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Abstract

Despite significant advancements in text generation and reasoning, Large Language
Models (LLMs) still face challenges in accurately performing complex arithmetic
operations. Language model systems often enable LLMs to generate code for
arithmetic operations to achieve accurate calculations. However, this approach
compromises speed and security, and fine-tuning risks the language model losing
prior capabilities. We propose a framework that enables exact arithmetic in a single
autoregressive step, providing faster, more secure, and more interpretable LLM
systems with arithmetic capabilities. We use the hidden states of a LLM to control
a symbolic architecture that performs arithmetic. Our implementation using Llama
3 with OccamNet as a symbolic model (OccamLlama) achieves 100% accuracy on
single arithmetic operations (+,−,×,÷, sin , cos , log , exp ,

√), outperforming
GPT 4o with and without a code interpreter. Furthermore, OccamLlama outper-
forms GPT 4o with and without a code interpreter on average across a range of
mathematical problem solving benchmarks, demonstrating that OccamLLMs can
excel in arithmetic tasks, even surpassing much larger models. Code is available at
https://github.com/druidowm/OccamLLM.

1 Introduction

Since the release of GPT 3, Large Language Models (LLMs) have dramatically improved in their
text generation and reasoning capabilities. This has enabled success in downstream applications
including machine translation [1, 2], sentiment analysis [3, 4, 5], and interactive dialogue generation
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Table 1: OccamLLM is the only approach to improving the arithmetic capabilities of a pretrained
LLM which 1) enables single-pass arithmetic, 2) does not risk catastrophic forgetting from finetuning,
3) does not require arbitrary code execution, and 4) provides an interpretable process.

No Catastrophic No Arbitrary
Single Pass Forgetting Code Execution Interpretable

Fine Tuning ✓ ✗ ✓ ✗
Tool Use ✗ ✗ ✗ ✓
OccamLLM ✓ ✓ ✓ ✓

[6], with language models even surpassing human experts on some academic benchmarks that require
reading comprehension, reasoning and coding [7]. However even industry-leading LLMs such as
GPT 4 cannot reach 100% accuracy on simple arithmetic [8], limiting their ability to perform basic
mathematical tasks. This hinders potential applications of LLMs ranging from chat-bot physics tutors
to LLM-powered automated research that could accelerate scientific discovery and technological
innovation. The poor arithmetic performance of LLMs is particularly acute for small LLM agents,
limiting their usage in smartphone or in multi-agent applications.

To enable accurate calculations, language model systems often resort to running code written by a
LLM. However, this comes at the cost of speed; the model must perform multiple autoregressive steps
to generate code that performs the appropriate arithmetic operations. This increased decoding time
may negatively impact applications such as multi-agent workflows [9, 10] where speed is essential.
At the same time, code-based LLM arithmetic mechanisms may increase system vulnerability by
providing a mechanism for arbitrary LLM-generated code execution.

We propose an alternative, a framework which enables exact and interpretable LLM arithmetic in a
single autoregressive step, providing faster and more secure arithmetic capabilities in LLM systems.
Our framework uses the hidden states of a LLM to control a symbolic architecture that performs
arithmetic. Although our method can in principle work with any symbolic architecture, in this paper
we use an interpretable neurosymbolic architecture known as OccamNet [11, 12] because of its
interpretability and scalability. Therefore, we term our method OccamLLM, or OccamLlama when
using a Llama model as the LLM.

Our core contributions are as follows:

1. We develop a framework for exact and interpretable LLM arithmetic in a single autoregres-
sive step without catastrophic forgetting [13] or vulnerability from code generation. We
explore how to train OccamLlama, including data generation, decoder architecture, and loss
function.

2. We benchmark OccamLlama on arithmetic tasks, demonstrating that OccamLlama achieves
100% accuracy on arbitrary single arithmetic operations (+,−,×,÷, sin , cos , log , exp ,

√),
more than double the accuracy of GPT 4o. OccamLlama performs slightly better than GPT
4o with Code Interpreter while answering in on average more than 50x fewer generation
tokens.

3. We benchmark on mathematical problem solving tasks, showing that OccamLlama can
sustain long generations. OccamLlama outperforms both GPT 4o and GPT 4o with code
interpreter on average across the benchmarks we tested.

2 Related Work

Arithmetic Performance in LLMs. Prior research has trained models on synthetic data, finding that
such models can achieve near-perfect accuracy on addition [14, 15], subtraction [15], multiplication
[14, 15], division [15], and raising to powers [15]. These prior models have been tested only on
arithmetic datasets, so their generality has not been assessed. Other work focuses on finetuning
LLMs which are already trained on large amounts of general-purpose data on math datasets. Both
full-parameter [16, 17] and parameter-efficient (PEFT) [18] finetuning strategies have been applied.
However, finetuning on a single dataset carries the risk of catastrophic forgetting of an LLM’s
previously acquired linguistic skills [19]. While PEFT techniques have been shown to partially
mitigate this effect, this area is still one of active research [20, 21].
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Figure 1: The OccamLLM system. For each autoregressive step, the language model hidden states
for that token are fed into a decoder block which assigns weights to OccamNet. The system feeds the
most recent numbers from the text into OccamNet, which then evaluates the sparse function specified
by its weights. The decoder then determines whether to use the LLM output or the OccamNet output.

LLMs with Tool Use. Another thrust of prior research has focused on LLM tool use, which
we believe is most directly related to our methods. Calc-X [22] introduces a technique to offload
arithmetic computations to an external tool like a calculator. The authors curated a large dataset of
arithmetic problems and trained a language model that learns to interact with a calculator through the
use of tags to signify the calling of the external tool. Several other works [23, 24, 25] follow a similar
idea, using crowd workers to annotate tool calls and using this data to train language models to
interact with external tools such as a web searching tool, a calculator, or a translation system. These
approaches can be prohibitively expensive in annotation costs; Toolformer [26] overcomes this cost
by using in-context learning and a language model to generate datasets containing the necessary ‘API’
tool calls via a self-supervised loss. Further, the above methods all require finetuning of the LLM,
placing the LLM at risk of losing generality and its original language modelling abilities through
catastrophic forgetting. In contrast, our approach does not involve training the language model. Our
‘external tool’ is a symbolic model which can be trained to correctly use the hidden states of the
language model to perform the required arithmetic computations. The language model is kept frozen
throughout this process. Unlike other tool-calling approaches, where the cost of data annotation
to train for tool-calling interaction can be prohibitively expensive, in our method, each task only
requires manually annotating tens of prompts, a high annotation efficiency. Other prior methods
leverage prompt engineering to improve arithmetic performance of LLMs; this is done either through
chain-of-thought [27], or to encourage LLMs to use a code interpreter [28, 29, 30]. Contrary to these
methods, our approach does not use code kernels; this provides several advantages: 1) it enables tool
use without expending compute on autoregressive steps for token generation, and 2) it avoids running
potentially incorrect or malicious code generated by language models.

3 Methods

3.1 OccamLLM: Combining a Language Model with a Symbolic Model

In short, the OccamLLM system combines a language model with a symbolic model, namely
OccamNet, that can perform arithmetic operations like addition and subtraction. For each token, the
corresponding internal hidden states of the language model are fed into a decoder module which
initializes the symbolic model such that it executes the operation required by the task described in the
input text. A string parser feeds the necessary numbers from the text into OccamNet, which evaluates
the desired expression. Finally, a decoder determines whether to use the language model output or
the OccamNet output for generating the next token.

3
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Figure 2: a) A schematic of the OccamNet architecture, with softmax layers in grey and their outputs in
red. b) A Directed Acyclic Graph (DAG) (with edges not connected to the output removed for clarity)
formed by sampling from OccamNet. This DAG corresponds to the function sin(sin(x1) · exp(x0)).
Modified from [11].

In the example shown in Figure 1, a decoder determines how to initialize OccamNet from the language
model hidden states, choosing to have OccamNet perform addition. The text parser then feeds the
numbers 6 and 7 into OccamNet, which adds the numbers, returning 13. Finally, a decoder decides
to use the OccamNet output instead of the language model output, so the system outputs 13. The
new sentence, including the 13, is tokenized and fed back to the LLM to continue autoregressive
generation. The language model might later generate “Since she ate two apples, she now has,” at
which point the switch will again trigger OccamNet, this time implementing 13− 2 and returning 11.

In the subsections below, we describe the OccamLLM system which from our experiments we find to
be most performant, even oupterforming GPT 4o in several benchmarks. For an analysis of alternate
architectures and losses, see Appendix D.

3.1.1 OccamNet

OccamNet is a symbolic architecture that provides an interpretable way of parametrizing probability
distributions over a space of functions [11]. We leave a more thorough explanation of OccamNet to
[11] and Appendix E, describing only the relevant components here.

An l-layer OccamNet with primitives P and n inputs is an architecture that defines a probability
distribution over the space of functions representable as compositions of the primitives in P up to
depth l. For example, a two-layer OccamNet with primitives P = {sin, cos} and one input represents
a probability distribution over the set

F = {x, sin(x), cos(x), sin(sin(x)), sin(cos(x)), cos(sin(x)), sin(sin(x))}.
OccamNet has the structure of an n-input, l-internal-activation-layer multilayer perceptron with the
biases removed and the activations in each layer replaced by the primitives P, as shown in Figure 2a.
Activation functions may have multiple inputs. We rename the linear layers softmax layers, denote
the weights of the ith softmax layer as W(i), and denote the combined weights of OccamNet as W.

We define the probability distribution which OccamNet parametrizes by specifying how to sample
from it. For each softmax layer output node (shown in red in Figure 2), we select a single connection
to that node from a softmax layer input node by sampling from the distribution given by the softmax
of the weights of the connections to the different inputs. This process produces a directed acyclic
graph (DAG) defining a computational path through the OccamNet activations, such as the one shown
in Figure 2b. In this way, each DAG represents a function on the inputs of OccamNet.

To ensure that OccamNet can represent all possible compositions of functions in P up to depth l,
we include the following modifications to the OccamNet architecture: 1) for each softmax layer,
we concatenate its inputs with the previous softmax layer’s inputs to enable the representation of
functions with fewer than l compositions, and 2) we repeat primitives in the ith activation layer Al−i

times, where A is the maximum number of inputs of any of the primitives, to ensure that a sufficient
number of each primitive is available at each layer. We refer to this modified architecture as complete
OccamNet as it can represent the complete set of desired functions. The resulting architecture is
shown in Figure 7 in the appendix.

In principle, OccamLLM can work with any symbolic model, i.e., any model that can parameterize a
set of symbolic functions or a distribution over such functions. We choose OccamNet as opposed
to, for example, a transformer [31] or recurrent neural network [32], for two reasons: 1) OccamNet
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is interpretable, which we hypothesize makes controlling OccamNet an easier task for a decoder to
learn, and 2) OccamNet is parallelizable over multiple samples, allowing for scalable training.

3.1.2 OccamLLM Decoder

The OccamLLM decoder takes the hidden states of a language model and outputs an initialization for
OccamNet. This gives the LLM control over which function to apply on the inputs. The decoder acts
on each input token separately, producing a different OccamNet initialization for each. Therefore,
the arithmetic operations predicted may change along an input sequence, allowing OccamNet’s use
for different computations in a single multi-token generation. This is crucial in multi-step reasoning
scenarios where OccamNet is employed several times for different purposes.

Many decoder architectures are possible. We choose to parameterize the weights of each softmax
layer of OccamNet independently, as (W(1), . . . ,W(l)) = (Decoder1(h), . . . ,Decoderl(h)), where
h are the hidden states of the language model. We choose

Decoderi(h) = MLPi

 L∑
j=1

wi,jhj

+W∗(i) (1)

where hj are the hidden states of the jth layer of the language model, wi,j are trainable weights, MLPi

are two-layer multilayer perceptrons (MLPs), and W∗(i) are untrained weights which initialize all
functions to have approximately equal probabilities according to the initialization scheme described
in [11] and explained in Appendix E.4.

3.1.3 OccamLLM Switch

We similarly train a decoder for a switch that, for each input token, is fed the hidden states of the
language model and selects whether to use the output of OccamNet or the output of the language
model. The decoder outputs a single number from 0 to 1, where all numbers less than or equal to 0.5
correspond to using the output of the language model and all numbers greater than 0.5 correspond to
using the output of OccamNet. We choose the following architecture for the switch decoder:

Decoderswitch(h) = sigmoid

MLPswitch

 L∑
j=1

wswitch,jhj

 . (2)

3.2 Data Generation

We create synthetic datasets to train the OccamLLM decoders, which contain instruction prompts for
diverse arithmetic tasks. To generate datasets of arbitrary size, we create prompts with placeholders
for numbers. Each prompt includes a question with number placeholders, the sampling value range
for each number, and a function that computes the answer to the query given the sampled input
numbers. The prompts fall into two main categories: purely arithmetic tasks and reasoning problems.

Purely arithmetic prompts are formed by expressions including only symbols, without any natural
language added, such as “3 + 85 =.” We create prompts using the following operations: +(·, ·),
−(·, ·), ×(·, ·), ÷(·, ·), sqrt(·), power(·, ·), loge(·), exp(·), sin(·), and cos(·).
We also include word problems that require one or two reasoning steps. We generated 150 single
step word problems and 40 multi-step reasoning problems which we modified from examples in the
MultiArith training dataset [33].

3.2.1 OccamNet Decoder Training Data

For training the decoder that controls the weights of OccamNet, we created two types of examples,
single queries and concatenated queries. For single queries, we select a single prompt from the
problems generated as discussed in Section 3.2. We use the Llama 3 Instruct chat template and fill in
the query as the user input and the result as the assistant response, prepending “Answer = ” to the
later in randomly selected samples (see Appendix A.1.1 for further details). For the concatenated
queries of examples, we select a random number of prompts and concatenate the query-response pairs
without using the Llama 3 Instruct chat template. The OccamNet decoder is trained to predict only
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the results of the last query in the sequence. This strategy helps OccamLLM to learn which operation
to perform without becoming confused by earlier text, which is useful for continuous generation. To
create the training dataset, each example is sampled by first randomly selecting whether to create
a single or concatenated query, then randomly selecting the type(s) of prompt(s) used, and finally
randomly sampling the input values from the range corresponding to each selected prompt.

3.2.2 OccamLLM Switch Training Data

To train the switch, we generate examples of possible LLM outputs for given input expressions and
label the outputs with sequences of 0s or 1s corresponding to whether the language model or the
OccamNet output should be used for the next token. Some examples correspond to the prompts
described in Section 3.2. For such examples, the LLM output is set to “The answer is” or “Answer = ”
and the label sequence is all 0s with a 1 at the last token to indicate the system should use OccamNet
only to compute the answer. We also manually created and labeled several other examples for diverse
scenarios to explicitly teach the system in which cases it should or should not use OccamNet (see
Appendix A.1.2 for further details).

To create the training dataset, we concatenate a random number of the above user input - assistant
output pairs in a conversational fashion, using the Llama 3 Instruct chat template.

3.3 OccamLLM Training

We train the OccamLLM decoder and the switch separately, as they do not share weights. In all cases,
the weights of the LLM are kept frozen. In the first step, we train the system to predict the answer to
examples generated by the method explained in Section 3.2.1. The OccamNet decoder processes the
hidden states corresponding to the last token of the response and sets the weights of OccamNet such
that the correct arithmetic expression is sampled. In this step, we use a rescaled REINFORCE [34]
loss, which can also be interpreted as a Monte-Carlo estimate of the cross-entropy loss (see Appendix
D.2):

L(x, y;W ) = −
∑

f∼pW
R(f(x), y) log pW [f ]∑

f∼pW
R(f(x), y)

, (3)

where pW [f ] ≡ ON(f ;DecoderW (h(x))) is the probability distribution represented by the decoder-
initialized OccamNet.

Minimizing this loss steers the decoder towards assigning higher probabilities to the functions that
maximize the reward R(f(x), y), which measures the similarity between the correct answer y and
the prediction of OccamNet f(x). We find setting R(f(x), y) = 1 if f(x) = y, and 0 otherwise,
most effective. We discuss the OccamNet loss in more detail in Appendix D.

The second step involves training the decoder to route the outputs to OccamNet when needed. We train
the switch decoder alone, freezing the weights of the OccamNet decoder of the previous step and min-
imizing the binary cross-entropy loss between the switch output and the desired output for each token.
The OccamLLM switch decoder learns when to route the output to OccamNet in diverse contexts.

4 Experiments

For all OccamLLM results, we use Llama 3 8B Instruct and Llama 3 70B Instruct [35] as the
underlying language models. As such, we call our models OccamLlama 8B and OccamLlama 70B,
respectively. We use a 1 layer Complete OccamNet with primitives

P = {+(·, ·),−(·, ·),×(·, ·),÷(·, ·), sqrt(·), power(·, ·), loge(·), exp(·), sin(·), cos(·)}.
This single layer OccamNet can be invoked by the LLM several times during generation to perform
complex arithmetic operations accurately. To use the trained OccamLlama for inference, we sample
the highest probability function from OccamNet as described in Appendix E.3.

We benchmark our methods against unmodified Llama 2 7B Chat (Llama 2 7B) [36], unmodified
Llama 3 8B Instruct (Llama 3 8B) [35], unmodified Llama 3 70B Instruct (Llama 3708B) [35],
gpt-3.5-turbo-0125 (GPT 3.5 Turbo) [37], gpt-4o-2024-05-13 (GPT 4o) [38], and gpt-4o-2024-05-13
with Code Interpreter (GPT 4o + Code) [39]. To reduce costs, for GPT 4o with Code Interpreter, we
test a random subset of 200 datapoints for each dataset.
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Table 2: Accuracy on arithmetic tasks, in percentages. The OccamLlama column corresponds to
the results of both OccamLlama 8B and OccamLlama 70B. Higher is better. Bold indicates best
performance for each row.

OccamLlama Llama 2 Llama 3 GPT 3.5 GPT 4o GPT 4o
8B / 70B 7B Chat 8b Instruct Turbo Code

Addition 100.0±0.0 19.2±1.2 44.9±1.6 65.2±1.5 95.7±0.6 100.0±0.0
Subtraction 100.0±0.0 8.7±0.9 34.4±1.5 59.8±1.6 85.6±1.1 99.5±0.5

Multiplication 100.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 99.0±0.7

Division 100.0±0.0 2.8±0.5 35.3±1.5 10.7±1.0 38.6±1.5 100.0±0.0
Square Root 100.0±0.0 0.0±0.0 0.0±0.0 0.9±0.3 18.6±1.2 100.0±0.0
Exponential 100.0±0.0 0.3±0.2 3.1±0.5 12.5±1.0 23.2±1.3 100.0±0.0
Logarithm 100.0±0.0 0.1±0.1 0.0±0.0 17.1±1.2 21.3±1.3 100.0±0.0
Sine 100.0±0.0 7.6±0.8 7.0±0.8 13.4±1.1 39.3±1.5 100.0±0.0
Cosine 100.0±0.0 0.8±0.3 1.5±0.4 6.7±0.8 32.8±1.5 100.0±0.0

AVERAGE 100.0±0.0 4.4±0.2 14.0±0.4 20.7±0.4 39.5±0.5 99.8±0.1

To determine if a model output is correct, we parse all numbers in the model output and if one of
them “matches” the correct answer, we determine that the result is correct. We mark each correct
result as 100% accuracy and each incorrect result as 0% accuracy. For each model on each dataset,
we report the mean accuracy and the standard error of the mean. To determine if a number matches
the result, we first determine how many places after the decimal d the number should be accurate
to. If the number is an integer, we set d to 2. Otherwise, we set d to the number of places after the
decimal in the model output, clipped between 2 and 5. Finally we state that a number “matches” the
result if the number and the result differ by less than 10−d. We present further experiment details,
including additional experiments, hyperparameters, and prompts in Appendix A.

4.1 Simple Arithmetic Problems

To evaluate OccamLlama and the baselines on purely arithmetic expressions, we create several
synthetic datasets. For each of the operations in {+,−,×,÷}, the inputs are random 7-digit positive
or negative integers. For √, the inputs are random 7-digit positive integers. For the logarithms, the
examples are log-uniformly sampled in the interval (10−10, 1010); for the exponentials, they are
uniformly sampled in the interval (−10, 10), and for sines and cosines they are uniformly sampled in
the interval (−2π, 2π).

The results of these evaluations are shown in Table 2. More detailed results, including relative error
and results for 3- and 5-digit arithmetic, are shown in Appendix A.5.

Both OccamLlama 8B and 70B have 100.0 ± 0.0% accuracy on all tasks, missing 0 out of 9000
problems. On the other hand, we tested GPT 4o with Code Interpreter on fewer problems to save
cost, and it missed 3 out of the 1800 problems it faced, achieving an accuracy of 99.8± 0.1%.

Furthermore, GPT 4o with Code Interpreter generates on average more than 54 tokens to answer
these problems, whereas our model uses OccamNet on the first forward pass. This means that, barring
advanced decoding techniques such as speculative decoding [40], GPT 4o would need to be more
than 50x faster than OccamLlama per forward pass to be comparable in answer generation speed on
these tasks.

Table 2 demonstrates that arithmetic with LLMs is still challenging; state-of-the-art proprietary
language models like GPT 4o achieve less than 40% accuracy on 7-digit division and fail to perform
any 7-digit multiplications correctly. Open source LLMs fall farther behind, with Llama 3 8B
achieving below 50% on relatively simple tasks such as 7-digit addition.

4.2 Mathematical Problem Solving

To test the performance of OccamLlama on more general mathematical problem solving tasks, we
evaluate our method and baselines on the following six benchmarks: AddSub [41], GSM8K [42],
MultiArith [33], MATH401 [8], Single Eq [43], and SVAMP [44]. All but MATH401 are word
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Figure 3: Accuracy of OccamLlama and baselines on mathematical problem solving tasks. Higher is
better. OccamLlama 8B achieves accuracy comparable to Llama 3 8B on benchmarks with simple
arithmetic, higher accuracy than GPT 4o and GPT 4o + Code on on tasks with challenging arithmetic,
and accuracy above Llama 3 8B and similar to GPT 3.5 Turbo on average. OccamLlama 70B
outperforms GPT 4o and GPT 4o + Code on average.

problems requiring longer generation and a mix of reasoning and arithmetic capabilities. MATH401
also includes multistep arithmetic problems which require more than one call to OccamLlama. We
selected these datasets (including the MultiArith Float dataset described below) before testing any
methods on them to ensure unbiased selection of benchmarks.

Because many of the arithmetic operations required in these datasets are relatively simple, we
also create MultiArith Float, a modification of MultiArith in which we select problems which are
arithmetically more challenging, while requiring similar levels of reasoning. To this end, we select
prompts having input numbers that can be replaced with floats. For instance, 3.5 feet or $39.95
are reasonable but 3.5 people is not. Furthermore, we sample input values from ranges larger than
those appearing in the MultiArith dataset, in cases where it is reasonable. Float operations and larger
additions and multiplications are more difficult for the baseline LLMs but do not make a difference
for OccamLLM, so this dataset is particularly useful to show the advantages of the system we propose.
Figure 3 shows the results of these evaluations. More detailed results are shown in Appendix A.5.

OccamLlama 70B outperforms both GPT 4o and GPT 4o + Code on average across the benchmarks,
demonstrating OccamLlama’s strong mathematical problem solving capability. We also note that
GPT 4o + Code does not outperform GPT 4o on average, suggesting that existing implementations of
LLMs with code generation may not help with mathematical problem solving.

We now consider the performance of OccamLlama 8B, the smaller OccamLlama model. On Mul-
tiArith Float and MATH401, two datasets requiring challenging arithmetic, OccamLlama 8B out-
performs not only Llama 3 8B but also GPT 4o and GPT 4o + Code. At the same time, most other
datasets in this benchmark do not involve challenging arithmetic, meaning that Llama 3 8B is well
suited to solve these tasks without assistance; most of the difficulty of these tasks lies in the reasoning
rather than in the arithmetic computations. This is further supported by the fact that GPT 4o with
Code Interpreter never substantially outperforms and sometimes underperforms GPT 4o on these
tasks. As such, it is remarkable that OccamLlama 8B can achieve comparable accuracy to Llama 3 8B
even when it is trained on very different data and evaluated on tasks without challenging arithmetic.

The only datasets for which OccamLlama 8B performs noticeably worse than Llama 3 8B are
GSM8K and Single Eq, but we believe this results from an imperfect OccamLlama switch, likely
stemming from text which is outside of the switch training distribution (see Section 4.3). Fortunately,
in Appendix C, we find that the OccamNet decoder is quite robust to out of distribution data and
that both the OccamNet and switch decoders generalize well to unseen languages. This suggests
that, with relatively little data, it should be possible to teach the switch to handle these unseen cases,
something we leave for future work.

In Figure 4, we show example generations from OccamLlama 8B for both arithmetic and reasoning
tasks. These generations demonstrate how the OccamLlama switch learns to balance OccamNet
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Llama 3 8B Instruct OccamLlama 8B

Q: 4536895 + 234217

 

Q: 4536895 + 234217

Q: Mike had 29 video games but 8 of them weren't 
working. If he wanted to sell the working games for 
73.57 each, how much money could he earn?

 

A: The result of the addition is:
4536895 + 234217 = 4771112

A: Let's break it down step by step:

1. Mike had 29 video games initially.
2. 8 of them weren't working, so he needs to subtract 
those from the total:
29 - 8 = 21
3. Mike has 21 working video games.
4. He wants to sell each working game for $73.57.
5. To �nd out how much money he can earn, multiply 
the number of working games by the price per game:
21 (working games) x $73.57 (price per game) = $1549.17

Q: Mike had 29 video games but 8 of them weren't 
working. If he wanted to sell the working games for 
73.57 each, how much money could he earn?

 

Input to OccamNet Output by OccamNet

A: Let me calculate that for you!
4536895 + 234217 = 4772112

A: Let's break it down step by step!

First, let's �nd out how many working video games Mike has:

29 (total games) - 8 (non-working games) = 21

So, Mike has 21 working video games.

Next, let's calculate the total amount of money Mike can earn 
by selling these games:

21 (working games) × 73.57 (price per game) = 1544.97

Figure 4: Examples from Llama 3 8B Instruct and OccamLlama 8B on (top) an arithmetic problem
and (bottom) a mathematical reasoning problem from the MultiArith Float dataset. In OccamLlama,
the LLM performs reasoning, the switch predicts when to use OccamNet, and OccamNet performs
arithmetic operations. OccamNet’s inputs and outputs are highlighted in purple and green, respec-
tively.

outputs with LLM outputs, effectively distributing the work between a reasoner (Llama) and a
calculator (OccamNet). Because the language model is unaware of the OccamLlama system, its
generations behave as if it possesses an interior calculator even though it is actually using a tool. In
this way, we combine the benefits of a language model finetuned on arithmetic with the benefits of a
language model finetuned to use code for arithmetic, all without any finetuning.

4.3 Limitations

In our experiments, we use a single-layer OccamNet as the symbolic network, enabling evaluation
of single-operation arithmetic problems. This sometimes poses a challenge on reasoning problems
when the base language model generates compound expressions requiring more than one operation
to evaluate, such as 3 + 5 + 7 =. A single-layer OccamNet cannot evaluate these expressions. We
attempted to overcome this by prompting Llama to break down compound expressions into multiple
steps, but we find it difficult to coerce Llama to follow these instructions. Another challenge is
that Llama often generates expressions in fractions or percentages, which also constitute compound
expressions that are not properly handled by the OccamLLM system. Fortunately, we observed that
these compound expressions were typically simple enough for the LLM to evaluate without OccamNet.
Therefore, in our experiments, we trained the OccamLLM switch to avoid using OccamNet for
compound operations, largely mitigating this issue. Future work could explore other solutions such
as integrating a two-layer OccamNet as the symbolic network. We found that these issues are
particularly acute in the GSM8K and Single Eq datasets, where the expressions generated by Llama
are not prevalent in the switch training data, causing it to sometimes incorrectly trigger OccamNet
and degrade performance, as discussed more in Appendix A.5.

Furthermore, we found that the language model sometimes appends further digits to OccamLlama
outputs, defeating the purpose of OccamLlama generations. To address this issue, we append “\n\n.”
to every number computed with OccamNet, emulating the usual behavior of Llama.

These techniques demonstrate a design paradigm of OccamLlama: by tuning the behaviors of
OccamNet and the switch, we can often avoid finetuning the LLM.
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5 Discussion

We presented OccamLLM, a system enabling exact and interpretable language model arithmetic in a
single autoregressive step. Our method does not require modifying the weights of the underlying
language model, thereby avoiding risks of catastrophic forgetting. Furthermore, our method avoids
security risks arising from running code generated by a language model while outperforming top
LLM code generation methods (GPT 4o + Code) on average across our benchmarks.

We benchmarked our method on challenging arithmetic tasks, achieving 100% accuracy where GPT
4o achieves only 40% performance on average. We also benchmarked our method on mathematical
problem solving tasks, demonstrating that the OccamLlama switch can accurately balance the LLM
for reasoning and OccamNet for arithmetic, outperforming even GPT 4o and GPT 4o with Code
Interpreter on average.

Our work could enable smaller LLMs to be as performant as much larger LLMs in arithmetic.
Moreover, integrating OccamLLM with larger LLMs like GPT 4o could further improve their
arithmetic abilities without requiring a code interpreter. Furthermore, at present, OccamLLM may
not integrate with more advanced decoding techniques such as speculative decoding [40, 45]. We
hope to explore these avenues in future work.

6 Broader Impact

We believe that, in addition to enabling fast, safe, and interpretable arithmetic, OccamLLM demon-
strates a new paradigm for tool use. As a proof of concept for more complex tool use, we further
train OccamLlama 8B with a two layer Complete OccamNet with the primitives

P = {Addition(·, ·),Subtraction(·, ·),Multiplication(·, ·),Division(·, ·)},

which enables OccamLlama to perform up to three arithmetic operations (e.g., 2 · 7+ 3/2) in a single
autoregressive step. We find that this two-layer OccamLlama can reach near 100% accuracy, even
when performing three arithmetic operations in a single autoregressive step, as shown in Table 3.
This demonstrates that OccamLLM can be used to perform more complex operations, including
composing multiple different tools.

Table 3: Accuracy on multistep arithmetic.
OccamLlama Llama 3

8b Instruct

One-Step 99.9±0.1 78.1±1.3

Two-Step 98.2±0.4 57.8±1.6

Three-Step 96.1±0.6 40.2±1.6

AVERAGE 98.1±0.3 58.7±0.9

For future work, we plan to explore integrating other
tools beyond calculators through a similar technique.
This is facilitated by the fact that there are no
restrictions on OccamNet’s activations; in principle,
tools could be placed inside activations of OccamNet,
enabling OccamNet to serve as a sort of a mixture
of experts for tools. While some tools, like querying
a search engine, may still be most effective when
integrated into language model systems through
language, we believe this work demonstrates that
some tools are more effective when they can be more
tightly integrated into the language model.
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Appendix

A Further Experiment Details and Results

For training and evaluation OccamLlama 8B, we used a single 32 GB NVIDIA Tesla V100 GPU. For
OccamLlama 70B, we used two 80 GB NVIDIA A100 GPU. Each training run takes less than 48
hours.

In the experiments presented in Section 4, for each of the weight decoders and the switch, we used
two-layer MLPs of input size 4096/8192 (Llama 3 8B/70B Instruct hidden size), intermediate size 64
and final size equal to the number of weights in the corresponding OccamNet layer or switch.

In the two-layer experiments presented in Section 6, for each of the weight decoders, we used
two-layer MLPs of input size 4096 (Llama 3 8B Instruct hidden size), intermediate size 512, and
final size equal to the number of weights in the corresponding OccamNet layer. We did not train a
switch for this experiment as we did not test long-form generations.

A.1 Training Dataset

A.1.1 OccamNet Decoder

To train the OccamNet decoder, we created a training dataset consisting of a 80,000 examples split in
40,000 single queries and 40,000 sequences of concatenated queries. In the first case, we sampled a
single prompt of those described in 3.2 and formatted it using the Llama 3 Instruct chat template. In
the second case, we concatenated multiple prompts described in 3.2 without the chat template.

40% of the sampled prompts correspond to simple arithmetic, concretely +,−,×, and ÷. We sampled
from various input value ranges, chosen at random: integers in [−10, 10], integers in [−100, 100],
integers in [−1000, 1000], integers in [−20000, 20000], floating numbers in [−1, 1], and floating
point numbers in [−1000, 1000].

Another 40% corresponds to complex arithmetic involving square roots, logarithms, exponentials,
trigonometric functions and computing one number to the power of another. For the square root and
the logarithm, we sampled integers uniformly in either [1, 100] or [1, 20000] and floats uniformly in
either [0.01, 100] or [0.01, 20000]. For the exponential, we sampled integers and floats in [−10, 10].
For the powers, we sampled the base as either an integer in [1, 25] or a float in [0.1, 25] and the
exponent as an integer in [−6, 6].

The remaining 20% corresponds to single or multi step problems reasoning prompts. The inputs
were sampled with various ranges, sometimes as floats and sometimes as integers, depending on the
context of the problem. Because a single-OccamNet-layer OccamLlama cannot solve a multi-step
reasoning problem in a single step, we never end the multiple-query examples with a multi-step
reasoning problem.

We first iterated the 80,000 examples, prepending “Answer = ” to the assistant response, thus training
OccamNet to predict the result after the “=”. Next, we validated the model on out-of-distribution
examples where “Answer = ” was not appended. We noticed that the accuracy on this task was
improving during training, but after the full dataset was iterated it still didn’t perform as well as when
evaluated in-distribution. Therefore, we continued to train the model using examples of the same
dataset but with no “Answer = ” at the beginning of the assistant response. The model rapidly learned
the new task. We stopped at 28,000 iterations of this second stage.

For the two-layer OccamNet run, we generated a large set of programmatically generated prompts of
the form 3 + 97 · −4 =, with the Llama 3 Instruct chat template applied.

A.1.2 Switch Decoder

To train the switch decoder, we created a dataset of 50,000 examples (80,000 for OccamLlama 80B).
For each example, the tokens previous to the numbers that should be computed using OccamNet,
which are the ones that the switch should not route to the LLM, are labeled with a 1, and all the rest
are labeled with a 0.
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Half of the examples consist of a single prompt corresponding to a simple arithmetic expression as
the ones described in Section 3.2. The token immediately at the beginning of the assistant response is
labeled with a 1. Therefore, the trained system will answer directly to simple arithmetic queries that
OccamNet can compute.

The remaining 25,000 examples consist each of a series of prompts which are formatted in the Llama
3 Instruct chat template in a conversational style. The input-output pairs used to create each sequence
of prompts are distributed in the following way:

• 25% of these pairs are created by taking one of the simple arithmetic expressions as input.
The output is selected randomly between answering directly at the beginning of the assistant
response, adding "Answer = " before the answer, or repeating the input expression before
the answer. These examples train the switch to trigger OccamNet in different scenarios
where the LLM needs to compute an answer.

• 70% of the pairs come from a collection of 43 manually created and labeled examples,
which illustrate in which cases the switch should route to OccamNet and, importantly, in
which cases it shouldn’t. This collection was designed to cover a wide variety of situations
where the LLM might need to use OccamNet for computations. Furthermore, it includes
cases where the LLM should avoid calling OccamNet because doing so would produce a
bad prediction. This is the case, for example, of instances where the LLM attempts to add
three numbers simultaneously. If it were to use the 1-layer OccamNet, which can take 2
inputs at most, the result would be incorrect.

• The remaining 5% of the prompts come from multi-step reasoning problems. We set the
output for these not to a full response, but only “The answer is ”. In such cases, a single-layer
OccamNet cannot compute the answer, so the output tokens are labeled with a 0. This trains
the system to avoid routing to OccamNet when the later cannot compute the answer.

Below, we present some manually created examples and explain what case they cover. The tokens
of the numbers in bold were marked with a 1 to signal that the switch should route to OccamNet,
and the rest of the numbers and all of the text tokens were marked with a 0 to signal that OccamNet
should not be called in these cases.

The cases we cover with these prompts are:

1. Single-layer OccamNet should be called to perform two-input arithmetic operations.
2. OccamNet should not be called to write numbers that already appeared and do not require

further arithmetic.
3. OccamNet should not be called to round numbers.
4. OccamNet should not be called to perform inline operations nested within a larger expression

because it might contradict the assumption that the last two numbers are involved in the
operation.

5. OccamNet should not be used to convert magnitudes when the LLM does not explicitly
write the conversion factor and relies on its internal knowledge; without the numeric value
of the factor present in the text, OccamNet can’t give the correct result.

6. OccamNet can’t compute percentages, as this operation was not included in the training set
of operations. It could be done in two steps.

7. Single-layer OccamNet can’t compute a fraction of a number, as this would require two
operations.

8. Single-layer OccamNet can’t perform operations with more than 2 arguments.

User Query Assistant Response Cases

An author writes 7.6 pages per ses-
sion. After 9 sessions, the total
pages written are

The author writes 7.6 pages per session. After 9
sessions, the author will have written 7.6 ×9 = 68.4
pages. The answer is 68.

1, 2, 3
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User Query Assistant Response Cases

I have 10 oranges and 6 apple trees,
each of them with 3 apples. How
much fruit do I have?

The total number of pieces of fruit is 10 oranges +
6 trees times 3 apples = 10 + (6 ×3) = 10 + 18 =
28. The answer is 28.

1, 2, 4

Sally has 7 pennies and 8 nickels.
How many pennies does she have in
total?

1. Convert the number of nickels to pennies: 8
nickels is 40 pennies.
2. Add total number of pennies 40 + 7 = 47.
The answer is 47.

1, 2, 5

What is 84 percent of 230.77? 84% of 230.77 = 193.85
Explanation:
84 / 100 = 0.84
0.84 ×230.77 = 193.85

1, 2, 6

There were 39 cats on a rock. 3
boats came and carried away 5 cats
each. How many cats were left?

There were originally 39 cats. 3 boats came and
each took away 5 cats. So 3 ×5 = 15.
39 - 15 = 24.
Then 3/7 of them ran away. 3/7 of 24 is 9.
24 - 9 = 15.
So there were 15 cats left.

1, 2, 7

11 people have 2 apples, 2 oranges,
and 2 peaches each. How many
pieces of fruit do they have?

Each person has 2 + 2 + 2 = 6 pieces of fruit.
In total, they have 6 ×11 = 66.
The answer is 66.

1, 2, 8

A.2 Training Hyperparameters

For all 1-layer OccamNet training runs, we used a batch size of 1, a learning rate of 6e − 4 and a
weight decay parameter of 0.01. We use gradient accumulation to achieve an effective batch size of 8.
We used a constant learning rate scheduler. We take 1000 samples from OccamNet per token.

For the 2-layer OccamNet run, we used a batch size of 1, a learning rate of 1e− 4 and a weight decay
parameter of 0.01. We use the gradient accumulation technique to achieve an effective batch size of
8. We used a constant learning rate scheduler. We take 50,000 samples from OccamNet per token.

A.3 Prompting

For the division arithmetic tasks, we found that the language models often did not return decimals. As
such, we appended “Give the answer in decimals.” to these prompts. Similarly, for the trigonometric
functions evaluations, we explicitly ask the language models to take the input as radians, by formatting
the prompts as "cos(X rad) =".

For some models, we provide system prompting to guide the model toward the correct behavior. We
break down prompting by model below:

Llama 2/3: We did not provide a system prompt for the arithmetic tasks. For the reasoning tasks,
we used the system prompt “Solve step by step.”

GPT 3.5 Turbo: We do not use a system prompt for GPT 3.5 Turbo.

GPT 4o: We did not use a system prompt, except for the MATH401 dataset, where we noticed
that GPT 4o was returning fractions instead of decimals. As such, on MATH401 we used the system
prompt “Give your answer in decimals.”

GPT 4o + Code: We used the system prompt “Write and run code to answer math questions. Do
not format numbers. Give all answers in decimals.”
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OccamLlama: We experimented with OccamLlama prompts, but discovered that not including a
system prompt was most effective.

A.4 Generation parameters

For OccamLlama, Llama 2 7B and Llama 3 8B, we use the default values of T = 0.6 and Top-P
= 0.9. For GPT 3.5 Turbo, GPT 4o, and GPT 4o with Code Interpreter, we use the default values of
T = 1.0 and Top-P = 1.0.

A.5 Experimental Results

Tables 5 and 6 show in more detail the accuracy of OccamLlama and other baselines on arithmetic
and mathematical problem solving tasks. We measure accuracy as described in the main text.

We note here that on datasets with challenging arithmetic, in particular Multiarith Float and MATH401,
OccamLlama 8B outperforms even GPT 4o and GPT 4o Code. In fact, on MultiArith Float, Occam-
Llama 8B is nearly 10 percentage points more accurate than GPT 4o + Code and and more than
40 percentage points more accurate than Llama 3 8B. Similarly, on MATH401, OccamLlama 8B
is 7 percentage points more accurate than GPT 4o + Code and nearly 25 percentage points more
accurate than Llama 3 8B. Although MATH401 does not include word problems, it does include
some arithmetic expressions that require multiple calls to OccamNet to solve, meaning it requires
both reasoning (to determine how to break up the arithmetic expression) and arithmetic capabilities.

The only datasets on which OccamLlama 8B performs substantially worse than Llama 3 8B are
GSM8K [42] and Single Eq [43]. We believe a contributor to this is that these datasets include many
problems that involve either fractions and percentages, which Llama does not convert to decimal
format, or equations with unknown variables. As such, Llama often calls OccamNet with expressions
such as “multiplying by 3/4 gives,” “5% of this gives,” or “adding 5 to both sides of x-5 = 11
gives.” Because the switch is not trained on many examples like these in which the number is not in
decimal format, it does not realize that OccamNet should not be used in these cases. Therefore, the
switch triggers OccamNet, which is not capable of performing the correct operation (these types of
operations are not acheivable with a 1-layer OccamNet). Future work could address this issue by
training the switch with more data on this type of situation or by training an OccamLlama with a two
layer OccamNet.

Finally, as noted in the main text, OccamLlama 70B achieves significant performance improvement
over OccamLlama 8B across a number of benchmarks and outperforms GPT 4o and GPT 4o + Code
on average. This demonstrates that OccamLLM improves with the base language model and suggests
that combining OccamLLM with more capable models such as GPT 4o could be a promising avenue
for future research.

Relative error is another important metric that complements accuracy. It measures by how much the
answer differs from the true result. For two models with a similar accuracy metric, the relative error
they achieve can be very different. Table 7 shows the relative error for the arithmetic experiments.
An answer marked correct can have a nonzero relative error because of machine precision limits and
because the answer does not report an infinite number of digits.

Interestingly, Llama 2 performs exceptionally poorly on division. By examining outputs, we see that
this is because Llama 2 produces an approximately correct output but with the decimal place in the
wrong position, leading to a result that is off by many orders of magnitude.

B Example OccamLlama Generations

In this section, we include example OccamLlama 8B generations from the MATH401 and MultiArith-
Float datasets. We randomly selected three examples for each dataset. OccamNet outputs are included
in green. We omit prompt formatting to save space. Similarly, although outputs from OccamNet are
always followed by “\n\n,” we omit these newlines to save space, instead adding a period and space
after each OccamNet generation.

By chance, all six responses happen to be correct.
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Table 5: Percent accuracy on arithmetic tasks. Higher is Better. Bold indicates best performance.

OccamLlama Llama 2 Llama 3 GPT 3.5 GPT 4o GPT 4o

7B Chat 8b Instruct Turbo Code

Addition (3) 100.0±0.0 70.9±1.4 97.1±0.5 98.8±0.3 100.0±0.0

Addition (5) 100.0±0.0 55.9±1.6 77.1±1.3 92.5±0.8 99.2±0.3

Addition (7) 100.0±0.0 19.2±1.2 44.9±1.6 65.2±1.5 95.7±0.6 100.0±0.0

Subtraction (3) 100.0±0.0 49.7±1.6 95.2±0.7 94.0±0.8 98.7±0.4

Subtraction (5) 100.0±0.0 22.9±1.3 58.8±1.6 86.3±1.1 92.6±0.8

Subtraction (7) 100.0±0.0 8.7±0.9 34.4±1.5 59.8±1.6 85.6±1.1 99.5±0.5

Multiplication (3) 100.0±0.0 4.6±0.7 16.8±1.2 49.2±1.6 76.9±1.3

Multiplication (5) 100.0±0.0 0.0±0.0 0.1±0.1 0.4±0.2 4.6±0.7

Multiplication (7) 100.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 99.0±0.7

Division (3) 100.0±0.0 20.8±1.3 71.7±1.4 50.5±1.6 78.2±1.3

Division (5) 100.0±0.0 7.4±0.8 48.1±1.6 15.7±1.2 51.0±1.6

Division (7) 100.0±0.0 2.8±0.5 35.3±1.5 10.7±1.0 38.6±1.5 100.0±0.0

Square Root (3) 100.0±0.0 1.2±0.3 14.8±1.1 47.1±1.6 69.3±1.5

Square Root (5) 100.0±0.0 0.2±0.1 1.3±0.4 11.9±1.0 23.6±1.3

Square Root (7) 100.0±0.0 0.0±0.0 0.0±0.0 0.9±0.3 18.6±1.2 100.0±0.0

Exponential 100.0±0.0 0.3±0.2 3.1±0.5 12.5±1.0 23.2±1.3 100.0±0.0

Logarithm 100.0±0.0 0.1±0.1 0.0±0.0 17.1±1.2 21.3±1.3 100.0±0.0

Sine 100.0±0.0 7.6±0.8 7.0±0.8 13.4±1.1 39.3±1.5 100.0±0.0

Cosine 100.0±0.0 0.8±0.3 1.5±0.4 6.7±0.8 32.8±1.5 100.0±0.0

AVERAGE 100.0±0.0 14.4±0.3 32.0±0.3 38.6±0.4 55.2±0.4 99.8±0.1

We also include three miscellaneous prompts and OccamLlama 8B generations to demonstrate
OccamLlama’s ability to handle more challenging prompts.
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Table 6: Percent accuracy on reasoning tasks. Higher is Better. Bold indicates best performance.

OccamLlama OccamLlama Llama 3 Llama 3 GPT 3.5 GPT 4o GPT 4o

8B 70B 8b Instruct 70B Instruct Turbo Code

AddSub 91.6±1.4 96.5±0.9 93.4±1.2 97.2±0.8 95.4±1.1 97.0±0.9 97.5±1.1

GSM8K 73.5±1.2 90.1±0.8 79.8±1.1 94.8±0.6 84.8±1.0 96.1±0.5 94.0±1.7

MultiArith 99.2±0.4 98.5±0.5 99.8±0.2 98.2±0.5 97.2±0.7 99.7±0.2 99.5±0.5

MultiArith Float 98.2±0.5 97.7±0.6 57.3±2.0 76.3±1.7 77.3±1.7 96.2±0.8 89.5±2.2

MATH401 85.0±1.8 89.5±1.5 60.3±2.4 71.6±2.3 63.1±2.4 76.6±2.1 78.0±2.9

Single Eq 92.9±1.1 96.9±0.8 96.3±0.8 97.6±0.7 97.8±0.6 98.0±0.6 99.0±0.7

SVAMP 88.6±1.0 93.2±0.8 86.3±1.1 94.5±0.7 87.8±1.0 96.2±0.6 96.5±1.3

AVERAGE 89.9±1.2 94.6±0.9 81.9±1.5 90.0±1.2 86.2±1.4 94.2±1.0 93.4±1.7

B.1 MATH401

Example 1

Prompt:

7^4=

Response:

2401. 7 ^4 = 7 × 7 × 7 × 7 = 2401

Example 2

Prompt:

6**3=

Response:

216. 6 ^3 = 6 × 6 × 6 = 216

Example 3

Prompt:

63.0+0.074=

Response:

63.074. 63.0 + 0.074 = 63.074. So the answer is 63.074.

B.2 MultiArith-Float

Example 1

Prompt:

Mike had 30 video games but 6 of them weren’t working. If he wanted to sell
the working games for 85.53 each, how much money could he earn?

Response:

Mike had 30 video games. 6 weren’t working, so he had 30 - 6 = 24. He can
sell 24 games for 85.53 each. 24 x 85.53 is 2052.720. So Mike could earn 2052.72
dollars.
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Table 7: Relative error (%) on arithmetic tasks. Lower is Better. Bold indicates best performance.

OccamLlama Llama 2 Llama 3 GPT 3.5 GPT 4o GPT 4o

7B Chat 8b Instruct Turbo Code

Addition (3) 0.0±0.0 50.5±10.9 3.2±1.9 0.3±0.1 0.0±0.0

Addition (5) 0.0±0.0 113.0±21.1 23.7±4.0 4.6±1.8 0.0±0.0

Addition (7) 0.0±0.0 310.3±97.0 78.1±16.2 4.0±1.4 1.0±0.9 0.0±0.0

Subtraction (3) 0.0±0.0 66.2±18.7 4.1±0.8 3.8±0.7 0.4±0.1

Subtraction (5) 0.0±0.0 173.6±67.1 29.4±4.3 38.3±16.5 3.5±0.6

Subtraction (7) 0.0±0.0 222.3±54.4 65.6±12.9 44.6±31.3 5.4±0.7 0.3±0.3

Multiplication (3) 0.0±0.0 7.6±0.7 1.9±0.5 1.8±0.4 0.1±0.1

Multiplication (5) 0.0±0.0 84.9±0.9 46.7±1.7 19.2±3.7 1.8±0.4

Multiplication (7) 0.0±0.0 98.9±0.2 74.9±1.8 90.1±24.2 4.4±0.6 1.0±0.7

Division (3) 0.1±0.0 1346.2±275.4 1.3±0.9 1.1±0.3 0.0±0.0

Division (5) 0.2±0.1 174156.6±31687.6 9.5±1.8 0.7±0.2 0.1±0.0

Division (7) 0.1±0.0 22032920.9±3642549.7 225.3±142.1 0.3±0.1 0.0±0.0 0.0±0.0

Square Root (3) 0.0±0.0 8.9±1.1 1.1±0.3 0.2±0.0 0.0±0.0

Square Root (5) 0.0±0.0 72.8±4.8 12.6±1.7 0.1±0.0 0.0±0.0

Square Root (7) 0.0±0.0 207.8±21.8 15.4±1.4 8.8±0.9 4.8±2.0 0.0±0.0

Exponential 0.3±0.0 422.6±82.6 11.7±0.7 2.3±0.9 0.1±0.0 0.0±0.0

Logarithm 0.0±0.0 138.3±11.9 40.2±1.3 6.4±4.0 0.1±0.0 0.0±0.0

Sine 0.1±0.0 515.5±68.1 279.2±21.9 125.4±12.3 3.2±0.7 0.1±0.0

Cosine 0.1±0.0 581.9±199.7 346.1±80.4 188.5±22.5 2.8±0.5 0.0±0.0

AVERAGE 0.1±0.0 1169210.8±194953.4 66.9±8.8 28.4±2.7 1.5±0.1 0.2±0.1

Example 2

Prompt:

While playing a trivia game, Adam answered 6 questions correct in the first
half and 3 questions correct in the second half. If each question was worth 59.08
points, what was his final score?

Response:

Adam got 6 questions correct in the first half, and 3 questions correct in the
second half. So he got 6 + 3 = 9. Each question was worth 59.08 points. So his
score is 9 * 59.08 = 531.720. The answer is 531.72.

Example 3

Prompt:
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Lana’s favorite band was holding a concert where tickets were 181.92 dollars
each. Lana bought 5 tickets for herself and her friends and 4 extra tickets in case
anyone else wanted to go. How much did she spend?

Response:

Lana bought 5 tickets for herself and her friends. Then 4 extra tickets. So in
total she bought 5 + 4 = 9. Each ticket was 181.92 dollars. So 9 tickets will be 9 x
181.92 = 1637.280. The answer is 1637.280.

B.3 Miscellaneous prompts

These miscellaneous prompts demonstrate OccamLlama’s ability to handle more challenging prompts.
Examples 1 and 2 show that OccamLlama can handle prompts where the numbers are provided
as words and not as decimals. This works because we can choose to parse strings such as “three”
and “four” as 3 and 4, respectively, when parsing inputs to OccamNet. Example 3 shows that
OccamLlama can handle prompts in which many irrelevant numbers are included. This works
because OccamLlama uses Llama to reason and select the correct numbers to use before feeding
these numbers into OccamNet.

Example 1

Prompt:

Six minus seven =?

Response:

-1. Six minus seven is equal to -1.

Example 2

Prompt:

Three + four = ?

Response:

7. 3 + 4 = 7. Let me know if you have any other questions!

Example 3

Prompt:

In 1932, 100 planets were discovered and in 1933, another 200 were found.
What is the total number of planets discovered between 1932 and 1933?

Response:

The number of planets discovered in 1932 was 100. The number of planets
discovered in 1933 was 200. So the total number of planets discovered is 100 +
200 = 300. 300.

C OccamLLM Robustness Experiments

We find that OccamLlama displays remarkable generalization capabilities on out-of-distribution
problems. To demonstrate this, we show below two out-of-distribution tasks on which OccamLlama
performs remarkably well.

C.1 Non-textual Training

First, we train the OccamNet decoder from scratch, using only numeric expressions and absolutely no
text at all. This means that any problem with text, such as a word problem, is far out-of-distribution
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Table 8: Accuracy on reasoning tasks. Higher is Better.

OccamLlama OccamLlama Llama 2 Llama 3 GPT 3.5 GPT 4o GPT 4o

8B 8B Arith 7B Chat 8b Instruct Turbo Code

AddSub 91.6±1.4 92.7±1.3 78.0±2.1 93.4±1.2 95.4±1.1 97.0±0.9 97.5±1.1

GSM8K 73.5±1.2 71.6±1.2 36.0±1.3 79.8±1.1 84.8±1.0 96.1±0.5 94.0±1.7

MultiArith 99.2±0.4 98.5±0.5 76.0±1.7 99.8±0.2 97.2±0.7 99.7±0.2 99.5±0.5

MultiArith Float 98.2±0.5 95.3±0.9 23.3±1.7 57.3±2.0 77.3±1.7 96.2±0.8 89.5±2.2

MATH401 85.0±1.8 85.8±1.7 43.9±2.5 60.3±2.4 63.1±2.4 76.6±2.1 78.0±2.9

Single Eq 92.9±1.1 92.1±1.2 79.1±1.8 96.3±0.8 97.8±0.6 98.0±0.6 99.0±0.7

SVAMP 88.6±1.0 88.8±1.0 61.5±1.5 86.3±1.1 87.8±1.0 96.2±0.6 96.5±1.3

AVERAGE 89.9±1.1 89.3±1.1 56.8±1.8 81.9±1.3 86.2±1.2 94.2±0.8 93.4±1.5

of the OccamNet decoder’s training data. We test this model (using the standard router), which we
denote OccamLlama 8B Arith, on the mathematical reasoning benchmarks and obtain remarkably
good results, shown in Table 8.

The OccamLlama 8B Arith performs on par with the model trained with both numbers and text, even
achieving higher accuracy on some benchmarks. This shows that the OccamLLM framework is robust,
and points towards the fact that the representations of arithmetic that are built in the transformer body
of the LLM and extracted by the OccamLLM Decoder are very general.

In contrast, we expect that finetuning Llama to perform arithmetic using only numeric examples and
no text whatsoever would lead to extreme catastrophic forgetting and poor arithmetic performance on
word problems. As such, we believe this data shows a remarkable generalization and robustness of
OccamLLM.

C.2 Multilingual Reasoning

To further demonstrate OccamLlama’s generalization capabilities and also show that OccamLlama
can handle non-English generation, we tested OccamLlama on the Multilingual Grade School Math
Benchmark (MGSM) [46], a dataset consisting of GSM8K translated into 10 languages (Bengali,
Chinese, French, German, Japanese, Russian, Spanish, Swahili, Telugu, and Thai). For these
experiments, we prompted the LLMs to write their answers in the same language as the problem
statement. Otherwise, the LLM would typically respond always in English, defeating the purpose of
the experiment. We compute the drop in accuracy when switching from English to another language,
given by the accuracy of a model on the English dataset minus the accuracy of the model on the
dataset in a given language. The results are shown in Figure 5.

The table above shows that OccamLlama and Llama have similar performance drops between
the English dataset and each non-English language dataset. On most languages and on average,
OccamLlama has a smaller performance drop than Llama. The fact that OccamLlama (the decoders
for which have never been trained on other languages) has a smaller average out-of-distribution
performance drop than Llama (a model trained on over 750 billion tokens of non-English text) is in
our opinion quite remarkable.

We believe that this test demonstrates OccamLlama’s ability to handle many languages and its
robustness against out-of-distribution data.
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Figure 5: Model performance degradation for each language relative to English in the MGSM dataset.
OccamLlama 8B’s performance degradation is considerably less than Llama 3 8B’s performance
degradation, demonstrating strong multilingual and generalization capabilities.

D Alternative Architectures and Losses

D.1 Alternative Architectures

As discussed in the main text, although OccamLLM works most naturally with OccamNet, it can also
work with other symbolic architectures such as the EQL network [47, 48], or architectures that can
represent probability distributions over symbolic expressions, such as transformers [31] or recurrent
neural networks (RNNs) [32].

However, in practice we believe OccamNet is the most effective architecture for this use case. We
find that because EQL does not represent a probability distribution over functions, it easily gets stuck
in local minima.

Regarding transformers and RNNs, we believe that OccamNet possesses a key advantage of being
interpretable; simply by looking at the weights, it is possible for a human to determine which functions
OccamNet assigns a high probability. We believe that this interpretability will make OccamNet easy
for a decoder to initialize with the desired distribution. On the other hand, an RNN or transformer have
substantially more complex relations between the weights and corresponding probability distribution,
which we hypothesize would make learning a decoder for such models difficult.

This leads us to a key point: transformers and RNNs are effective for modeling complex multimodal
distributions, but for this problem, we want to select a single function for each token, so the extra
expressivity of these models is unneeded and likely detrimental to performance. We believe that
OccamNet, a much simpler architecture, enables better parameter efficiency and performance.

D.2 Alternative Losses

In this section we discuss alternative possible losses and how we arrived at the loss in Equation 3.

We considered two loss functions which are natural when optimizing a probability distribution: 1) a
cross-entropy loss, and 2) a REINFORCE [34] loss. Each of these requires only a slight modification
to reach Equation 3. This discussion thus illustrates how our loss combines benefits from both the
cross-entropy and the reinforcement-learning losses.

Cross-Entropy Loss The cross-entropy loss is effective at modeling probability distributions.
Given a ground truth distribution qx[f ] conditioned on the input text x, the cross-entropy loss is given
by

L(x, y;W ) = −
∑
f

qx[f ] log pW [f ]. (4)
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Unfortunately, for OccamLLM, the ground-truth distribution qx[f ] is not uniquely specified. In
particular the only constraints on qx[f ] are that it is is normalized and satisfies qx[f ] = 0 if f is not
the desired function (i.e., f(x) ̸= y). Since the same function can be represented in many ways in
the OccamNet network (a property true of many function representations), multiple f may satisfy
f(x) = y, so qx is underparametrized.

The most natural choice for qx is to weight each valid function equally:

qx[f ] =

{
cx if f(x) = y

0 otherwise
(5)

where cx is a constant chosen such that qx is normalized, given by the inverse of the number of
functions f satisfying f(x) = y. However, determining cx requires testing every possible function f ,
which may be infeasible for large OccamNet networks. Further, this qx requires OccamNet to learn a
superposition of functions, which may be challenging given its relatively low parameter count.

Another option is to choose a canonical form f∗ for each function and to set qx to be a 1-hot
distribution that is nonzero only at f∗. Although this removes the challenge of learning a superposition,
it still requires sampling nearly all functions in OccamNet due to the sparsity of qx.

Ideally, we would like to find a qx with the following conditions:

• It enables the cross-entropy loss to be calculated by sampling from OccamNet. This allows
us to avoid needing to iterate through and evaluate every f(x) each time we compute the
loss, since we can instead obtain a Monte-Carlo estimate.

• It is minimized when pW is a 1-hot probability distribution. This ensures that OccamNet
can represent the optimal distribution.

• It has qx[f ] ̸= 0 for all f satisfying f(x) = y. This improves sample-efficiency by
increasing the probability of sampling an f with qx[f ] > 0.

A solution is to set

qx[f ] =

{
cxpW [f ] if f(x) = y

0 otherwise
(6)

where cx is chosen such that qx is normalized. This gives a loss

L(x, y;W ) = −
∑
f

qx[f ] · log pW [f ]

= −
∑
f

cxpW [f ] · δ(f(x)− y) · log pW [f ]

≈ −cx
N

∑
f∼pW

δ(f(x)− y) · log pW [f ]

≈ −
∑

f∼pW
δ(f(x)− y) · log pW [f ]∑
f∼pW

δ(f(x)− y)
,

where

δ(f(x)− y) =

{
1 if f(x) = y

0 otherwise
(7)

and in the last step we used the fact that cx can be approximated as

cx =
1∑

f pW [f ]δ(f(x)− y)
≈ N∑

f∼pW
δ(f(x)− y)

.

This loss is easily computed by sampling from pW , it satisfies qW > 0 for all f satisfying f(x) = y,
and it is minimized when pW is a delta function centered at any f satisfying f(x) = y, as desired.

Note that

L(x, y;W ) = −
∑

f∼pW
δ(f(x)− y) · log pW [f ]∑
f∼pW

δ(f(x)− y)
(8)

is exactly the loss given in Equation 3 with R(f(x), y) = δ(f(x) − y). Thus, we have shown
how Equation 3 can be interpreted as a cross-entropy loss. Equation 3 with general R(f(x), y)
can be seen as a cross-entropy loss with a “smoothed” ground truth distribution qx given by qx ∝
pW [f ] ·R(f(x), y).
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Figure 6: a) An example OccamNet, with image layers boxed in green and arguments layers boxed
in blue. We denote the inputs as the 0th image layer and the outputs as the (L+ 1)th arguments layer.
Nodes in the arguments layers are represented with a P because of their probabilistic nature. b) A
demonstration of the dropped connections from sampled paths in OccamNet. All light grey paths are
dropped from the final symbolic form of the sampled function because they are not directly connected
to the outputs.

REINFORCE Loss Reinforcement-learning losses are effective for exploring large search spaces.
We use a modification of the REINFORCE [34] loss because it is relatively simple to implement.
Future work could explore more sophisticated variants of this algorithm, such as Proximal Policy
Optimization [49].

The standard REINFORCE loss applied to OccamLLM gives

L(x, y;W ) = − 1

N

∑
f∼pW

R(f(x), y) · log pW [f ].

Note that for sparse R, there will be very few nonzero R(f(x), y) sampled, so, since we are dividing
by N , the gradient signal will be small. We modify REINFORCE by dividing by the the sum of the
rewards for all samples instead of by N to ensure that correct functions sampled only a few times
still receive a large training step update. This once again produces Equation 3.

We find that using a delta function for our reward is most effective because it most accurately
represents the sparse reward of the problem. Further, as shown above, this loss provides a Monte-
Carlo estimate of the the cross entropy loss. Due to the sparse reward, many samples may initially be
required to obtain an accurate estimate of the loss. However, as OccamNet approaches the desired
distribution, the loss’s sample efficiency will improve.

E Background on OccamNet

This section is heavily modified from [11].

We divide this section into the following subsections:

1. In Section E.1, we describe OccamNet’s architecture in more detail.
2. In Section E.2, we describe OccamNet’s sampling process.
3. In Section E.3, we describe OccamNet’s probability distribution.
4. In Section E.4, we describe OccamNet’s initialization process.

E.1 OccamNet Architecture

As described in the main text, we start from a predefined collection of N primitive functions P .
OccamNet represents a distribution over compositions of functions in P. From now on, we denote
the ith primitive function in the lth layer as ϕ

(l)
i . We begin indexing the primitives from 0 and

the layers from 1, because we treat the inputs as the 0th layer. So, for example, in Figure 6a,
ϕ
(1)
2 = ϕ

(2)
2 = ϕ

(3)
2 = sin.

Each OccamNet layer consists of two sublayers, which we denote the arguments and image sublayers,
shown in Figure 6a. For an L-layer OccamNet, each of these sublayers is reproduced L times. The
lth softmax layer connects the (l − 1)th image layer with the lth arguments layer. For 1 ≤ l ≤ L, we
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denote the lth arguments sublayer hidden state as h̃(l) and the lth image sublayer hidden state as h(l).
So, h̃(2) would represent the middle layer of nodes labeled P in Figure 6a. We further write

h̃(l) =
[
h̃
(l)
1 , . . . , h̃

(l)

M(l)

]⊤
, h(l) =

[
h
(l)
1 , . . . , h

(l)

N(l)

]⊤
, (9)

where
M (l) =

∑
0≤k<N(l)

α
[
ϕ
(l)
k

]
,

N (l) is the number of primitives in layer l, and α[ϕ] is the arity of function ϕ. We also define h(0) to
be the input layer (an image sublayer) and h̃(L+1) to be the output layer (an arguments sublayer).

In a standard OccamNet layer, each primitive is repeated exactly once in each layer. However, in
Complete OccamNet, each primitive in the lth layer is repeated AL−l times, where A is the maximum
arity of the primitives. This is shown in Figure 7 in the transition from 7a to 7b. Complete OccamNet
also concatenates each image layer to the next image layer, as shown in Figure 7c.

E.2 Sampling from OccamNet

In this section, we more carefully describe OccamNet’s sampling process. We sample a connection
to each arguments layer node from the distribution given by the softmax of the softmax-layer weights
leading to that node. In particular, if w(l)

i are the weights of the lth softmax layer leading to the ith
node of the lth argument’s layer, when we sample we produce a sparse matrix

SAMPLE




softmax(w
(l)
1 )

...

softmax(w
(l)

M(l))


 (10)

where the SAMPLE function samples a one-hot row vector for each row based on the categorical
probability distribution defined by softmax(w). To evaluate this sample, we simply evaluate a
forward pass through the network, treating the sampled sparse matrices from the softmax layers as
the weights of linear layers:

h̃(l) =


h̃
(l)
1

...

h̃
(l)

M(l)

 ≡ SAMPLE




softmax(w
(l)
1 )

...

softmax(w
(l)

M(l))


h(l−1), (11)

To complete the picture of the forward pass, we formalize how we deal with activations accepting
multiple inputs. We define the action of the activation functions as follows:

h
(l)
i = ϕ

(l)
i

(
h̃
(l)
j , . . . , h̃

(l)

j+α[ϕ
(l)
i ]−1

)
, j =

∑
0≤k<i

α
[
ϕ
(l)
k

]
. (12)

E.3 OccamNet’s Probability Distribution

OccamNet parametrizes a probability distribution over all functions which it can sample. In particular,
when OccamNet samples a function, it is really sampling a directed acyclic graph (DAG) which
defines a computational path to compute a function. The probability of sampling a computational
graph is equal to the product of the probabilities of the connections in the DAG which are connected
to the output node.

Note that multiple computational graphs can correspond to the same function. In this paper, when we
refer to a function sampled from OccamNet or the probability of a function according to OccamNet,
we use function as a shorthand for a particular computational graph corresponding to that function.
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Figure 7: The progression of enhancements leading to a Complete OccamNet from a standard
OccamNet. a) A standard OccamNet without repeated activations or skip connections. b) The same
OccamNet as in a) with activations repeated in earlier layers. c) The same OccamNet as in b) with
added skip connections. This is a Complete OccamNet.

Although this underspecifies the computational graph in question, this is never an issue because we
always refer to functions in abstract.

When using OccamLlama for inference, we select the maximum probability function by sampling
100 functions from OccamNet, evaluating their probabilities as described above and selecting the
maximum one.

E.4 Initialization

This section describes how we calculate W∗ from the main text. We wish to initialize W∗ such that
pW∗ [f1] = pW∗ [f2] for all f1 and f2. Below, we assume that skip connections do not exist. However,
the algorithm also works for skip connections, requiring only a small modification to Equation 14.

Unfortunately, such an initialization is impossible for any OccamNet with two or more layers
containing primitives with more than one argument. However, it is possible to initialize OccamNet
such that a lower bound qW∗ of the true probability pW∗ is independent of f.

Define the probability of a function f up to a given node as the product of the probabilities of the
edges that lead to that node in the DAG of f . Intuitively, qW [f ] approximates pW [f ] by maintaining
a lower bound on the probability of f up to each node of an OccamNet and propagating that lower
bound through the computational graph given by f .

To define qW more precisely, let q(l)i [f ] and q̃
(l)
i [f ] be the probability bounds corresponding to the

ith node of the lth image or arguments sublayer. We have suppressed the dependence on W for
notational convenience. We compute these probabilities starting with the inputs, for which we set
q
(0)
i = 1. We then propagate probabilities to the arguments layers according to

q̃
(l+1)
i = softmax(w

(l+1)
i )jq

(l)
j , (13)

where j is the node in the lth image layer which f connects to the ith node of (l + 1)th arguments
layer. Similarly, we propagate probabilities to the image layers according to

q
(l)
i =

n+α[ϕ
(l)
i ]−1∏

k=n

q̃
(l)
k , n =

i−1∑
j=1

α
[
ϕ
(l)
j

]
. (14)

Finally, we define qW [f ] = q
(L+1)
0 [f ].

In practice qW [f ] ≤ pW [f ], where equality holds for many functions. In fact, qW [f ] < pW [f ] only
when part of the DAG of f is used as input to two different arguments nodes. In cases such as these,
the portion of the DAG that is used twice multiplicatively contributes the probability of its edges to
qW [f ] twice, artificially suppressing its value. However, because qW [f ] is a lower bound, initializing

27

35691 https://doi.org/10.52202/079017-1125



W ∗ to equalize qW∗ still has the desired effect of ensuring adequate coverage for each f in the initial
probability distribution of OccamNet.

With this primer, we can now define the algorithm to initialize W ∗ such that qW∗ [f ] is uniform.

The algorithm traverses through OccamNet layer by layer and establishes as an invariant that, after
assigning the weights up to the lth layer, q̃(l)i [f ] are equal for all i and f . This implies that, after
assigning the weights up to the lth layer, q(l)i [f ] are equal for all f , but not necessarily for all i. We
denote the common value of q̃(l)i [f ] as q̃(l) and the common value of q(l)i [f ] as q(l)i .

The algorithm starts with input layer, where q
(0)
i = 1 automatically. Once the invariant above is true

for a given l, the algorithm sets

(
w

∗(l+1)
i

)
j
= log

mink

(
q
(l)
k

)
q
(l)
j

 (15)

for all i, j, where
(
w

∗(l+1)
i

)
j

denotes the weight connecting the jth node in the lth image layer to

the ith node in the (l + 1)th arguments layer. This establishes the invariant for l + 1 because

q
(l)
j softmax(w

∗(l+1)
i )j =

q
(l)
j exp

[(
w

∗(l+1)
i

)
j

]
∑

k exp
[(

w
∗(l+1)
i

)
k

]
=

q
(l)
j mink

(
q
(l)
k

)
/q

(l)
j∑

k minm

(
q
(l)
m

)
/q

(l)
k

=
1∑

k 1/q
(l)
k

,

which is a constant over both i and j, so q̃
(l+1)
i [f ] is a constant over both i and f. The algorithm

repeats the above procedure until it has traversed the entire network.

In summary, the algorithm involves the following steps:

1. Set l = 0 and q
(l)
i = 1.

2. Increment l by 1.

3. Set W∗(l) according to Equation 15.

4. If l < L+ 1, Compute q̃(l+1) and q
(l+1)
i .

5. Return to step 2 until l = L+ 1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made in the abstract and introduction are supported by experiments in
the results section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations of our method in the limitations section. We also
provide some discussion on room for improvement in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not have theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details to the dataset generation (where neccessary) and the experiments are
provided in the main text and appendix. We also provide code to reproduce results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include code and data at https://github.com/druidowm/OccamLLM,
as highlighted in the abstract. We also describe our experiments in detail in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experiment hyperparameters and configuration are detailed in Appendix A
and referenced in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results are reported with error bars. They are defined in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources used (particularly, the GPUs used) are detailed in Appendix
A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code of Ethics were reviewed and conformed to.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is discussed in the broader impacts section of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

32

35696https://doi.org/10.52202/079017-1125

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release a pre-trained model and new datasets created in this
work are purely arithmetic.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data and models used are properly cited and their license terms were
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New data created in this work and trained models are documented in the paper
and/or in the public GitHub repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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