(Def. 2.2)

< E[llg" - VF@Eh)?]
“E > “8i(xk+l’xk)“2 e =0,5,NB= @]
€Sk

n %E 3 ‘&-(xkﬂ,xk) —Ai(:rk+1,xk)"2 lex =0,8,NB=0
1€Sk
ZEY A M) e = 0,5 B =2 —E[HVf(a:kH)—Vf(xk)Hq
1€ Sk

E[lg" - V(= ZE[
ZE[
+ g X B [lae )] B [[9r) - vt

]

2R+ mk) —Ai($k+1,x’f)H1

i€G
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- 2 - 2
Using E {HAi(xk‘H,xk)H } =E {HAi(xk‘H,xk) - Ai(karl,xk)H } +E [HA;‘(%"“H,JJ]C)HZ},
we continue the derivation as follows:

T2 <E[||g —Vf( 1+w ZE [HA k+1 xk _Ai(xkﬂ,xk)HT

+(1+8) 6 ZE[HA )] - [ - v

1€G
1+w)L3
E[lo" - )] + LEOEg fjar o)
w 1 2 2

(14 5)R [ I - e - s

+ SE [Vt - viEh)]

(20),(18) w w (1+ w)L?

E [lg* — V(")) + (CL2 +(1+5)Li+ bCi> E " — 2*|7].

Next, we estimate 75 using Young’s inequality and the choice of the clipping level:

T < (14 B)E[|lg" - VAEH)|*] + 20+ 57OE [V () = Vi(b)|]

+2(14+57HE [Hé > clip,, (Q (31.(33“1’1;;{;)))

1€S)

2

Ck()’SkmB?é@]

< 1+ ME g - VAEI] + 20+ 57 (BB [la* — 42 + B )

= (14 B [|lg" = V£@")|*] + 20+ 57 )<L2+D%II}:;XL3J>E[|QUH1—mk|2},

where 8 > 0 will be specified later in the proof. Combining the derived upper bounds for fg and T,
we get

Ty < (pg + (1 —pg)(1+ B) E [llg" — VS (z*)]?]
kW2 w (1+W)£i k+1 k2
—l—pg(CL +(1+C>Li+7bc E [[a*+ — 2¥|2]
+2(1—pg)(1+87") <L2 + D} n}’aijio E [[la**" = 2%|1%] .
Plugging the obtained bounds for 7% and 75 into (31), we obtain
E [llg""! = VA HIP] < (1 =p) (0§ + (1= pg) (1 + B) E [llg" = V(")|?]

SG'P kOB 12 N 2 4GPgE05C2 .
—¢ _ +2B|E ‘ L — —_—c
oo (S o8 o G + 22t -2 ¢ S )

w w (14 w)L3
+(1—p)p§ (CL2 + (1 + 5) L+ Ti E [||lz*+ — 2*|?]

+2(1—-p)(1—pE)(1+B7") (L2 +Dj n}e}xLij> E [Jla"*! — 2¥)1?] .

Taking

: k
Bim 72(1571),5), if pé <1,
1, ifpf =1,

k k
we ensure that pf; + (1 — p&)(1+ 8) < 1+ L and (1 —pé)(l + 871 < w <

- k N
@. Using these inequalities and (1 — p) (1 - g) <1 — £, we simplify the upper bound for
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E [[|g" Tt — V f(2z*T1)||?] as follows:
E[lg"+! = V@ )P < (1-2) E [lIg" - V56"
4GPgn co¢? )

+ M+23 E[HVf (J?k>H2+L2HZ‘k+1—$kH2} + ¢ e
P\ aZs (1-4)C
k 2 wy o (+w)fi k+1 k2
+(1—p)pk CL +(1—|—5)Li+T E [|lzF ! — 2*|?]
+ 601 —p)(1 — rg) L? + D? maxL E [||lz"*! — 2*)?] .
P Q
Rearranging the terms, we get (35). O

Then, similarly to the analysis of Byz-VR-MARINA, we get the following result.

Theorem F.2. Letr Assumptions D.I1, D.2, D.3, D.4, D.5, 2.4 hold. Set A\pt1 =
max; j L; j ||a*! — 2F||. Assume that

1 ~
0<y< , 4B < p,
T va b
where
:é 7@4_6 B—|—( p)pgw + ( p)( pg) 12
p\ (1-9)C C p
4(1 - p)pg w 41 = p)pg(1 +w) L3
— Y 1+ =) L2 =]
* P ( + C) =+ pC b
24(1 — p)(1 — pk 2
e p)2< ud (DQ max Li,j) ,
p i,
N 8Gng cdBp _ . A4AGPgkcép
(1-0)C (1-6)C
and

_C G-1 n—G n -

P 2 () (29 ((2)))
(1-8)C<t<C
(G-C+1)(G-C+2)-...-(n—=0C)

(G+D)(GE+2)-...-n '
Then for all K > 0 the iterates produced by Byz-VR-MARINA+ (Algorithm 3) satisfy
290 2D¢?
%) (K+1) p—4B

pg =Prob{SyNB=2 | ¢, =0} =

= [ivs 61 =

where TX is chosen uniformly at random from x°,z', ... 2%, and ®° = f (xo) -+

g = V5 )

Proof. The proof is analogous to the proof of Theorem D.14. O

Theorem F.3. Let Assumptions 2.4, D.1, D.2, D.3, D.4, D.5, 2.7 hold. Set \y+1 =
max; j L; j ||a*! — 2F||. Assume that

1 ~
0<~y<mind ————¢, 8B<p,
T {L+\/2A} P
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where

SPBGPIEC(S . 1— k 6(1 — 1— k
A A (e o p U prgw 60 =p)(=pg) ) 1o
p\ (1-9)C C
A(1 — p)pg wy o A1 —ppg(l+w) L
—fY(1+ =)L o
+ p ( + C) + T pc’ b
24(1 — p)(1 — pk 2
+ ( p)2( %) (DQ max Li,j) ;
p irj
. 8GPgrcdBp _ . A4AGPgkcép _
B=—" _ 4+6pB, D= —2<_— 1pD,
(1-9)C (1-6)C

and

P, 2 (D (9)((2)))

(G-C+1)(G-C+2)-...-(n—=0C)
G+1)(G+2)-...-n '
Then for all K > 0 the iterates produced by Byz-VR-MARINA+ (Algorithin 3) satisfy
K 2D¢?
E[f(2") - f@")] <(1-p)" @+ o

where p = min {7/1( — %) ,%} and ®° = f (xO) -+ 2}77 HgO -V (x0)||2.

Pt =Prob{SyNB=2 | ¢, =0} =

Proof. The proof is analogous to the proof of Theorem D.15. O

F.2 Discussion of the Results

Improved neighborhood term and bound on 5. The key property of Byz-VR-MARINA+ is its
better neighborhood terms, and maximal allowed fraction of Byzantine workers § in comparison
to Byz-VR-MARINA. To illustrate it, consider the non-PEsetting (the discussion for the PE case is

similar). For both algorithms, the neighborhood term in the convergence bounds equals O (p? i; ),

but corresponding constants B and D are different:

~ O0Pge /129G ~ . OPgr /6cG ~
— C . & Ve ) )
B=27—5 < 5 +P>+6B and D—21_5(6 +p>+D for Byz-VR-MARINA,
_. 8GPgrcdBp - _ 4GPgk cép ~
B=—°——+6pB and D= —%<<—— +pD for Byz-VR-MARINA+.
(1-9)C (1-6)C

For the simplicity of the comparison, consider the case of C = n. Then, Pgr =1 and
C

B=©(6B) and D =0O(cs) for Byz-VR-MARINA,
B=0©(c5Bp) and D =0O(csp) for Byz-VR-MARINA+,
implying that the neighborhood term for Byz-VR-MARINA+ is 1/p times smaller than the neigh-

borhood term for Byz-VR-MARINA. Moreover, the restriction 4B < p used in the analysis of both
methods implies

=0 <1) for Byz-VR-MARINA,
Bp

c6=0 (;) for Byz-VR-MARINA+,

i.e., the result for Byz-VR-MARINA+ allows (1/p)-times more Byzantine workers when B > 0. We
emphasize that the neighborhood term and the bound on § in the results for Byz-VR-MARINA+
cannot be improved up to the numerical factors (Allouah et al., 2024b).
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Comparison of stepsizes when C =nand C = 1. For simplicity, to compare the stepsize
restrictions for Byz-VR-MARINA and Byz-VR-MARINA+, we consider the case when C =nand
C = 1. Moreover, let us assume that b = 1 and let us ignore the differences between smoothness
constants and replace them with their upper bound £ from Assumption 2.6. Then, for both methods,
the results in the non-PLsetting (the discussion for the PL case is similar) with B = 0 hold for
0 < v < 1/c@a+vA), where

Sreal(1 + F2 D2
A:@(l (1+w+(1+“)05>+ 1+ P4 Q)> for Byz-VR-MARINA,
p p

p2

61‘63 D2
A=0 (Hw + = Q) for Byz-VR-MARINA+,
p p

where we use pg = G/n = 1 — Jeals ng = Ya, pg = G/n = 1 — dear. That is, the result for
Byz-VR-MARINA+ allows to use larger stepsizes than in Byz-VR-MARINA (though the methods
are equivalent when C' = 1). A similar comparison holds for small enough C as well. Therefore,
we recommend using Byz-VR-MARINA+ instead of Byz-VR-MARINA when C is small. We also
highlight that the result for Byz-VR-MARINA+ does not require Assumption 2.3.
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G Analysis without Full-Batch Gradient Computations

In this section, we consider versions of Byz-VR-MARINA-PP and Byz-VR-MARINA-PP+ that
do not use full-batch gradient computations at all — see Algorithms 4 and 5. These variants of
Byz-VR-MARINA-PP and Byz-VR-MARINA-PP+ use b'-size mini-batched estimator V f;(z**1)
when ¢, = 1 for every ¢ € G N Sy in line 8 and are identical to their original versions in all other
steps/computations. This modification reduces the computation cost of iterations when ¢, = 1,
making the methods more practical.

Algorithm 4 Byz-VR-MARINA-PP without full-batch gradient computations

1: Input: vectors z°, g° € RY, stepsize +, mini-batch size b, mini-batch size V', probability
p € (0, 1], number of iterations K, (J, c)-ARAgg, clients’ sample size 1 < C < C < n, clipping
coefficients {av, }x>1

2: fork=0,1,...,K —1do

3:  Get a sample from Bernoulli distribution with parameter p: ¢ ~ Be(p)

4:  Sample the set of clients Sy, C [n], |Si| = C if ¢, = 0; otherwise |Si| = C

5:  Broadcast gk, ¢ to all workers

6: fori € G NSy in parallel do

7 Pl = aF —~ygFand \pyy = ap |2 -2

k+1 Vfi(fﬂk+1), R if Cr = 1,

= g* + Clip)\k+1 (Q (Ai(zkH’xk))) , otherwise,

where V f;(z*+1) is a b/-size mini-batched estimator of Vf;(z**1), A, (%1, z*) is a
b-size mini-batched estimator of V f; (z*+1) — V f;(2%), Q(-) for i € G N Sy, are computed

k+1 kH

8: Setg

%

independently
end for . b1y -
R gg ({gz }ZESk) ) e =1,
10:  gFtt =

g* + ARAgg <{clip)\k+1 (Q <ﬁi(xk+17 g;k))) }iESk> , otherwise
11: end for

Algorithm 5 Byz-VR-MARINA-PP+: without full-batch gradient computations

1: Input: vectors 2°,¢° € RY, stepsize 7, mini-batch size b, mini-batch size o, probability
p € (0, 1], number of iterations K, (4, ¢)-ARAgg, clients’ sample size 1 < C' < C < n, clipping
coefficients {av }r>1

2: fork=0,1,..., K — 1do
3:  Get a sample from Bernoulli distribution with parameter p: ¢ ~ Be(p)
4:  Sample the set of clients Sy, C [n], |Sk| = C if ¢, = 0; otherwise |S| = C
5:  Broadcast g*, ¢, to all workers
6: fori € G NSy in parallel do
7 aFHl = 2k — ygk and Mg = g [|2F L — 2F||
Vi (zk ), ifc, =1,
8: Setgf‘Hz k ( ) N (k+l ok :
g" +clip,, ., (Q (Az(ac T ))) , otherwise,
where Vf;(z¥+1) is a b/-size mini-batched estimator of V f;(zF+1), A;(zF+1, 2%) is a
b-size mini-batched estimator of V f;(z¥1) — V f;(z*), Q(-) for i € G N S}, are computed
independently
9:  end for -
vor | ARage (197 Yies,) if e =1,
10:  ¢g"" = g~ + % > clip,, . (Q (Ai(karl’xk))) , otherwise
1€Sk
11: end for

However, our analysis of Byz-VR-MARINA-PP/Byz-VR-MARINA-PP+ without full-batch gradient
computations requires the following additional assumption.
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Assumption G.1. We assume that there exist o > 0 such that for all z € R? and i € [n]

E[I9/@) - VA@IF] < 2,

where V f;(z) is an unbiased b'-size mini-batched estimator of V f;(z).

(32

In particular, when - S IV fij(2) =V fi(x) |2 < o, which is a standard assumption for variance-
reduced methods without full-batch gradient computations (Cutkosky and Orabona, 2019; Li et al.,
2021; Gorbunov et al., 2021), estimator V f;(z) = & 2221 Vfi)fg (z) with {&] }icin),jem) being
i.i.d. samples from the uniform distribution over [m] satisfies (32). Assumption G.1 is also standard
for general stochastic optimization (Nemirovski et al., 2009; Ghadimi and Lan, 2013).

G.1 New Lemma

The main change in the analysis is related to Lemma D.10 since it is the only lemma that relies on the
full-batch gradient computation. Nevertheless, it can be easily generalized to the case of Algorithms 4
and 5, as shown in the next result.

Lemma G.2. Let Assumptions D.1, D.5, G.1 hold and Aggregation Operator (ARAgg) satisfy
Definition 2.1. Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP/Byz-VR-MARINA-
PP+ (Algorithms 4 and 5) satisfy

Ty = E [Ex [ 4Ragg ({9 hies,) — VS]] 1 1]

SGng 06 2 2

S L oB | B[IVS @) + 22 et — o]
(1-9)C

4G’P k cOB 'ngg G 0.2

+ 7( +CO4+ [ —C— +408 -
(1-9)C (i—opcz )
~ = . . PgiGB ~  Por G¢?
where B := 0 and (* := 0 when C = n, and B := o 5)0 and ¢* : then0< n.

Proof. Using the definition of aggregation operator, we have

Ty = E [Ex [||ARAgg ({oF T ies,) — V)] | 1]

(12)

< E |Ey |||ARAgg ({9f "' }ies,) — = > VAEE| | 11

’i
C ngk
— 2 -

+E |Ey Zw LR I v TCaans 1 I NI I (33)

C zegk

To proceed, we estimate the second term in the right-hand side of the above inequality first. From
variance decomposition, we have
- 2

E B || =2 ZVfl M = VD)

ézeg’“

I I

—E ar 2 (VA = VAE) ]
6

o _

+E |E, ZVfl RS ICal RN (34)
Azegk
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The choice of C implies that G’é > (1- 6)6 Moreover, due to the independence of stochastic
gradient computations on different workers, we have

2
1

E (B || gx X (VG = VA || 11
C iegk
B 2

1 .
S R PP

1 ~ 2
S N

Pg: (32) Pgr Go?
—70 k-‘rl k+1 st
(1-opce ;E[HVL )V M T (1-gp2C

Next, since G%% gg:k V fi(z"+1) = V f(2*F+1) with probability 1 when C' = n, we can estimate the
K] =
C
last term in (34) as

2

sz M) =D)L

E |Eg k
é zEgk

ae ¥ EJIVAEE -V |, 6 <n

IA
=
| —|

¢ iegk
0, ifC=n
S{fﬁaleg E[[VAil) = Vi@ |P), i <n
e 07; ¢ irC=n BE k+1
=\ R + ), it <n DIV IETIT

where

Plugging the derived bounds in (34), we get

2
K k1 Pgx Go™

Vfi —Vf(x 1 < —&——

%Egi et =] | | < e

+ BE [|[Vf (@ )I1P] + ¢

E |Ey
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Using the above bound in (33), we continue the estimation of 77 as follows:

(Def. 2.1) s S ke S T
T < E Wzk Ey [Hqu (1' )_vfl (;E )H | [1]
i,l€GE
il
ngGJ2

_ EE k+1y(12 2
taseow IV FEIP] +¢

)
=B | grgr 1y o B [IVA G - va ) ]
crc i,l€gk
il
) ~ ~ 2
+8 | ey 3 B |[F4 68 - waet ) - c v e o)
Z,legé
il
ngGUz

t gy T BRIV &
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where in the last inequality, we use the conditional independence of {V f;(z**1)}, cgr for fixed
C

x**1. Next, using Young’s inequality, we derive

(12) )
0 L8|y X ERIVAE) v I ]
z,ZGQé
i£l
iR 5 Y ER|VAGY) -7 ) )
C_ zlegk
L 1;&1

+8 | g 3 B [ea ) - va e o)

Gk (Gk, —
C( c i,leGY

il

5| gty & Efleat -t )

i,1eGY
L i#l ]
+ IPLGO—AQ + BE [”vf(karl)”Q] + C2
(1—8)2C2
2 0 - 4céo?
CE | G 4 [V @) - v @) ] |+ 25
C zeg"
b ST B o) + 8
( )25%’
2
SR [[9 o) - vs @]+ 0
zeg
+ ﬂ 4 EE [”vf(karl)”Q] + 52
(1—8)2C2
(as.D5) [(A4GPgrcdB AGP g 6B N
< B B[V )]+ e
(1-9)C (1-06)C

PQ&G 2
b —e  taes| T
(1-9)2C? b

(2 (8CPg B B [IVF @) + 197 (@) - 97 (o))
(1-6)C

4G,Pgli cOB - PgliG 0.2
+—C P+ C+ | —E—=+40 | —
(1-0)C (1—96)2C2 b

< MJFQB E[HVf(xk)HerLQH:z:kH—zk{ﬂ
-\ (1-9C

+70A<2+CQ+ 70/\4'40(5 -
1-06)C (1-06)2C
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which concludes the proof. O

G.2 Main Results for Byz-VR-MARINA without Full-Batch Gradient Computations
G.2.1 General Results

All the lemmas derived in Appendix D.2 hold for Algorithm 4 as well except Lemma D.10, which
can be replaced with Lemma G.2, and Lemma D.13 that has the following analog.

Lemma G.3. Let Assumptions 2.3, D.1, D.2, D.3, D.5, G.1 hold and Compression Operator satisfy
Definition 2.2. Also, let us introduce the notation

AJ‘?:Agngrl = ARAgg (cl'a’pkk+1 (Q (ﬁl(a:kﬂ,xk))) s elipy, (Q (ﬁc(:vkﬂ,:ck)))) .

Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP without full-batch gradient
computations (Algorithm 4) satisfy

E [ = v (@] < (1- *) g = vs (=5[] + (373;02 + 12c5> ‘;2

+ BE (|5 (@) ] +De2 + PRt — a2,
where A, E, 15, PG, ng are defined in Lemma D.13.

Proof. Up to the replacement of the bound from Lemma D.10 with the bound from Lemma G.2, the
proof of the result is identical to the proof of Lemma D.13. O

Theorem G.4. Let Assumptions 2.3, D.1, D.2, D.3, D.5, G.I hold. Set \pt1 =
2 max;eg L; ka‘H - ka Assume that

0<vy< 4§<p7

1
L++VA
where A and B are defined in Theorem D.14. Then for all K > 0 the iterates produced by Byz-VR-
MARINA without full-batch gradient computations (Algorithm 4) satisfy

0 D2 12Pge G 2
E {va (fK)HQ} < 20 LA ( 02 - +4805> —7
7(1-B) (K +1) p—4B \(1-07C V(p— D)

where TK is chosen uniformly at random from a:o,:zrl,...,xK, and ®° = f (xo) -+

o -5 @)

Proof. The proof is identical to the proof of Theorem D.14 up to the replacement of Lemma D.13
with Lemma G.3. U

Theorem G.5. Let Assumptions 2.3, D.l, D.2, D.3, D.5 2.7 hold. Set Ag+1 =
max;eg L; ||x’CJrl — zk || Assume that

0<’y§min{ 8§<p

1
L+\/2A}’

where A and B are defined in Theorem D.15. Then for all K > 0 the iterates produced by Byz-VR-
MARINA without full-batch gradient computations (Algorithm 4) satisfy

4B7C2 12Pgr G No?
E[f(z5) = f(2)] < (1—-p)d°+ + C__ 4 48¢6 ,
=) - fen] <@ -0 pp (1-10)2C2 V'pp

where p = min {’yu ( - @> %] and ®° = f (2°) — f* + % g° =Vf (xO)HQ_
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Proof. The proof is identical to the proof of Theorem D.15 up to the replacement of Lemma D.13
with Lemma G.3. O

In contrast to their counterparts for Byz-VR-MARINA-PP with (periodical) full-batch gradient

computations (Theorems D.14 and D.15), the above results have additional terms proportional to ‘Z—,z
in the upper bounds. These terms cannot be reduced with the decrease of the stepsize but can be made
smaller via the increase of &’. A similar phenomenon appears in the analysis of the methods with
recursive variance reduction even in Byzantine-free case (Fang et al., 2018; Li et al., 2021; Gorbunov
et al., 2021), and to address it, b’ is typically chosen to be large.

G.2.2 Results for Bounded Compressors

Similarly to the previous section, we start with an adaptation of Lemma E.3 to the case without
full-batch gradient computations.

Lemma G.6. Let Assumptions 2.3, D.1, D.2, D.3, D.4, D.5, G.1, 2.4 hold and the compression
operator satisfy Definition 2.2. We set \+1 = Dgmax; ; L ;||a**1 — 2*|. Also, let us introduce
the notation

AR/Igg’é’"1 = ARAgg (cle’pAk+1 (Q (ﬁl(xk"'l,xk))) sy elipy, (Q (ﬁc(xlﬁ'l,xk)))) .

Then for all k > 0 the iterates produced by Byz-VR-MARINA-PP without full-batch gradient
computations (Algorithm 4) satisfy

3,PglgG 2
ol 6] = (-l ] (100

~ ~ A
+ BE[[[V£ (*)°] + D¢ + B2l — a2,
where A, E, ﬁ, PG, ng are defined in Lemma D.13.

Proof. Up to the replacement of the bound from Lemma D.10 with the bound from Lemma G.2, the
proof of the result is identical to the proof of Lemma E.3. O

Theorem G.7. Let Assumptions 2.3, D.1, D.2, D.3, D.4, D.5, G.1, 2.4 hold. Setting \p41 =
max; ; L ; ka“ - ka Assume that

0<vy< 4§<p7

1
L+VA
where A and B are defined in Theorem E.4. Then for all K > 0 the iterates produced by Byz-VR-
MARINA without full-batch computations (Algorithm 4) satisfy

20 21’5(2 6Pgr G
: (

2
— — < — +24C(5> — =,
7(1_%) (K+1) p—A4B 1—6)2C? b'(p—4B)

B[|vs )] <

where T is chosen uniformly at random from z°,z*, ... 2®, and ®° = f(z°) — f* +

0 0) |2
2lle® = VF @)
Proof. The proof is identical to the proof of Theorem E.4 up to the replacement of Lemma E.3 with

Lemma G.6. O

Theorem G.8. Let Assumptions 2.3, D.1, D.2, D.3, D.4, D.5, G.1, 2.4, 2.7 hold. Setting A\p4+1 =
max; ; L; ; Hx’”l — ka Assume that

0<~< 8B < p,

1
L++24°
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where A and B are defined in Theorem E.5. Then for all K > 0 the iterates produced by Byz-VR-
MARINA without full-batch computations (Algorithm 4) satisfy

K\ 0L 2D¢? GngG 5 yo?
E[f (@) -fG)] <1-p" e+ = +<(1_5)2@2+24c o

where p = min {fyu (1 — %) 7%} and ®° = f (mO) _ f* + 2% Hgo _ Vf (xO)HQ'

Proof. The proof is identical to the proof of Theorem E.5 up to the replacement of Lemma E.3 with
Lemma G.6. 0

G.3 Main Results for Byz-VR-MARINA+ without Full-Batch Gradient Computations

G.3.1 Results for Bounded Compressors

Similarly to the analysis of Byz-VR-MARINA without full-batch gradient computations, we start
with the adaptation of Lemma F.1 to the no-full-batch gradient computations case.

Lemma G.9. Let Assumptions D.1, D.2, D.3, D.4, D.5, G.1, 2.4 hold and the compression operator
satisfy Definition 2.2. Assume that C < G. We set Ap41 = Dgmax; j L; |kt — z¥||. Then for
all k > 0 the iterates produced by Byz-VR-MARINA-PP+ without full-batch gradient computations
(Algorithm 5) satisfy

]E{Hgk-&-l_Vf(xk-&-l)HQ} (1—7) [Hg —Vf(x )M (Pg:fchr@é)p?

+BE |97 ()] + B¢ + 22 ket — o2, 35)

where A, E, ﬁ, PG, ng are defined in Lemma F.1.

Proof. Up to the replacement of the bound from Lemma D.10 with the bound from Lemma G.2, the
proof of the result is identical to the proof of Lemma F.1. O

Theorem G.10. Let Assumptions D.1, D.2, D.3, D.4, D.5, G.1, 2.4 hold. Set \py+1 =
max;,; Li kaﬂ ’“H Assume that

0<~v< 4B < p,

1
L+ VA
where A and B are defined in Theorem F.2. Then for all K > 0 the iterates produced by Byz-VR-
MARINA+ without full-batch gradient computations (Algorithm 5) satisfy

) 2Pg kG
B [[vs @] < 22y D¢ ( +sas) o’
7<1f%) (K+1) p—4B \(1- )202 b'(p—4B)

where ZX is chosen uniformly at random from z°,z',... 2%, and ®° = f (:co) -+

2 g = vr @)

Proof. The proof is analogous to the proof of Theorem D.14. O

Theorem G.11. Let Assumptions 2.4, D.1, D.2, D.3, D.4, D.5, G.1 2.7 hold. Set \p4+1 =
max; j L; j ||a*™ — 2F||. Assume that

O<7§min{ 8§<p7

1
L++2A } ’
where A and B are defined in Theorem F.3. Then for all K > 0 the iterates produced by Byz-VR-
MARINA+ without full-batch gradient computations (Algorithm 5) satisfy

. 21’5(2 277g§G ~o?
E[f(2%) - f@)] <1-p"~ 2+ o + <(1 —oyE + 8¢ by

where p = min {’yu (1 — %) ,%} and ®° = f (IO) -+ 2?7 HgO -V (xO)HZ.
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Proof. The proof is analogous to the proof of Theorem D.15. O

As in the case of Byz-VR-MARINA, the above upper bounds for Byz-VR-MARINA+ without full-

batch gradient computations have additional terms proportional to ‘Z’T? In contrast to the results for
Byz-VR-MARINA+ without full-batch gradient computations, these terms for Byz-VR-MARINA+
are 1/p times smaller.

34972 https://doi.org/10.52202/079017-1102



H Experimental Details and Extra Experiments

H.1 Experimental Details

For each experiment, we tune the step size using the following set of candidates {0.1,0.01,0.001}.
The step size is fixed. We do not use learning rate warmup or decay. We use batches of size 32 for all
methods. For partial participation, in each round, we sample 20% of clients uniformly at random.
For A\, = A||z* — 2*~!|| used for clipping, we select A from {0.1, 1.,10.}. Each experiment is run
with three varying random seeds, and we report the mean optimality gap with one standard error. The
optimal value is obtained by running gradient descent (GD) on the complete dataset for 1000 epochs.
Our implementation of attacks and robust aggregation schemes is based on the public implementation
from (Gorbunov et al., 2023).

H.2 Extra Experiments

Below we provide the missing neural network experiments from the main paper. We consider the
MNIST dataset (LeCun and Cortes, 1998) and CIFAR10 (Krizhevsky et al., 2009) (as in (Karimireddy
et al., 2021)) with 20 clients, 5 of which are malicious, and 4 clients are sampled in each step. For
the attacks, we consider A Little is Enough (ALIE) (Baruch et al., 2019) and the aforementioned
Shift-Back (SHB). For the aggregations, we consider coordinate median (CM) (Chen et al., 2017)
and robust federated averaging (RFA) (Pillutla et al., 2022) with bucketing. For the MNIST dataset,
we use a simple neural network with two convolution layers followed by two fully connected. For
CIFAR 10, we use ResNet18 (He et al., 2016) architecture with layer norm. One can note that the
results are consistent with the ones provided in the main paper, i.e., clipping performs on par or better
than its variant without clipping, and no robust aggregator is able to withstand the shift-back attack
without clipping. Our implementation is available at https://github.com/SamuelHorvath/VR_
Byzantine/tree/partial_participation.
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Figure 3: Training loss (top) and test accuracy (bottom) of 2 aggregation rules (CM, RFA) under 4
attacks (BF, LF, ALIE, SHB) on the MNIST dataset under heterogeneous data split with 20 clients, 5
of which are malicious, 4 clients sampled per round.
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Figure 4: Training loss (top) and test accuracy (bottom) of 2 aggregation rules (CM, RFA) under 4

attacks (BF, LF, ALIE, SHB) on the CIFAR10 dataset under heterogeneous data split with 20 clients,
5 of which are malicious, 4 clients sampled per round.
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Answer: [Yes]
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: see Section 5
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see Section 5
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: see Section 5
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We do not provide specific information about the computer resources used for
our experiments. However, none of our experiments require significant computational power.
Each experiment can be run in less than 5 minutes on a Quadro RTX 6000 NVIDIA GPU.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: our work follows the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: theoretical paper
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

https://doi.org/10.52202/079017-1102 34977


https://neurips.cc/public/EthicsGuidelines

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: we do not train new models
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we provide citations when necessary
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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