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Abstract

Across scientific domains, generating new models or optimizing existing ones
while meeting specific criteria is crucial. Traditional machine learning frameworks
for guided design use a generative model and a surrogate model (discriminator),
requiring large datasets. However, real-world scientific applications often have
limited data and complex landscapes, making data-hungry models inefficient or
impractical. We propose a new framework, PropEn, inspired by “matching”, which
enables implicit guidance without training a discriminator. By matching each sam-
ple with a similar one that has a better property value, we create a larger training
dataset that inherently indicates the direction of improvement. Matching, combined
with an encoder-decoder architecture, forms a domain-agnostic generative frame-
work for property enhancement. We show that training with a matched dataset
approximates the gradient of the property of interest while remaining within the
data distribution, allowing efficient design optimization. Extensive evaluations in
toy problems and scientific applications, such as therapeutic protein design and
airfoil optimization, demonstrate PropEn’s advantages over common baselines. No-
tably, the protein design results are validated with wet lab experiments, confirming
the competitiveness and effectiveness of our approach. Our code is available at
https://github.com/prescient-design/propen.

1 Introduction

Navigating the complex world of design is a challenge in many fields, from engineering [35] to
material science [33, 40] and life sciences [6]. In life sciences, the goal may be to refine molecular
structures for drug discovery [6], focusing on properties like binding affinity or stability. In engi-
neering, optimizing the shapes of aircraft wings or windmill blades to achieve desired aerodynamic
traits like lift and drag forces is crucial [35]. The common thread in these fields is the design cycle:
experts start with an initial design and aim to improve a specific property. Guided by intuition and
expertise, they make adjustments and evaluate the changes. If the property improves, they continue
this iterative optimization process. This cycle is repeated multiple times, making it time-consuming
and resource-intensive. ML holds promise to reduce these costs, speed up design cycles, and create
better-performing designs [3, 31, 44, 22].

Yet, progress in ML methods for design is hindered by practical challenges. The first challenge is
limited data availability. Since gathering label measurements is resource intensive [46, 28, 50, 19],
designers are more often than not constrained to very small-scale datasets. In addition, there are often
non-smooth functional dependencies between the features and outcome, complicating approximation,
even for deep neural networks [30, 45]. Traditional methods use two part frameworks, requiring
discriminators to guide the property enhancement for examples produced by a generative model.
Such discriminators should be able to reliably predict the property of interest given some training
data or its latent representations. Because of the dependency on training a discriminator for guidance,
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Figure 1: Conceptual summary of implicit and explicit guidance. The task is increasing the size of the
objects. Top - in implicit guidance, first we match the training dataset, by pairing each sample with
the closest one w.r.t. its shape, which has a better property (size). Then, we train a encoder-decoder
framework which due to the construction of the dataset learns a lower dimensional manifold where the
embeddings are ordered by the property value. Bottom - in explicit guidance, we train two separate
models: a generator and a discriminator that guides the optimization in latent space.

we denote these methods as explicit guidance. While Genetic Algorithms were once prevalent [14],
contemporary models like auto-encoders [47], GANs [49], and diffusion models now dominate
both research and practice [31] the role of generative models. Despite their flexibility, such models
face challenges typical to deep learning: they are “data-hungry” and unreliable when encountering
out-of-distribution examples [29, 21, 7, 37].

Motivated by these challenges, we propose a new approach inspired by the concept of “matching”.
Matching techniques in econometrics are used to address the challenge of selection bias and confound-
ing when estimating causal effects in observational studies [2, 38, 39, 43]. These techniques aim to
create comparable groups of units by matching treated and control observations based on observable
characteristics. The basic idea behind matching is to identify untreated units that are similar to treated
units in terms of observed covariates, effectively creating a counterfactual comparison group for each
treated unit. Matching techniques in ML as in econometrics have only been used to provide more
robust, reliable causal-effect estimation [24, 48, 9].

This work argues that, in lack of large datasets, matching allows for implicit guidance, completely
sidestepping the need for training a discriminator (differentiable surrogate model). We match each
sample with a similar one that has a superior value for the property of interest. By doing so, we
obtain a much larger training dataset, inherently embedding the direction of property enhancement.
We name our method PropEn and we illustrate it in Figure 1. By leveraging this expanded dataset
within a standard encoder-decoder framework, we circumvent the need for a separate discriminator
model. We show that PropEn is domain agnostic, can be applied to any data modality continuous
or discrete. Additionally, PropEn alleviates some common problems with explicit guidance such as
falling off the data manifold or requiring complex engineering.

Overall, our contributions are as follows:

• We propose “matching” (inspired by causal effect estimation) to expand small training
datasets (subsection 2.1);

• We provide a theoretical analysis on how training on a matched dataset implicitly learns an
approximation of the gradient for a property of interest (subsection 2.2);
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• We provide guarantees that the proposed designs are as likely as the training distribution,
avoiding common pitfalls where unreliable discriminators lead to unrealistic, pathological
designs (subsection 2.3);

• We demonstrate the effectiveness and advantages of implicit guidance through extensive
experiments in both toy and real-world scientific problems, using both numerical and wet
lab validation (section 3).

2 Property Enhancer (PropEn)

Given a set of initial examples, our objective is to propose a new design which is similar to the initial
set, but, exceeds it in some property value of interest.

Problem setup. Concretely, we start with a dataset D = {xi, yi}ni=1 consisting of n observed
examples xi ∈ Rm drawn from a distribution p together with their corresponding properties yi =
g(xi) ∈ R. Our objective is to determine ways to improve the property of a test example. Concretely,
at test time, we are given a point x0 and aim to identify some new point xnew ∼ p close to x0 such
that g(xnew) > g(x0). In effect, our problem combines constrained optimization (maximize g(xnew)
while staying close to x0) with sampling from a distribution (point xnew should be likely according to
p).

Hereafter, we will refer to the initial example we wish to optimize as seed design and the model’s
proposal as candidate design. Our method, PropEn, entails three steps: (i) matching a dataset, (ii)
approximating the gradient by training a model with a matched reconstruction objective and (iii)
sampling with implicit guidance.

2.1 Match the dataset

We view the group of samples with superior property values as the treated group and their lower-value
counter part as the control group. This motivates us to construct a “matched dataset” for every (x, y)
within D:

M =

{
(x, x′)

∣∣∣∣ x, x′ ∈ D
∥x′ − x∥2 ≤ ∆x, g(x

′)− g(x) ∈ (0,∆y]

}
, (1)

where ∆x and ∆y are predefined positive thresholds.

The matched dataset gives us a new and extended collection M whose size N = O(n2) ≫ n can
significantly exceed that of the training set, depending on the choice of matching thresholds.

2.2 Approximate the gradient

After matching the dataset, we train a deep encoder-decoder network fθ over M by minimizing the
matched reconstruction objective:

ℓ(fθ;M) =
1

|M|
∑

(x,x′)∈M

ℓ(fθ(x), x
′), (matched reconstruction objective)

where ℓ is an appropriate loss for the data in question, such as an mean-squared error (MSE) or
cross-entropy loss.

Before illustrating the properties of our method empirically, we perform a theoretical analysis. We
show that minimizing the matched reconstruction objective yields a model that approximates the
direction of the gradient of g(·), even if no property predictor has been explicitly trained:
Theorem 1. Let f∗ be the optimal solution of the matched reconstruction objective with a sufficiently
small ∆x. For any point x in the matched dataset for which p is uniform within a ball of radius ∆x,
we have f∗(x) → c∇g(x) for some positive constant c.

The detailed proof is provided in subsection A.1.
Remark 1. The proof of 1 is founded on the assumption that distribution is uniformly distributed
within a ball of radius ∆x around point x. This assumption is made to maintain the generality of the
theorem without specific information about the sampling distribution, assuming uniformity avoids
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Figure 2: Illustration of PropEn on the pinwheel toy example with only 72 training examples. The
training data are circles in grey, colored by the value of the property. With pink we mark the initial
hold out test points and in orange ‘×’ the PropEn trajectories. The color of the candidates intensifies
with each iteration step. On the right-hand-side, we depict the sum of negative log likelihoods of the
seeds and optimized designs across optimization steps.

introducing any biases that could arise from other distributional assumptions, such as symmetry, finite
variance etc.
Remark 2. It can be shown that with with a matched reconstruction objective we learn a direction
that is a-colinear with the gradient of g, avoiding the isotropy assumption. This leads to additional
analysis on understanding the implications of the choices while matching, all included in Appendix A.

2.3 Optimize designs with implicit guidance

Training on a matched dataset allows for auto-regressive sampling. Starting with a design seed x0, for
t = 1, 2, . . . , we can generate xt = fθ(xt−1) until convergence, fθ(xt) = xt, s.t. g(xt) > g(xt−1).
At test time, we feed a seed design x0 to PropEn, and read out an optimized design x1 from its
output. We then proceed to iteratively re-feed the current design to PropEn until fθ(xt) = xt, which
is analogous to arriving at a stationary point with ∇g(xt) = 0 and we have exhausted the direction of
property enhancement given the training data. Exploiting the implicit guidance from matching results
in a trajectory of multiple optimized candidate designs.

We next show that optimized samples are almost as likely as our training set according to the data
distribution p. This serves as a guarantee that the generated designs lie within distribution, as desired:
Theorem 2. Consider a model f∗ trained to minimize the matched reconstruction objective. The
probability of f∗(x) is at least

p(f∗(x)) ≥ Ex′∼µ̂x
[p(x′)]− ∥Hp(f(x))∥2 σ2(Mx)

2
,

where µ̂x is the empirical measure on the dataset, Hp(x) is the Hessian of p at x and σ2(Mx) =
Ex′∼µ̂x [∥x′ − Ex′′∼µ̂x [x

′′]∥22] is the variance induced by the matching process.

The detailed proof is provided in subsection A.3.

We use a synthetic example to illustrate optimizing designs with PropEn. We choose a 2d pinwheel
dataset. As a property to optimize, we choose the log-likelihood of the data as estimated by a KDE
with Gaussian kernel with σ = 0.01. Figure 2 depicts in gray the training points, with the color
intensity representing the value of the property—hence a higher/darker value is better in this example.
After training PropEn, we take held out points (pink squares) and use them as seed designs. With
orange x-markers, we illustrate PropEn candidates, with the color intensity increasing at each step t.
We notice that PropEn moves towards the regions of the training data with highest property value,
consistently improving at each step (right-most panel). Additionally, we also use out-of-distribution
seeds, and we demonstrate in the middle panel that PropEn chooses to optimize them by proposing
designs from the closest regions in the training data.
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Table 1: Overview of the datasets in experiments.
Dataset Domain Size n Type Metric Property Preview

Toy R10,R50,R100 50, 100 cont. L2 log-
likelihood

Airfoil R400 200, 500 cont. L2 lift-to-drag
ratio

Antibodies 20297 200− 400 discrete Levenshtein binding
affinity

3 Experimental Results

We empirically evaluate PropEn on synthetic and real-world experiments to answer the following
main questions: (i) Can PropEn be applied across various domains and datasets? (ii) Does PropEn
provide reliable guidance, especially in situations with limited data and when dealing with out-of-
distribution examples? (iii) How effective is PropEn in recommending optimal designs? Can it
suggest candidates with property values exceeding those in the training set? (iv) How does PropEn’s
performance vary with different data characteristics (e.g., dimensionality, sample size, heterogeneity)
and hyperparameters (such as ∆x, ∆y, and regularization terms)? Our code is available at https:
//github.com/prescient-design/propenhttps://github.com/prescient-design/propen.

Datasets. We consider three different data types: synthetic 2d toy datasets and their higher dimension
transformations, NACA airfoil samples, and therapeutic antibody proteins. An overview of the data
is given in Table 1. We present our results in two settings, in silico where we rely on experimental
validation using computer simulations and solvers, and in vitro experiments where candidate designs
were tested in a wet lab. Each of the experiments is evaluated under the baselines and metrics suitable
for the domain.

PropEn variants. We investigate the utilization of matching and reconstruction within the PropEn
framework. Two key considerations emerge: first, whether to reconstruct solely the input features
(x2x) or both the input features and the property (xy2xy); second, the proximity to the initial
sample, regulated by incorporating a straightforward reconstruction regularizer into the training loss
ℓ(fθ(x), x). This regularized variant will be referred to as mixup/mix.

3.1 In silico experiments

3.1.1 Toy data

We choose two well-known multi-modal densities: pinwheel and 8-Gaussians. These are 2d datasets,
but, in order to make the task more challenging, we expand the dimensionality to d ∈ {10, 50, 100}
by randomly isometrically embedding the data within a higher dimensional space. Our findings are
summarized in Figure 3 and we include the tabular results in item B.7. We empirically validate the
four variants of PropEn and we compare against explicit guidance method: for consistency, we chose
an auto-encoder of the same architecture as PropEn augmented with a discriminator for guidance in
the latent space. We denote this baseline Explicit. We compare the methods by ratio of improvement
, the proportion of holdout samples for which PropEn or baselines demonstrate enhanced property
values. To assess the quality of the generated samples we report uniqueness and novelty in tables. We
use a likelihood model derived from a Kernel Density Estimation (KDE) fit on the training data. The
negative log-likelihood scores under this model serve as an indicator of in-distribution performance.
Higher values for all metrics indicate better performance.

Results. Several insights can be gleaned from these experiments. When analyzing the results
based on the number of samples, a clear trend emerges: as the number of training samples increases,
PropEn consistently outperforms explicit guidance across all metrics, except for average improvement,
where all methods exhibit similar behavior. The choice of the preferred metric may vary depending
on the specific application; however, it is noteworthy that while explicit AE guidance improves
approximately 50% of the designs for all datasets, PropEn demonstrates the potential to enhance
up to 85% of the designs. Importantly, this improvement trend remains consistent regardless of the
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Figure 3: PropEn in toy examples in d ∈ {50, 100}, left side: 8-Gaussians, right side: pinwheel.
Distribution of evaluation metrics from 10 repetitions of each experiment.

dimensionality of the data. Furthermore, an intriguing observation pertains to the performance of
different variations of PropEn. It is noted that as the sample size increases, PropEn xy2xy does not
exhibit an advantage over PropEn x2x. Moreover, the impact of iterative sampling with PropEn is
notable. With each step, the property improves until it reaches a plateau after multiple iterations,
albeit with a simultaneous drop in the uniqueness of the solution to around 80%. Nevertheless,
iterative optimization can be continued until convergence, with all designs saved along the trajectory
for later filtering according to user needs.

3.1.2 Engineering: airfoil optimization

In an engineering context, shape optimization entails altering the shape of an object to enhance its
efficiency. NACA airfoils (National Advisory Committee for Aeronautics) [4], rooted in aerodynamics
and parameterized by numerical values, serve as a well-documented benchmark due to their versatility.
These airfoils span diverse aerodynamic characteristics, from high lift to low drag, making them ideal
for exploring different optimization objectives. Given their integral role in aircraft wings, optimizing
airfoil shapes can significantly impact aerodynamic performance by improving lift, drag, and other
properties essential for aerospace engineering.

Data & experimental design. We generate NACA 4-digit series airfoil coordinates by choosing these
parameters: M (maximum camber percentage), P (location of maximum camber percentage), and T
(maximum thickness percentage). Each airfoil is represented by 200 coordinates, resulting in a 400
vector representation when flattened. Our objective is to optimize the lift-to-drag ratio (Cl/Cd ratio)
for each shape. We calculate lift and drag using NeuralFoil [41], a precise deep-learning emulator of
XFoil [11].

Note that the lift-to-drag ratio is pivotal in aircraft design, reflecting the wing’s lift generation
efficiency relative to drag production. A high value signifies superior lift production with minimal
drag, translating to enhanced fuel efficiency, extended flight ranges, and overall improved performance.
This ratio is paramount in aerodynamic design and optimization, facilitating aircraft to travel farther
and more efficiently through the air. Traditionally, engineers have relied on genetic algorithms guided
by Gaussian Process models (kriging) [22], however, in recent years the community has moved
towards ML-based methods which consist of a generative model that can be GAN-based [51, 49] or a
variation of a VAE [26, 52, 31, 47]. Similarly, for the surrogate, guidance model, GPs and numerical
solvers have been replaced by deep models [5, 41]. For our experiments we follow this standard
setup: we choose a VAE-like baseline as it is the most similar architectural choice to PropEn, and for
guidance we use a MLP. All networks (encoder, decoder and surrogate) are fully connected 3 layer
MLPs with 50 units, ReLU activations per layer and a latent space of dimension 50. We randomly
select 0.1% as holdout dataset for seeds, and use the rest for training.

Results. Our numerical findings are summarized in ??. Similar to the toy dataset, the designs
produced by PropEn variants demonstrate enhanced properties compared to those guided explicitly.
Delving into further analysis with ablation studies, depicted in Figure 4(b) and (c), we observe that
increasing the matching thresholds in PropEn correlates with higher rates of improvement. Remark-
ably, all designs within a PropEn trajectory are deemed plausible, as depicted in the accompanying
figure. Moreover, a consistent enhancement in the lift-to-drag ratio Cl/Cd is noted along the opti-
mization trajectory until convergence. This consistent trend underscores the effectiveness of PropEn
in progressively refining airfoil designs to bolster their aerodynamic performance.

Interestingly, we find that in larger training datasets the threshold for property improvement (∆y)
may not be necessary for optimization, as the PropEn x2x demonstrates satisfactory performance.
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Figure 4: Ablation studies for PropEn on Airfoils. (a) PropEn improves Cl/Cd ratio along its trajectory
and produces realistic/valid airfoil shapes. (b and c) the impact of choice of threshold ∆x and ∆y in
the matching phase. When varying ∆x, ∆y is set to 1, and vice versa.

We also notice that the mix variant of PropEn may require longer training. This observation is
consistent with the notion that mix, by introducing a regularization term in the training loss, may
improve at a slower rate compared to other PropEn variants. This slower improvement can be
attributed to the regularization term’s tendency to pull generated designs closer to the initial seed,
thereby limiting the extent of exploration in the design space.

3.2 In vitro experiment: therapeutic protein optimization

The design of antibodies good functional and developability properties is essential for developing
effective treatments for diseases ranging from cancer to autoimmune disorders. We here focus on the
task of optimizing the binding affinity of a starting antibody (the seed) while staying close to it in
terms of edit distance. The task is referred to as affinity maturation in the drug design literature and
constitutes an essential and challenging step in any antibody design campaign.

Antibody binding affinity refers to the strength of the interaction between an antibody molecule and
its target antigen. High binding affinity is crucial in antibody-based therapeutics as it determines the
antibody’s ability to recognize and bind to its target with high specificity and efficiency. We follow
the standard practice of quantifying binding affinity by the negative log ratio of the association and
dissociation constants (pKD), which represents the concentration of antigen required to dissociate
half of the bound antibody molecules. Higher pKD indicates a tighter and more stable interaction,
leading to improved therapeutic outcomes such as enhanced neutralization of pathogens or targeted
delivery of drugs to specific cells.

Data & experimental design. The data collection process involved conducting low-throughput
Surface Plasmon Resonance (SPR) experiments aimed at measuring with high accuracy the binding
affinity of antibodies targeting three different target antigens: the human epidermal growth factor
receptor 2 (HER2) and two additional targets that we denote as T1 and T2. For each of those targets,
one or more seed designs were selected by domain experts. In the case of HER2, we used the cancer
drug Herceptin as seed. We ensured the correctness of the SPR measurements by validating the fit of
the SPR kinetic curves according to standard practices.

As the targets differ in the properties of their binding sites, we trained a PropEn model per each target
(but for all seeds for that target jointly). For this application, we opted for the PropEn x2x mix variant.
The reconstruction of the original sequence (mix) complies with antibody engineering wisdom
that a candidate design should not deviate from a seed by more than small number of mutations.
Similar to [34], we used a one-hot encoded representation of antibodies aligned according to the AHo
numbering scheme [20] determined by ANARCI [12]. The encoder-decoder architecture is based on a
ResNet [18] with 3 blocks each. We compare PropEn with four strong baselines: two state-of-the-art
methods for guided and unguided antibody design namely walk-jump sampler [13] and lambo [17];
as well as two variants of a diffusion model trained on AHo antibody sequences differing on their use
of guidance. The first one (labeled as diffusion) is based on a variational diffusion model [25] trained
on a latent space obtained by projecting AHo 1-hot representation using an encoder-decoder type of
architecture similar to PropEn’s architecture; encoder-decoder model is trained simultaneously with
the diffusion model. The second one (labeled as diffusion(guided)) is a variant of the first one with
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Figure 5: Therapeutic protein optimization results: (a) The left figure contrasts the binding rate with
the 90-th percentile of the binding affinity improvement for each method and seed. Points on the
top-right are on the Pareto front. (b) The right figure focuses on binders and reports the histograms of
binding affinity improvement across all designs and seeds.

Table 2: Binding rate (and number of designs submitted). Higher is better.
Herceptin T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T2S4 overall

PropEn 90.9% (11) 100.0% (4) 100.0% (6) 100.0% (24) 20.0% (5) 100.0% (23) 100.0% (16) 100.0% (4) 94.6% (93)
walk-jump [13] - 25.0% (4) 80.0% (15) 100.0% (18) 26.7% (30) 41.7% (12) 100.0% (15) 63.6% (11) 62.9% (105)
lambo (guided) [17] 50.0% (10) 0.0% (4) - 100.0% (5) 0.0% (9) - 100.0% (1) 57.1% (14) 44.2% (43)
diffusion - 100.0% (8) 85.7% (14) - - - 88.2% (17) 66.7% (6) 86.7% (45)
diffusion (guided) - 85.2% (27) 96.9% (32) - - - 93.3% (15) 100.0% (10) 92.9% (84)

added guidance based on the iterative latent variable refinement idea described in the paper by Choi
et al. [8], which ensures generating samples that are close to the initial seed.

We evaluate the set of designs in terms of their binding rate (fraction of designs tested that were
binders), the percentage of designs than improve the seed, and their binding affinity improvement
(pKD design - pKD of seed).

Table 3: Fraction of designs improving the seed and total designs tested. Higher is better.
Herceptin T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T2S4 overall

PropEn 0.0% (11) 100.0% (4) 33.3% (6) 41.7% (24) 0.0% (5) 69.6% (23) 0.0% (16) 0.0% (4) 34.4% (93)
walk-jump [13] - 25.0% (4) 6.7% (15) 5.6% (18) 3.3% (30) 8.3% (12) 0.0% (15) 0.0% (11) 4.8% (105)
lambo (guided) [17] 10.0% (10) 0.0% (4) - 0.0% (5) 0.0% (9) - 0.0% (1) 35.7% (14) 14.0% (43)
diffusion - 62.5% (8) 14.3% (14) - - - 0.0% (17) 0.0% (6) 15.6% (45)
diffusion (guided) - 51.9% (27) 15.6% (32) - - - 0.0% (15) 0.0% (10) 22.6% (84)

Results. As seen in Tables 2 and 3, PropEn excelled in generating functional antibodies with
consistently high binding rates (94.6%) and 34.5% of the tested designs showed improve binding
than the seed, outpacing other models in overall performance. To account for the trade-off between
binding rate and affinity improvement (larger affinity improvement requires making risky mutations
that might end-up killing binding), we visualize the Pareto front in Figure 5(a). In the plot, we mark
the performance of each method for a specific seed design by placing a marker based on the achieved
binding rate (x-axis) and maximum affinity improvement (y-axis). Compared to baseline methods,
PropEn struck a beneficial trade-off, on average achieving a larger affinity improvement than methods
with a high binding rate.

Figure 5(b) takes a closer look at the affinity improvement on the subset of designs that bound.
As observed, all models produced some binders that were better than the seed, speaking for the
strength of all considered models. Interestingly, none the top three models in terms of binding affinity
improvement relied on explicit guidance, which aligns with our argument about the brittleness of
explicit guidance in low-data regimes. Out of the those three models, PropEn generated two designs
that improved the seed by at least one pKD unit (10 times better binder) followed by the walk-jump
and the unguided diffusion model, that generated one such design each.
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4 Related work

As design optimization has been ubiquitous across science domains, naturally our approach relates to
a variety of methods and applications. In the molecular design domain, data are bound to discrete
representation which can be challenging for ML methods. A natural way to circumvent that is by
optimization in a latent continuous space. Bombarelli et al. [15] presented such an approach in their
seminal work on optimizing molecules for chemical properties, and it has since spawn across different
domains [6]. Recently, one of the common way for obtaining embeddings for explicit guidance relies
on language models [27, 32]. One of the challenges of using a latent space is the issue for blindly
guiding the optimization into ambiguous regions of the manifold where no training data was available
[21, 29]. Follow up works attempt to address this problem [7, 16, 37] by incorporating uncertainty
estimates into black-box optimization.

Another line of work perhaps more close to our approach is the notion of neural translation, where
the goal is to go from one language to another by training on aligned datasets. [23, 10] have build on
this idea to improve properties for small molecules translating one graph or sequence to another one
with better properties. These works propose tailored approaches for domain specific applications.
With PropEn we take a step further and propose a domain-agnostic framework that is empirically
validated across different domains (uniquely including wetlab experiments). We also derive novel
theoretical guarantees that illustrate the relation of the generated samples with the property gradient,
as well as provide guarantees that our designs fall within distribution.

Previous works have also considered learning an optimizer for some function based on observed
samples [42, 1, 36]. This is usually achieved by either (i) rendering the optimizer differentiable and
training some of its hyperparameters; or (ii) by unfolding the iterative optimizer and treating each
iteration as a trainable layer. Our approach is different, thanks to the matched reconstruction objective
that lets us implicitly approximate the gradient of a function of interest.

5 Conclusion

Strengths. We introduced PropEn, a new method for implicit guidance in design optimization
that approximates the gradient for a property of interest. We achieve this by leveraging matched
datasets, which increase the size of the training data and inherently include the direction of property
enhancement. Our findings highlight the versatility and effectiveness of PropEn in optimizing designs
in engineering and drug discovery domains. We include wet lab in-vitro results for comparison with
state-of-the-art baselines in therapeutic protein design. By utilizing thresholds for shape dissimilarity
and property improvement, PropEn efficiently navigates the design space, generating diverse and
high-performance configurations. We believe our method offers a simple yet effective recipe for
design optimization that can be applied across various scientific domains.

Limitations. The matching step adds some computation overhead with complexity depending on
the choice of distance metric. Since PropEn is targeting low data-regime applications, scalability is
out of scope for the current work. However, we are considering on-the-fly distance evaluation or
parallelisation across multiple nodes. The choice of distance metric for matching to a certain extent,
can be considered a limitation because it requires understanding of the context for the application.
However, this choice is also what allows for incorporating domain knowledge and constraints, which
can be meaningful and necessary in the domain of interest (edit distance for antibodies, deviations
only in the camber of the airfoil etc).

Future work. Immediate extensions of PropEn are applications to other molecular modalities,
such as small molecules, material discovery, and optimization of adeno-associated virus vectors
for gene-therapy. Additionally, we are keen to explore how different similarity metrics incorporate
various inductive biases that can be leveraged for property optimization. Ongoing worthwhile efforts
include developing a multi-property PropEn framework to address the optimization of properties
simultaneously, offering a more comprehensive approach to the design process.
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Appendix / supplemental material

A Deferred proofs

A.1 Proof of Theorem 1

Proof. The matched reconstruction objective for the MSE loss can be expressed as

argmin
θ

∑
x∼X

∑
δx∼U(0,∆x)m

∥fθ(x)− (x+ δx)∥2 1(g(x) < g(x+ δx)). (2)

Assuming a model that is sufficient overparametrized, we can w.l.o.g. suppose that there is some
θx which minimizes every x and thus swap the sum and argmin. We are left with the objective of
minimizing the inner sum:

argmin
θx

∑
δx∼U(0,∆x)m

∥fθx(x)− (x+ δx)∥2 1(g(x) < g(x+ δx)) (3)

Noting that the the squared loss is minimized by the expected value and taking the data limit we get:

fθx(x) =
1

C

∑
δx∼U(0,∆x)m

δx 1(g(x) < g(x+ δx))

−→
n→∞

Eδx∼U(0,∆x)m(δx | g(x) < g(x+ δx)) (4)

where constant C is needed because the expected value should only be computed on the non-zero
terms. To proceed, we consider a rotation matrix Rx for which the following holds:

Rx∇g(x) =


∥∇g(x)∥2

0
...
0

 (5)

and introduce the reparametrization z = Rxδx. The last vector is also uniformly distributed

z ∼ RxU(0,∆x)
m ∼ U(0,∆x)

m

due to the uniform distribution on a ball being rotation invariant. Note that above we write
RxU(0,∆x)

m to mean the push-forward of the distribution through the inverse rotation.

We can now rewrite Equation 4 as follows:

Eδx∼U(0,∆x)m(δx)|g(x) < g(x+ δx) = R−1
x Eδx∼U(0,∆x)m(Rxδx) | g(x) < g(x+ δx) (6)

= R−1
x Et∼U(0,∆x)mt | g(x) < g(x+R−1

x z) (7)

= R−1
x Ez∼U(0,∆x)mz | 0 < ∇g⊤(x)R−1

x z + ϵ(g, x,∆x))
(8)

Above, to go from line 7 to line 8 we Taylor expand g around x:

g(x+R−1
x z) = g(x) +∇g(x)⊤R−1

x z + ϵ(g, x,∆x)

with |ϵ(g, x,∆x)| = O(∆2
x)L and L being the Lipschitz constant of ∇g.

The conditional in Equation 8 is equal to

−ϵ(g, x,∆x) < ∇g(x)⊤R−1
x z = z⊤Rx∇g⊤(x) = z⊤


∥∇g(x)∥2

0
...
0

 (9)

or equivalently

z1 >
−ϵ(g, x,∆x)

∥∇g(x)∥2
, (10)
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where we have denoted the first coordinate of z as z1.

Thus, setting c = −ϵ(g,x,∆x)
∥∇g(x)∥2

, Equation 8 can be re-written as

R−1
x Eδx∼U(0,∆x)m(z|z1 > c) = R−1

x

E(z1|z1 > c)
...

E(zm|z1 > c)

 (11)

= E(z1|z1 > c)R−1
x


1
0
...
0

 (12)

=
E(z1|z1 > c)

∥∇g(x)∥2
R−1

x Rx∇g(x) =
E(z1|z1 > c)

∥∇g(x)∥2
∇g(x). (13)

We further note that E(z1|z1 > c) = (∆x − −ϵ(g,x,∆x)
∥∇g(x)∥2

)/2 due to z1 being distributed uniformly in
U(0,∆x). We have thus shown that

fθx(x) −→
n→∞

(∆x + ϵ(g,x,∆x)
∥∇g(x)∥2

)

2∥∇g(x)∥2
∇g(x), (14)

and the constant in front of the gradient is positive for ∆x > |ϵ(g,x,∆x)|
∥∇g(x)∥2

. The latter condition is met

whenever ∆x = O(∥∇g(x)∥2

L ).

A.2 Understanding the relation between the learned direction and the property gradient

Our approach entails constructing a conditional ‘matching distribution’:

µx(x
′) ∝

{
p(x′) if ∥x′ − x∥22 ≤ ∆x, g(x

′)− g(x) ∈ (δy,∆y]

0 otherwise,
(15)

and then training a model to optimize the following regularized matched reconstruction objective:

ℓ(f, p̂) = Ex∼p̂[Ex′∼µ̂x
[ℓ(x′, f(x)) + β ℓ(x, f(x))]].

Note that by p̂(x) we denote the empirical density supported on the training set p̂(x) = 1
n

∑n
i=1 δ(xi−

x) (and analogously for µ̂x).
Theorem 3. Let f∗ be the optimal solution of the matched reconstruction objective matched recon-
struction objective. For any point x, the global minimizer is given by

f∗(x) =
Ex′∼µ̂x [x

′] + βx

1 + β
. (16)

Further, for a λ1-Lipschitz and λ2-smooth function g, the vector f∗(x) − x is a-colinear with the
gradient of g:

a ≤ ∇g(x)⊤(f∗(x)− x)

∥∇g(x)∥2∥f∗(x)− x∥2

whenever ∆x < 2
δy−αλ1∥Ex′∼µ̂x

[x′]−(1−β)x∥2

λ2
.

Proof. The global minimizer of the matched reconstruction objective for the MSE loss is given by

f∗(x) =
Ex′∼µ̂x

[x′] + βx

1 + β
(17)

which directly follows by taking the gradient of the mean-squared error loss and setting it to zero.

We next consider a C2 function g and Taylor expand it around x:

g(x′) = g(x) +∇g(x)⊤(x′ − x) + ϵ(x, x′),

14
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where the norm of the approximation error is at most |ϵ(x, x′)| ≤ λ2∥x− x′∥22/2 ≤ λ2∆x/2.

Taking the expectation w.r.t. µ̂x yields

Ex′∼µ̂x
[g(x′)]− g(x) = ∇g(x)⊤(Ex′∼µ̂x

[x′]− x) + Ex′∼µ̂x
[ϵ(x, x′)]

⇔ Ex′∼µ̂x
[g(x′)− ϵ(x, x′)]− g(x) = ∇g(x)⊤(f∗(x)− x)(1 + β),

where in the last step we substituted the expectation by f ′(x). We notice that, as long as
Ex′∼µ̂x

[g(x′) − ϵ(x, x′)] − g(x) > 0, the learned direction is pointing towards a similar direc-
tion as the gradient:

∡(∇g(x), f∗(x)− x) = arc cos
(

∇g(x)⊤(f∗(x)− x)

∥∇g(x)∥2∥f∗(x)− x∥2

)
≤ 90◦ (18)

We expand the term within the condition in the following:
Ex′∼µ̂x

[g(x′)− ϵ(x, x′)]− g(x) ≥ inf
x′

Ex′∼µ̂x
[g(x′)− |ϵ(x, x′)|]− g(x)

≥ δy −
λ2∆x

2

to determine that the following sufficient condition for ∡(∇g(x)⊤, f∗(x)−x) to be below 90 degrees:

∆x <
2δy
λ2

.

More generally, since

∇g(x)⊤(f∗(x)− x)

∥∇g(x)⊤∥∥f∗(x)− x∥
≥

δy − λ2∆x

2

(1 + β)λ1∥f∗(x)− x∥2
a sufficient condition for the normalized inner product to be above α is

a ≤ ∇g(x)⊤(f∗(x)− x)

∥∇g(x)⊤∥∥f∗(x)− x∥
⇐ ∆x < 2

δy − α(1 + β)λ1∥f∗(x)− x∥2
λ2

One may also set ∥f∗(x)− x∥2 =
Ex′∼µ̂x

[x′]−(1−β)x

1+β in the equation above to obtain the condition

∆x < 2
δy − αλ1∥Ex′∼µ̂x [x

′]− (1− β)x∥2
λ2

.

as claimed.

A.3 Proof of Theorem 2

Proof. Set x′ = f∗(x). Taking a Taylor expansion of p around x′, we deduce that for every x′′ ∈ D
the following holds:

p(xi) ≤ p(x′) +∇p(x′)⊤(x′′ − x) +
∥Hp(x

′)∥2 ∥x′′ − x∥22
2

,

with ∥Hp(x
′)∥2 being the Hessian of p at x′. Taking the expectation w.r.t. µ̂x yields

Ex′′∼µ̂x [p(x
′′)] ≤ p(x′) +∇p(x′)⊤(Ex′′∼µ̂x [x

′′]− x′) +
∥Hp(x

′)∥2 Ex′′∼µ̂x
[∥x′′ − x′∥22]

2
or equivalently

p(x′) ≥ Ex′′∼µ̂x
[p(x′′)]−∇p(x′)⊤(Ex′′∼µ̂x

[x′′]− x′)− ∥Hp(x
′)∥2 Ex′′∼µ̂x

[∥x′′ − x′∥22]
2

If we further assume that the model is trained to minimize the matched reconstruction objective with
an MSE loss, we obtain the claimed result:

p(x′) ≥ Ex′′∼µ̂x
[p(x′′)]− ∥Hp(x

′)∥2 σ2(Mx)

2
,

where σ2(Mx) = Ex′∼µ̂x
[∥x′−Ex′′∼µ̂x

[x′′]∥22] is the variance induced by the matching process.

Observe that, since the variance is upper bounded by σ2(Mx) ≤ 4∆x, one may provide higher
likelihood samples by restricting the matching process to consider closer pairs. Further, as perhaps
expected, the likelihood is higher for smoother densities.
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A.4 Understanding the matched reconstruction objective

The following analysis analyses the key characteristics of the proposed method. Though our analysis
does not take into account the training process with stochastic gradient descent and the potentially
useful inductive biases of the neural network fθ, it provides useful insights that qualitatively align
with the practical model behavior.

Property 1. The learned direction follows the property gradient. We first show that by optimizing
the matched reconstruction objective, the model will learn to adjust an input point by approximately
following the gradient ∇g(x) of the property function.

For ease of notation, we denote by Mx the subset of our paired dataset with all pairs that start from
point x.
Theorem 4. Let f∗

β be the optimal solution of the matched reconstruction objective. For a λ1-
Lipschitz and λ2-smooth function g, the vector vx = f∗

β(x) − x is a-colinear with the gradient of
g:

a ≤ ∇g(x)⊤vx
∥∇g(x)∥2∥vx∥2

whenever ∆x < 2
λ2

(
δy − αλ1(1 + β)∥f∗

β(x)− x∥2
)

.

The theorem reveals the role of the introduced thresholds in controlling how close we follow the
property gradient: the larger the required property change δy and the smaller the allowed input
deviation ∆x the closer vx tracks the gradient of g. We thus observe a trade-off between approximation
and dataset size: selecting less conservative thresholds will lead to a larger |M| at the expense of a
rougher approximation.

Property 2. Regularization controls the step size. Hyperparameter β enables us to control
the magnitude of the allowed input change (the step size in optimization parlance), with larger β
encouraging smaller changes:

Corollary 1. In the setting of Theorem 4, we have: ∥f∗
β(x)− x∥2 =

∥f∗
0 (x)−x∥2

1+β .

Therefore, setting β to a larger value can be handy for conservative design problems that prioritize
distance constraints or when the property function is known to be complex.

B Additional results for experiments

B.1 Details on Matched datasets

Table 4: Overview of matched dataset and choice of ∆x and ∆y .
Dataset # Pairs # Unique Samples in Train Y Range (Control) Y Range (Treatment)

8 Gaussians 1 746 96 [0.14, 0.86] [0, 1]
Airfoils 8 125 200 [56.3, 82.8] [65.2, 90.6]
Antibodies (T1) 1 362 268 [4, 8.9] [6.5, 9.3]

B.2 Toy experiment - 8 Gaussians with anti-clockwise increasing property value

We include a toy example where the property is disentangled from the likelihood of the data. The
results in Figure B.2 and Figure B.2 are consistent with the discussion in the main text.

B.3 Setting ∆x and ∆y

The choice of parameters ∆x and ∆y should be informed by the specific application. For example, in
antibody design, domain experts recommend not using thresholds above a Levenshtein distance of
8, as such differences are considered biologically irrelevant. Similarly, for ∆y, knowing that noise
in binding measurements can be up to 0.3, we chose 0.5 to ensure proper matching. When faced
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Figure 6: New toy example d = 50. Explicit guidance suffers in higher dimensions (shown here for
d = 50) as there are increasingly more directions around the data in which the surrogate model is
erroneous. Implicit guidance is robust to the higher data dimensionality because generated samples
lie within distribution (as proven).

Figure 7: New toy example in d ∈ {2, 10, 50}, for 8-Gaussians with property increasing in anti-
clockwise direction. Distribution of evaluation metrics from 10 repetitions of each experiment. ratio
of improvement, higher is better, NLL lower is better.

with a new dataset of n unique data points, a good initial approach is to use the standard deviation of
pairwise distances for x, and the mean or median for property y:

∆xσd =

√√√√√ 2

n(n− 1)

∑
1≤i<j≤n

d(xi, xj)−
2

n(n− 1)

∑
1≤k<l≤n

d(xk, xl)

2

∆y ≤ 2

n(n− 1)

∑
1≤i<j≤n

d(xi, xj)

Figure 8: Effect of thresholds ∆x and ∆y on the
number of pairs. Though the number of pairs in-
creases with larger thresholds, the benefit saturates
(especially when increasing ∆y).

How g(·) influences the calibration/selection of ∆y

When the g(.) is non-smooth, or we have a very few
datapoints, this certainly influences the choice of ∆y ,
in this case we opt for as small steps as possible since
this will create many pairs which should give sense
of the direction of the gradient around the sparse
regions.

In the Figure 8, we provide an additional ablation
study on how threshold choices affect the number of
training pairs, showing that sufficiently large thresh-
olds include all unique training points. For perfor-
mance impact, please refer to the ablation study in
Figure 4.
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Figure 9: Airfoils optimized with PropEn from multiple seeds. Red: seed designs, blue: PropEn
candidates. To reduce the lift-drag ratio, PropEn tends to flatten the bottom of the airfoil to reduce
the drag, while extend the front upwards to increase lift.

Table 5: Diffusion models do improve almost all hold out designs (RI - ratio of improvement),
however, only by a very small value (AI-average improvement.)

Airfoil experiment
N = 200 AI RI

Explicit guidance 15.04± 1.21 6.53± 6.35
Diffusion T = 5 4.297± 0.7 97.6± 0.3
Diffusion T = 15 4.54± 0.3 99.2 ± 0.2
Diffusion T = 150 4.42± 0.3 97.38± 0.4
PropEn mix x2x 29.49± 8.02 7.23± 6.21
PropEn x2x 41.30± 14.83 38.83± 8.80
PropEn mix xy2xy 5.91± 8.72 6.06± 7.75
PropEn xy2xy 55.41 ± 14.07 29.81± 31.30

B.4 Airfoils

B.4.1 Additional baseline for airfoils

B.5 Example of PropEn designs for antibodies

Figure 10: HER2 binders from PropEn validated in wet lab experiments. Up: sequence alignment of
the heavy chains wrt the seed which is the top sequence. The positions marked in black correspond to
mutational differences from the seed. Bottom: folded structures of the corresponding designs with
the mutations to seed marked in green.

B.6 Details on experimental setups

Toy datasets

• ablation studies: N ∈ {100, 200}, d ∈ {2, 10, 50, 100}
• matching thresholds: ∆x = ∆y = 1,

• number of epochs: 500, batch size: 64

Criterion: MSELoss()

Encoder:
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Sequential(
(0): Linear(in_features=2, out_features=30, bias=True)
(1): ReLU()
(2): Linear(in_features=30, out_features=30, bias=True)
(3): ReLU()
(4): Linear(in_features=30, out_features=30, bias=True)
(5): ReLU()
(6): Linear(in_features=30, out_features=15, bias=True)

)

Decoder: Analogous to the encoder, starting with the compressed representation (15 features) and
progressively reconstructing the original input size (2 features).

Toy Example Discriminator:

Sequential(
(0): Linear(in_features=2, out_features=30, bias=True)
(1): ReLU()
(2): Linear(in_features=30, out_features=30, bias=True)
(3): ReLU()
(4): Linear(in_features=30, out_features=30, bias=True)
(5): ReLU()
(6): Linear(in_features=30, out_features=1, bias=True)

)

Airfoil

• ablation studies: N ∈ {200, 500, 1000},
• matching thresholds: ∆x = ∆y ∈ {0.3, 0.5, 0.7, 1}
• number of epochs: 1000, batch size: 100

Criterion: MSELoss()

Encoder:

Sequential(
(0): Linear(in_features=2, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=100, bias=True)
(3): ReLU()
(4): Linear(in_features=100, out_features=100, bias=True)
(5): ReLU()
(6): Linear(in_features=100, out_features=50, bias=True)

)

Decoder: Analogous to the encoder, starting with the compressed representation (50 features) and
progressively reconstructing the original input size (400 features).

AirFoil Discriminator:

Sequential(
(0): Linear(in_features=100, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=100, bias=True)
(3): ReLU()
(4): Linear(in_features=100, out_features=100, bias=True)
(5): ReLU()
(6): Linear(in_features=100, out_features=1, bias=True)

)
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Hyper-parameter choice. For optimizing the parameters of the baselines in the toy and engineering
experiments, we conducted a grid search over the learning rate ([1e-2, 1e-5]), weight decay ([1e-2,
1e-5]), number of epochs ([300, 1000, 5000]), batch size (32, 64, 128), and number of neurons per
layer ([30, 50, 100]).

Therapeutic Proteins

• batch size: 32, training epochs: 300
• matching thresholds: ∆x =∈ {10, 15} mutational, edit distance, ∆y = 0.5

• baselines: For WJS, we used a 1D Conv architecture (please see A.1 in [38]), and for Lambo,
a bert-small transformer (please see C.1 in [39]).

Encoder(
(mlp): Linear(in_features=6556, out_features=128, bias=True)
(blocks): ModuleList(

3 x ResNetBlock(
(ln1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(mlp1): Linear(in_features=128, out_features=256, bias=True)
(ln2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(mlp2): Linear(in_features=256, out_features=128, bias=True)
(act): GELU(approximate=’none’)

)

Decoder: Analogous to the encoder, starting with the compressed representation (256 features) and
progressively reconstructing the original input size (6556).

Comparison to Bayesian Optimization. While both BO and PropEn aim at optimization in small
sample sizes, the two frameworks solve different problems. The goal of PropEn is to generate
designs, whereas in BO/AL the goal is to choose the most promising designs that should be labeled
in order to imporve a predictors performance or find the best candidate, i.e. the focus is selection.
In the context of optimizing designs, one would have a suite of (1) generative models, (2) property
predictors and (3) BO/AL module that will do the final selection across pool of candidates. PropEn
falls in (1), the category of generative models section that will contribute to the library of potential
candidates. As a side note, Lambo, a method we compared to, uses a BO inspired acquisition function
to guide the search for better designs, and we do compare to it (favorably), but, we must highlight the
difference, **PropEn and Lambo are generative models not BO/AL methods. We hope this clarifies
the differences between the two frameworks and highlights their complementarity.

B.7 Ablation study for toy experiments

Additional metrics included:

1. Uniqueness: number of unique designs divided by number of generated designs.
2. Novelty: number of designs proposed by the method that don’t appear in the training data,

divided by the number of generated designs.
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Table 6: PropEn vs Explicit guidance results on toy datasets, end of optimization trajectory. N is the
number of samples, d is the number of dimensions for projection (2D → dD datasets). Mean (std)
over 10 repetitions of the experiment. For all metrics, higher is better.

N=100 N=200

d=10 d=50 d=100 d=10 d=50 d=100

8-Gaussians

ratio imp

PropEn mix x2x 85.71± 5.01 77.89± 16.79 81.58± 12.58 92.82± 5.64 93.16± 6.66 91.88± 8.49

PropEn mix xy2xy 68.42± 18.23 65.41± 9.04 80.70± 6.37 79.49± 10.44 75.78± 13.27 79.49± 13.57

PropEn x2x 90.06± 11.30 91.81± 10.23 85.09± 11.25 93.33± 4.87 94.36± 5.64 93.77± 5.51

PropEn xy2xy 73.03± 13.91 79.70± 11.94 82.11± 9.56 89.01± 5.87 78.39± 6.92 79.77± 10.76

Explicit 48.80± 8.52 49.76± 5.45 51.67± 6.58 48.02± 4.88 48.02± 4.15 50.58± 5.01

loglike

PropEn mix x2x −36.34± 1.28 −37.06± 2.53 −37.08± 3.22 −77.42± 2.53 −77.61± 4.25 −77.50± 2.68

PropEn mix xy2xy −40.51± 4.90 −43.51± 5.76 −37.71± 2.67 −80.17± 3.19 −83.16± 2.20 −82.52± 3.73

PropEn x2x −36.13± 2.68 −35.12± 2.76 −36.04± 2.91 −76.95± 2.70 −76.80± 4.83 −77.55± 3.27

PropEn xy2xy −38.51± 3.44 −38.70± 2.18 −38.47± 5.12 −79.00± 3.67 −81.79± 4.87 −82.92± 4.05

Explicit −45.00± 2.50 −44.11± 2.46 −44.64± 1.71 −99.34± 3.02 −99.62± 3.84 −98.88± 3.63

uniqness

PropEn mix x2x 93.98± 9.33 97.37± 3.72 89.47± 12.26 82.05± 7.15 77.78± 6.01 78.20± 12.00

PropEn mix xy2xy 96.84± 5.08 98.50± 3.98 93.86± 3.96 81.09± 10.16 84.62± 8.79 86.08± 6.08

PropEn x2x 79.53± 10.67 74.27± 14.76 77.19± 14.38 57.69± 8.48 57.95± 12.69 56.04± 8.69

PropEn xy2xy 78.95± 9.75 72.93± 10.71 81.05± 16.48 65.57± 17.19 55.68± 8.34 54.70± 11.75

Explicit 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

novelty

PropEn mix x2x 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn mix xy2xy 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn x2x 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn xy2xy 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Explicit 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

pinwheel

ratio imp

PropEn mix x2x 86.73± 10.56 84.02± 13.94 80.94± 10.80 87.55± 10.41 91.35± 7.75 86.41± 5.68

PropEn mix xy2xy 71.56± 13.09 66.32± 9.56 70.39± 15.13 56.41± 15.88 51.57± 20.53 61.54± 12.33

PropEn x2x 89.29± 10.09 85.97± 9.49 89.47± 12.89 91.03± 9.54 92.67± 6.69 87.75± 8.48

PropEn xy2xy 71.67± 12.14 65.13± 17.10 69.67± 9.04 52.38± 19.46 47.86± 16.98 63.40± 17.54

Explicit 52.92± 5.66 49.55± 5.14 50.45± 6.12 51.75± 4.70 50.12± 4.64 50.35± 3.85

loglike

PropEn mix x2x −31.48± 2.70 −31.44± 2.62 −31.73± 0.96 −68.34± 3.31 −67.43± 2.70 −69.00± 2.71

PropEn mix xy2xy −34.25± 2.13 −35.33± 1.26 −35.06± 3.84 −83.83± 8.83 −86.89± 11.47 −80.11± 4.17

PropEn x2x −31.47± 1.36 −31.12± 2.20 −31.37± 3.44 −68.18± 2.88 −66.66± 1.96 −68.12± 2.92

PropEn xy2xy −34.96± 3.91 −37.10± 4.35 −35.50± 2.29 −87.73± 8.75 −88.06± 13.58 −79.83± 7.58

Explicit −40.40± 1.93 −39.58± 2.25 −40.14± 1.80 −90.32± 5.00 −88.90± 3.16 −87.91± 4.63

uniqness

PropEn mix x2x 92.76± 7.93 94.67± 4.65 97.89± 4.71 80.59± 12.19 78.85± 7.48 82.56± 10.31

PropEn mix xy2xy 94.08± 10.69 96.84± 2.88 97.37± 5.63 98.90± 2.02 96.01± 3.87 90.51± 10.54

PropEn x2x 66.96± 9.44 68.42± 15.57 71.58± 15.16 49.23± 15.84 47.99± 12.97 50.71± 8.39

PropEn xy2xy 84.70± 7.20 72.37± 17.29 78.86± 8.48 69.96± 9.21 60.68± 17.14 64.80± 10.58

Explicit 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

novelty

PropEn mix x2x 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn mix xy2xy 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn x2x 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

PropEn xy2xy 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Explicit 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
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N=50 N=100

d=10 d=50 d=100 d=10 d=50 d=100

8-Gaussians

ratio imp

PropEn mix x2x 82.71 ± 11.66 80.53 ± 9.30 82.24 ± 7.41 92.56 ± 4.27 94.02 ± 4.05 94.02 ± 6.21

PropEn mix xy2xy 70.00 ± 14.05 82.71 ± 8.44 81.58 ± 5.52 90.38 ± 6.09 82.62 ± 9.57 89.74 ± 7.55

PropEn x2x 81.87 ± 12.65 85.96 ± 10.85 78.95 ± 8.15 92.82 ± 3.78 93.08 ± 6.74 93.41 ± 5.71

PropEn xy2xy 66.45 ± 11.23 78.20 ± 8.28 78.95 ± 13.42 88.28 ± 5.31 80.22 ± 7.79 82.05 ± 9.85

Explicit 49.28 ± 10.86 51.20 ± 6.27 48.80 ± 6.70 50.12 ± 6.42 48.02 ± 4.30 50.12 ± 3.69

loglike

PropEn mix x2x −42.61 ± 3.91 −41.18 ± 2.06 −41.42 ± 1.99 −87.75 ± 2.80 −87.99 ± 3.89 −85.62 ± 3.12

PropEn mix xy2xy −43.81 ± 3.17 −42.28 ± 2.05 −42.15 ± 2.37 −87.73 ± 3.09 −89.18 ± 3.40 −88.79 ± 4.11

PropEn x2x −40.63 ± 3.69 −39.08 ± 2.96 −39.54 ± 0.79 −80.22 ± 3.54 −79.61 ± 4.29 −80.38 ± 3.74

PropEn xy2xy −43.62 ± 4.15 −40.37 ± 2.51 −40.84 ± 4.53 −82.36 ± 3.51 −84.59 ± 6.19 −84.04 ± 4.75

Explicit −45.00 ± 2.50 −44.11 ± 2.45 −44.64 ± 1.71 −99.35 ± 3.01 −99.63 ± 3.84 −98.90 ± 3.63

uniqness

PropEn mix x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn mix xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Explicit 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

novelty

PropEn mix x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn mix xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Explicit 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

pinwheel

ratio imp

PropEn mix x2x 76.13 ± 8.52 74.69 ± 9.07 70.18 ± 14.31 84.98 ± 4.55 85.58 ± 8.33 81.79 ± 7.09

PropEn mix xy2xy 63.52 ± 8.45 77.89 ± 6.86 70.39 ± 14.60 70.70 ± 8.74 63.53 ± 12.08 76.15 ± 8.02

PropEn x2x 80.77 ± 9.76 77.78 ± 7.34 84.21 ± 9.85 86.15 ± 5.57 82.05 ± 5.73 84.05 ± 7.00

PropEn xy2xy 61.79 ± 5.53 60.53 ± 14.07 67.42 ± 13.04 61.54 ± 14.35 50.43 ± 7.01 57.81 ± 14.70

Explicit 51.46 ± 11.62 46.62 ± 8.34 49.04 ± 7.47 48.48 ± 4.65 49.65 ± 4.33 50.58 ± 3.82

loglike

PropEn mix x2x −38.12 ± 2.63 −38.42 ± 3.01 −39.73 ± 5.12 −80.66 ± 5.16 −82.53 ± 2.71 −82.38 ± 5.54

PropEn mix xy2xy −39.38 ± 2.92 −37.39 ± 2.91 −39.10 ± 3.74 −87.02 ± 8.20 −86.08 ± 5.19 −84.10 ± 6.25

PropEn x2x −37.56 ± 1.90 −37.00 ± 4.90 −36.36 ± 6.56 −80.00 ± 6.26 −76.48 ± 2.88 −76.90 ± 3.46

PropEn xy2xy −40.92 ± 3.45 −41.60 ± 3.88 −39.22 ± 4.34 −86.67 ± 6.00 −89.45 ± 8.21 −91.71 ± 13.46

Explicit −40.40 ± 1.93 −39.58 ± 2.24 −40.15 ± 1.81 −90.35 ± 5.03 −88.91 ± 3.16 −87.91 ± 4.62

uniqness

PropEn mix x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn mix xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.23 ± 2.43 100.00 ± 0.00 100.00 ± 0.00

PropEn xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Explicit 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

novelty

PropEn mix x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn mix xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn x2x 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

PropEn xy2xy 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Explicit 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ” provided a
proper justification is given (e.g., ”error bars are not reported because it would be too computationally
expensive” or ”we were unable to find the license for the dataset we used”). In general, answering
”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: For all claims made in the introduction, we provide theoretical analysis in
section 2 and experimental validation in section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] ,
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Justification: We include a paragraph on limitations of the current method at the end of
section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs are included in the supplementary material and corresponding
references can be found in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide tabular results with mean and standard deviations for all
experiments.

24

35996https://doi.org/10.52202/079017-1134



Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide link to open source repository for the code, and all details for
reproducing experiments are in Appendic B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
[Yes] We provide confidence intervals and standard deviations in all tables and figures we
report.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All details can be found in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.

26

35998https://doi.org/10.52202/079017-1134



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with all guidlines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper proposes methods that help optimizing seed designs. It is
representation-agnostic and as such it can help in advancing many scientific domains.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: he paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: We use the NeuralFoil software and propery cite it in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documented annonimized demo code for running part of the
experiments in our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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