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Abstract

Point cloud registration, a fundamental task in 3D vision, has achieved remark-
able success with learning-based methods in outdoor environments. Unsupervised
outdoor point cloud registration methods have recently emerged to circumvent the
need for costly pose annotations. However, they fail to establish reliable optimiza-
tion objectives for unsupervised training, either relying on overly strong geometric
assumptions, or suffering from poor-quality pseudo-labels due to inadequate in-
tegration of low-level geometric and high-level contextual information. We have
observed that in the feature space, latent new inlier correspondences tend to cluster
around respective positive anchors that summarize features of existing inliers. Mo-
tivated by this observation, we propose a novel unsupervised registration method
termed INTEGER to incorporate high-level contextual information for reliable
pseudo-label mining. Specifically, we propose the Feature-Geometry Coherence
Mining module to dynamically adapt the teacher for each mini-batch of data dur-
ing training and discover reliable pseudo-labels by considering both high-level
feature representations and low-level geometric cues. Furthermore, we propose
Anchor-Based Contrastive Learning to facilitate contrastive learning with anchors
for a robust feature space. Lastly, we introduce a Mixed-Density Student to learn
density-invariant features, addressing challenges related to density variation and
low overlap in the outdoor scenario. Extensive experiments on KITTI and nuScenes
datasets demonstrate that our INTEGER achieves competitive performance in terms
of accuracy and generalizability. [Code Release]

1 Introduction

Point cloud registration is a fundamental task in autonomous driving and robotics. It aims to align two
partially overlapping point clouds with a rigid transformation. Learning-based methods have achieved
remarkable success in outdoor point cloud registration[1–5]. PCAM[1] pioneered the integration
of low-level geometric and high-level contextual information, inspiring subsequent works[2–5].
However, these supervised methods suffer from poor generalizability and reliance on costly pose
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Figure 1: (1) Motivation: new inliers (outliers) tend to cluster around latent positive (negative)
anchors that represent existing inliers (outliers) in the feature space, respectively. (2) Perfor-
mance: pseudo-labels from INTEGER are more robust and accurate than the previous state-of-the-art
EYOC[12].

annotations[6–8], underscoring the need for unsupervised methods to address these challenges in
real-world applications.

Despite recent progress[9–12] in unsupervised registration methods, the task remains challenging
and underexplored, especially in outdoor scenarios where LiDAR point clouds are large-scale and
complexly distributed. Some methods[9–11] optimize photometric and depth consistency, limiting
their applicability to indoor scenarios where RGB-D data and differentiable rendering are feasible.
Others[13, 14] learn global alignment and neighborhood consensus, but struggle with low overlap
and density variation in outdoor settings. Recent advances resort to pseudo-label-based frameworks,
achieving promising results in outdoor scenarios[12, 15]. However, they rely solely on geometric
cues to mine and filter pseudo-labels, neglecting the complementarity of high-level contextual
information in feature space. Their partiality results in incomplete scene perception, leading to noisy
and suboptimal optimization objectives.

Various 2D [16, 17] and 3D vision tasks [18–20, 2, 5, 4] have benefited from integrating both low-
level and high-level information. In point cloud registration, as illustrated in Fig. 1 (Left), we observe
that potential inliers (outliers) tend to cluster around positive (negative) anchors that summarize
the features of existing inliers (outliers) in the feature space, respectively. This suggests that high-
level contextual information is adept at discovering inliers from a global perspective of the scene.
Meanwhile, low-level geometric cues have proven effective in rejecting outliers[13, 21–23]. Inspired
by this, we propose a novel method, termed INTEGER, which adopts a teacher-student framework
to mINe and Transfer fEature-GEometry coheRence for unsupervised point cloud registration.

Specifically, our method starts by initializing a teacher with synthetic pairs generated from each point
cloud scan, and then transfers to real point cloud pairs with a teacher-student framework. Building
upon our observations, we introduce the Feature-Geometry Coherence Mining (FGCM) module for
the teacher, which first adapts the teacher to each mini-batch of real data to establish a denoised
feature space. Reliable pseudo-labels, including correspondences and anchors, are then generated
based on our key observation by iteratively mining potential inliers based on their similarity to anchors
and rejecting outliers via spatial compatibility [21]. These robust pseudo-labels mined by FGCM
not only accurately include inlier correspondences as shown in Fig. 1 (Right), but also aggregate
effective representations of inliers and outliers from the teacher. We refer to this characteristic as
feature-geometry coherence. To further enhance robustness and transfer feature-geometry coherence
to the student, we propose Anchor-Based Contrastive Learning (ABCont) for contrastive learning
with anchors. Meanwhile, we design a succinct and efficient Mixed-Density Student (MDS) for the
student to learn density-invariant features using teacher’s anchors, overcoming density variation and
low overlap in distant scenarios.

We extensively evaluate our method on two large-scale outdoor datasets, KITTI and nuScenes. By
exploiting feature-geometry coherence for reliable optimization objectives, INTEGER outperforms
existing unsupervised methods by a considerable margin. It even performs competitively compared to
state-of-the-art supervised methods, especially in distant scenarios. To the best of our knowledge, our
approach is the first to integrate both low-level and high-level information for producing pseudo-labels
of unsupervised point cloud registration. Overall, our contributions are threefold:
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• We propose INTEGER, a novel method to exploit low-level and high-level information for unsu-
pervised point cloud registration, achieving superior performance in complex outdoor scenarios.

• We introduce FGCM and MDS for the teacher and student, respectively, to mine reliable pseudo-
labels and learn density-invariant features.

• We design ABCont to mitigate pseudo-label noise and facilitate contrastive learning with anchors
for a robust feature space.

2 Related Works

Supervised Registration. There are two categories of supervised registration approaches:
Correspondence-based methods [24–26, 4, 27, 28, 3] first extract point correspondences and then
estimate the transformation with robust pose estimators. In contrast, direct registration methods
[29–31] extract global feature vectors and regress the transformation directly with a neural network.
Recently, a series of works [12, 32] have tackled distant point cloud registration, which is crucial for
real-world applications.

Unsupervised Registration. Previous researches in unsupervised registration mainly focus on
indoor scenes. BYOC[11] suggests that random 2D CNNs generate robust image correspondences
for supervising 3D registration networks. Meanwhile, render-based methods[9, 10] leverage differ-
entiable renders as the supervision signal of 3D registration. However, these methods are restricted
to RGB-D input. To address this, Mei et al. [33] enforce consistencies between Gaussian Mixture
Models for unsupervised training, using only point cloud as input. Shen et al. [13] introduce an inlier
evaluation method based on neighborhood consensus. However, its performance drops when the
overlap is low. SGP[15] proposes a teacher-student framework for self-supervised learning from
hand-crafted feature descriptors. EYOC[12] introduces progressive training and spatial filtering to
adapt the model to distant point cloud pairs gradually, demonstrating promising results in outdoor
scenarios.

Robust Pose Estimators. Pose estimators evaluate inliers and estimate poses from input correspon-
dence sets. Traditional methods such as RANSAC[34] suffer from inefficiencies. Learning-based
methods[35–37] learn to predict inliers and poses using neural networks. However, they require
training and are thus constrained to supervised settings. To address this, non-parametric methods have
emerged. Chen et al. [21] introduced SC2-measurements for robust inlier selection. Graph-based
methods such as MAC[23] and FastMAC[22] approximate maximal cliques for fast and accurate
inlier evaluation.

3 Methodology

Problem Formulation. Given two point clouds P = {pi} ∈ Rm×3 and Q= {qj} ∈ Rn×3, the
goal of point cloud registration is to uncover the rigid transformation T = {R, t} that perfectly
aligns P to Q, where R ∈ SO(3) is the rotation matrix and t ∈ R3 is the translation vector. When
the two point clouds are acquired at a large distance d such as when d ∈ [5m, 50m], the registration
task faces the challenges of low overlap and density variation [32, 12, 38]. Therefore, it is crucial to
learn density-invariant features.

Overall Pipeline. INTEGER adopts a two-stage training scheme and a teacher-student framework.
Training of INTEGER consists of two stages: First, we initialize the teacher with synthetic data. Then,
we train a student model on real data with the reliable pseudo-labels mined by the teacher. The overall
pipeline and proposed modules are illustrated in Fig. 2. During teacher-student training, FGCM
first dynamically adapts the teacher model θ to a data-specific teacher ϕ designated for the current
mini-batch, and then mines reliable pseudo-labels with the adapted teacher. Next, the MDS learns
density-invariant features by learning to match regular and sparse views of point cloud pairs supervised
by pseudo-labels mined by ϕ. A pseudo-label I = {C, Ĉ,A+,A−} contains correspondences C, Ĉ to
supervise dense matches and sparse matches, respectively. The feature-space positive and negative
anchors, denoted respectively by A+ and A−, serve as overall representatives of inliers and outliers
in the feature space. For a correspondence (i,j)C = (pi,qj) ∈ C, the correspondence features are
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Figure 2: The Overall Pipeline. FGCM(Sec. 3.2) first adapt the teacher model to a data-specific
teacher for the current mini-batch, and then mine reliable pseudo-labels. Next, MDS(Sec. 3.4) learns
density-invariant features from pseudo-labels. ABCont(Sec. 3.3) is applied for adapting the teacher
and transferring knowledge to the student in the feature space.

defined as F(i,j)
C = FP

i − FQ
j . Then, the positive and negative anchors A+,A− are computed as the

average of the respective features of inliers C+ and outliers C−

A+ =
1

|C+|
∑

(pi,qj)∈C+

F
(i,j)
C , A− =

1

|C+|
∑

(pi,qj)∈C−

F
(i,j)
C , (1)

ABCont is applied to effectively learn a robust student guided by anchors from the teacher. Progressive
training [12] is adopted to gradually train the student to adapt to pairs of distant point clouds.

3.1 Synthetic Teacher Initialization

To initialize a teacher model, Liu et al. [12] assume that two consecutive frames approximately have
no relative transformation and pretrain the teacher with the identity transformation. However, the
errors introduced in such approximation lead to suboptimal initial teachers. To address this, inspired
by existing efforts[39, 40], we instead pretrain the teacher with synthetic pairs generated from each
real scan. Specifically, we follow PointContrast[40] to generate two partially overlap fragments for
each scan. We additionally apply periodic sampling[39] to remove points periodically with respect
to a random center, simulating the irregular sampling of LiDAR. Please refer to the Appendix for a
visualization of synthetic pairs.

3.2 Feature-Geometry Coherence Mining
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Figure 3: The two-pass usage of the proposed FGCM.

With the teacher initialized on syn-
thetic pairs, our goal is to provide
reliable supervision for the student.
Despite efforts to ensure an effective
initialization, a distribution discrep-
ancy persists between synthetic and
real data. Hence, we introduce a train-
only FGCM. As is depicted in Fig. 2,
FGCM starts with Correspondence
Seed Proposals for C0 using a sim-
ple similarity threshold. Subsequently,
Feature-Geometry Clustering extends
from C0 by mining additional reliable
correspondences and anchors, which
serve as effective optimization objec-
tives.

As is illustrated in Fig. 3, for each mini-batch, we use FGCM in a two-pass manner. In the first
forward pass, we perform Per-Batch Self-Adaption on the teacher model θ to establish a denoised
feature space, yielding a data-specific teacher ϕ. In the second forward pass, the adapted teacher
ϕ and FGCM are used to mine reliable pseudo-labels I, which are then used to train the student,
achieving Teacher-Student Knowledge Transfer.

4

35471https://doi.org/10.52202/079017-1118



Algorithm 1: Feature-Geometry Clustering

Input: Initial correspondence seed proposals C0
Compute initial UP , UQ and anchors A+, A− with Eq. 1
for i = 1 to max_iters do

Generate unclassified correspondences CU ← FeatureMatching
(
UP ,UQ)

Select C top-k
U with top-k S+

c satisfying S+
c > S−

c based on Eq. 2
Update Ci ← Ci−1 ∪ C top-k

U // Anchor-Based Clustering
Filter Ci with spatial compatibility to produce Ci+, Ci− // Spatial Compatibility
Filtering

Update UP , UQ and A+, A− with Eq. 1
if
∣∣Ci+∣∣ = ∣∣Ci−1

+

∣∣ or
∣∣Ci−∣∣ = ∣∣Ci−1

−
∣∣ then

C ← Ci+
break

return C, A+, A−

Feature-Geometry Clustering. Feature-Geometry Clustering is central to the FGCM, designed to
extend initial correspondence proposals by integrating both high-level feature representations and
low-level geometric cues. It iteratively includes speculative inliers based on feature-space clustering,
followed by outlier rejection with spatial compatibility filtering. We empirically adopt SC2-PCR[21]
for spatial compatibility filtering. Our experiments show that our method is agnostic to the choice of
spatial compatibility measures.

To discover latent correspondences in the feature space, it is necessary to measure the similarity
between putative correspondences and anchors. Inspired by Xia et al. [41], we compute the feature
similarity using both Euclidean distance and cosine similarity. Specifically, for a correspondence
(pi,qj) ∈ C with its features F(i,j)

C , The similarity S+
c and S−

c w.r.t. respective anchors A+ and A−
is computed as:

S+
c = min{DE(A+,F

(i,j)
C ),DC(A+,F

(i,j)
C )}, S−

c = min{DE(A−,F
(i,j)
C ),DC(A−,F

(i,j)
C )}, (2)

where DE(F1,F2)=1−min(L2(F1,F2), 1) and DC(F1,F2)=(cos(F1,F2)+1) /2 are normalized
Euclidean distance and cosine similarity, respectively.

The algorithm is detailed in Alg. 1. Given correspondence set Ci at i-th iteration, we define unclassi-
fied points UP ,UQ in P and Q as:

UP =
{
p|p ∈ P ∧ (p, ∗) /∈ Ci

}
, UQ =

{
q|q ∈ Q ∧ (∗,q) /∈ Ci

}
(3)

Then, the algorithm takes an iterative approach, starting from the given initial correspondence set
C0: during the ith iteration, it (1) generates putative correspondences from UP and UQ via feature
matching; (2) expands Ci−1 with top-k similar correspondences to positive anchors measured by Sc,
yielding Ci; (3) filters the expanded correspondence set with spatial compatibility and updates the
anchors based on Eq. 1; (4) updates UP ,UQ and A+, A− according to Eq. 3. The iteration stops
when the number of inliers and outliers converges, or the maximum iteration is reached.

With ample accurate correspondences included in C, we can then estimate a more accurate transfor-
mation T and compute Ĉ using nearest neighbor search (NN-search) with T. We do not directly
apply Alg. 1 for sparse pairs because, in downsampled views, the features become less descriptive
[38], hindering feature-based approaches.

Per-Batch Self-Adaption. Throughout the iterations in Alg. 1, positive and negative anchors
gradually aggregate representative and discriminative features of inliers and outliers, respectively.
In the first forward pass, noise exists due to distributional discrepancies, leading to the rejection of
some correspondences by spatial compatibility. These rejected correspondences are hard samples:
ambiguous correspondences that are closer to positive anchors in the feature space but are more
likely to be outliers. We leverage these hard samples for teacher self-adaptation by applying the
InfoNCE[42] loss, guiding the teacher to distinguish them from the positive anchors. This step results
in the adapted teacher ϕ, which produces more discriminative features for the current mini-batch.
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Focusing only on hard samples for self-adaptation is more efficient than simply using all correspon-
dences for self-adaptation. Hard samples capture the key ambiguities in the feature space while
introducing only a limited number of pairwise relationships. This defines a clear and reliable opti-
mization objective for self-adaptation. In contrast, self-adaption with all correspondences not only
slows down the training, but also introduces too many already-distinguishable pairwise relationships,
diluting the focus on feature-space ambiguity and thus hindering effective adaptation.

Teacher-Student Knowledge Transfer. After Per-Batch Self-Adaption, the feature space of the
adapted teacher ϕ is expected to contain less noise. Consequently, the positive and negative anchors
become sufficiently representative and discriminative now, enabling effective guidance for the student
to learn a robust feature space. For Teacher-Student Knowledge Transfer, we utilize both the
correspondences and anchors from the adapted teacher ϕ to train the student using the proposed
ABCont. Unlike existing methods[15, 12] that rely solely on correspondences, our approach directly
bridges the teacher and student in the feature space via anchors, providing a clear and effective
optimization objective for the student.

3.3 Anchor-Based Contrastive Learning

Figure 4: Toy Example for ABCont.
Anchor-based methods introduce fewer
pairwise relationships and are robust
against inevitable label noise.

Contrastive learning has been widely adopted to train reg-
istration models[43, 24, 4, 3, 20]. Recently, a surge of
research on various tasks involves anchor-based or proxy-
based approaches to facilitate contrastive learning due to
their robustness against inconsistency and noise in the fea-
ture space[44, 45, 41], superiority in generalizability[46]
and ability to learn discriminative features[47]. There-
fore, we design ABCont to leverage positive and negative
anchors to facilitate effective contrastive learning with
the pseudo-labels, where noise and outliers are inevitable.
As shown in Fig. 4, with anchor-based representations,
ABCont sets up a convergence target that is more robust
against label noise. Moreover, it is more efficient because
the number of additionally-introduced pairwise relationships is reduced[46].

Specifically, we propose the ABCont loss LABCont=Lreg+λcorrLcorr, where Lcorr is the anchor-based
correspondence loss, weighted by a hyperparameter λcorr to complement the registration loss Lreg
originally used by the feature extractors. The student’s feature matching results can be classified into
inliers C+ and outliers C− based on the pseudo-labels from the teacher. Then, anchors {A+,A−}
from the teacher are designated as a universal inlier and a universal outlier, resulting in augmented
inliers and outliers:

C⋆+ = C+ ∪ sg(A+), C⋆− = C− ∪ sg(A−), (4)

where sg(·) denotes the stop-gradient operator, preventing gradients from flowing back to the teacher.
Following existing efforts[41, 40], we sample np correspondences randomly and formulate Laux as a
contrastive learning problem to distinguish inliers from outliers. InfoNCE[42] loss is then applied to
these correspondence features:

Lcorr = −
1

np

np∑
i=1

log
exp(βi

p)

exp(βi
p) +

∑nn

j=1 exp(β
j
n)

, (5)

where βi
p and βj

n are the distance between the ith positive correspondence and the jth negative
correspondence, respectively. ABCont is pivotal in transferring feature-geometry coherence from
the teacher to the student: the accurate pseudo-labels for correspondences, combined with anchors,
enable the student to learn discriminative features efficiently. Anchors from the teacher impose
direct constraints on the student’s feature space, encouraging the student to replicate the teacher’s
feature-space matchability. This leads to a more effective transfer of feature-geometry coherence.

3.4 Mixed-Density Student

The density of LiDAR point clouds varies greatly with the distance to the sensor, posing challenges
for matching distance point clouds effectively[38]. To address this, it is crucial for a student model
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to learn density-invariant features, ensuring robust correspondences across varying point densities.
Previous methods [32, 38] have sought density invariance through auxiliary reconstruction tasks
or by identifying positive groups, but these techniques are either computationally expensive or
depend on precise supervision. Xia et al. [48] introduced a simple yet effective technique for density
invariance in object detection by using features from downsampled views. Inspired by this, we
propose Mixed-Density Student to learn density-invariant features from reliable correspondences.

Specifically, given point clouds P and Q, we compute their sparsely-downsampled views P− and
Q− with increased voxel sizes. We then extract student’s features (FP ,FQ) and (F−

P ,F
−
Q). Using

features from point clouds of different density, we compute dense matches and sparse matches
through matching respective features. We then apply ABCont to both sets of matches, encouraging
the extraction of similar features at corresponding spatial locations across point clouds of varying
densities, thereby promoting density-invariant feature learning.

Loss Aggregation. The student’s overall training loss is aggregated as a weighted combination of
LABCont on both dense and sparse matches:

L = L(P,Q)
ABCont + λ1L(P−,Q−)

ABCont , (6)
where λ1 is a weight for the sparse match.

4 Experiments

We mainly evaluate INTEGER on two challenging public datasets: KITTI[6] and nuScenes[7]. Both
datasets adhere to official splits. The evaluation protocol follows the standard setting of EYOC[12].
Please refer to the appendix for more details of implementation and experimental settings.

Metrics Following previous works[4, 2, 43, 38], we evaluate the registration performance using
Relative Rotation Error (RRE), Relative Translation Error (RTE) and Registration Recall (RR).
Related to the practical purpose of outdoor registration, we additionally report RR@ [d1, d2) and mean
Registration Recall(mRR). RR@ [d1, d2) is registration recall w.r.t pairs with distance d ∈ [d1, d2),
following [12]. mRR is defined as the average of RR@ [d1, d2) for all [d1, d2). To measure the
quality of correspondences in pseudo-labels, we report Inlier Ratio(IR) of the teacher in the first
epoch, denoted “tIR@1st Epoch”.

Baselines For supervised methods, We compare INTEGER with FCGF[24], Predator[43],
SpinNet[49], D3Feat[50], CoFiNet[51], and Geometric Transformer(GeoTrans.)[4]. For unsuper-
vised methods, we compare with RIENet[13] and EYOC[12]. Following Liu et al. [12], we report a
variant of FCGF denoted as FCGF+C, which is FCGF trained with progressive training [12].

4.1 Performance Comparison with State-of-the-Art

Quantitative results are presented in Table 1. Our method outperforms existing unsupervised ap-
proaches and achieving state-of-the-art performance across all datasets and demonstrates superior
generalizability. Notably, our unsupervised approach maintains competitive performance compared
to supervised methods and even surpasses them in distant scenarios, highlighting its potential for
real-world application.

Overall Performance Compared to existing methods, our approach excels in performance. RIENet,
an end-to-end unsupervised registration method for outdoor scenes, exhibits suboptimal performance,
particularly in low-overlap scenarios and environments with low LiDAR resolution, such as nuScenes.
Both EYOC and INTEGER adopt a teacher-student framework for unsupervised training. However,
our method demonstrates superior accuracy across all evaluation metrics, overcoming challenges
associated with pseudo-label discovery and the absence of feature-space knowledge transfer in EYOC.

Generalizability We assess generalizability on nuScenes using weights trained on KITTI. Vari-
ations in LiDAR resolutions between nuScenes and KITTI may lead to different point densities,
potentially degrading extracted features. Compared to existing unsupervised methods, our approach
exhibits superior generalizability to unseen datasets. This superiority can be attributed to INTEGER’s
design, which learns density-invariant features.
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Table 1: Comparisons with State-of-the-Art Methods. “✓” in the column “U” denotes the methods
are Unsupervised. Otherwise, they are supervised. The best unsupervised results are highlighted in
bold. “KITTI→nuScenes”denotes generalizability results from KITTI to nuScenes.

Dataset Method U mRR RR@d ∈
[5, 10) [10, 20) [20, 30) [30, 40) [40, 50)

KITTI

FCGF – 77.4 98.4 95.3 86.8 69.7 36.9
FCGF+C – 84.6 100.0 97.5 90.1 79.1 56.3
Predator – 87.9 100.0 98.6 97.1 80.6 63.1
SpinNet – 39.1 99.1 82.5 13.7 0.0 0.0
D3Feat – 66.4 99.8 98.2 90.7 38.6 4.5
CoFiNet – 82.1 99.9 99.1 94.1 78.6 38.7
GeoTrans. – 42.2 100.0 93.9 16.6 0.7 0.0
EYOC ✓ 83.2 99.5 96.6 89.1 78.6 52.3
RIENet ✓ 50.7 96.3 72.1 38.2 24.4 22.6
Ours ✓ 84.0 99.5 97.1 89.6 79.6 54.2

nuScenes

FCGF – 39.5 87.9 63.9 23.6 11.8 10.2
FCGF+C – 59.3 96.2 85.1 59.6 35.8 20.0
Predator – 51.0 99.7 72.2 52.8 16.2 14.3
EYOC ✓ 61.7 96.7 85.6 61.8 37.5 26.9
RIENet ✓ 47.1 96.5 57.9 36.6 25.8 18.9
Ours ✓ 63.1 97.1 86.9 62.9 39.6 29.4

KITTI
↓

nuScenes

EYOC ✓ 55.3 96.2 75.6 58.7 26.6 19.7
RIENet ✓ 46.2 83.3 73.2 43.5 19.8 11.1
Ours ✓ 62.6 97.5 84.6 62.6 37.8 30.2

4.2 Analysis

Table 2: Different Pose Estimators
in FGCM

Pose tIR@1st Time
Estimators Epoch (s)
PointDSC 81.3 1.13

MAC 80.1 28.2
FastMAC 79.3 0.67
SC2-PCR 81.2 0.75

Different Choices of Pose Estimator in FGCM We contend
that the robustness and efficacy of FGCM are not contingent
upon a specific pose estimator. To substantiate this claim, we
conduct experiments employing various robust pose estimators
within FGCM. The results are detailed in Table 2. For differ-
ent robust pose estimators in FGCM module, we experiment
PointDSC[35]2, MAC[23], FastMAC[22] and SC2-PCR[21].
The results demonstrate that the effectiveness of FGCM is
agnostic to choices of pose estimators, despite marginal perfor-
mance discrepancies are observed. Given the iterative nature
of FGCM, the efficiency of pose estimators holds paramount
importance, as the module’s runtime is proportional to pose
estimation time. We choose SC2-PCR[21] for FGCM by default due to its superior balance in
performance and efficiency.

Effectiveness of Self-Adaption for Discriminative Features. To further understand the effective-
ness of self-adaption in FGCM, we visualize the point-level feature distribution and correspondence-
level similarity distribution in Fig. 5 (Please refer to the Appendix for implementation details.). The
two representative samples are taken from KITTI dataset. In Fig. 5, the smaller overlap regions
of point-level feature distribution between points from inliers and outliers indicate the features
of inliers and outliers distribute more distant, and thus, the features are more discriminative. For
correspondence-level similarity, inlier similarity should be distinct from outlier similarity to effec-
tively differentiate between the two. With the self-adaption in FGCM, the data-specific teacher
produces more discriminative features, resulting in a less noisy feature space conducive to the
subsequent feature-based approach employed in FGCM.

2We directly use their official weights for evaluation.
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Figure 5: Before v.s. After Self-Adaption in FGCM: Point-wise Feature & Correspondence-wise
Similarity Distribution indicate that the self-adaption results in more discriminative features.

4.3 Ablation Study

We conduct ablation studies to evaluate the efficacy of INTEGER on the KITTI dataset. We
present mRR and registration errors in a distant scenario where d∈ [40, 50). Various alternative
configurations of INTEGER are compared in Table 3. Our method exhibits superior performance
compared to alternatives, demonstrating the effectiveness of our design. This superiority may be at-
tributed to the features-geometry coherence: With FGCM, correspondences in pseudo-labels possess
discriminative features, facilitating effective knowledge transfer in feature space using ABCont.

Table 3: Ablation Study of INTEGER. S.T.I denotes
synthetic teacher initialization. PBSA and FGC denote
Per-Batch Self-Adaption and Feature-Geometry Clus-
tering, respectively

Methods tIR@1st
mRR d ∈ [40, 50)

Epoch RR RRE RTE
Full 81.2 84.0 54.2 1.1 0.54

w/o ABCont 80.3 83.5 53.7 1.3 0.58
w/o PBSA 43.3 80.9 50.2 1.7 0.79
w/o FGC 67.6 82.8 52.7 1.4 0.61
w/o MDS 81.2 82.7 52.3 1.3 0.71
w/o S.T.I 71.9 83.7 53.7 1.2 0.55

Additionally, MDS significantly enhances
performance in distant scenarios. The com-
bination of Per-Batch Self-Adaption and
Feature-Geometry Clustering in the FGCM
module yields more substantial improve-
ment than using either alone. The removal
of Per-Batch Self-Adaption marginally de-
grades the quality of pseudo-labels, em-
phasizing the importance of denoising the
feature space. When synthetic teacher ini-
tialization is removed (w/o S.T.I), we em-
ployed the same way as EYOC to pretrain
the teacher. We find that synthetic teacher
initialization greatly enhances the initial
teacher’s performance. Please refer to the
Appendix for more qualitative results on
generated synthetic pairs.

5 Conclusion

In this paper, we present INTEGER, a novel unsupervised method for point cloud registration that
integrates low-level geometric and high-level contextual information for reliable pseudo-labels. Our
method introduces Feature-Geometry Coherence Mining for dynamic teacher self-adaption and robust
pseudo-label mining based on both feature and geometric spaces. Then, we propose Mixed-Density
Student to learn density-invariant features. We also introduce Anchor-Based Contrastive Learning
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for effective contrastive learning using anchors. Extensive experiments on two large-scale outdoor
datasets validate our method’s efficacy. Despite being unsupervised, it achieves results comparable
to state-of-the-art supervised methods and surpasses existing unsupervised methods, particularly in
distant scenarios. Furthermore, our approach exhibits superior generalizability to unseen datasets.

Limitations. The main limitations of the proposed method are twofold:

• Our method is subject to the quality of the teacher. If the teacher is inaccurate, the feature space
may become too noisy, potentially impeding Feature-Geometry Clustering in FGCM, especially
in distant scenarios. One potential remedy is to devise a more robust strategy for initializing the
teacher.

• Our method is slightly slower to obtain pseudo-labels compared to existing efforts[12] due to the
proposed iterative method used in FGCM of the FGCM module. Future work may involve devising
a more efficient strategy for mining pseudo-labels.
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A Appendix

A.1 Evaluation Protocol

Following previous works[4, 2, 43, 38], we evaluate the registration performance using Relative
Rotation Error (RRE), Relative Translation Error (RTE) and Registration Recall (RR). Related to the
practical purpose of outdoor registration, we additionally report RR@ [d1, d2) and mean Registration
Recall(mRR). RR@ [d1, d2) is registration recall w.r.t pairs with distance d ∈ [d1, d2), following
[12]. mRR is defined as the average of RR@ [d1, d2) for all [d1, d2). To measure the quality of
correspondences in pseudo-labels, we report Inlier Ratio(IR) of the teacher in the first epoch, denoted
“tIR@1st Epoch”.

Relative Rotation Error Relative rotation error is the geodesic distance in degrees between
ground-truth and predicted rotation matrices:

RRE(Rp,Rgt) = arccos

(
trace(RT

p Rgt)− 1

2

)
, (7)

where Rgt and Rp denote the ground-truth and predicted rotation matrices, respectively.

Relative Translation Error Relative translation error is the Euclidean distance between ground-
truth and predicted translation vectors:

RTE(tp, tgt) = ∥tp − tgt∥2, (8)

where tp and tgt are the ground-truth and predicted translation vectors, respectively.

Registration Recall The registration recall is defined as the fraction of point cloud pairs whose
RRE and RTE are simultaneously below the given thresholds (i.e.RRE < 5◦ and RTE < 2m for
KITTI datasets):

RR =
1

M

M∑
i=1

JRREi < τr ∧ RTEi < τtK, (9)

where τr and τt are thresholds for RRE and RTE, respectively, and J·K is the Iverson bracket. We
compute the mean RRE and RTE only for point cloud pairs that are registered successfully, following
common practices [50, 24, 43, 2, 51].

Following existing efforts[12], we denote the registration recall w.r.t pairs with distance d ∈ [d1, d2) as
RR@ [d1, d2). With the set of distance intervals D = {[5, 10), [10, 20), [20, 30), [30, 40), [40, 50)},
we define the mean registration recall as:

mRR =
1

|D|
∑

[d1,d2)∈D

RR@ [d1, d2) . (10)

A.2 Implementation Details

We introduce the implementation details of INTEGER in this section. Firstly, we describe the network
architectures of FCGF and SC2-PCR, which we use by default to implement INTEGER. Then, we
provide additional information about the implementation of FGCM. Finally, we provide the details of
the implementation of visualization in Fig. 1 and Fig. 5.

FCGF We adopt the popular FCGF[24] for the registration network in INTEGER. As depicted
in Fig. 6, the architecture incorporates Res-UNet structure and is implemented with sparse voxel
convolution. It adopts three layers of skip connections with a roughly symmetric encoder-decoder
structure. Before used for registration, features are normalized onto the unit sphere after the last
convolutional layer.
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Figure 6: The Architecture of FCGF. We use the same architecture as their official
implementation[24]. It adopts three layers of skip connections with a roughly symmetric encoder-
decoder structure.

SC2-PCR SC2-PCR is a robust pose estimator built upon the SC2 measurement[21]. For two
correspondence cx = (pi,qj) and cy = (pk,ql), Literatures prior to Chen et al. [21] utilized
first-order spatial compatibility (SC) defined as:

Mxy = |∥pi − pk∥2 − ∥qj − ql∥2| (11)

to measure the spatial compatibility between two correspondences, where cx, cy ∈ C and M ∈
R|C|×|C| is the spatial compatibility matrix. To better distinguish inliers from outliers, Chen et al.
[21] proposed a second-order spatial compatibility (SC2) by using M ·M2. Thus, the SC2 scores
for inliers will be skyrocketing and can easily be distinguished from outliers.

Built upon the SC2 measurement, SC2-PCR first using a spectral technique to extract most promis-
ing seed correspondences and then iteratively refine the correspondences. The SC2-PCR is GPU-
compatible and non-parametric. Therefore, it is efficient and has great generalizability for implement-
ing our unsupervised method.

Details in FGCM Following existing efforts[24], we have to sample nc = 1024 correspondences
for training with Hardest-Contrastive Loss. Thus, when FGCM mines more than nc correspondences
in pseudo-labels, we randomly sample nc correspondences for training. However, in some cases,
FGCM may fails to mine enough correspondences, resulting in less than nc correspondences. For
effective training, we additionally perform a NN-search to complement the correspondences under
such circumstance. This typically happens in very early stages in training when the teacher model
has not adequately adapted to real data yet, and very late stages when the overlap between two point
clouds is too low.

Visualization in Fig. 1 and Fig. 5 In Fig. 1, we visualize the features of points and anchors
by projecting them into 2D space using t-SNE[52]. In Fig. 5, we visualize the point-wise feature
distribution and correspondence-wise similarity distribution. For point-level feature distribution, we
first project the point features into scalar space using t-SNE[52]. Then, we estimate the probability
density for points associated with inlier and outlier correspondences using Kernel Density Estimation
(KDE)[53]. To estimate correspondence-level similarity distribution, we compute the L2-distance in
feature space between two points in each correspondence and visualize the distribution of similarities
for inliers and outliers. We use the sklearn[54] library to implement t-SNE and KDE.

A.3 Training Details

To train INTEGER, we use the SGD optimizer with an initial learning rate of 0.3 and a weight decay
of 1e − 4. We train INTEGER for 400 epochs with a batch size of 8. The training process takes
approximately 6 days on a single NVIDIA RTX 3090 GPU running at 1.70 GHz with 24 GiB of GPU
memory.

A.4 Additional Experiments
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(a) k (b) Max Iterations

Figure 7: Sensitivity of hyperparameters in FGCM module.

Hyperparameter Sensitivity in FGCM We evaluate the sensitivity of hyperparameters in FGCM,
including the number k of putative correspondences to enlarge Ci−1 and the max number of iterations.
The results are illustrated in Fig. 7. The performance of INTEGER is relatively stable with respect to
the hyperparameters, indicating the robustness of our method to hyperparameter settings. For best
performance, we set k = 0.4CU and the max number of iterations to 100.

Table 4: Adaptability of INTEGER for Different Registration Networks

Network mRR RR@d ∈
[5, 10) [10, 20) [20, 30) [30, 40) [40, 50)

FCGF 84.0 99.5 97.1 89.6 79.6 54.2
Predator 61.6 91.6 76.2 60.7 44.5 32.7

Adaptability to Different Registration Networks. We assess the adaptability of INTEGER by
training it with different registration networks, namely Predator[43] and FCGF[24]. The results
presented in Table 4 indicate that INTEGER exhibits compatibility with diverse registration networks,
underscoring its superior adaptability. However, we indeed observe that the performance gap between
supervised and unsupervised settings widens when using Predator as the registration network. This
may be attributed to the more sophisticated architecture of Predator compared to FCGF, which may
require more accurate supervision signals for effective training. It will be our future work to improve
the adaptability of INTEGER to more complicated registration networks.

Table 5: Additional Generalizability Results Compared with Supervised Methods. “✓” in
the column “U” denotes the methods are Unsupervised. Otherwise, they are supervised. The best
unsupervised results are highlighted in bold. “KITTI→nuScenes”denotes generalizability results
from KITTI to nuScenes.

Dataset Method U mRR RR@d ∈
[5, 10) [10, 20) [20, 30) [30, 40) [40, 50)

KITTI
↓

nuScenes

FCGF – 60.1 93.9 84.5 58.9 39.2 23.9
FCGF+C – 60.3 95.9 84.5 61.1 35.8 24.1
Predator – 32.9 91.1 50.2 11.2 5.9 6.1
EYOC ✓ 55.3 96.2 75.6 58.7 26.6 19.7
RIENet ✓ 46.2 83.3 73.2 43.5 19.8 11.1
Ours ✓ 62.6 97.5 84.6 62.6 37.8 30.2
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Additional Generalizability Results. We provide additional generalizability results in Table 5. For
supervised methods, FCGF and its variants surprisingly gains improved performance by generalize
from KITTI, which may be attributed to the lower resolution of LiDAR in nuScenes(64 beams, 100m
range in KITTI v.s. 32 beams, 70m range in nuScenes), which may hinder training from scratch. This
phenomenon is also observed by existing efforts[12]. Our method show superior generalizability
even compared with supervised methods.

(a) A Sample from KITTI

(b) A Sample from nuScenes

Figure 8: Visualization of Generated Pairs in the Synthetic Pretraining Stage. The synthetic pair
on the right is generated from a single real scan on the right. We additionally visualize the result of
periodic sampling in the top-right corner of synthetic pairs.

Qualitative Results on Synthetic Pairs. In the synthetic pretraining stage, we generate synthetic
pairs from each real scan to train the teacher. We provide visualization on generated pairs in Fig. 8.
The synthetic pair on the right is generated from a single real scan on the right. We additionally
visualize the result of periodic sampling in the top-right corner of synthetic pairs. The periodic
sampling strategy effectively simulates the irregular sampling of LiDAR point clouds. By randomly
cropping the point clouds, the synthetic pairs are partially overlapped, which facilitates the training
of the registration network.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: It accurately reflects our contributions and scope. The scope of the paper is
illustrated in Sec. 1. We detail our method in Sec. 3. Experimental validation are detailed in
Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It has been discussed in the Appendix. Furthermore, we also mention the
location to find this discussion of limitations in the Conclusion section (Sec. 5) for clarity.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work incorporates only experimental results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Related information has been detailed in the paper. Sec. 4 includes brief
information, whereas Sec. A.1, Sec. A.2 and Sec. A.3 in the Appendix include detailed
information regarding reproducibility. Moreover, code will be made publicly available if the
paper get accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Codes will be released. Instructions to faithfully reproduce the main experi-
mental results are included in Sec. A.1, Sec. A.2 and Sec. A.3 in the Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: They have been detailed in the appendix. See Sec. A.1, Sec. A.2 and Sec. A.3
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is too computationally expensive for the proposed method. As shown in
Sec. A.3 in the Appendix, our method currently requires a long training procedure. We
have demonstrated the robustness and reliability of the proposed method by conducting
experiments on generalizability. Moreover, we have to note that a considerable amount of
existing research in point cloud registration[12, 4, 32, 38, 21, 51] does not include results
on statistical significance, whereas a few[2, 5, 24] includes simple results such as variances
for statistical results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information has been detailed in Sec. A.3 in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics. Our research involves no human subjects or
participants, and the usage of KITTI and nuScenes datasets complies to their guidelines for
privacy and ethical use cases. Information on reproducibility is provided in Sec. A.1, Sec. A.2
and Sec. A.3 in the Appendix. Our research on point cloud registration currently involves no
ethical considerations, and our usage of synthetic data adheres to ethical guidelines, because
it is randomized, happens on-the-fly during training, and thus will not harm reproducibility.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work performs positive societal impact, such as its benefits for autonomous
driving. We discuss it in Sec. 1. We have not found negative societal impact yet for
unsupervised point cloud registration.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks. Our usage of data adhere to their official
instructions and guidelines, as is stated in Sec. 4.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: They are credited and cited properly in Sec. 4. Release information on datasets
has been included in their paper. KITTI uses CC BY-NC-SA 3.0 DEED, whereas nuScenes
uses CC BY-NC-SA 4.0. We properly respect the license and terms of use. We also leverage
official implementation for FCGF and Predator. We have cited their paper and their paper
contains release information.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new data assets. Codes will be released if the paper
get accepted. Instructions to faithfully reproduce the main experimental results are included
in Sec. A.1, Sec. A.2 and Sec. A.3 in the Appendix. More detailed information such as
exact commands for running the experiments, environment setup details and necessary data
preprocessing steps will come with code release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

35491https://doi.org/10.52202/079017-1118




