
Extensive-Form Game Solving via Blackwell
Approachability on Treeplexes

Darshan Chakrabarti
IEOR Department

Columbia University
dc3595@columbia.edu

Julien Grand-Clément
ISOM Department

HEC Paris
grand-clement@hec.fr

Christian Kroer
IEOR Department

Columbia University
christian.kroer@columbia.edu

Abstract

We introduce the first algorithmic framework for Blackwell approachability on
the sequence-form polytope, the class of convex polytopes capturing the strategies
of players in extensive-form games (EFGs). This leads to a new class of regret-
minimization algorithms that are stepsize-invariant, in the same sense as the Regret
Matching and Regret Matching+ algorithms for the simplex. Our modular frame-
work can be combined with any existing regret minimizer over cones to compute
a Nash equilibrium in two-player zero-sum EFGs with perfect recall, through the
self-play framework. Leveraging predictive online mirror descent, we introduce
Predictive Treeplex Blackwell+ (PTB+), and show a O(1/

√
T) convergence rate to

Nash equilibrium in self-play. We then show how to stabilize PTB+ with a stepsize,
resulting in an algorithm with a state-of-the-art O(1/T) convergence rate. We
provide an extensive set of experiments to compare our framework with several
algorithmic benchmarks, including CFR+ and its predictive variant, and we highlight
interesting connections between practical performance and the stepsize-dependence
or stepsize-invariance properties of classical algorithms.

1 Introduction

In this paper, we focus on solving Extensive-Form Games (EFGs). Finding a Nash equilibrium of a
two-player zero-sum EFG can be cast as solving

min
x∈X

max
y∈Y

⟨x,My⟩ (1)

where the sets X ,Y are two sequence-form polytopes (also referred to as treeplexes) representing
the strategies x,y of each player, and M is a payoff matrix. EFGs have been successfully used
to obtain superhuman performances in several recent poker AI breakthroughs [37, 4, 5]. Many
algorithms have been developed based on (1). Since X and Y are polytopes, (1) can be formulated
as a linear program [38]. However, because X and Y themselves have very large dimensions in
realistic applications, first-order methods (FOMs) and regret minimization approaches are preferred
for large-scale game solving. FOMs such as the Excessive Gap Technique (EGT, [32]) and Mirror
Prox [31] instantiated for EFGs [23, 27] converge to a Nash equilibrium at a rate of O(1/T), where T
is the number of iterations. Regret minimization techniques rely on a folk theorem relating the regrets
of the players and the duality gap of the average iterates [19]. For instance, predictive online mirror
descent with the treeplexes X and Y as decision sets achieves a O(1/T) convergence rate [14].

Counterfactual regret minimization (CFR) [39] is a regret minimizer for the treeplex that runs regret
minimizers locally, i.e. directly at the level of the information sets of each player. CFR+, used in
virtually all poker AI milestones [37, 30, 5], instantiates the CFR framework with a regret minimizer

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

35257 https://doi.org/10.52202/079017-1111

called Regret Matching+ (RM+) [37] and guarantees a O(1/
√
T) convergence rate. The strong

empirical performance of CFR+ remains mostly unexplained, since this algorithm does not achieve
the fastest theoretical O(1/T) convergence rate. Interestingly, there is a stark contrast between the
role of stepsizes in CFR+ versus in other algorithms. CFR+ may use different stepsizes across different
infosets, and the iterates of CFR+ do not depend on the values of these stepsizes. We identify this
property as infoset stepsize invariance. In contrast, the convergence properties of FOMs depend on
the choice of a single stepsize used across the entire treeplex, which may be hard to tune in practice.

RM+ is an instantiation of Blackwell approachability [3] for the simplex, a versatile framework with
connections to online learning [1]. Empirically, using a regret minimizer (over simplexes) based
on Blackwell approachability (RM+) is central to the success of CFR+: combining CFR with other
local regret minimizers than RM+, e.g., Online Mirror Descent (OMD), leads to much weaker practical
performance [6]. This raises the question of whether the performance of CFR+ is mostly explained by
the use of Blackwell approachability on simplexes (RM+), and if a Blackwell approachability-based
algorithm operating directly on treeplexes, bypassing the CFR decomposition, could outperform
CFR+. Our goal in this paper is to address these questions. To do so, we develop the first Blackwell
approachability-based algorithms for treeplexes, and we provide a new hypothesis for explaining the
performance of CFR+. In particular, our main contributions are as follows.

Treeplex Blackwell approachability. We introduce the first Blackwell approachability-based regret
minimizer for treeplexes. Using the self-play framework, we correspondingly get the first framework
for solving two-player zero-sum EFGs via Blackwell approachability on treeplexes. Blackwell
approachability enables an equivalence between regret minimization over the treeplex T and over its
conic hull cone(T), and any existing regret minimizer for cone(T) yields a new algorithm for solving
EFGs. A crucial advantage of using Blackwell approachability on the treeplex, rather than regret
minimization directly on the treeplex, is that it leads to a variety of interesting stepsize properties (e.g.
stepsize invariance), which are not achieved by regret minimizers such as OMD on the treeplex.

We then provide several instantiations of our framework. PTB+ (Predictive Treeplex Blackwell+,
Algorithm 2) combines our framework with predictive OMD over cone(T) and achieves a O(1/

√
T)

convergence rate. PTB+ is treeplex stepsize invariant: its iterates do not change if we rescale all
stepsizes by a positive constant. This is a desirable property for practical use, although it is a weaker
property than the infoset stepsize invariance of CFR+. Smooth PTB+ (Algorithm 3) is a variant of PTB+
ensuring that successive iterates vary smoothly. We show that Smooth PTB+ is the first EFG-solving
algorithm based on Blackwell approachability achieving a O(1/T) convergence rate, answering
an important open question. Crucially, it is necessary to introduce a stepsize to achieve this faster
convergence, and thus Smooth PTB+ is not treeplex stepsize invariant; this is analogous to existing
FOM-based O(1/T)-methods for solving EFGs. We also consider AdaGradTB+ and AdamTB+, which
learn different stepsizes for every dimension of the treeplexes, based on AdaGrad [12] and Adam [25].
We present the convergence properties of our algorithms in Table 1.

Numerical experiments. We provide two comprehensive sets of numerical experiments over
benchmark EFGs. We find that PTB+ performs the best among all the algorithms introduced in our
paper (Figure 4), highlighting the advantage of treeplex stepsize invariant algorithms (PTB+) over
stepsize-dependent algorithms achieving faster theoretical convergence rate (Smooth PTB+), and over
adaptive algorithms learning decreasing stepsizes (AdaGradTB+, AdamTB+). We then compare our
best method (PTB+) with CFR+, predictive CFR+ (PCFR+), and predictive OMD (POMD) (Figure 2). We
expected PTB+ to perform on par with PCFR+, since PTB+ is stepsize invariant, predictive, and based
on Blackwell approachability. However, we find that PCFR+ outperforms all other algorithms. This
suggests that infoset stepsize invariance is an important property, even more than the treeplex stepsize
invariance of PTB+. Due to the CFR decomposition, PCFR+ can use different stepsizes at different
infosets, where the values of the variables may be of very different magnitudes (typically, smaller for
infosets appearing deeper in the treeplex), and PCFR+ does not require tuning these different stepsizes,
which may be impossible for large instances. No algorithms appear to consistently outperform the
others for the last-iterate performances, and we leave studying this as an open question.

A new hypothesis on EFG-solving algorithms: the role of stepsize invariance. Overall, as part
of our main contributions, we identify and distinguish the infoset and treeplex stepsize invariance
properties, and based on our empirical experiments, we posit that infoset stepsize invariance explains
part of the puzzle behind the strong empirical performance of CFR+ and PCFR+. Our results highlight
that for practical performance, the stepsize invariance properties may be more important than faster

2

35258https://doi.org/10.52202/079017-1111

theoretical convergence rates, which require introducing a stepsize, as for Smooth PTB+ or POMD. The
very strong empirical performance of (predictive) CFR+ has been unexplained for a long time and
is one of the major open questions in EFG-solving; we view providing a new hypothesis for this
phenomenon (infoset stepsize invariance) as important contributions to the EFG-solving community.

Algorithms Convergence rate Stepsize invariance

CFR+ [37] 1/
√
T ✓✓

PCFR+ [16] 1/
√
T ✓✓

EGT [26] 1/T ✗
POMD [14] 1/T ✗

PTB+ (Algorithm 2) 1/
√
T ✓

Smooth PTB+ (Algorithm 3) 1/T ✗

AdaGradTB+ (Algorithm 6) 1/
√
T ✗

AdamTB+ (Algorithm 7) ? ✗

Table 1: Convergence rates to a Nash equilibrium of a two-player zero-sum EFG for several algorithms.
✓✓ refers to infoset stepsize invariance and ✓ refers to treeplex stepsize invariance.

2 Preliminaries on EFGs

We first provide some background on EFGs and treeplexes.

Extensive-form games. Two-player zero-sum extensive-form games (later referred to as EFGs) are
represented by a game tree and a payoff matrix. Each node of the tree belongs either to one of the
players, or to a chance player, modeling the random events in the game, e.g., tossing a coin. The
players are assigned payoffs at the terminal nodes only. Imperfect information is modeled using
information sets (infosets), which are subsets of nodes of the game tree. A player cannot distinguish
between the nodes in a given infoset, and they must take the same action at all these nodes.

Treeplexes. The strategy of a player can be described by a polytope called the treeplex, also known as
the sequence-form polytope. The treeplex is constructed as follows. We index the infosets of a player
by J = {1, ..., |J |}. The set of actions available at infoset j ∈ J is written Aj with cardinality
|Aj | = nj . We represent choosing action a ∈ Aj at infoset j ∈ J by a sequence (j, a), and we
denote by Cja the set of next infosets reachable from (j, a) (possibly empty if the game terminates).
The parent pj of an infoset j ∈ J is the sequence leading to j; note that pj is unique assuming
perfect recall. We assume that there is a single root denoted as ∅ and called the empty sequence. If
the player does not take any action before reaching j ∈ J , then by convention pj = ∅. Under the
perfect recall assumption, the set of infosets has a tree structure: Cja ∩ Cj′a′ = ∅, for all pairs of
sequences (j, a) and (j′, a′) such that j ̸= j′, a ̸= a′. This tree is the treeplex and it represents the
set of all admissible strategies for a given player. We denote by n ∈ N the total number of sequences
(j, a) with j ∈ J and a ∈ Aj . With these notations, the treeplex T of a given player is

T = {x ∈ Rn+1
+ | x∅ = 1,

∑
a∈Aj

xja = xpj
,∀ j ∈ J } (2)

where the first component x∅ is related to the empty sequence ∅. A player makes an observation to
arrive at j, if |Cpj

| > 1. We define the depth d of a treeplex to be the maximum number of actions
and observations that can be made starting at the root until reaching a leaf infoset. Computing a
Nash equilibrium of EFGs can be formulated as solving (1) (under the perfect recall assumption),
with X ⊂ Rn1+1 and Y ⊂ Rn2+1 the treeplex of each player, n1 and n2 are the number of
sequences of each player, and M ∈ R(n1+1)×(n2+1) the payoff matrix such that for a pair of strategy
(x,y) ∈ X × Y , ⟨x,My⟩ is the expected value that the second player receives from the first player.

Regret minimization and self-play framework. A regret minimizer Regmin over a decision set
Z ⊂ Rd is an algorithm such that, at every iteration, Regmin chooses a decision zt ∈ Z , a loss
vector ℓ ∈ Rd is observed, and the scalar loss ⟨ℓt,xt⟩ is incurred. A regret minimizer ensures that
the regret RegT = maxẑ∈Z

∑T
t=1⟨ℓt, zt − ẑ⟩ grows at most as O(

√
T). As an example, predictive

online mirror descent (POMD, [34]) generates a sequence of decisions z1, ...,zT ∈ Z as follows:
zt = ΠZ (ẑt − ηmt) , ẑt+1 = ΠZ (ẑt − ηℓt) (3)

3

35259 https://doi.org/10.52202/079017-1111

with m1, ...,mT ∈ Rd some predictions of the losses ℓ1, ..., ℓT ∈ Rd, and where we write the
orthogonal projection of y ∈ Rd onto Z as ΠZ (y) := argminz∈Z ∥z − y∥2.

The self-play framework solves EFGs via regret minimization. The players compute two sequences
of strategies x1, ...,xT and y1, ...,yT such that, at iteration t ≥ 1, the first player observes its loss
vector Myt−1 and the second player observes its loss vector −M⊤xt−1. Each player computes
their current strategies xt ∈ X and yt ∈ Y via regret minimization. A well-known theorem states
that the duality gap of the average of the iterates is bounded by the sum of the average regrets of the
players.
Proposition 2.1 ([19]). Let x1, ...,xT ∈ X and y1, ...,yT ∈ Y be computed in the self-play
framework. Let (x̄T , ȳT) =

1
T

∑T
t=1 (xt,yt). Then, for RegT1 and RegT2 the regret of each player,

max
ŷ∈Y

⟨x̄T ,Mŷ⟩ − min
x̂∈X

⟨x̂,MȳT ⟩ =
(
RegT1 + RegT2

)
/T.

We present more details on the self-play framework in Appendix A.

CFR and Regret Matching+. Counterfactual Regret minimization (CFR, [39]) runs independent
regret minimizers with counterfactual losses at each infoset of the treeplexes. This considerably
simplifies the optimization problem, since the decision set at each infoset j ∈ J is the simplex over
the set of next available actions ∆nj := {x ∈ Rnj

+ | ∑nj

i=1 xi = 1}. In the CFR framework, the
regret of each player (over the treeplex) is bounded by the maximum of the local regrets incurred
at each infoset. Therefore, CFR combined with any regret minimizer over the simplex converges
to a Nash equilibrium at a rate of O(1/

√
T). We refer to Appendix B for more details. Combining

CFR with a local regret minimizer called Regret Matching+ (RM+, [37]) along with alternation and
linear averaging yields an algorithm called CFR+, which has been observed to attain strong practical
performance compared to theoretically-faster methods [27]. Crucially, RM+ can only be implemented
on the simplex and not for other decision sets, and proceeds as follows: given a sequence of loss
ℓ1, ..., ℓT ∈ Rd, RM+ maintains a sequence R1, ...,RT ∈ Rd such that R1 = 0 and

xt = Rt/∥Rt∥1,Rt+1 = ΠRd
+
(Rt − ηg(xt, ℓt)) (4)

with η > 0 and 0/0 := (1/d)1 for 1 := (1, ..., 1) ∈ Rd, and, for x, ℓ ∈ Rd,

g(x, ℓ) := ℓ− ⟨x, ℓ⟩1. (5)

RM+ is stepsize invariant: x1, ...,xT are independent of η, since xt = Rt/∥Rt∥1 and η only rescales
the entire sequence R1, ...,RT . Since CFR+ runs RM+ at each infoset independently, CFR+ is infoset
stepsize invariant: there may be different stepsizes across different infosets and the iterates of CFR+ do
not depend on them, which is desirable for large-scale EFGs where stepsize tuning may be difficult.

RM+ can be interpreted as an instantiation of Blackwell approachability [3, 1], where the goal of the
decision maker is to compute the sequence of strategies x1, ...,xT ∈ ∆d to ensure that the auxiliary
sequence RT /T ∈ Rd

+ approaches the target set Rd
− as T → +∞. Since Rt ∈ Rd

+, this is equivalent
to ensuring that limT→+∞ RT /T = 0. The vector g(x, ℓ) is interpreted as an instantaneous loss for
the approachability instance. As an instantiation of Blackwell approachability, at each iteration RM+

computes an orthogonal projection onto the conic hull of the decision set:

Rd
+ = cone(∆d) (6)

with cone(Z) := {αx | x ∈ Z, α ≥ 0} for a set Z . The function R 7→ R/∥R∥1 is based on

∆d ⊂ {x ∈ Rd | ⟨x,1⟩ = 1}. (7)

Since for R ∈ Rd
+, ⟨R,1⟩ = ∥R∥1, then xt = Rt/∥Rt∥1 can be written xt = Rt/⟨Rt,1⟩, with 1

a vector such that the decision set ∆d satisfies (7). This ensures that

⟨Rt, g(xt, ℓ)⟩ = 0,∀ ℓ ∈ Rd. (8)

We provide an illustration of the dynamics of RM+ in Figure 1. Equation (8) is known as a hyperplane
forcing condition and is a key ingredient in any Blackwell approachability-based algorithm; it ensures
that the vector RT grows at most at a rate of O(

√
T) so that limT→+∞ RT /T = 0. We refer to

[33, 22] and to Appendix C for more details on Blackwell approachability.

4

35260https://doi.org/10.52202/079017-1111

3 Blackwell Approachability on Treeplexes

In this section we introduce a modular regret minimization framework for the treeplex based on
Blackwell approachability. This framework can be used as a regret minimizer over T in the self-play
framework (described in the previous section and in Appendix A) to obtain an algorithm for solving
EFGs. Our algorithms are based on the fact that for T ⊂ Rn+1 a treeplex as defined in (2), we have

T ⊂ {x ∈ Rn+1 | ⟨x,a⟩ = 1} (9)

for a = (1,0) ∈ Rn+1 with 0 = (0, ..., 0) ∈ Rn. This property is analogous to (7) for the simplex.
With this analogy in mind, we define C ⊂ Rn+1 and f(x, ℓ) ∈ Rn+1 as, for x, ℓ ∈ Rn+1,

C := cone(T) (10)
f(x, ℓ) := ℓ− ⟨x, ℓ⟩a. (11)

Equation (10) and Equation (11) are analogous to (6) and (5). The cone C and the vector f(x, ℓ) play
a similar role for T as Rd

+ and g(x, ℓ) play for ∆d in RM+. Our framework is described in Algorithm
1 and relies on running a regret minimizer Regmin over C = cone(T) against the losses f(xt, ℓt) to
obtain a regret minimizer over T against the losses ℓt, for t ≥ 1.

Algorithm 1 Blackwell approachability on the treeplex

1: Input: A regret minimizer Regmin with decision
set C

2: Initialization: R1 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: xt = Rt/⟨Rt,a⟩
5: Observe the loss vector ℓt ∈ Rn+1

6: Regmin observes f(xt, ℓt) ∈ Rn+1

7: Rt+1 = Regmin (·) Figure 1: RM+ in R2
+, with gt = g(xt, ℓt).

By convention that 0/0 is the uniform strategy for the treeplex. Algorithm 1 is the first Blackwell
approachability-based algorithm operating on the entire treeplex (in contrast to CFR+ which relies on
Blackwell approachability locally at the infosets level). We first describe some important properties
of Algorithm 1:

Feasibility of the iterates. Algorithm 1 produces feasible strategies, i.e., xt ∈ T ,∀ t ≥ 1. Indeed,
since Regmin is a regret minimizer with C as the decision set, Rt ∈ cone(T), i.e., Rt = αz with
α ∈ R+ and z ∈ T . From (9), we have ⟨z,a⟩ = 1. Therefore, xt =

Rt

⟨Rt,a⟩ = αz
α⟨z,a⟩ = z ∈ T .

This is analogous to RM+, where xt is proportional to Rt, see (4) and Figure 1.

Hyperplane forcing. For any t ∈ N we have

⟨Rt, f(xt, ℓ)⟩ = 0,∀ ℓ ∈ Rn+1. (12)

The hyperplane forcing equation (12) is a crucial component of algorithms based on Blackwell
approachability. It ensures that ∥Rt∥2 = O(

√
T). Equation (12) is analogous to (8) for RM+ and

follows from xt =
Rt

⟨Rt,a⟩ , so that

⟨Rt,f(xt, ℓ)⟩ = ⟨Rt, ℓ⟩ − ⟨xt, ℓ⟩⟨Rt,a⟩ = ⟨Rt, ℓ⟩ − ⟨ Rt

⟨Rt,a⟩
, ℓ⟩⟨Rt,a⟩ = ⟨Rt, ℓ⟩ − ⟨Rt, ℓ⟩ = 0.

Regret minimization over T . Algorithm 1 always yields a regret minimizer over the treeplex T , i.e., it
ensures that the regret of x1, ...,xT ∈ T against any ℓ1, ..., ℓT ∈ Rn+1 is bounded by O(

√
T). The

proof is instructive and shows a central component to Blackwell approachability-based algorithms:
minimizing regret over T can be achieved by minimizing regret over cone(T).

Proposition 3.1. Let Regmin be a regret minimizer with C as the decision set. Let x1, ...,xT ∈ T be
computed by Algorithm 1. Then maxx̂∈T

∑T
t=1⟨xt − x̂, ℓt⟩ = O(

√
T).

5

35261 https://doi.org/10.52202/079017-1111

Proof. Let x̂ ∈ T and let us write R̂ = x̂. We have
T∑

t=1

⟨xt − x̂, ℓt⟩ =
T∑

t=1

⟨−x̂,f (xt, ℓt)⟩ =
T∑

t=1

⟨−R̂,f (xt, ℓt)⟩ =
T∑

t=1

⟨Rt − R̂,f (xt, ℓt)⟩

where the first equality follows from the definition of f (xt, ℓt) and ⟨z,a⟩ = 1 for any z ∈ T , the
second equality is because x̂ = R̂, and the last equality follows from the hyperplane forcing condition
(12). Now note that

∑T
t=1⟨Rt − R̂,f (xt, ℓt)⟩ is the regret of a regret minimizer Regmin choosing

R1, ...,RT in the decision set C := cone(T) against a sequence of loss f (x1, ℓ1) , ...,f (xT , ℓT)

and a comparator R̂ ∈ cone(T). Therefore,
∑T

t=1⟨Rt − R̂,f (xt, ℓt)⟩ = O(
√
T).

Remark 3.2. In their seminal paper, Abernethy et al. [1] show a general reduction from regret
minimization to Blackwell approachability for compact convex decision sets. Our reduction from
Algorithm 1 builds upon the ideas in [1], but our reduction is different and exploits the structure
of treeplexes. Additionally, [1] focuses on the case of adversarial losss, whereas we focus on
solving EFGs, where stepsize invariance properties is crucial and where we can prove fast O(1/T)
convergence rates. We provide a more detailed comparison with [1] in Appendix C.

4 Instantiations of Algorithm 1

We can instantiate Algorithm 1 with any regret minimizer over C to obtain various properties such as
stepsize invariance or achieving O(1/T) convergence rate. We show next how to do so.

Predictive Treeplex Blackwell+ (PTB+). We first introduce Predictive Treeplex Blackwell+ (Algo-
rithm 2), combining Algorithm 1 with POMD with C as a decision set.

Algorithm 2 PTB+

1: Input: η > 0, m1, ...,mT ∈ Rn+1

2: Initialization: R̂1 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: Rt ∈ ΠC

(
R̂t − ηmt

)
5: xt = Rt/⟨Rt,a⟩
6: Observe the loss vector ℓt ∈ Rn+1

7: R̂t+1 ∈ ΠC

(
R̂t − ηf(xt, ℓt)

)

Algorithm 3 Smooth PTB+

1: Input: η > 0, m1, ...,mT ∈ Rn+1

2: Initialization: R̂1 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: Rt ∈ ΠC≥

(
R̂t − ηmt

)
5: xt = Rt/⟨Rt,a⟩
6: Observe the loss vector ℓt ∈ Rn+1

7: R̂t+1 ∈ ΠC≥

(
R̂t − ηf(xt, ℓt)

)

We start by highlighting a crucial property of PTB+, treeplex stepsize invariance. The sequence of
iterates x1, ...,xT generated by Algorithm 2 is independent of the choice of the stepsize η > 0, that
only rescales the sequences R̂1, ..., R̂T and R1, ...,RT , the orthogonal projection onto a cone is
positively homogeneous of degree 1: ΠC(ηz) = ηΠC(z) for η > 0 and z ∈ Rn+1, and the function
R 7→ R/⟨R,a⟩ is scale-invariant: (ηR)

⟨(ηR),a⟩ = R
⟨R,a⟩ for η > 0 and R ∈ Rn+1. We provide a

rigorous statement in the following proposition and we present the proof in Appendix D.
Proposition 4.1. The sequence x1, ...,xT computed by PTB+ is independent on the stepsize η > 0.

Treeplex stepsize invariance is a crucial property, since in large EFGs, stepsize tuning is difficult
and resource-consuming. This is the main advantage of using Blackwell approachability: running
POMD directly on the treeplex T does not result in a stepsize invariant algorithm, whereas PTB+ runs
POMD on cone(T) and is stepsize invariant. To our knowledge, CFR+ and PCFR+ are the only other
treeplex stepsize invariant algorithms for solving EFGs. In fact, they satisfy a stronger infoset stepsize
invariance property: different stepsizes can be used at different infosets, and the iterates do not
depend on their values. We discuss the relation between PTB+ and known instantiations of Blackwell
approachability over the simplex (RM+ and CBA+ [22]) in Appendix E.

From Proposition 3.1 and the regret bounds on POMD (see for instance section 3.1.1 in [34] or section
6 in [16]), we obtain the following proposition. We define Ω ∈ R+ as Ω := maxx∈T ∥x∥2.

6

35262https://doi.org/10.52202/079017-1111

Proposition 4.2. Let x1, ...,xT be computed by PTB+. Then maxx̂∈T
∑T

t=1⟨xt − x̂, ℓt⟩ ≤
Ω
√∑T

t=1 ∥f(xt, ℓt)−mt∥22.

From Proposition 4.2, PTB+ is a regret minimizer over treeplexes, and we can combine it with
the self-play framework to solve EFGs, as shown in the next corollary. We use the notations
d := max{n,m}+ 1, Ω̂ := max{∥z∥2| z ∈ X ∪ Y}, ∥M∥2 := supv ̸=0

∥Mv∥2

∥v∥2
.

Corollary 4.3. Let (xt)t≥1 and (yt)t≥1 be the sequence of strategies computed by both play-
ers employing PTB+ in the self-play framework, with previous losses as predictions: mx

t =

f(xt−1,Myt−1),m
y
t = f(yt−1,−M⊤xt−1). Let (x̄T , ȳT) =

1
T

∑T
t=1 (xt,yt). Then

max
y∈Y

⟨x̄T ,My⟩ − min
x∈X

⟨x,MȳT ⟩ ≤
Ω̂3

√
d
√

∥M∥2√
T

.

Finally, we can efficiently compute the orthogonal projection onto C, since C admits the following
simple formulation of as a polytope: C = {x ∈ Rn+1

+ | ∑a∈Aj
xja = xpj

,∀ j ∈ J }.
Proposition 4.4. Let T be a treeplex with depth d, number of sequences n, number of leaf sequences l,
and number of infosets m. The orthogonal projection ΠC(y) of a point y ∈ Rn+1 onto C = cone(T)
can be computed in O(dn log(l +m)) arithmetic operations.

A stable algorithm: Smooth PTB+. We now modify PTB+ to obtain faster convergence rates. The
O(1/

√
T) average convergence rate of PTB+ may seem surprising since in the matrix game setting,

POMD over the simplexes obtains a O(1/T) average convergence [36]. This discrepancy comes from
PTB+ running POMD on the set C = cone(T) instead of the original decision set T , so that the Lipschtiz
continuity of the loss function and the classical RVU bounds (Regret Bounded by Variation in Utilities,
see Equation (1) in [36]), central to proving the fast convergence of predictive algorithms, may not
hold. For PTB+, the Lipschitz continuity of the loss R 7→ f(x, ℓ) with x = R/⟨R,a⟩ depends on
the Lipschitz continuity of the decision function R 7→ R/⟨R,a⟩ over C, which we analyze next.

Proposition 4.5. Let R1,R2 ∈ cone(T). Then
∥∥∥ R1

⟨R1,a⟩ −
R2

⟨R2,a⟩

∥∥∥
2
≤ Ω·∥R1−R2∥2

max{⟨R1,a⟩,⟨R2,a⟩} .

We present the proof of Proposition 4.5 in Appendix F. Proposition 4.5 shows that when the vector R
is such that ⟨R,a⟩ is small, the decision function R 7→ R/⟨R,a⟩ may vary rapidly, an issue known
as instability and also observed for a predictive variant of RM+ [18]. To ensure the Lipschitzness of
the decision function, we can ensure that Rt and R̂t always belong to the stable region C≥:

C≥ := cone(T) ∩ {R ∈ Rn+1 | ⟨R,a⟩ ≥ R0}
for R0 > 0, and we recover Lipschitz continuity over C≥:∥∥∥∥ R1

⟨R1,a⟩
− R2

⟨R2,a⟩

∥∥∥∥
2

≤ Ω

R0
∥R1 −R2∥2,∀ R1,R2 ∈ C≥.

This leads us to introduce Smooth PTB+(Algorithm 3), a variant of PTB+,where Rt and R̂t always
belong to C≥. For Smooth PTB+,xt ∈ T since Rt ∈ C≥ ⊂ cone(T), and we also have the hyperplane
forcing property (12), which only depends on xt = Rt/⟨Rt,a⟩. However, Smooth PTB+ is not
treeplex stepsize invariant, because the orthogonal projections are onto C≥, which is not a cone. Note
that C≥ admits a simple polytope formulation:

C≥ = {x ∈ Rn+1
+ |x∅ ≥ R0,

∑
a∈Aj

xja = xpj
,∀ j ∈ J }

so the complexity of computing the orthogonal projection onto C≥ is the same as computing the
orthogonal projection onto C. We provide a proof in Appendix H. We now show that Smooth PTB+

is a regret minimizer. Indeed, the proof of Proposition 3.1 can be adapted to relate the regret in
x1, ...,xT in T to regret in R1, ...,RT in C≥.

Proposition 4.6. Let x1, ...,xT be computed by Smooth PTB+. Let η =
√
2Ω√∑T

t=1 ∥f(xt,ℓt)−mt∥2
2

.

Then maxx̂∈T
∑T

t=1⟨xt − x̂, ℓt⟩ ≤ Ω
√∑T

t=1 ∥f(xt, ℓt)−mt∥22.

7

35263 https://doi.org/10.52202/079017-1111

In Smooth PTB+ Rt and R̂t always belong to C≥, and we are able to recover a RVU bound and show
faster convergence. We let ∥M∥ be the maximum ℓ2-norm of any column and any row of M .

Theorem 4.7. Let (xt)t≥1 and (yt)t≥1 be the sequence of strategies computed by both play-
ers employing Smooth PTB+ in the self-play framework, with previous losses as predictions:
mx

t = f(xt−1,Myt−1),m
y
t = f(yt−1,−M⊤xt−1). Let η = R0√

8dΩ̂3∥M∥
and (x̄T , ȳT) =

1
T

∑T
t=1 (xt,yt). Then maxy∈Y ⟨x̄T ,My⟩ −minx∈X ⟨x,MȳT ⟩ ≤ 2Ω̂2

η
1
T .

We present the proof of Theorem 4.7 in Appendix I. To the best of our knowledge, Smooth PTB+

is the first algorithm based on Blackwell approachability achieving a O(1/T) convergence rate for
solving EFGs as in (1), answering an important open question. However, achieving the faster rate
in Smooth PTB+ requires introducing a stepsize, a situation similar to all other O(1/T)-methods for
EFGs, like Mirror Prox and Excessive Gap Technique for EFGs [27] and predictive OMD directly on
the treeplex [14]. We can compare the O(1/T) convergence rate of Smooth PTB+ with the O(1/

√
T)

convergence rate of Predictive CFR+ [16], which combines CFR with Predictive RM+ (see Appendix
B). Despite its predictive nature, Predictive CFR+ only achieves a O(1/

√
T) convergence rate because

of the CFR decomposition, which enables running regret minimizers independently and locally at
each infoset, and it is not clear how to combine, at the treeplex level, the regret bounds obtained at
each infoset. Since Smooth PTB+ operates over the entire treeplex, we can combine the RVU bound
for each player to obtain a O(1/T) convergence rate.

Remark 4.8. The Clairvoyant CFR algorithm from [18] is based on Blackwell approachability
over simplexes, combined with the CFR decomposition and a Mirror Prox-style update [31]. For
solving EFGs, Clairvoyant CFR achieves a O(log(T)/T)) convergence rate, slower than the O(1/T)
convergence rate of Smooth PTB+, where the additional log(T) factor occurs because each outer
iteration of Clairvoyant CFR itself solves an approximate fixed-point problem.

For completeness, we also instantiate Algorithm 1 with regret minimizers that learn heterogeneous
stepsizes across information sets in an adaptive fashion. This results in AdaGradTB+(Algorithm 6) and
AdamTB+(Algorithm 7), which adapt the scale of the stepsizes for each dimension to the magnitude of
the observed gradients for this dimension based on AdaGrad [12] and Adam [25]. This may be useful
if the losses across different dimensions differ in magnitudes, but the stepsizes decrease over time,
which could be conservative. These algorithms are presented in Appendix J

Remark 4.9 (Comparison with Lagrangian Hedging). Algorithm 1 is related to Lagrangian Hedg-
ing [21, 11]. Lagrangian Hedging builds upon Blackwell approachability with various potential
functions to construct regret minimizers for general decision sets. As explained in the introduction, the
main focus of our paper is on two-player zero-sum EFGs, i.e., on the case where the decision sets are
treeplexes, and where we can obtain several additional interesting properties not studied in [21, 11],
such as stepsize invariance, fast convergence rates, and efficient projection, as we detail in the next
section. If one were to instantiate Algorithm 1 with the Follow-The-Regularized Leader algorithm, it
would yield the regret minimizer for treeplexes studied in Gordon [21], and our Proposition 4.4 in
the next section yields an efficient projection oracle for the setup in Gordon [21], which appealed to
general convex optimization as an oracle.

5 Numerical Experiments

101 102 103
Iterations

10−5

10−2

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

100

Leduc

101 102 103
Iterations

10−5

10−3

10−1

Liar’s Dice

101 102 103
Iterations

10−3

10−1

Goofspiel

101 102 103
Iterations

10−5

10−3

10−1

Battleship

PTB+ quadratic CFR+ linear PCFR+ quadratic SC-POMD quadratic

1

Figure 2: Convergence to a Nash equilibrium for PTB+, CFR+, PCFR+ and SC-POMD. All algorithms use
alternation and quadratic averaging except CFR+ instantiated with linear averaging.

8

35264https://doi.org/10.52202/079017-1111

101 102 103
Iterations

10−13

10−8

10−3

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−4

10−2

100
Goofspiel

101 102 103
Iterations

10−7

10−4

10−1

Battleship

PTB+ last CFR+ last PCFR+ last SC-POMD last

1

Figure 3: Convergence to a Nash equilibrium for the last iterates of PTB+, CFR+, PCFR+, and SC-POMD.
Every algorithm is using alternation.

We conduct two sets of numerical experiments to investigate the performance of our algorithms for
solving several two-player zero-sum EFG benchmark games: Kuhn poker, Leduc poker, Liar’s Dice,
Goofspiel and Battleship. Additional experimental detail is given in Appendix K.

We first determine the best instantiatons our framework. We compare PTB+, Smooth PTB+ and
AdaGradTB+ in the self-play framework with alternation (see Appendix A) and uniform, linear or
quadratic weights for the iterates. PTB+ and Smooth PTB+ use the previous losses as predictions. We
also study Treeplex Blackwell+ (TB+), corresponding to PTB+ without predictions (mt = 0), and
AdamTB+. For conciseness, we present our plots in Appendix K.3 (Figure 4) and state our conclusion
here. We find that, for every game, PTB+ performs the best or is among the best algorithms. This
underlines the advantage of treeplex stepsize invariance over algorithms that require tuning a stepsize
(Smooth PTB+) and adaptive algorithms (AdaGradTB+), which may perform poorly due to the stepsize
decreasing at a rate of O(1/

√
T). AdamTB+ does not even converge in some games.

We then compare the best of our algorithms (PTB+) with some of the best existing methods for
solving EFGs: CFR+ [37], predictive CFR+ (PCFR+, [16], see Appendix B), and a version of optimistic
online mirror descent with a single call to the orthogonal projection at every iteration (SC-POMD, [24])
achieving a O(1/T) convergence rate; there are a variety of FOMs with a O(1/T) rate, SC-POMD
was observed to perform well in [8]. We determine the best empirical setup for each algorithm in
Appendix K.4. In Figure 2, we compare the performance of the (weighted) average iterates. We find
that PCFR+ outperforms both CFR+ and the theoretically-faster SC-POMD, as expected from past work.
We had hoped to see at least comparable performance between PTB+ and PCFR+, since they are both
based on Blackwell-approachability regret minimizers derived from applying POMD on the conic hull
of their respective decision sets (simplexes at each infoset for PCFR+, treeplexes of each player for
PTB+). However, in some games PCFR+ performs much better than PTB+. Given the similarity between
PTB+ and PCFR+, our results suggest that the use of the CFR decomposition is part of the key to the
performance of PCFR+. The CFR decomposition allows PCFR+ to have stepsize invariance at an infoset
level, as opposed to stepsize invariance at the treeplex level in PTB+. Because of the structure of
treeplexes, the numerical values of variables associated with infosets appearing late in the game, i.e.,
deeper in the treeplexes, may be much smaller than the numerical values of the variables appearing
closer to the root. For this reason, allowing for different stepsizes at each infosets (like CFR+ and
PCFR+ do) appears to be more efficient than using a single stepsize across all the infosets, even when
the iterates do not depend on the value of this single stepsize (like in PTB+) and when this stepsize
is fine-tuned (like in SC-POMD). Of course one could try to run SC-POMD with different stepsizes at
each infoset and attempt to tune each of these stepsizes, but this is impossible in practical instances
where the number of actions is large, e.g., 4.9 × 104 actions in Liar’s Dice and 5.3 × 106 actions
in Goofspiel. CFR+ and PCFR+ bypass this issue with their infoset stepsize invariance, which enables
both each infoset to have its own stepsize (via the CFR decomposition) and not needing to choose
these stepsizes (via using RM+ and PRM+ as local regret minimizers, which are stepsize invariant).

We also investigate the performance of the last iterates in Figure 3. No algorithm appears to be the
best across all game instances. CFR+ may not converge to a Nash equilibrium (e.g., on Kuhn), as has
been observed before [29]. PCFR+ exhibits linear convergence in some games (Kuhn, Liar’s Dice,
Goofspiel) but not others (Leduc). The same is true for PTB+. Further investigations about last-iterate
convergence are left as an important open question.

9

35265 https://doi.org/10.52202/079017-1111

6 Conclusion

We propose the first Blackwell approachability-based regret minimizer over the treeplex (Algorithm
1) and we give several instantiations of our framework with different properties, including treeplex
stepsize invariance (PTB+), adaptive stepsizes (AdaGradTB+) and achieving O(1/T) convergence rates
on EFGs with a Blackwell approachability-based algorithm for the first time (Smooth PTB+). Since
CFR+ and PCFR+ are stepsize invariant and have strong empirical performance, we were expecting
PTB+ to have comparable performance. However, our experiments show that PTB+ often converges
slower than CFR+ and PCFR+, so this treeplex stepsize invariance is not the only driver behind the
practical performance of CFR+ and PCFR+. We view this negative result as an important contribution
of our paper, since it rules out a previously plausible explanation for the practical performance of
CFR+. Instead, we propose that one piece of the puzzle behind the CFR+ and PCFR+ performances is
their infoset stepsize invariance, a consequence of combining the CFR framework with Blackwell
approachability-based regret minimizers (RM+ and PRM+, themselves stepsize invariant over simplexes).
Future directions include better understanding the last-iterate performance of algorithms based on
Blackwell approachability as well as the role of alternation. It would also be interesting to explore
EFG applications of new reductions between Blackwell approachability and regret minimization [10]
(which differs from the reduction in [2]) and Blackwell approachability generalizations based on
various norms and pseudo-norms [28, 9], potentially to obtain better stepsize invariance properties.

Acknowledgments and Disclosure of Funding

Darshan Chakrabarti was supported by the National Science Foundation Graduate Research Fellow-
ship Program under award number DGE-2036197. Julien Grand-Clément was supported by Hi! Paris
and Agence Nationale de la Recherche (Grant 11-LABX-0047). Christian Kroer was supported by
the Office of Naval Research awards N00014-22-1-2530 and N00014-23-1-2374, and the National
Science Foundation awards IIS-2147361 and IIS-2238960.

References
[1] J. Abernethy, P. L. Bartlett, and E. Hazan. Blackwell approachability and no-regret learning are

equivalent. In Proceedings of the 24th Annual Conference on Learning Theory, pages 27–46.
JMLR Workshop and Conference Proceedings, 2011.

[2] J. D. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for
bandit linear optimization. 2009.

[3] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of
Mathematics, 6(1):1–8, 1956.

[4] N. Brown and T. Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

[5] N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
2019.

[6] N. Brown, C. Kroer, and T. Sandholm. Dynamic thresholding and pruning for regret minimiza-
tion. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

[7] N. Burch, M. Moravcik, and M. Schmid. Revisiting CFR+ and alternating updates. Journal of
Artificial Intelligence Research, 64:429–443, 2019.

[8] D. Chakrabarti, J. Diakonikolas, and C. Kroer. Block-coordinate methods and restarting for
solving extensive-form games. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[9] C. Dann, Y. Mansour, M. Mohri, J. Schneider, and B. Sivan. Pseudonorm approachability
and applications to regret minimization. In International Conference on Algorithmic Learning
Theory, pages 471–509. PMLR, 2023.

10

35266https://doi.org/10.52202/079017-1111

[10] C. Dann, Y. Mansour, M. Mohri, J. Schneider, and B. Sivan. Rate-preserving reductions for
blackwell approachability. arXiv preprint arXiv:2406.07585, 2024.

[11] R. D’Orazio and R. Huang. Optimistic and adaptive lagrangian hedging. In Thirty-fifth AAAI
conference on artificial intelligence, 2021.

[12] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[13] G. Farina, C. Kroer, and T. Sandholm. Online convex optimization for sequential decision
processes and extensive-form games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 1917–1925, 2019.

[14] G. Farina, C. Kroer, and T. Sandholm. Optimistic regret minimization for extensive-form
games via dilated distance-generating functions. In Advances in Neural Information Processing
Systems, pages 5222–5232, 2019.

[15] G. Farina, C. Kroer, and T. Sandholm. Better regularization for sequential decision spaces fast
convergence rates for Nash, correlated, and team equilibria. In EC’21: Proceedings of the 22nd
ACM Conference on Economics and Computation, 2021.

[16] G. Farina, C. Kroer, and T. Sandholm. Faster game solving via predictive Blackwell approacha-
bility: Connecting regret matching and mirror descent. In Proceedings of the AAAI Conference
on Artificial Intelligence. AAAI, 2021.

[17] G. Farina, I. Anagnostides, H. Luo, C.-W. Lee, C. Kroer, and T. Sandholm. Near-optimal no-
regret learning dynamics for general convex games. Advances in Neural Information Processing
Systems, 35:39076–39089, 2022.

[18] G. Farina, J. Grand-Clément, C. Kroer, C.-W. Lee, and H. Luo. Regret matching+: (in)stability
and fast convergence in games. In Advances in Neural Information Processing Systems, 2023.

[19] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29(1-2):79–103, 1999.

[20] A. Gilpin, J. Pena, and T. Sandholm. First-order algorithm with convergence for-equilibrium in
two-person zero-sum games. Mathematical programming, 133(1-2):279–298, 2012.

[21] G. J. Gordon. No-regret algorithms for online convex programs. In Advances in Neural
Information Processing Systems, pages 489–496. Citeseer, 2007.

[22] J. Grand-Clément and C. Kroer. Solving optimization problems with Blackwell approachability.
Mathematics of Operations Research, 2023.

[23] S. Hoda, A. Gilpin, J. Pena, and T. Sandholm. Smoothing techniques for computing Nash
equilibria of sequential games. Mathematics of Operations Research, 35(2):494–512, 2010.

[24] P. Joulani, A. György, and C. Szepesvári. A modular analysis of adaptive (non-) convex opti-
mization: Optimism, composite objectives, and variational bounds. In International Conference
on Algorithmic Learning Theory, pages 681–720. PMLR, 2017.

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR, 2015.

[26] C. Kroer, G. Farina, and T. Sandholm. Solving large sequential games with the excessive gap
technique. In Advances in Neural Information Processing Systems, pages 864–874, 2018.

[27] C. Kroer, K. Waugh, F. Kılınç-Karzan, and T. Sandholm. Faster algorithms for extensive-form
game solving via improved smoothing functions. Mathematical Programming, pages 1–33,
2020.

[28] J. Kwon. Refined approachability algorithms and application to regret minimization with global
costs. Journal of Machine Learning Research, 22(200):1–38, 2021.

11

35267 https://doi.org/10.52202/079017-1111

[29] C.-W. Lee, C. Kroer, and H. Luo. Last-iterate convergence in extensive-form games. Advances
in Neural Information Processing Systems, 34:14293–14305, 2021.

[30] M. Moravčík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis, K. Waugh,
M. Johanson, and M. Bowling. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, 356(6337):508–513, 2017.

[31] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

[32] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on
Optimization, 16(1):235–249, 2005.

[33] V. Perchet. Approachability, Calibration and Regret in Games with Partial Observations. PhD
thesis, PhD thesis, Université Pierre et Marie Curie, 2010.

[34] A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In Conference on
Learning Theory, pages 993–1019. PMLR, 2013.

[35] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. International
Conference on Learning Representations (ICLR), 2018.

[36] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning
in games. Advances in Neural Information Processing Systems, 28, 2015.

[37] O. Tammelin, N. Burch, M. Johanson, and M. Bowling. Solving heads-up limit Texas hold’em.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[38] B. von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

[39] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games
with incomplete information. In Advances in neural information processing systems, pages
1729–1736, 2007.

12

35268https://doi.org/10.52202/079017-1111

A Self-Play Framework

The (vanilla) self-play framework for two-player zero-sum EFGs is presented in Algorithm 4. The

Algorithm 4 self-play framework

1: Input: RegminX a regret minimizer over X , RegminY a regret minimizer over Y
2: for t = 1, . . . , T do
3: xt = RegminX (·)
4: yt = RegminY (·)
5: The first player observes the loss vector Ayt ∈ Rn1+1

6: The second player observes the loss vector −A⊤xt ∈ Rn2+1

self-play framework can be combined with alternation, a simple variant that is known to lead
to significant empirical speedups, for instance, when CFR+ and predictive CFR+ are used as regret
minimizers [37, 16, 7]. When using alternation, at iteration t the second player is provided with the
current strategy of the first player xt before choosing its own strategy. We describe the self-play
framework with alternation in Algorithm 5.

Algorithm 5 self-play framework with alternation

1: Input: RegminX a regret minimizer over X , RegminY a regret minimizer over Y
2: for t = 1, . . . , T do
3: xt = RegminX (·)
4: The second player observes the loss vector −A⊤xt ∈ Rn2+1

5: yt = RegminY (·)
6: The first player observes the loss vector Ayt ∈ Rn1+1

B Counterfactual Regret Minimization (CFR), CFR+ and Predic-
tive CFR+

Counterfactual Regret Minimization (CFR, [39]) is a framework for regret minimization over the
treeplex. CFR runs a regret minimizer Regminj locally at each infoset j ∈ J of the treeplex. Note
that here Regminj is a regret minimizer over the simplex ∆nj with nj = |Aj |, i.e., over the set of
probability distributions over Aj , the set of actions available at infoset j ∈ J . Let xj

t ∈ ∆nj be the
decision chosen by Regminj at iteration t in CFR and let ℓt ∈ Rn+1 be the loss across the entire
treeplex. The local loss ℓjt ∈ Rnj that CFR passes to Regminj is

ℓjt,a := ℓt,(j,a) +
∑

j′∈Cja

V j′

t ,∀ a ∈ Aj ,∀ j ∈ J

where V j
t is the value function for infoset j at iteration t, defined inductively:

V j
t :=

∑
a∈Aj

xj
t,aℓt,(j,a) +

∑
j′∈Cja

V j′

t .

The regret over the entire treeplex T can be related to the regrets accumulated at each infoset via the
following laminar regret decomposition [13]:

RegT := max
x̂∈T

T∑
t=1

⟨xt − x̂, ℓt⟩ ≤ max
x̂∈T

∑
j∈J

x̂pj
RegTj

(
x̂j

)
with RegTj

(
x̂j

)
:=

∑T
t=1⟨x

j
t − x̂j , ℓjt ⟩ the regret incured by Regminj for the sequence of losses

ℓj1, ..., ℓ
j
T against the comparator x̂j ∈ ∆nj . Combining CFR with regret minimizers at each

information set ensures RegT = O
(√

T
)

.

13

35269 https://doi.org/10.52202/079017-1111

CFR+ [37] corresponds to instantiating the self-play framework with alternation (Algorithm 5) and
Regret Matching+ (RM+ as presented in (4)) as a regret minimizer at each information set. Additionally,
CFR+ uses linear averaging, i.e., it returns x̄T such that x̄T = 1∑T

t=1 ωt

∑T
t=1 ωtxt with ωt = t. We

also consider uniform weights (ωt = 1) and quadratic weights (ω = t2) in our simulations (Figure
10). CFR+ guarantees a O(1/

√
T) convergence rate to a Nash equilibrium.

Predictive CFR+(PCFR+, [16]) corresponds to instantiating the self-play framework with alternation
(Algorithm 5) and Predictive Regret Matching+ (PRM+) as a regret minimizer at each information set.
Given a simplex ∆d, PRM+ is a regret minimizer that returns a sequence of decisions z1, ...,zT ∈ ∆d

as follows:
R̂t = ΠRd

+
(Rt − ηg(zt−1, ℓt−1))

zt = R̂t/∥R̂t∥1,
Rt+1 = ΠRd

+
(Rt − ηg(zt, ℓt))

(PRM+)

where the function g is defined in (5). Similar to CFR+, for PCFR+ we investigate different weighting
schemes in our numerical experiments (Figure 11). It is not known if the self-play framework with
alternation, combined with PCFR+, has convergence guarantees, but PCFR+ has been observed to
achieve state-of-the-art practical performance in many EFG instances [16].

C Comparison with [1]

In this appendix, we describe the results in [1] connecting Blackwell approachability and regret
minimization, and we highlight the main differences with our framework described in Algorithm 1.

In particular, Abernethy et al. [1] describe a meta-algorithm connecting Blackwell approachability
and regret minimization. Given a decision set X ⊂ Rn assumed to be convex and compact, Abernethy
et al. [1] consider a lifted set X̃ = {κ} × X ⊂ Rn+1 with

κ := max
x∈X

∥x∥2.

Abernethy et al. [1] then constructs a regret minimizer over X by considering a Blackwell approacha-
bility instance, where the target set is defined as cone(X̃) ⊂ Rn+1, the decision set is X ⊂ Rn, and
the instantaneous loss at time t is

(
⟨xt,ℓt⟩

κ ,−ℓt

)
∈ Rn+1 with ℓt ∈ Rn the loss vector when the

decision maker chooses xt ∈ X . The average aggregated loss vector ut ∈ Rn+1 is updated using
a regret minimizer over cone(X̃) and the decision maker in the Blackwell approachability instance
chooses the sequence of decisions x1, ...,xT to ensure that

(
1
T uT

)
T≥1

approaches the target set,

defined as the polar cone of cone(X̃). We refer to Section 4 in [1] for more detail on this construction.

As evident from the description in the previous paragraph, our framework described in Algorithm 1
differs from the meta-algorithm from [1] in various ways. In particular, if one were to directly use
the reduction from [1] for deriving regret minimizers over treeplexes, one would need to consider
T̃ = {κ} × T , with T a treeplex and κ = maxx∈T ∥x∥2, and one would need to consider a bound
for the value of κ, which could be conservative for large-scale EFG instances. However, since we
have designed Algorithm 1 specifically for treeplexes as decision sets, we do not need to lift the set T
by adding an additional dimension depending on the maximum ℓ2-norm over T . We can circumvent
relying on κ and therefore obtain a simpler, more practical framework as in Algorithm 1 by exploiting
the structure of treeplexes. This is because the variable x∅ associated with the empty sequence always
has a value of 1: x∅ = 1, and we can then exploit the fact that T ⊂ {x ∈ Rn+1 | ⟨x,a⟩ = 1}, as in
the proof of Proposition 3.1.

Another fundamental difference with [1] is our positioning and our objectives. Abernethy et al. [1]
analyze Blackwell approachability with adversial losses and in a more theoretical way (e.g., no
implementations or simulations), whereas we focus on practically solving EFGs with Blackwell
approachability, i.e., we focus on the game setting and on explaining the empirical performance of
CFR+. A direct application of the results in [1] would only result in algorithms achieving O(1/

√
T)

convergence rates, and for which no concrete implementations are known. In contrast, we provide

14

35270https://doi.org/10.52202/079017-1111

details on the practical implementations of our algorithms (Proposition 4.4 and Appendix H), we
are the first to highlight the role of stepsize invariance, which only makes sense for EFGs (and not
for the adversarial loss setup as in [1]), and in our EFG applications we can obtain faster O(1/T)
convergence rate (e.g. for Smooth PTB+, see our new results as in Proposition 4.5 and Theorem 4.7),
which is impossible against adversarial losses.

D Proof of Proposition 4.1

Proof. The proof of Proposition 4.1 is based on the following lemma.

Lemma D.1. Let C ⊂ Rn be a convex cone and let u ∈ Rn, η > 0. Then
ΠC(ηu) = ηΠC(u).

Proof of Lemma D.1. We have, by definition,
ΠC(ηu) = argmin

R∈C
∥R− ηu∥2.

Now we also have

min
R∈C

∥R− ηu∥2 = η ·min
R∈C

∥1
η
R− u∥2 = η ·min

R∈C
∥R− u∥2

where the last equality follows from C being a cone. This shows that argminR∈C ∥R − ηu∥2 is
attained at ηΠC(u), i.e., that ΠC(ηu) = ηΠC(u).

We are now ready to prove Proposition 4.1. For the sake of conciseness we prove this with m1 =

... = mT = 0; the proof for PTB+ with predictions is identical. In this case, Rt = R̂t,∀ t ≥ 1.
Consider the sequence of strategies x̃1, ..., x̃T and R̃1, ..., R̃T generated by PTB+ with a step size of
1. We also consider the sequence of strategies x1, ...,xT and R1, ...,RT generated with a step size
η > 0. We claim that

x̃t = xt,Rt = ηR̃t, ∀ t ∈ {1, ..., T}.
We prove this by induction. Both sequences of iterates are initialized with R1 = R̃1 = 0 so that
x̃1 = x1. Therefore, both sequences face the same loss ℓ1 at t = 1, and we have

R2 = ΠC(−ηf(x1, ℓ1)) = ηπC(−f(x1, ℓ1))) = ηR̃2.

Let us now consider an iteration t ≥ 1 and suppose that x̃t = xt,Rt = ηR̃t. Since x̃t = xt then
both algorithms will face the next loss vector ℓt. Then

Rt+1 = πC(Rt − ηf(xt, ℓt))

= πC(ηR̃t − ηf(xt, ℓt))

= ηπC(R̃t − f(xt, ℓt))

= ηR̃t+1

which in turns implies that xt+1 = x̃t+1. We conclude that xt = x̃t,∀ t = 1, ..., T .

E Comparison Between RM+ and PTB+

For the sake of discussion, we assume that the original decision set of each player is a simplex ∆d

and that there are no predictions: mt = 0,∀ t ≥ 1.

PTB+ over the simplex. For PTB+, the empty sequence variable x∅ is introduced and appended
to the decision ∆d. The resulting treepplex can be written T = {1} × ∆d, the set C becomes
C := cone(T) = cone({1} × ∆d) and a = (1,0) ∈ Rd+1

+ with 1 on the first component related
to x∅ and 0 everywhere else. In this case, PTB+ without prediction is exactly the Conic Blackwell
Algorithm+ (CBA+, [22]). Crucially, to run PTB+ we need to compute the orthogonal projection onto
cone(T) = cone({1} ×∆) at every iteration, which can not be computed in closed-form, but it can
be computed in O(n log(n)) arithmetic operations (see Appendix G.1 in [22]).

15

35271 https://doi.org/10.52202/079017-1111

Regret Matching+. RM+ operates directly over the simplex ∆d without the introduction of the
empty sequence x∅, in contrast to PTB+ which operates over {1} × ∆d. Importantly, in RM+, at
every iteration the orthogonal projection onto Rd

+ can be computed in closed form by simply
thresholding to zero the negative components (and leaving unchanged the positive components):
ΠRd

+
(z) = (max{zi, 0})i∈[d] for any z ∈ Rd.

Empirical comparisons over simplexes. The numerical experiments in [22] show that CBA+ may
be slightly faster than RM+ for some matrix games in terms of speed of convergence as a function of
the number of iterations, but it can be slower in running times because of the orthogonal projections
onto cone({1} ×∆) at each iteration (Figures 2,3,4 in [22]). When T is a treeplex that is not the
simplex, introducing x∅ also changes the resulting algorithm but not the complexity of the orthogonal
projection onto cone(T), since there is no closed-form anymore, even without x∅. As a convention,
in this paper, we will always use x∅ in our description of treeplexes and of our algorithms since it is
convenient from a writing and implementation standpoint.

Overall, we notice that in the case of the simplex introducing the empty sequence variable x∅
radically alters the complexity per iterations and the resulting algorithm, a fact that has not been
noticed in previous work.

Empirical comparisons for EFGs. For solving EFGs, [22] combine the CFR decomposition with
CBA+ and compare the resulting algorithm with CFR+ (i.e., combining the CFR decomposition with
RM+). The authors in [22] observe similar numerical results as for the cases of simplexes: the resulting
algorithm may slightly outperform CFR+ in terms of duality gap achieved after a certain number of
iterations, but it is outperformed by CFR+ in terms of duality gap achieved after a certain computation
time, because of the orthogonal projection required at every iteration at every simplex present in the
treeplexes of each player.

F Proof of Proposition 4.5

Proof of Proposition 4.5. 1. Let R̂2 = R2/∥R2∥2 be the unit vector pointing in the same
direction as R2 and let h :=

(
⟨R1, R̂2⟩

)
R̂2 the orthogonal projection of R1 onto

{αR̂2 | α ∈ R}. We thus have ∥R1 −R2∥2 ≥ ∥R1 − h∥2.

2. Let p = ⟨R1,a⟩
⟨R2,a⟩R̂2. Since p and R2 are colinear, we have∥∥∥∥ R1

⟨R1,a⟩
− R2

⟨R2,a⟩

∥∥∥∥
2

=

∥∥∥∥ R1

⟨R1,a⟩
− p

⟨p,a⟩

∥∥∥∥
2

.

Additionally, by construction, ⟨p,a⟩ = ⟨R1,a⟩, so that we obtain∥∥∥∥ R1

⟨R1,a⟩
− R2

⟨R2,a⟩

∥∥∥∥
2

=

∥∥∥∥ R1

⟨R1,a⟩
− p

⟨R1,a⟩

∥∥∥∥
2

=
1

⟨R1,a⟩
∥R1 − p∥2.

Note that ⟨R1,a⟩ ≥ 0 since R1 ∈ cone(T) and T ⊂ {x ∈ Rn+1 | ⟨x,a⟩ = 1}. Assume
that we can compute D > 0 such that ∥R1−p∥2

∥R1−h∥2
≤ D. Then we have∥∥∥∥ R1

⟨R1,a⟩
− R2

⟨R2,a⟩

∥∥∥∥
2

≤ D

⟨R1,a⟩
∥R1 − h∥2 ≤ D

⟨R1,a⟩
∥R1 −R2∥2.

3. The rest of this proof focuses on showing that ∥R1−p∥2

∥R1−h∥2
≤ Ω with Ω = max{∥x∥2| x ∈ T }.

Note that ⟨R1 − p,a⟩ = 0. Therefore, 1
∥R1−p∥2

(R1 − p) and 1
∥a∥2

a can be completed to
form an orthonormal basis of Rn. In this basis, we have

∥R̂2∥22 ≥

(
⟨R1 − p, R̂2⟩

)2

∥R1 − p∥22
+

(
⟨a, R̂2⟩

)2

∥a∥22
.

16

35272https://doi.org/10.52202/079017-1111

Note that by construction we have ∥R̂2∥22 = 1. Additionally, R2 ∈ cone(T) so that
there exists α > 0 and y ∈ T such that R2 = αx. By construction of R̂2, we have
R̂2 = αx

∥αx∥2
= x

∥x∥2
and ⟨x,a⟩ = 1. This shows that(
⟨a, R̂2⟩

)2

∥a∥22
=

(⟨a,x⟩)2
∥a∥22∥x∥22

=
1

∥a∥22∥x∥22
≥ 1

Ω∥a∥22
with Ω = max{∥x∥2| x ∈ T }. Recall that we have chosen a = (1,0) so that ∥a∥2 = 1.
Overall, we have obtained

1− 1

Ω2
≥

(
⟨R1 − p, R̂2⟩

)2

∥R1 − p∥22
.

From the definition of the vectors p,h and R̂2, we have(
⟨R1 − p, R̂2⟩

)2

∥R1 − p∥22
=

∥p− h∥22
∥R1 − p∥22

.

Hence, we have

∥p− h∥22 ≤
(
1− 1

Ω2

)
∥R1 − p∥22.

This shows that ∥R1 − h∥22 ≥ 1
Ω2 ∥x− p∥22.

4. We conclude that∥∥∥∥ R1

⟨R1,a⟩
− R2

⟨R2,a⟩

∥∥∥∥
2

≤ Ω

max{⟨R1,a⟩, ⟨R2,a⟩}
∥R1 −R2∥2.

G Proof of Proposition 4.4

In this section we show how to efficiently compute the orthogonal projection onto the cone C :=
cone(T). We start by reviewing the existing methods for computing the orthogonal projection onto
the treeplex T . This is an important cornerstone of our analysis, since the treeplex T and the cone C
share an analogous structure:

T = {x ∈ Rn+1
+ | x∅ = 1,

∑
a∈Aj

xja = xpj
,∀ j ∈ J }

C = {x ∈ Rn+1
+ |

∑
a∈Aj

xja = xpj ,∀ j ∈ J }.

[20] were the first to show an algorithm for computing Euclidean projection onto the treeplex. They
do this by defining a value function for the projection of a given point y onto the closed and convex
scaled set tZ , letting it be half the squared distance between y and tZ , for t ∈ R>0:

vZ(t,y) :=
1

2
min
z∈tZ

∥z − y∥22.

[20] show how to recursively compute λZ(t,y), the derivative of this function with respect to t, for a
given treeplex, since treeplexes can be constructed recursively using two operations: branching and
Cartesian product. In the first case, given k treeplexes Z1, . . . ,Zk, then Z = {x,x[1]z1, . . . ,x[k]zk :
x ∈ ∆k, zi ∈ Zi∀i ∈ [k]} is also a treeplex. In the second case, given k treeplexes Z1, . . . ,Zk, then
Z = Z1 × · · · × Zk is also a treeplex. In fact, letting the empty set be a treeplex as a base case, all
treeplexes can be constructed in this way.

However, [20] did not state the total complexity of computing the projection, instead only stating the
complexity of computing λZ(t,y) given the corresponding λZi

(t,yi) functions for the treeplexes Zi

17

35273 https://doi.org/10.52202/079017-1111

that are used to construct Z using i ∈ [k]. They state that this complexity is O(n log n), where n is
the number of sequences in Z . Their analysis involves showing that the function t 7→ λZ(t,y) is
piecewise linear.

[17] also consider this problem, generalizing the problem to weighted projection on the scaled
treeplex, by adding an additional positive parameter w ∈ Rn

>0:

vZ(t,y,w) :=
1

2
min
z∈tZ

n∑
i=1

(
z[i]− y[i]

w[i]

)2

.

They do a similar analysis to [20], by showing how to compute the derivative λZ(t,y,w) of
vZ(t,y,w) with respect to t recursively. They show that t 7→ λZ(t,y,w) are strictly-monotonically-
increasing piecewise-linear (SMPL) functions. We will follow the analysis in [17], letting w = 1.

We first define a standard representation of a SMPL function.
Definition G.1 ([17]). Given a SMPL function f , a standard representation is an expression of the
form

f(x) = ζ + α0x+

S∑
s=1

αs max{0, x− βs}

valid for all x ∈ dom(f), S ∈ N ∪ {0}, and β1 < · · · < βS . The size of the standard representation
is defined to be S.

Next, we prove the following lemma, showing the computational complexity of computing the
derivative of the value function for a given treeplex.
Lemma G.2. For a given treeplex Z with depth d, n sequences, l leaf sequences, and m infosets, and
y ∈ Rn,w ∈ Rn

>0, a standard representation of λZ(t,y,w) can be computed in O
(
dn log(l +m)

)
time.

Proof. We will proceed by structural induction over treeplexes, following the analysis done by [17].
The base case is trivially true, because the empty set has no sequences or depth.

For the inductive case, we will assume that it requires O
(
(d − 1)n log(l + m)

)
time to compute

the respective Euclidean projections onto the subtreeplexes that we use to inductively construct our
current treeplex, where d− 1 is the depth of a given subtreeplex, n is the number of sequences in the
subtreeplex, and m is the total number of sequences among both players and chance corresponding
to the game from which the treeplex originates.

We will use two results shown in Lemma 14 of [17]:

Lemma G.3 (Recursive complexity of Euclidean projection for branching operation [17]). Consider
a treeplex Z that can be written as the result of a branching operation on k treeplexes Z1, . . . ,Zk:

Z = {x,x[1]z1, . . . ,x[k]zk : x ∈ ∆k, zi ∈ Zi∀i ∈ [k]}.
Let Z have n sequences and let y,w ∈ Rn, and let y[i] and w[i] denote the corresponding respective
components of y and w for the treeplex Zi.

Then, given standard representations of λZi(t,yi,wi) of size ni for all i ∈ [k], where ni is the
number of sequences that Zi has, a standard representation of λZ(t,y,w) of size n can be computed
in O(n log k) time.

Furthermore, given a value of t, the argument x which leads to the realization of the optimal value of
the value function, can be computed in time O(n).

Lemma G.4 (Recursive complexity of Euclidean projection for Cartesian product [17]). Consider a
treeplex Z that can be written as a Cartesian product of k treeplexes Z1, . . . ,Zk:

Z = Z1 × · · · × Zk.

Let Z have n sequences and let y,w ∈ Rn, and let y[i] and w[i] denote the corresponding respective
components of y and w for the treeplex Zi.

Then, given standard representations of λZi(t,yi,wi) of size ni for all i ∈ [k], where ni is the
number of sequences that Zi has, a standard representation of λZ(t,y,w) of size n can be computed
in O(n log k) time.

18

35274https://doi.org/10.52202/079017-1111

First, we consider the case that the last operation used to construct our treeplex was the branching
operation. Let the root of of the treeplex be called j. Define Zi as the treeplex that is underneath
action ai ∈ Aj . Let ni denote the number of sequences in Zi, mi denote the number of infosets in
Zi, li denote the number of leaf sequences in Zi, and d− 1 be the maximum depth of any of these
subtreeplexes.

Given a standard representation of λZi(t,yi,wi) of size ni for all i ∈ [|Aj |], by Lemma G.3, it takes
O(n log |Aj |) time to compute a standard representation of λZ(t,y,w) of size n. By induction, it
takes O

(
(d − 1)ni logmi

)
to compute λZi(t,yi,wi) for treeplex Zi. Thus the total computation

required to compute λZ(t,y,w) is

O(n log |Aj |) +
∑

i∈[|Aj |]

O
(
(d− 1)ni log(li +mi)

)
= O(n log |Aj |) +

∑
i∈[|Aj |]

O
(
(d− 1)ni log(l +m)

)
= O(n log |Aj |) +O

(
(d− 1)

∑
i∈[|Aj |]

ni log(l +m)
)

= O(n log |Aj |) +O
(
(d− 1)n log(l +m)

)
= O

(
n log(l +m)

)
+O

(
(d− 1)n log(l +m)

)
= O

(
dn log(l +m)

)
since we have necessarily that li ≤ l and mi ≤ m for all i ∈ [|Aj |],

∑
i∈[|Aj |] ni ≤ n, and

|Aj | ≤ l +m.

Second, we consider the case the last operation to construct our treeplex was a Cartesian product.
Let Z = Z1 × · · · × Zk, and again define ni as the number of sequences in Zi, mi as the number of
infosets in Zi, li as the number of leaf sequences in Zi, and d− 1 as the maximum depth of any of
these subtreeplexes.

Given a standard representation of λZi
(t,yi,wi) of size ni for all i ∈ [k], by Lemma G.4 it takes

O(n log k) to compute a standard representation of λZ(t,y,w) of size n. By induction, it takes
O
(
(d − 1)ni log(li +mi)

)
to compute λZi

(t,yi,wi) for treeplex Zi. Thus the total computation
required to compute λZ(t,y,w) is

O(n log k) +
∑
i∈[k]

O
(
(d− 1)ni log(li +mi)

)
= O(n log k) +

∑
i∈[k]

O
(
(d− 1)ni log(l +m)

)
= O(n log k) +O

(
(d− 1)

∑
i∈[k]

ni log(l +m)
)

= O(n log k) +O
(
(d− 1)n log(l +m)

)
= O(n logm) +O

(
(d− 1)n log(l +m)

)
= O(dn log(l +m))

since we have necessarily that li ≤ l and mi ≤ m for all i ∈ [k], and k ≤ m.

Finally, we are ready to prove the main statement.

Proof of Proposition 4.4. By Lemma G.2, we know that we can recursively compute a standard
representation of λZ(t,y,w) in O

(
dn log(l+m)

)
time. Assuming we use this construction, invoking

Lemma G.3, given an optimal value of t, we can compute the partial argument corresponding to
the values of the sequences that originate at the root infosets, which allow the optimal value to be
realized for the value function. Then, we can use optimal arguments for these sequences recursively
at the subtreeplexes to continue computing the optimal argument at sequences lower on the treeplex.
We can do this because in the process of computing the derivative of the value function of the entire
treeplex, we have also computed the derivative of the value function for each of the subtreeplexes.
Thus, once we have computed an optimval value of t for the value function at the top level, we can

19

35275 https://doi.org/10.52202/079017-1111

do a top-down pass to compute the optimal values for all sequences that occur at any level in the
treeplex. This is detailed in the analysis done in the proof of Lemma 14 in [17].

In order to pick the optimal value of t for the value function, since λZ(·,y,w) is strictly increasing,
we only have to consider two cases: λZ(0,y,w) < 0 and λZ(0,y,w) ≥ 0. In the first case, the
value function λZ(·,y,w) will be minimized when λZ(·,y,w) is equal to 0, and this can be directly
computed using the standard representation (it will be necessarily 0 somewhere because it is strictly
monotone). In the second case, since λZ(·,y,w) is strictly monotone and λZ(0,y,w) ≥ 0, we must
have that λZ(·,y,w) ≥ 0, which means that vZ(·,y,w) is minimized at t∗ = 0.

H Practical Implementation of Smooth PTB+

We have the following lemma, which shows that the stable region C≥ admits a relatively simple
formulation.

Lemma H.1. The stable region

C≥ := cone(T) ∩ {R ∈ Rn+1 | ⟨R,a⟩ ≥ R0}
can be reformulated as follows:

C≥ = {αx | α ≥ R0,x ∈ T }
= {x ∈ Rn+1

+ |x∅ ≥ R0,
∑
a∈Aj

xja = xpj
,∀ j ∈ J }.

Proof. By definition, we have

C≥ = {R ∈ cone(T) | ⟨R,a⟩ ≥ R0}.
Note that for R ∈ cone(T),R = αx with α ≥ 0 and ⟨x,a⟩ = 1. Therefore, for R ∈ C we have
⟨R,a⟩ ≥ R0 ⇐⇒ α ≥ R0. This shows that we can write

C≥ = {αx | α ≥ R0,x ∈ T }.
Now let x ∈ C≥, i.e., let x = αx̂ with α ≥ R0 and x ∈ T . Since x̂ ∈ T , we have x∅ = 1, so that
x̂∅ = α ≥ R0. Additionally, we have x̂ ≥ 0,

∑
a∈Aj

x̂ja = x̂pj
,∀ j ∈ J . Multiplying by α ≥ R0,

we obtain that x ≥ 0 and
∑

a∈Aj
xja = xpj

,∀ j ∈ J . Overall we have shown

C≥ ⊆ {x ∈ Rn+1 |x∅ ≥ R0,
∑
a∈Aj

xja = xpj ,∀ j ∈ J ,x ≥ 0}.

We now consider x ∈ {x ∈ Rn+1 |x∅ ≥ R0,
∑

a∈Aj
xja = xpj

,∀ j ∈ J ,x ≥ 0} with x ̸= 0.
Then x = αx

α with α = x∅, so that α ≥ R0 and∑
a∈Aj

xja = xpj ,∀ j ∈ J ⇐⇒
∑
a∈Aj

xja

α
=

xpj

α
,∀ j ∈ J .

Therefore
{x ∈ Rn+1 |x∅ ≥ R0,

∑
a∈Aj

xja = xpj
,∀ j ∈ J ,x ≥ 0} ⊆ C≥.

This shows that we have

C≥ = {x ∈ Rn+1 |x∅ ≥ R0,
∑
a∈Aj

xja = xpj ,∀ j ∈ J ,x ≥ 0}.

Proposition H.2. For a treeplex T with depth d, number of sequences n, number of leaf sequences l,
and number of infosets m, the complexity of computing the orthogonal projection of a point y ∈ Rn+1

onto C≥ = {αx | α ≥ R0,x ∈ T } is O
(
dn log(l +m)

)
.

20

35276https://doi.org/10.52202/079017-1111

Proof. The proof is the same as that for Proposition 4.4, since the derivative of the value function can
be computed in O

(
dn log(l +m)

)
time. However, this time, we have an additional constraint that

t ≥ R0. Thus instead of checking the sign of λZ(·,y,w) at t = 0, we check the sign at R0.

If λZ(R0,y,w) < 0, then because λZ(·,y,w) is a strictly monotone function, the function will be
0 for some value of t, and this is exactly t∗, which minimizes the value function with respect to t,
when t ≥ R0. On the other hand, if λZ(R0,y,w) ≥ 0, then again because the function is strictly
monotone in t, we know that the value function must get minimized at t∗ = R0. Using the same
argument as in the proof of Proposition 4.4, since we have computed the standard representations of
the derivatives of the value functions at all of the treeplexes, we can do a top-down pass to compute
the argument which leads to the optimal value of the value function.

I Proof of Theorem 4.7

Proof of Theorem 4.7. For the sake of conciseness we write fx
t = f(xt,Myt) and fy

t =
f(yt,−M⊤xt).

From our Proposition 4.2, we have that, for the first player,

T∑
t=1

⟨xt − x̂,Myt⟩ =
T∑

t=1

⟨Rt − R̂,fx
t ⟩.

Now
∑T

t=1⟨Rt− R̂,fx
t ⟩ is the regret obtained by running Predictive OMD on C≥ against the sequence

of loss fx
1 , ...,f

x
T . From Proposition 5 in [16], we have that

T∑
t=1

⟨Rx
t − R̂x,fx

t ⟩ ≤
∥R̂∥22
2η

+ η

T∑
t=1

∥fx
t − fx

t−1∥22 −
1

8η

T∑
t=1

∥Rx
t+1 −Rx

t+1∥22.

Since R̂t ∈ C≥, we can use our Proposition 4.5 to show that

∥xt+1 − xt∥22 ≤ Ω

R2
0

∥Rx
t+1 −Rx

t+1∥22.

This shows that
T∑

t=1

⟨Rx
t − R̂x,fx

t ⟩ ≤
∥R̂∥22
2η

+ η

T∑
t=1

∥fx
t − fx

t−1∥22 −
R2

0

8Ω2η

T∑
t=1

∥Rx
t+1 −Rx

t+1∥22

which gives, using the norm equivalence ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
n+ 1∥ · ∥2, the following inequality:

T∑
t=1

⟨Rx
t − R̂x,fx

t ⟩ ≤
∥R̂∥22
2η

+ η

T∑
t=1

∥fx
t − fx

t−1∥21 −
R2

0

8Ω2(n+ 1)η

T∑
t=1

∥Rx
t+1 −Rx

t+1∥22

The above inequality is a RVU bound:

T∑
t=1

⟨Rx
t − R̂x,fx

t ⟩ ≤ α+ β

T∑
t=1

∥fx
t − fx

t−1∥21 − γ

T∑
t=1

∥Rx
t+1 −Rx

t+1∥22

with

α =
∥R̂∥22
2η

, β = η, γ =
R2

0

8Ω2(n+ 1)η
. (13)

To invoke Theorem 4 in [36], we also need the utilities of each player to be bounded by 1. This can
be done can rescaling fx

t = Myt and fy
t = −M⊤xt. In particular, we know that

∥My∥∞ ≤ ∥M∥ℓ2,ℓ∞∥y∥2 ≤ ∥M∥ℓ2,ℓ∞ · Ω̂

21

35277 https://doi.org/10.52202/079017-1111

with ∥M∥ℓ2,ℓ∞ = maxi∈[n+1] ∥ (Aij)j∈[m+1] ∥2 and Ω̂ = max{max{∥x∥2, ∥y∥2} x ∈
X ,y ∈ Y}. This corresponds to multiplying β in (13) by ∥M∥ × Ω̂ with ∥M∥ :=
max{∥M∥ℓ2,ℓ∞ , ∥M⊤∥ℓ2,ℓ∞}. To apply Theorem 4 in [36] we also need β ≤ γ. Since we
need the same condition for the second player, we take

η = R0

(√
8dΩ̂3∥M∥

)−1

.

Under this condition on the stepsize, we can invoke Theorem 4 in [36] to conclude that
T∑

t=1

⟨Rx
t − R̂x,fx

t ⟩+
T∑

t=1

⟨Ry
t − R̂y,fy

t ⟩ ≤
∥R̂x∥22 + ∥R̂y∥22

η
.

Since the duality gap is bounded by the average of the sum of the regrets of both players [19], and
replacing η by its expression, we obtain that

max
y∈Y

⟨x̄T ,My⟩ − min
x∈X

⟨x,MȳT ⟩ ≤
2Ω̂2

η

1

T
.

J AdaGradTB+ and AdamTB+

AdaGradTB+. We introduce AdaGradTB+in Algorithm 6. Given matrix A and a vector y ∈ Rn+1, let
diag(y) be the diagonal matrix with y on its diagonal and ΠA

C (y) = argminx∈C⟨x−y,A(x−y)⟩.
We first show that AdaGradTB+ is a regret minimizer.

Proposition J.1. Let x1, ...,xT be computed by AdaGradTB+. For η =
maxt≤T (∥Rt∥2+Ω)2√

2
, we have

maxx̂∈T
∑T

t=1⟨xt − x̂, ℓt⟩ ≤ 2η
∑d

i=1

√∑T
t=1 (ft(xt, ℓt))

2
i .

We omit the proof of Proposition J.1 for conciseness; it follows from the regret guarantees of AdaGrad
(Theorem 5 in [12]) and Proposition 3.1. We conclude that combining AdaGradTB+ with the self-play
framework ensures a O(1/

√
T) convergence rate.

Algorithm 6 AdaGradTB+

1: Input: η, δ > 0
2: Initialization: R1 = s0 = g0 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: xt = Rt/⟨Rt,a⟩
5: Observe the loss vector ℓt ∈ Rn+1

6: st = st−1 + f(xt, ℓt)⊙ f(xt, ℓt)
7: Ht = diag

(√
st + ϵ1

)
8: Rt+1 ∈ ΠHt

C
(
Rt − ηH−1

t f(xt, ℓt)
)

AdamTB+. We present AdamTB+, our instantiation of Algorithm 1 inspired from the adaptive algorithm
Adam [25] in Algorithm 7. Since Adam is not necessarily a regret minimizer [35], there are no regret
guarantees for AdamTB+. We choose to consider this algorithm for the sake of completeness, since
Adam is widely used in other settings.

K Details on Numerical Experiments

K.1 Additional Algorithms

Single-call Predictive Online Mirror Descent (SC-POMD). We present SC-POMD in Algorithm 8.
This algorithm runs a variant of predictive online mirror descent with only one orthogonal projection

22

35278https://doi.org/10.52202/079017-1111

Algorithm 7 AdamTB+

1: Input: η, δ > 0, β1, β2 ∈ [0, 1]
2: Initialization: R1 = 0 ∈ Rn+1, s0 = 0 ∈ Rn+1, g0 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: xt = Rt/⟨Rt,a⟩
5: Observe the loss vector ℓt ∈ Rn+1

6: st = β2st−1 + (1− β2)f(xt, ℓt)⊙ f(xt, ℓt)
7: ŝt = st/(1− βt

2)
8: gt = β1gt−1 + (1− β1)f(xt, ℓt)
9: ĝt = gt/(1− βt

1)
10: Ht = diag

(√
ŝt + ϵ1

)
11: Rt+1 ∈ ΠHt

C
(
Rt − ηH−1

t ĝt
)

at every iteration [24]. The pseudocode from Algorithm 8 corresponds to choosing the squared
ℓ2-norm as a distance generating function - in principle, other distance generating functions are
possible, e.g. dilated entropy [15]. Combined with the self-play framework, SC-POMD ensures that
the average of the visited iterates converges to a Nash equilibrium at a rate of O(1/T), similar to the
variant of predictive online mirror descent with two orthogonal projections at every iteration [15].

Algorithm 8 Single-call predictive online mirror descent (SC-POMD)

1: Input: η > 0,
2: Initialization: x0 = ℓ0 = ℓ−1 = 0 ∈ Rn+1

3: for t = 1, . . . , T do
4: xt = ΠT (xt−1 − η (2ℓt−1 − ℓt−2))
5: Observe the loss vector ℓt ∈ Rn+1

K.2 Algorithm Implementation Details

All algorithms are initialized using the uniform strategy (placing equal probability on each action at
each decision point). For algorithms that are not stepsize invariant (Smooth PTB+ and SC-POMD), we
try stepsizes in η ∈ {0.05, 0.1, 0.5, 1, 2, 5} and we present the performance with the best stepsize.
For Smooth PTB+, we use R0 = 0.1. For both AdaGradTB+ and AdamTB+, we use δ = 1× 10−6, and
for AdamTB+ we use β1 = 0.9 and β2 = 0.999.

K.3 Comparing the Performance of our Algorithms

In Figure 4 we compare the performance of TB+, PTB+, Smooth PTB+, AdaGradTB+ and AdamTB+.

It can be seen that PTB+ and Smooth PTB+ perform similarly, both when using quadratic averaging
and when using the last iterate, and they generally outperform the other algorithms. In Kuhn, Liar’s
Dice, and Battleship, the last iterate seems to perform quite well, whereas in Leduc and Goofspiel,
the quadratic averaging scheme works better. AdamTB+ seems to not converge in any of the games,
which is not surprising, because it does not have theoretical guarantees for convergence.

K.4 Individual Performance

In Figure 5fig:scpomd, we compare the individual performance of TB+, PTB+, Smooth PTB+,
AdaGradTB+, AdamTB+, CFR+, PCFR+ and SC-POMD with different weighting schemes, with and without
alternation. We also show the performance of the last iterate. The goal is to choose the most favorable
framework for each algorithms, in order to have a fair comparison. We find that all algorithms benefit
from using alternation. CFR+ enjoys stronger performance using linear weights, whereas PTB+, PCFR+
and SC-POMD have stronger performances with quadratic weights. For this reason this is the setup that
we present for comparing the performance of these algorithms in our main body (Figure 2).

23

35279 https://doi.org/10.52202/079017-1111

101 102 103
Iterations

10−12

10−7

10−2

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−2

10−1

100

Goofspiel

101 102 103
Iterations

10−7

10−4

10−1

Battleship

TB+ quadratic PTB+ quadratic PTB+ last Smooth PTB+ quadratic Smooth PTB+ last AdaGradTB+ quadratic AdamTB+ quadratic

1

Figure 4: Convergence to Nash equilibrium as a function of number of iterations for TB+ with
quadratic averaging, PTB+ with quadratic averaging and last iterate, and Smooth PTB+ with quadratic
averaging and last iterate. Every algorithm is using alternation.

101 102 103
Iterations

10−2

100

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−13

10−8

10−3

Liar’s Dice

101 102 103
Iterations

10−2

10−1

100

Goofspiel

101 102 103
Iterations

10−2

100

Battleship

TB+ uniform
TB+ uniform alternation

TB+ linear
TB+ linear alternation

TB+ quadratic

TB+ quadratic alternation

TB+ last
TB+ last alternation

1

Figure 5: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for TB+.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide all proofs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This is done in the main body.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

24

35280https://doi.org/10.52202/079017-1111

101 102 103
Iterations

10−12

10−7

10−2

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−2

10−1

100

Goofspiel

101 102 103
Iterations

10−7

10−4

10−1

Battleship

PTB+ uniform
PTB+ uniform alternation

PTB+ linear
PTB+ linear alternation

PTB+ quadratic

PTB+ quadratic alternation

PTB+ last
PTB+ last alternation

1

Figure 6: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for PTB+.

101 102 103
Iterations

10−13

10−8

10−3

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−2

10−1

100

Goofspiel

101 102 103
Iterations

10−7

10−4

10−1

Battleship

Smooth PTB+ uniform
Smooth PTB+ uniform alternation

Smooth PTB+ linear
Smooth PTB+ linear alternation

Smooth PTB+ quadratic

Smooth PTB+ quadratic alternation

Smooth PTB+ last
Smooth PTB+ last alternation

1

Figure 7: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for Smooth
PTB+.

101 102 103
Iterations

10−2

10−1

100

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

10−1

100

Leduc

101 102 103
Iterations

10−4

10−2

100
Liar’s Dice

101 102 103
Iterations

10−1

100

Goofspiel

101 102 103
Iterations

10−2

10−1

100

Battleship

AdaGradTB+ uniform
AdaGradTB+ uniform alternation

AdaGradTB+ linear
AdaGradTB+ linear alternation

AdaGradTB+ quadratic

AdaGradTB+ quadratic alternation

AdaGradTB+ last
AdaGradTB+ last alternation

1

Figure 8: Convergence to Nash equilibrium as a function of number of iterations using uniform, linear,
and quadratic averaging, as well as the last iterate, with and without alternation for AdaGradTB+.

101 102 103
Iterations

100

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

100

101
Leduc

101 102 103
Iterations

100

101
Liar’s Dice

101 102 103
Iterations

100

101
Goofspiel

101 102 103
Iterations

100

101
Battleship

AdamTB+ uniform
AdamTB+ uniform alternation

AdamTB+ linear
AdamTB+ linear alternation

AdamTB+ quadratic

AdamTB+ quadratic alternation

AdamTB+ last
AdamTB+ last alternation

1

Figure 9: Convergence to Nash equilibrium as a function of number of iterations using uniform, linear,
and quadratic averaging, as well as the last iterate, with and without alternation for AdaGradTB+.

101 102 103
Iterations

10−3

10−1

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

100

Leduc

101 102 103
Iterations

10−13

10−8

10−3

Liar’s Dice

101 102 103
Iterations

10−2

100

Goofspiel

101 102 103
Iterations

10−2

10−1

100

Battleship

CFR+ uniform
CFR+ uniform alternation

CFR+ linear
CFR+ linear alternation

CFR+ quadratic

CFR+ quadratic alternation

CFR+ last
CFR+ last alternation

1

Figure 10: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for CFR+.

25

35281 https://doi.org/10.52202/079017-1111

101 102 103
Iterations

10−13

10−8

10−3

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−2

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−4

10−2

100
Goofspiel

101 102 103
Iterations

10−5

10−2

Battleship

PCFR+ uniform
PCFR+ uniform alternation

PCFR+ linear
PCFR+ linear alternation

PCFR+ quadratic

PCFR+ quadratic alternation

PCFR+ last
PCFR+ last alternation

1

Figure 11: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for PCFR+.

101 102 103
Iterations

10−13

10−8

10−3

D
ua

lit
y

ga
p

Kuhn

101 102 103
Iterations

10−1

100

Leduc

101 102 103
Iterations

10−13

10−7

10−1

Liar’s Dice

101 102 103
Iterations

10−2

100

Goofspiel

101 102 103
Iterations

10−3

10−1

Battleship

SC-POMD uniform
SC-POMD uniform alternation

SC-POMD linear
SC-POMD linear alternation

SC-POMD quadratic
SC-POMD quadratic alternation

SC-POMD last
SC-POMD last alternation

1

Figure 12: Convergence to Nash equilibrium as a function of number of iterations using uniform,
linear, and quadratic averaging, as well as the last iterate, with and without alternation for SC-POMD.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This is done in the main body and in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

26

35282https://doi.org/10.52202/079017-1111

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We do so in the main body and in the appendices (Appendix H, Appendix K).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to do so after the revision process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

27

35283 https://doi.org/10.52202/079017-1111

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do so in the main body and in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No random experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

28

35284https://doi.org/10.52202/079017-1111

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We do so in the main body and in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research focuses on foundational questions. There is no direct societal
impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

29

35285 https://doi.org/10.52202/079017-1111

https://neurips.cc/public/EthicsGuidelines

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable to our paper. There is no release of data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations to the packages we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable to our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.

30

35286https://doi.org/10.52202/079017-1111

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

35287 https://doi.org/10.52202/079017-1111

