
Bayesian Nonparametrics Meets Data-Driven
Distributionally Robust Optimization

Nicola Bariletto
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

nicola.bariletto@utexas.edu

Nhat Ho
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

minhnhat@utexas.edu

Abstract

Training machine learning and statistical models often involves optimizing a data-
driven risk criterion. The risk is usually computed with respect to the empirical data
distribution, but this may result in poor and unstable out-of-sample performance
due to distributional uncertainty. In the spirit of distributionally robust optimiza-
tion, we propose a novel robust criterion by combining insights from Bayesian
nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model
of smooth ambiguity-averse preferences. First, we highlight novel connections
with standard regularized empirical risk minimization techniques, among which
Ridge and LASSO regressions. Then, we theoretically demonstrate the existence
of favorable finite-sample and asymptotic statistical guarantees on the performance
of the robust optimization procedure. For practical implementation, we propose
and study tractable approximations of the criterion based on well-known Dirichlet
process representations. We also show that the smoothness of the criterion natu-
rally leads to standard gradient-based numerical optimization. Finally, we provide
insights into the workings of our method by applying it to a variety of tasks based
on simulated and real datasets.

1 Introduction

In machine learning and statistics applications, several quantities of interest solve the optimization
problem

min
θ∈Θ

Rp∗(θ),

where Rp(θ) := Eξ∼p[h(θ, ξ)] is the expected risk associated to decision θ, under cost function
h(θ, ξ) (measurable in the argument ξ) and given that the distribution of the (Ξ,B(Ξ))-valued data ξ
is p.1 For instance, if we are dealing with a supervised learning task where ξ = (x, y) ∈ Rm−1 × R,
h(θ, ξ) is usually a loss function ℓ(fθ(x), y) quantifying the cost incurred in predicting y with fθ(x)
– here the decision variable is θ, which parametrizes the function fθ : Rm−1 → R. For the rest of the
paper, we assume Ξ ⊆ Rm, Θ ⊆ Rd and h : Θ× Ξ → [0,K] for some K < ∞.2

In most cases of interest the true data-generating process p∗ is unknown, and only a sample ξn =
(ξ1, . . . , ξn) from it is available. The most popular solution is to approximate p∗ by the empirical
distribution pξn , and optimize Rpξn

(θ) ≡ n−1
∑n

i=1 h(θ, ξi). However, especially for small sample
sizes n and complex data-generating mechanisms, this can result in poor out-of-sample performance,
leading to the need for robust alternatives. A flourishing literature on Distributionally Robust

1Given a topological space (A, T ), we denote by B(A) the Borel σ-algebra generated by T .
2Note that, under mild regularity (e.g., continuity) conditions on h, its boundedness is ensured, for instance,

by the frequently assumed compactness of Ξ and Θ.
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Optimization (DRO) has provided several methods in that direction [though not always with data-
driven applications as the primary focus; see 35, for a recent exhaustive review of the field]. A
prominent approach is the min-max DRO (mM-DRO) one, whereby a worst-case criterion over an
ambiguity3 set of plausible distributions is minimized [19, 2, 3, 10, 46, 11]. Recent notable results
involve the study of mM-DRO problems where the ambiguity set is defined as a Wasserstein ball of
probability measures centered at the empirical distribution [29, 24].

Contribution. Differently from the mM-DRO paradigm, we propose a distributionally robust
procedure based on the minimization of the following criterion:

Vξn(θ) :=

∫
PΞ

ϕ(Rp(θ))Qξn(dp), (1)

where ϕ : [0,K] → R+ is a continuous, convex and strictly increasing function, and Qξn is a
Dirichlet process posterior conditional on ξn [13].

As we show below, our proposal brings together insights from two well-established strands of
literature – decision theory under ambiguity and Bayesian nonparametric statistics, – contributing in a
novel way to the field of data-driven distributionally robust optimization. As we establish throughout
the article, among the key advantages of the criterion are: (i) its favorable statistical properties in
terms of probabilistic finite-sample and asymptotic performance guarantees; (ii) the availability of
tractable approximations that are easy to optimize using standard gradient-based methods; and (iii)
its ability to both improve and stabilize the out-of-sample performance of standard learning methods.

The rest of the paper is organized as follows. In Section 2, we motivate the formulation in Equation (1)
by providing a concise overview of decision theory under ambiguity and its connections to Bayesian
statistics and regularization. In Section 3, we study the statistical properties of procedures based on
Vξn . In Section 4, we propose and study tractable approximations for Vξn based on the theory of
DP representations. In Section 5, we highlight the robustness properties of our method by applying
it to a variety of learning tasks based on real and simulated data. Section 6 concludes the article.
Proofs of theoretical results and further background are provided in Appendices A and B, respectively,
while in Appendix C we discuss how the smoothness of the proposed criterion yields straightforward
gradient-based optimization, and present more details on the numerical experiments. Code to replicate
our experiments can be found at the folllowing link: https://github.com/nbariletto/BNP_
for_DRO.

2 Decision Theory and Bayesian Statistics

Following a long-standing tradition in Bayesian statistics and decision theory [37], the distributional
uncertainty on the data-generating process p∗ can be dealt with by defining a prior Q over it. We
point out that this Bayesian approach contrasts with the classical one, where a prior would typically
be placed directly on the parameter θ, whose data-driven optimal value would be determined as a
function (e.g., the mean or mode) of the resulting posterior distribution. In this new framework,
instead, the parameter θ is treated as a variable to be optimized, while the prior is assigned to the
entire data-generating process. This perspective allows us to incorporate several valuable Bayesian
concepts, as we will clarify throughout the paper, while preserving the flexibility of the original
optimization-based learning framework. Notably, θ does not need to be interpreted as the parameter
of a full generative model, as would be required in a classical Bayesian setting. Instead, it can
represent a vector of parameters associated with a generic, possibly complex loss function, such as
those employed in modern deep learning architectures.

Specifically, our Bayesian approach is equivalent to modeling the observed data ξn = (ξ1, . . . , ξn)
as exchangeable with de Finetti measure Q:

ξi | p
iid∼ p, i = 1, . . . , n,

p ∼ Q.

Due to the stochasticity of p, Rp(θ) is itself a random variable, and a sensible procedure is to
maximize its posterior expectation. Let Qξn be the posterior law of p conditional on the sample ξn.

3Throughout the paper, we adopt the terms “ambiguity" and “uncertainty" interchangeably.
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Then, one solves the following problem:

min
θ∈Θ

Ep∼Qξn
[Rp(θ)] = min

θ∈Θ

∫
PΞ

∫
Ξ

h(θ, ξ)p(dξ)Qξn(dp) = min
θ∈Θ

Eξ∼p(·|ξn)[h(θ, ξ)],

where PΞ denotes the space of probability measures on B(Ξ) endowed with the Borel σ-algebra
B(PΞ) generated by the topology of weak convergence, while p(dξ|ξn) :=

∫
PΞ

p(dξ)Qξn(dp)
denotes the posterior predictive distribution. In sum, within this general Bayesian framework, the
data-driven problem reduces to minimizing h(θ, ξ) averaged w.r.t. the posterior predictive distribution,
i.e., minθ∈Θ Rp(·|ξn)(θ).

2.1 The Dirichlet Process

A natural choice is to model the prior Q as a Dirichlet process (DP), and Qξn is then a DP posterior.
First proposed by [13], the DP is the cornerstone nonparametric prior over spaces of probability
measures. Its specification involves a concentration parameter α > 0 and a centering probability
measure p0. Intuitively, the DP is characterized by the following finite-dimensional distributions:
p ∼ DP(α, p0) implies (p(A1), . . . , p(Ak)) ∼ Dirichlet(αp0(A1), . . . , αp0(Ak)) for any finite mea-
surable partition {A1, . . . , Ak} of Ξ.4 A key property of the DP is its almost sure discreteness, which
allows to write p

d
=
∑

j≥1 pjδξj (where probability weights and atom locations are independent).
Moreover, the DP is conjugate with respect to exchangeable sampling. In our case, this means

p ∼ DP(α, p0) ⇒ Qξn = DP
(
α+ n,

α

α+ n
p0 +

n

α+ n
pξn

)
.

That is, conditional on the sample ξn, p is again a DP with larger concentration parameter α + n
and centered at the predictive distribution p(·|ξn) := α

α+np0 +
n

α+npξn . The latter is a compromise
between the prior guess p0 and the empirical distribution pξn , and the balance between the two is
determined by the relative size of α and n. The predictive distribution is also related to the celebrated
Blackwell-MacQueen Pólya urn scheme (or Chinese restaurant process) to draw an exchangeable
sequence (ξi)i≥1 distributed according to p ∼ DP(α, p0): Draw ξ1 ∼ p0 and, for all i > 1 and ℓ < i,
set ξi = ξℓ with probability (α+ j − 1)−1, else (i.e., with probability α(α+ j − 1)−1) draw ξi ∼ p0
[4].

Given the large support of Qξn , which consists of all probability measures whose support is included
in that of p(·|ξn) [28], the DP is a reasonable and tractable option to mitigate misspecification
concerns. Then, leveraging the mentioned expression for the DP predictive distribution, the problem
specializes to

min
θ∈Θ

{
n

α+ n
Rpξn

(θ) +
α

α+ n
Rp0(θ)

}
(2)

[see also 27, 45]. In practice, adopting the above Bayesian approach amounts to introducing a
regularization term depending on the prior centering distribution p0. Compared to the simple empirical
risk Rpξn

(θ), this type of criterion displays lower variance (because Rp0
(θ) is non-random) at the

cost of some additional, asymptotically-vanishing bias w.r.t. the theoretical criterion Rp∗(θ). We
also note that such bias can be attenuated in finite samples as long as the prior guess p0 and the true
data-generating process p∗ are close enough in terms of the difference |Rp0

(θ)−Rp∗(θ)|.5

Connections to Regularization in Linear Regression. One of the most ubiquitous data-driven
learning tasks is linear regression [38, 7]. It is well-known that, in this setting, coefficient estimation
(e.g., via maximum likelihood or least squares) can be framed as a minimization problem of the
sample average of the squared loss function. It turns out that, applying the Bayesian regularized
approach (2), an interesting equivalence with standard regularization techniques such as Ridge [21]
and LASSO [41] emerges.
Proposition 2.1. Let h(θ, (y, x)) = (y − θ⊤x)2. Then, denoting λα,n := α/n, the following
equivalences hold:

4Also, E[p(A)] = p0(A) and V[p(A)] = (1 + α)−1p0(A)(1− p0(A)) for any A ∈ B(Ξ), justifying the
names of α and p0.

5In practice, the prior guess p0 can be leveraged to incorporate features of the underlying process that the
researcher suspects to hold (e.g., in regression applications, sparsity). See also Section 5.
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1. If p0 = N (0, I), then θ̂ solving (2) implies that it solves

min
θ∈Θ

{
1

n

n∑
i=1

h(θ, ξi) + λα,n∥θ∥22

}
;

2. If V = diag(|θ1|−1, . . . , |θd−1|−1) and p0 = N (0, V ), then θ̂ solving (2) implies that it solves

min
θ∈Θ

{
1

n

n∑
i=1

h(θ, ξi) + λα,n∥θ∥1

}
.

Proposition 2.1 is insightful because it highlights a novel Bayesian interpretation of Ridge and
LASSO linear regression. In fact, it is well known that both methods are equivalent to maximum-
a-posteriori estimation of regression coefficients when the latter are assigned either a normal or a
Laplace prior. In our setting, instead of a parametric prior on the regression coefficients, we place
a nonparametric one on the joint distribution of the response and the covariates. The degree of
regularization, then, is naturally guided by the prior confidence parameter α and the sample size n.
We also note that sparsity is only one of the possible data-generating features one might want to
enforce in regularized estimation,6 and the nonparametric Bayesian approach offers greater flexibility,
compared to Ridge and LASSO, to incorporate such patterns by specifying the prior expectation p0
of the joint response-covariate distribution.

2.2 Ambiguity Aversion

As we just showed, adopting a traditional Bayesian framework, uncertainty about the model p is
resolved by using the posterior Qξn to directly average p out. This procedure, however, does not take
into account the (partly) subjective nature of the beliefs encoded in Qξn , and the aversion to this that
a statistical decision maker (DM) might have. In fact, the result of the procedure is that the DM ends
up minimizing the expected risk, where the average is taken according to the predictive distribution.
In practice, then, the latter is put on the same footing as an objectively known probability distribution,
such as the true model.

This issue has been thoroughly studied and addressed in the economic decision theory literature
[18, 6]. In that context, the economic DM faces an analogous expected utility maximization problem
maxθ∈Θ Eξ∼p[u(θ, ξ)] (e.g., to allocate her capital to a portfolio of investments subject to random
economic shocks ξ). However, she does not possess enough objective information to pick one single
model of the world p, but deems a larger set of models plausible. One possibility, then, is that the
DM forms a second-order belief (e.g., a prior Q) over such set, and resolves uncertainty by directly
averaging expected utility profiles Eξ∼p[u(θ, ξ)] w.r.t. p ∼ Q.

Just like in our data-driven problem, however, direct averaging does not account for ambiguity
aversion. [23] proposed and axiomatized a tractable “Smooth Ambiguity Aversion" (SmAA)
model, whereby second-order averaging is preceded by a deterministic transformation ϕ induc-
ing uncertainty aversion via its curvature: The DM optimizes

∫
PΞ

ϕ(Eξ∼p[u(θ, ξ)])Q(dp), and
criterion (1) simply specializes the SmAA model to the data-driven case.7 When optimization
takes the form of minimization, ambiguity aversion is driven by the degree of convexity of ϕ.8
In particular, convexity encodes the DM’s tendency to pick decisions that yield less variable ex-
pected loss levels across ambiguous probability models. To see this intuitively, examine the sim-
ple case when only two models, p1 and p2, are supported by Q = 1

2δp1
+ 1

2δp2
. Consider two

decisions θ1 and θ2 that, under p1 and p2, yield the expected risks marked on the horizontal
axis of Figure 1. While

∫
Rp(θ1)Q(dp) =

∫
Rp(θ2)Q(dp) = R∗, the convexity of ϕ implies

6For instance, one might have prior information on specific correlation patterns among covariates, which
could be useful to incorporate in regression training with few data points.

7Our approach is also related to recent literature [48, 47, 40] exploring Bayesian ideas in the context of DRO.
However, the cited works (i) focus on parametric priors and (ii) rely on either ambiguity sets or statistical risk
measures to induce robustness. This is in contrast with our work, which (i) resorts to a more assumption-free
nonparametric prior and (ii) leverages the highlighted robustness properties of the simple yet powerful convex
transformation ϕ.

8In the economic decision theory literature, as the DM usually maximizes a criterion (utility), convexity is
replaced by concavity.
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Figure 1: Graphical display of smooth ambiguity aversion at work. Although θ1 and θ2 yield the
same loss R∗ in Q-expectation, the ambiguity averse criterion favors the less variable decision θ1.
Graphically, this is because the orange line connecting ϕ(Rp1

(θ1)) to ϕ(Rp2
(θ1)) lies (point-wise)

below the line connecting ϕ(Rp1
(θ2)) to ϕ(Rp2

(θ2)).∫
ϕ(Rp(θ1))Q(dp) <

∫
ϕ(Rp(θ2))Q(dp). That is, although θ1 and θ2 yield the same loss in

Q-expectation, the ambiguity-averse criterion favors θ1 because it ensures less variability across
uncertain distributions p1 and p2.

Interestingly, [5] showed that the SmAA model belongs to a general class of ambiguity-averse
preferences, which admit a common utility function representation. For SmAA preferences with
ϕ(t) = β exp(β−1t)−β (with β > 0 and under additional technical assumptions), this representation
implies the equivalence of problem (1) with

min
θ∈Θ

max
P :P≪Qξn

{
Ep∼P [Rp(θ)]− βKL(P∥Qξn)

}
,

where KL(·∥·) is the Kullback-Leibler divergence and ≪ denotes absolute continuity. The above
result further clarifies the mechanism through which distributional robustness is induced: Intuitively,
instead of directly averaging over p ∼ Qξn , one computes a worst-case scenario w.r.t. the mixing
measure, penalizing distributions that are further away from the posterior – the latter acts as a reference
probability measure. Moreover, in the limiting case β → 0, the mM-DRO setup is recovered, with
ambiguity set C = {p ∈ PΞ : ∃P ≪ Qξn , p =

∫
PΞ

qP (dq)}. In the other limiting case β → ∞
(with the convention 0 · ∞ = 0), the ambiguity neutral Bayesian criterion (2) is instead recovered.

3 Statistical Properties

In this section, we analyze the statistical properties of the criterion Vξn(θ), as a function of the sample
size n. A first issue of interest, addressed in Proposition 3.1, is to study its asymptotic point-wise
behavior (cf. [17], Corollary 4.17).
Proposition 3.1. Let ξn be iid according to p∗ and ξ 7→ h(θ, ξ) continuous for all θ ∈ Θ. Then, for
all θ ∈ Θ,

lim
n→∞

Vξn(θ) = ϕ(Rp∗(θ))

almost surely.

This ensures that, as more data are collected, the proposed criterion approaches, with probability 1,
the true theoretical risk (up to the strictly increasing transformation ϕ).

While point-wise convergence to the target ground truth is a first desirable property for any sensible
criterion, it is not enough to characterize the behavior of the optimization’s out-of-sample performance,
nor the closeness of the optimal criterion value and the criterion optimizer(s) to their theoretical
counterparts. In the following subsections, we study these properties both in the finite-sample regime
and in the asymptotic limit n → ∞.
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Finite-Sample Guarantees. Denote

θn ∈ argmin
θ∈Θ

Vξn(θ), θ∗ ∈ argmin
θ∈Θ

Rp∗(θ),

and we assume the above sets of minimizers to be non-empty throughout the article. In finite-sample
analysis, a first question of interest is whether probabilistic performance guarantees hold for the robust
criterion optimizer θn. In our setting, one can naturally measure performance by the narrowness
of the gap between Rp∗(θn) and Rp∗(θ∗). As we clarify later, Lemma 3.2 is a first step towards
establishing this type of guarantees.

Lemma 3.2. Let ϕ be twice continuously differentiable on (0,K), with Mϕ := supt∈(0,K) ϕ
′(t) <

+∞ and γ∗
ϕ := supt∈(0,K) γϕ(t) < +∞, where γϕ(t) := ϕ′′(t)/ϕ′(t) ≥ 0. Then

sup
θ∈Θ

|Vξn(θ)− ϕ(Rp∗(θ))| ≤ Mϕ

[
n

α+ n
sup
θ∈Θ

|Rpξn
(θ)−Rp∗(θ)|+

α

α+ n
K +

K2

2
γ∗
ϕ

]
.

Lemma 3.2 links the sup distance of the criterion Vξn from the theoretical risk to three key objects:

1. The classical sup distance between the empirical and theoretical risk, supθ∈Θ |Rpξn
(θ)−

Rp∗(θ)|;
2. The sup distance between the theoretical risk and the risk computed w.r.t. the base probability

measure p0, supθ∈Θ |Rp0
(θ) − Rp∗(θ)|. In fact, while in the formulation of Lemma 3.2

we bound such distance by K (see the second addendum) to eliminate the dependence on
the unknown but fixed p∗, one could equivalently replace K by supθ∈Θ |Rp0

(θ)−Rp∗(θ)|.
This clarifies that, if p0 is a good guess for p∗, i.e., if the above sup distance is small,
adopting a Bayesian prior centered at p0 can improve finite sample bounds;

3. The Arrow-Pratt coefficient γϕ(t) of absolute ambiguity aversion. In the economic theory
literature on decision-making under risk, this is a well-known concept measuring the degree
of risk aversion of decision makers, with point-wise larger values of γϕ corresponding
to more risk aversion. See [23] for a discussion on the straightforward adaptation of this
measure to the ambiguity (rather than risk) aversion setup we work in.

Most importantly, Lemma 3.2 allows us to prove the following Theorem, which yields the performance
guarantees we are after.

Theorem 3.3. For all δ > 0

P[ϕ(Rp∗(θn))− ϕ(Rp∗(θ∗)) ≤ δ]

≥ P

[
sup
θ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣ ≤ α+ n

n

(
δ

2Mϕ
− α

α+ n
K − K2

2
γ∗
ϕ

)]
.

Theorem 3.3 allows to obtain finite-sample probabilistic guarantees on the excess risk ϕ(Rp∗(θn))−
ϕ(Rp∗(θ∗)) via bounds on supθ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣. The latter is a well-studied quantity, and
the sought bounds follow from standard results relying on conditions on the complexity of the
function class H := {h(θ, ·) : θ ∈ Θ}, as measured by its Vapnik–Chervonenkis dimension, metric
entropy, etc. We refer the reader to [44, 43] for a systematic treatment of the topic and specific useful
results.

Asymptotic Guarantees. So far, we have studied the finite-sample behavior of the out-of-sample
performance of θn. Another closely related type of results deals with the asymptotic limit of such
performance, as well as with the convergence of optimum criterion values and optimizing parameters
to their ground-truth counterparts. In this Subsection, attention is turned to theoretical results of this
kind.

Finite-sample guarantees on supθ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣ are usually of the form

P
[
sup
θ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣ ≤ δ
]
≥ 1− ηn,

6
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with
∑∞

n=1 ηn < ∞. This implies (via a straightforward application of the first Borel-Cantelli
Lemma) the almost sure vanishing of supθ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣. Thus, we include this as an
assumption of the next Theorem. Moreover, we introduce a functional dependence of ϕ on n, and
denote ϕ ≡ ϕn accordingly.
Theorem 3.4. Retain the assumptions of Lemma 3.2 and limn→∞ supθ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣ = 0
almost surely. Moreover, assume that ϕn satisfies (1) limn→∞ γ∗

ϕn
= 0, (2) supn≥1 Mϕn

< ∞, and
(3) limn→∞ supt∈[0,K] |ϕn(t)− t| = 0. Then the next two almost sure limits hold:

lim
n→∞

Rp∗(θn) = Rp∗(θ∗), lim
n→∞

Vξn(θn) = Rp∗(θ∗).

Theorem 3.4 is crucial because it ensures that, asymptotically, the excess risk vanishes and the
finite-sample optimal value converges to the optimal value under the data generating process.9

Remark 3.5. From a design point of view, the type of n-dependent parametrization of ϕ required
in Theorem 3.4 is sensible, as it is equivalent to adopting vanishing levels of ambiguity aversion
(uniformly vanishing Arrow-Pratt coefficient) as the sample size grows – that is, as one obtains a
more and more precise estimate of the true distribution p∗. Moreover, this assumption is in the spirit
of the condition imposed on the radius of the Wasserstein ambiguity ball in [29], which is required
to vanish as the sample size grows. Finally, it is easy to show that ϕn(t) = βn exp(β

−1
n t)− βn, for

positive βn → ∞, satisfies the conditions of Theorem 3.4, and from now on we silently assume this
form for ϕn.

Finally, we leverage the above results to ensure the convergence of the sequence of optimizers
(θn)n≥1 to a theoretical optimizer.
Theorem 3.6. Let θ 7→ h(θ, ξ) be continuous for all ξ ∈ Ξ and limn→∞ Rp∗(θn) = Rp∗(θ∗)
almost surely (e.g., as ensured in Theorem 3.4). Then, almost surely, limn→∞ θn = θ̄ implies
Rp∗(θ̄) = Rp∗(θ∗).

4 Monte Carlo Approximation

In what follows, we fix a sample ξn and propose simulation strategies to estimate Vξn(θ). The latter,
in fact, is analytically intractable due to the infinite dimensionality of Qξn . To that end, we exploit

a key representation of DPs first established by [39]: If p ∼ DP(η, q), then p
d
=
∑∞

j=1 pjξj , where

ξj
iid∼ q and the sequence of weights (pj)j≥1 is constructed via a stick-breaking procedure based on

iid Beta(1, η) samples (see Appendix B). Thus, for large enough integers T and N , we propose the
following Stick-Breaking Monte Carlo (SBMC) approximation for Vξn(θ):

V̂ξn(θ, T,N) :=
1

N

N∑
i=1

ϕ

(
T∑

j=0

pijh(θ, ξij)

)
, (3)

where, T denotes the number of stick-breaking steps performed before truncating each Monte Carlo
sample from the DP posterior Qξn , while N denotes the number of such samples. Algorithm 1 in
Appendix B details the procedure, which essentially approximates the posterior DP via truncation
and takes expectations accordingly.
Remark 4.1. We propose to truncate the stick-breaking procedure at some fixed step T . Another
strategy would involve truncating it at a random step Ti(ε) := min

{
t ∈ N :

∏t
j=1 pij ≤ ε

}
for some

small ε > 0. This allows to directly control the approximation error at each Monte Carlo sample
[30, 1], though it leads to simulated measures with supports of different cardinalities. For the sake of
theory, we opt for the fixed-step/random-error approximation, though the random-step/fixed-error
one is equally viable in practice.
Remark 4.2. On top of being a theory-based approximation for Vξn(θ), the criterion (3) can be
interpreted as implementing a form of robust Bayesian bootstrap. Instead of directly averaging
the risk h(θ, ·) with respect to the empirical distribution, we first obtain N bootstrap samples of

9Using an analogous line of reasoning as in the proof of Theorem 3.4 (see Appendix A), we note that Lemma
3.2 and Theorem 3.3 can be easily adapted in to obtain finite sample bounds on supθ∈Θ |Vξn(θ)−Rp∗(θ)| and
Rp∗(θn)−Rp∗(θ∗) depending on supt∈[0,K] |ϕ(t)− t|.
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size T from the predictive (which is a compromise between the empirical and the prior centering
distributions), we weight observations according to the stick-breaking procedure, and finally take a
grand average of the ϕ-transformed weighted sums. This connection with the Bayesian bootstrap
suggests the following alternative Multinomial-Dirichlet Monte Carlo (MDMC) version of Vξn(θ):

1

N

N∑
i=1

ϕ

(
T∑

j=1

wijh(θ, ξij)

)
,

where (wi1, . . . , wiT )
iid∼ Dirichlet

(
T ; α+n

T , . . . , α+n
T

)
and the atoms are iid according to the predic-

tive (see Algorithm 2 in Appendix B).10 For practical computation, we recommend using the MDMC
approximation, as it tends to yield more balanced weights, compared to SBMC, even for low values
of T .

With the following results, we ensure finite-sample and asymptotic guarantees on the closeness of
optimization procedures based on the SBMC approximation versus the target Vξn .
Lemma 4.3. Assume Θ is a bounded subset of Rd and, for all ξ ∈ Ξ, θ 7→ h(θ, ξ) is c(ξ)-Lipschitz
continuous. Then, for all T,N ≥ 1 and ε > 0,

sup
θ∈Θ

∣∣V̂ξn(θ, T,N)− Vξn(θ)]
∣∣ ≤ MϕK ×

[
α+ n

α+ n+ 1

]T
+ ε

with probability at least

1− 2

(
32MϕCT diam(Θ)

√
d

ε

)d

×
[
exp

{
− 3Nε2

4ϕ(K)(6ϕ(K) + ε)

}
+ exp

{
− 3Nε

40ϕ(K)

}]
for some constant CT > 0.

Heuristically, the bound in Lemma 4.3 is obtained by decomposing the left-hand side of the inequality
into a first term depending on the truncation error induced by the threshold T , and a second term
reflecting the Monte Carlo error related to N . Moreover, analogously to Lemma 3.2, Lemma
4.3 easily implies finite-sample bounds on the excess “robust risk" Vξn(θ̂n(T,N)) − Vξn(θn),
where θ̂n(T,N) ∈ argminθ∈Θ V̂ξn(θ, T,N). Another consequence is the following asymptotic
convergence Theorem, whose proof is analogous to that of Theorem 3.4.
Theorem 4.4. Under the same assumptions of Lemma 4.3, and if supT≥1 CT < ∞ (see Appendix A
for details on CT ),

lim
T,N→∞

sup
θ∈Θ

∣∣V̂ξn(θ, T,N)− Vξn(θ)]
∣∣ = 0

almost surely. Also, almost surely

lim
T,N→∞

V̂ξn(θ̂n(T,N), T,N) = Vξn(θn), lim
T,N→∞

Vξn(θ̂n(T,N)) = Vξn(θn).

In words, Theorem 4.4 ensures that, as the truncation and MC approximation errors vanish, the
optimal approximate criterion value converges to the optimal exact one, and that the exact criterion
value at any approximate optimizer converges to the exact optimal value. Also note that Theorems
3.4 and 4.4, when combined, provide guarantees on the convergence of V̂ξn(θ̂n(T,N), T,N) (the
empirical criterion one has optimized in practice) to Rp∗(θ∗) (the theoretical optimal target) as the
sample size increases and the DP approximation improves.

Finally, as a byproduct of Theorem 4.4, convergence of any approximate robust optimizer to an exact
one is established as follows.11

Theorem 4.5. Let θ 7→ h(θ, ξ) be continuous for all ξ ∈ Ξ. Moreover, assume

lim
T,N→∞

Vξn(θ̂n(T,N)) = Vξn(θn)

almost surely (e.g., as ensured above). Then, almost surely, limT,N→∞ θ̂n(T,N) = θ̄n implies
Vξn(θ̄n) = Vξn(θn).

10In the α = 0 limit and setting T = n, the well-known “Bayesian bootstrap distribution" is recovered [17,
see also Appendix B for further details].

11In Appendix A, we also present an asymptotic normality result for the approximate optimizer θ̂n(T,N)
(Proposition A.3).
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5 Experiments

We applied our robust optimization procedure to a host of simulated and real datasets, and we report
results in this Section. Before proceeding, we notice that, given the finite approximations proposed in
Section 4 and under mild regularity assumptions on the loss function h, the proposed robust criterion
is amenable to standard gradient-based optimization procedures (see Appendix C for further details
and an insightful interpretation of the gradient of our criterion as yielding robustly weighted stochastic
gradient descent steps).

Simulation Studies. We tested our method on three different learning tasks featuring a high
degree of distributional uncertainty in the data generating process, and compared performance to
the corresponding ambiguity neutral (i.e., simply regularized) and unregularized procedures. First,
we performed a high-dimensional sparse linear regression simulation experiment. We simulated
200 independent samples of size n = 100 from a linear model with d = 90 features (moderately
correlated with each other), only the first s = 5 of which have unitary positive marginal effect on
the scalar response y. Second, we performed a simulation experiment on univariate Gaussian mean
estimation in the presence of outliers. We simulated 200 independent samples of 13 observations, 10
of which come from a 0-mean Gaussian distribution and 3 from an outlier distribution, and tested
the ability of the three methods to recover the true mean (i.e., 0). Third, we performed a simulation
experiment on high-dimensional sparse logistic regression for binary classification. We set up a
data-generating mechanism similar to the linear regression experiment, where a small subset of
features linearly influence the log odds-ratio.

Appendix C collects further details on the above experiments as well as plots summarizing the results
(see Figures 2, 3, and 4). All three experiments reveal the ability of our robust method to improve
out-of-sample performance and estimation accuracy in two ways, i.e., (i) by yielding good results
on average, and especially (ii) by reducing performance variability. The latter is a key robustness
property that our method is designed to achieve.

Real Data Applications. We tested our method on three diverse real-world datasets. In the first
study, we applied our method to predict diabetes development based on a host of features, as collected
in the popular and public Pima Indian Diabetes dataset. Because the outcome is binary, we used
logistic regression as implemented (i) with our robust method, (ii) with L1 regularization, and (iii)
in its plain, unregularized version. We selected hyperparameters via cross-validation and tested the
out-of-sample performance of the three methods applied to disjoint batches of training observations
to assess the methods’ performance variability. As we report in Appendix C, our robust method
outperforms both alternatives on average and does significantly better in reducing variability.

We performed two further studies on linear regression applied to two popular UCI Machine Learning
Repository datasets: The Wine Quality dataset [8] and the Liver Disorders dataset [15]. Similarly
to the first study, we compared the performance of our method to OLS (unregularized) estimation
and L1-penalized (LASSO) regression. After cross-validation for parameter selection, we train the
models multiple times on separate batches of data and compute out-of-sample performance on a large
held-out set of observations. As the results reported in Appendix C show, also in these settings our
robust DP-based method performs better than the alternatives both on average and especially in terms
of lower variability. Taken together, the experimental results described in this Section corroborate
empirically the robustness properties of the proposed criterion, as examined theoretically throughout
the paper.

6 Discussion

The paper tackled the problem of optimizing a data-driven criterion in the presence of distributional
uncertainty about the data-generating mechanism. To mitigate the underperformance of classical
methods, we introduced a novel distributionally robust criterion, drawing insights from Bayesian
nonparametrics and a decision-theoretic model of smooth ambiguity aversion. We established connec-
tions with standard regularization techniques, including Ridge and LASSO regression, and theoretical
analysis revealed favorable finite-sample and asymptotic guarantees on the performance of the robust
procedure. For practical implementation, we presented and examined tractable approximations of
the criterion, which are amenable to gradient-based optimization. Finally, we applied our method
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to a variety of simulated and real datasets, offering insights into its practical robustness properties.
Naturally, our work presents some limitations that give rise to interesting directions for future research.
In particular, we note the need for a deeper examination of the model workings in terms of (i) its
parameter configuration and (ii) its broader application to general learning tasks (e.g., when the loss
function is adapted to accommodate deep learning architectures). Moreover, our method, as many
others in the distributional robustness literature, is only suited to process homogeneously generated
(e.g., iid or exchangeable) data, leaving room to explore extensions to more complex dependence
structures. Finally, we highlight that our study offers prospects for investigating connections among
such varied yet interconnected strands of literature as optimization, decision theory, and Bayesian
statistics.
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Supplement to “Bayesian Nonparametrics Meets Data-Driven
Distributionally Robust Optimization"

This Supplement to “Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimiza-
tion" is organized as follows. In Appendix A, we collect the proofs of all results presented in the main
text. In Appendix B, we provide further background on Dirichlet process representations and related
posterior simulation algorithms. In Appendix C, we describe in detail gradient based optimization of
our criterion and the experiments presented in the paper. Finally, in Appendix D we provide details
on our computational infrastructure.

A Technical Proofs and Further Results

Proof of Proposition 3.1. Let⇝ denote weak convergence of probability measures. By Corollary
4.17 in [17], Qξn ⇝ δp∗ almost surely. That is,

lim
n→∞

∫
PΞ

f(p)Qξn(dp) = f(p∗)

almost surely for any bounded and continuous f : PΞ → R. Thus, we are left to prove that
p 7→ ϕ(Rp(θ)) is bounded and continuous for all θ ∈ Θ. It is bounded because ϕ is continuous on
the compact interval [0,K], and it is continuous because p 7→ Rp(θ) is continuous (by the definition
of topology of weak convergence and because ξ 7→ h(θ, ξ) is bounded and continuous) and ϕ is
continuous.

Proof of Lemma 3.2. First note that, by the stated assumptions, it follows from Taylor’s theorem
that

ϕ(Rp(θ)) = ϕ(Rp∗(θ)) + ϕ′(Rp∗(θ))[Rp −Rp∗ ] +
ϕ′′(cp,θ)

2
[Rp −Rp∗ ]

2

for all p ∈ PΞ and θ ∈ Θ and for some cp,θ ∈ [0,K]. Then

sup
θ∈Θ

|Vξn(θ)− ϕ(Rp∗(θ))| = sup
θ∈Θ

∣∣∣∣ϕ′(Rp∗(θ))

∫
PΞ

[Rp(θ)−Rp∗(θ)]Qξn(dp)

+

∫
PΞ

ϕ′′(cp,θ)

2
[Rp(θ)−Rp∗(θ)]

2Qξn(dp)

∣∣∣∣
≤ Mϕ sup

θ∈Θ

∣∣∣∣ α

α+ n
Rp0

(θ) +
n

α+ n
Rpξn

(θ)−Rp∗(θ)

∣∣∣∣
+Mϕ sup

θ∈Θ

(∫
PΞ

[Rp(θ)−Rp∗(θ)]
2

2
Qξn(dp)

)
sup

t∈(0,K)

γϕ(t)

≤ Mϕ

[
n

α+ n
sup
θ∈Θ

|Rpξn
(θ)−Rp∗(θ)|+

α

α+ n
K +

K2

2
sup

t∈(0,K)

γϕ(t)

]
.

Proof of Theorem 3.3. Notice the following decomposition:

ϕ(Rp∗(θn))− ϕ(Rp∗(θ∗))︸ ︷︷ ︸
≥0

(4)

= ϕ(Rp∗(θn))− Vξn(θn) + Vξn(θn)− Vξn(θ∗)︸ ︷︷ ︸
≤0

+Vξn(θ∗)− ϕ(Rp∗(θ∗))

≤ 2 sup
θ∈Θ

|Vξn(θ)− ϕ(Rp∗(θ))|.
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Then, Lemma 3.2 implies that, for all δ > 0,

P[ϕ(Rp∗(θn))− ϕ(Rp∗(θ∗)) ≤ δ]

≥ P
[
sup
θ∈Θ

|Vξn(θ)− ϕ(Rp∗(θ))| ≤ δ/2

]
≥ P

[
Mϕ

{
n

α+ n
sup
θ∈Θ

|Rpξn
(θ)−Rp∗(θ)|+

α

α+ n
K +

K2

2
sup

t∈(0,K)

γϕ(t)

}
≤ δ/2

]

= P

[
sup
θ∈Θ

∣∣Rpξn
(θ)−Rp∗(θ)

∣∣ ≤ α+ n

n

(
δ

2Mϕ
− α

α+ n
K − K2

2
sup

t∈(0,K)

γϕ(t)

)]
.

Proof of Theorem 3.4. Since

lim
n→∞

sup
θ∈Θ

|Rpξn
(θ)−Rp∗(θ)| = 0

almost surely and given assumptions (1) and (2) on ϕn, by Lemma 3.2 we obtain

lim
n→∞

sup
θ∈Θ

|Vξn(θ)− ϕn(Rp∗(θ))| = 0

almost surely. Then, by decomposition (4),

lim
n→∞

ϕn(Rp∗(θn))− ϕn(Rp∗(θ∗)) = 0

almost surely and
lim
n→∞

Vξn(θn)− Vξn(θ∗) = 0

almost surely. As a consequence,

lim
n→∞

|Vξn(θn)− ϕn(Rp∗(θ∗))|

≤ lim
n→∞

[|Vξn(θn)− Vξn(θ∗)|+ |Vξn(θ∗)− ϕn(Rp∗(θ∗))|]

≤ lim
n→∞

[
|Vξn(θn)− Vξn(θ∗)|+ sup

θ∈Θ
|Vξn(θ)− ϕn(Rp∗(θ))|

]
= 0

almost surely. Now recall assumption (3), i.e., the sequence (ϕn)n≥1 converges uniformly to the
identity map. Then, in light of the previous observations and by noticing that

|Rp∗(θn)−Rp∗(θ∗)| ≤ |Rp∗(θn)− ϕn(Rp∗(θn))|+ |ϕn(Rp∗(θn))− ϕn(Rp∗(θ∗))|
+ |ϕn(Rp∗(θ∗))−Rp∗(θ∗)|

and
|Vξn(θn)−Rp∗(θ∗)| ≤ |Vξn(θn)− ϕn(Rp∗(θ∗))|+ |ϕn(Rp∗(θ∗))−Rp∗(θ∗)|,

the two desired almost sure limits follow:

lim
n→∞

Rp∗(θn) = Rp∗(θ∗), lim
n→∞

Vξn(θn) = Rp∗(θ∗).

Proof of Theorem 3.6. We have

Rp∗(θ∗) ≤ Rp∗(θ̄) = Eξ∼p∗ lim
n′→∞

h(θn, ξ) = lim
n→∞

Rp∗(θn) = Rp∗(θ∗)

almost surely, where the first equality follows from the continuity of θ 7→ h(θ, ξ) and the second one
from the Dominated Convergence Theorem. Then, Rp∗(θ̄) = Rp∗(θ∗) almost surely, proving the
result.

To Prove Lemma 4.3, we introduce two other Lemmas. After proving those, Lemma 4.3 follows
immediately.
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Lemma A.1. For all T,N ≥ 1,

sup
θ∈Θ

|V̂ξn(θ, T,N)−Vξn(θ)| ≤ MϕK

(
α+ n

α+ n+ 1

)T

+sup
θ∈Θ

∣∣∣V̂ξn(θ, T,N)−E[V̂ξn(θ, T, 1)]
∣∣∣. (5)

Proof. We have

sup
θ∈Θ

|V̂ξn(θ, T,N)− Vξn(θ)|

≤ sup
θ∈Θ

∣∣∣V̂ξn(θ, T,N)− E[V̂ξn(θ, T, 1)]
∣∣∣+ sup

θ∈Θ

∣∣∣E[V̂ξn(θ, T, 1)]− Vξn(θ)
∣∣∣. (6)

Note that

E[V̂ξn(θ, T, 1)] = Ep1,ξ1,...,pT ,ξT

[
ϕ

(
T∑

j=1

pjh(θ, ξj) + p0h(θ, ξ0)

)]

= E∑
j≥1 pjδξj∼Qξn

[
ϕ

(
T∑

j=1

pjh(θ, ξj) + p0h(θ, ξ0)

)]

= E∑
j≥1 pjδξj∼Qξn

[
ϕ

( ∞∑
j=1

pjh(θ, ξj) + p0h(θ, ξ0)−
∞∑

j=T+1

pjh(θ, ξj)

)]

= Vξn(θ) + E∑
j≥1 pjδξj∼Qξn

[
ϕ′(cθ,∑j≥1 pjδξj

)
p0

{
h(θ, ξ0)−

∞∑
j=T+1

pj
p0

h(θ, ξj)

}]
,

where the last equality follows from the mean value theorem applied to endpoints
∑∞

j=1 pjh(θ, ξj)

and
∑∞

j=1 pjh(θ, ξj)+ p0h(θ, ξ0)−
∑∞

j=T+1 pjh(θ, ξj). Then the second term in (6) is bounded by

MϕKE∑
j≥1 pjδξj∼Qξn

[p0] = MϕKE

[
T∏

k=1

(1−Bk)

]
= MϕK

(
α+ n

α+ n+ 1

)T

.

The second term on the left-hand side of Equation(5) is instead of the form

sup
g∈G

∣∣∣∣ 1N
N∑
i=1

g(Xi)− E[g(X1)]

∣∣∣∣, (7)

where Xi =
∑T

j=0 pijh(θ, ξij) are iid random variables whose distribution is determined by the
truncated stick-breaking procedure.

The aim of the next Lemma is to provide sufficient conditions for finite sample bounds and asymptotic
convergence to 0 of the term in (7). Specifically, we impose complexity constraints on the function
class H := {ξ 7→ h(θ, ξ) : θ ∈ Θ} which allow us to obtain appropriate conditions on the derived
class

F :=

{
(pj , ξj)

T
j=0 7→ ϕ

(
T∑

j=1

pjh(θ, ξj) + p0h(θ, ξ0)

)
: θ ∈ Θ

}
,

ensuring the asymptotic and non-asymptotic results we seek.
Lemma A.2. Assume Θ is a bounded subset of Rd and θ 7→ h(θ, ξ) is c(ξ)-Lipschitz continuous for
all ξ ∈ Ξ. Then, for all T,N ≥ 1 and ε > 0,

sup
θ∈Θ

∣∣∣V̂ξn(θ, T,N)− E[V̂ξn(θ, T, 1)]
∣∣∣ ≤ ε

with probability at least

1− 2

(
32MϕCT diam(Θ)

√
d

ε

)d [
exp

{
− 3Nε2

4ϕ(K)(6ϕ(K) + ε)

}
+ exp

{
− 3Nε

40ϕ(K)

}]
.

for some constant CT > 0.
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Proof. By the Lipschitz continuity assumption on h(θ, ξ), we obtain that, for all (pj , ξj)Tj=0, θ 7→
ϕ
(∑T

j=1 pjh(θ, ξj) + p0h(θ, ξ0)
)

is Mϕc̃
(
(pj , ξj)

T
j=0

)
-Lipschitz continuous, with

c̃
(
(pj , ξj)

T
j=0

)
:=

T∑
j=0

pjc(ξj).

Indeed, for all θ1, θ2 ∈ Θ,∣∣∣∣∣ϕ
(

T∑
j=1

pjh(θ1, ξj) + p0h(θ1, ξ0)

)
− ϕ

(
T∑

j=1

pjh(θ2, ξj) + p0h(θ2, ξ0)

)∣∣∣∣∣
≤ Mϕ

T∑
j=1

pj |h(θ1, ξj)− h(θ2, ξj)|+ p0|h(θ1, ξ0)− h(θ2, ξ0)|

≤ Mϕc̃
(
(pj , ξj)

T
j=0

)
∥θ1 − θ2∥.

Therefore, denoting by P the law of the vector (pj , ξj)Tj=0 and by N[](ε,F ,L1(P )) the associated
ε-bracketing number of the class F , by Lemma 7.88 in [25] we obtain

N[](ε,F ,L1(P )) ≤

(
4MϕCdiam(Θ)

√
d

ε

)d

,

with CT :=
∫
c̃
(
(pj , ξj)

T
j=0

)
dP . Then the result follows by Theorem 7.86 in [25] after noticing that

supf∈F ∥f∥L1(P ) ≤ supf∈F ∥f∥∞ ≤ ϕ(K).

Proof of Theorem 4.5. We have

Vξn(θn) ≤ Vξn(θ̄n)

= Ep∼Qξn

[
lim

N→∞
lim

T→∞
ϕ(Rp(θ̂n(T,N)))

]
= lim

N→∞
lim

T→∞
Vξn(θ̂n(T,N))

= Vξn(θn)

almost surely, where the first two equalities follow from the continuity of θ 7→ h(θ, ξ) and ϕ as well
as from an iterated application of the Dominated Convergence Theorem (recall that h(θ, ξ) ∈ [0,K]
by assumption for all θ and ξ). This implies Vξn(θn) = Vξn(θ̄n) almost surely.

In the next result, we will assume ϕ(t) ≡ ϕβ(t) = β exp(t/β)− β. Moreover, we will emphasize,
through superscripts, the dependence of mathematical objects on β and the DP concentration parame-
ter α. Moreover, if necessary, we make the truncation threshold Tn and the number of MC samples
Nn dependent on the sample size n.
Proposition A.3. Assume Θ is an open subset of Rd and
limN→∞ limT→∞ supθ∈Θ |V̂ α,β

ξn (θ, T,N) − V α,β
ξn (θ)| = 0 almost surely for all α > 0 and

β > 0. Moreover, assume that

1. θ 7→ h(ξ, θ) is differentiable at θ∗ ∈ argminθ∈Θ Rp∗(θ) for p∗-almost every ξ ∈ Ξ, with
gradient ∇θ∗(ξ);

2. For all θ1 and θ2 in a neighborhood of θ∗, there exists a measurable function ξ 7→ H(ξ) ∈
L2
p∗

such that |h(θ1, ξ)− h(θ2, ξ)| ≤ H(ξ)∥θ1 − θ2∥;

3. θ 7→ Rp∗(θ) admits a second-order Taylor expansion at θ∗, with non-singular symmetric
Hessian matrix Vθ∗ .

Then, with probability 1, there exist sequences (Tn)n≥1, (Nn)n≥1, (βn)n≥1, (diverging to ∞) and
(αn)n≥1 (converging to 0), such that

√
n
(
θ̂αn,βn
n (Tn, Nn)− θ∗

)
⇝ N (0, V ), V := V −1

θ∗
Eξ∼p∗

[
∇θ∗(ξ)∇θ∗(ξ)

⊤]V −1
θ∗

,

provided θ̂αn,βn
n (Tn, Nn)

p→ θ∗ as n → ∞.
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Proof. The imposed assumptions match those listed in Theorem 5.23 of [42]. The only condition left
to prove is that there exist sequences (Tn)n≥1, (Nn)n≥1, (βn)n≥1, (diverging to ∞) and (αn)n≥1

(converging to 0), such that Rpξn
(θ̂αn,βn

n (Tn, Nn)) − infθ∈Θ Rpξn
(θ) ≤ op(n

−1). We do so by
proving that, for any fixed n ≥ 1, Rpξn

(θ̂α,βn (T,N)) → infθ∈Θ Rpξn
(θ) almost surely as α → 0

and β, T,N → ∞; this implies that, for all n, with probability 1 there exist αn, βn, Tn and Nn such
that Rpξn

(θ̂αn,βn
n (Tn, Nn))− infθ∈Θ Rpξn

(θ) ≤ εn for any εn > 0. Moreover, it is easy to see that
the result is implied by supθ∈Θ |V̂ α,β

ξn (θ, T,N)−Rpξn
(θ)| → 0, so we prove the latter. We have

sup
θ∈Θ

|V̂ α,β
ξn (θ, T,N)−Rpξn

(θ)|

≤ sup
θ∈Θ

|V̂ α,β
ξn (θ, T,N)− V α,β

ξn (θ)|+ sup
θ∈Θ

|V α,β
ξn (θ)−Rpξn

(θ)|,

where the first term converges to 0 almost surely by assumption. Using a second-order Taylor
expansion of ϕβ(Rp(θ)) around Rpξn

(θ), the second term, instead, satisfies

sup
θ∈Θ

|V α,β
ξn (θ)−Rpξn

(θ)| = sup
θ∈Θ

∣∣∣∣∫
PΞ

ϕβ(Rp(θ))Q
α
ξn(dp)−Rpξn

(θ)

∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣ϕ′
β(Rpξn

(θ))

(∫
PΞ

Rp(θ)Q
α
ξn(dp)−Rpξn

(θ)

)∣∣∣∣+ K2

2
sup

t∈[0,K]

ϕ′′
β(t)

≤ sup
t∈[0,K]

ϕ′
β(t)︸ ︷︷ ︸

→1

sup
θ∈Θ

∣∣∣∣ n

α+ n
Rpξn

(θ) +
α

α+ n
Rp0

(θ)−Rpξn
(θ)

∣∣∣∣︸ ︷︷ ︸
→0

+
K2

2
sup

t∈[0,K]

ϕ′′
β(t)︸ ︷︷ ︸

→0

→ 0,

as α → 0 and β → ∞.

Remark A.4. Theorems 3.6 and 4.5 ensure that (a) for all n ≥ 1, provided θ̂n(T,N) converges
almost surely to some θn ∈ Θ, the latter is a minimizer of Vξn(θ); and (b) if the above sequence
(θn)n≥1 converges almost surely to some θ∗ ∈ Θ, the latter is a minimizer of Rp∗(θ). Notice
that the assumptions required for these results are consistent with the ones of Proposition A.3,
so they can be used to justify the condition θ̂αn,βn

n (Tn, Nn)
p→ θ∗. For instance, if one assumes

almost sure uniqueness of minimizers and almost sure convergence of the above defined sequences,
θ̂αn,βn
n (Tn, Nn)

p→ θ∗ can be guaranteed leveraging the preceding results.

Stochastic Gradient Descent Convergence Analysis. The following results refer to material
presented in Appendix C below. For ease of exposition, we fix B = 1 and denote by Et the
expectation operator conditional on the realization of the random index draws m1, . . . ,mt iid∼
Uniform({1, . . . ,M}).
Proposition A.5. Assume that V is convex and that (θt)t≥1 follows Equation (9)) for some starting
value θ0 ∈ Θ and B = 1. Moreover, assume that, for all θ ∈ Θ,

M−1
M∑

m=1

∥ℓmϕ′(Hm(θ))∇θh(θ, ξm)∥2 ≤ σ2
ν .

Then

ET−1[V (θ̃T )]− V (θ∗) ≤
∥θ0 − θ∗∥2 + σ2

ν

∑T
t=0 η

2
t

2
∑T

t=0 ηt
,

where θ∗ ∈ argminθ∈Θ V (θ), θ̃T :=
∑T

t=0 νtθ
t, and νt :=

ηt∑T
t′=0

ηt′
.

Proof of Proposition A.5. Fix t = 1, . . . , T . We have,

∥θt+1 − θ∗∥2 = ∥θt − ηtℓmtϕ′(Hmt(θt))∇θh(θ
t, ξmt)− θ∗∥2

= ∥θt − θ∗∥2 + η2t ∥ℓmtϕ′(Hmt(θt))∇θh(θ
t, ξmt)∥2

− 2ηt(θ
t − θ∗)⊤ℓmtϕ′(Hmt(θt))∇θh(θ

t, ξmt).
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Applying the law of total expectation and the fact that ℓmtϕ′(Hmt(θt))∇θh(θ
t, ξmt) is unbiased for

∇θV (θt),

Et[(θ
t − θ∗)⊤ℓmtϕ′(Hmt(θt))∇θh(θ

t, ξmt)] = Et[Et−1[(θ
t − θ∗)⊤ℓmtϕ′(Hmt(θt))∇θh(θ

t, ξmt)]]

= Et−1[(θ
t − θ∗)⊤∇θV (θt)].

Hence

2ηtEt−1[(θ
t − θ∗)⊤∇θV (θt)] = Et−1[∥θt − θ∗∥2]− Et[∥θt+1 − θ∗∥2]

+ η2tEt[∥ℓmtϕ′(Hmt(θt))∇θh(θ
t, ξmt)∥2]

≤ Et−1[∥θt − θ∗∥2]− Et[∥θt+1 − θ∗∥2]︸ ︷︷ ︸
≥0

+σ2
ν .

Summing over t = 0, . . . , T and since

Et−1[(θ
t − θ∗)⊤∇θV (θt)] ≥ Et−1[V (θt)− V (θ∗)]

because V is convex, we have

2

T∑
t=0

ηtEt−1[V (θt)− V (θ∗)] ≤ ∥θ0 − θ∗∥2 + σ2
ν

T∑
t=0

η2t .

Dividing both sides by
∑T

t=0 ηt and exploiting (i) the linearity of the expectation operator, (ii) the
convexity of the weights (νt)Tt=0, and (iii) the convexity of V , the result follows.

Proof of Proposition 2.1. As for case 1, given the assumed form of p0 and the criterion represen-
tation (2), we are left to establish an expression for Eξ∼p0 [h(θ, ξ)] = E(y,x)∼N (0,I)[(y − θ⊤x)2].

Notice that −θjxj
id∼ N (0, θ2j ), independendently of y ∼ N (0, 1), so that y−θ⊤x ∼ N (0, 1+∥θ∥22).

Therefore, Eξ∼p0
[h(θ, ξ)] = V[y − θ⊤x] = 1 + ∥θ∥22, which is easily seen to complete the proof.

Finally, the proof for the LASSO case is completely analogous to the Ridge one and is therfore
omitted.

B Further Background on the Dirichlet Process and Approximation
Algorithms

Since its definition by [13] based on the family of finite-dimensional Dirichlet distributions (as
sketched in Section 2), the Dirichlet process has been characterized (and thus generalized) in a
number of useful ways. For instance, the DP can be derived as a neutral to the right process [14],
a normalized completely random measure [13, 22, 26, 36], a Gibbs-type prior [20, 9], a Pitman-
Yor Process [33, 32], and a species sampling model [34]. In what follows, we review two other
constructions of the DP which were at the basis of the approximate versions of the robust criterion
Vξn proposed in Section 4.

Stick-Breaking Construction of the Dirichlet Process. [39] proved that Ferguson’s 1973 Dirichlet
process enjoys the following “stick-breaking" representation

p ∼ DP(α, P ) =⇒ p
d
=

∞∑
j=1

pjδxj ,

where

xj
iid∼ P, j = 1, 2, . . . ,

p1 = B1,

pj = Bj

j−1∏
i=1

Bi, j = 2, 3, . . . ,

Bj
iid∼ Beta(1, α), j = 1, 2, . . .
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Algorithm 1 SBMC Approximation
Input: Data ξn, model parameters, number of MC samples N , truncation step T
for i = 1 to N do

Set
∏0

k=1(1−Bk) ≡ 1
for j = 1 to T do

Draw ξij ∼ α
α+np0 +

n
α+npξn

Draw Bij ∼ Beta(1, α+ n)

Set pij = Bj

∏j−1
k=1(1−Bk)

end for
Draw ξi0 ∼ α

α+np0 +
n

α+npξn

Set pi0 =
∏T

k=1(1−Bk)
end for
Return: N−1

∑N
i=1 ϕ

(∑T
j=0 pijh(θ, ξij)

)

The name of the procedure comes from the analogy with breaking a stick of length 1 into two pieces
of length B1 and 1 − B1, then the second piece into two sub-pieces of length (1 − B1)B2 and
(1−B1)(1−B2), and so on. In Algorithm 1, then, we simulate N realizations from Qξn , truncating
the stick-breaking procedure at step j = T . The remaining portion of the stick is then allocated to
one further atom drawn from the predictive distribution. Then, the intractable integral with respect to
the DP posterior is approximated via a Monte Carlo average of the integrals (i.e., weighted sums)
with respect to the N simulated measures.

Multinomial-Dirichlet Construction of the Dirichlet Process and Monte Carlo Algorithms.
Another finite-dimensional approximation of p ∼ DP(α, P ) is pT =

∑T
j=1 pjδxj

, with xj
iid∼ P and

(p1, . . . , pT ) ∼ Dirichlet(T ;α/T, . . . , α/T ). As T → ∞, pT approaches p [see Theorem 4.19 in
17]. Hence, one can approximate Vξn(θ) as in Algorithm 2, where the concentration parameter is
α+ n and the centering distribution coincides with the predictive.

Algorithm 2 Multinomial-Dirichlet Monte Carlo (MDMC) Approximation
Input: Data ξn, model parameters, number of MC samples N , approximation threshold T
for i = 1 to N do

Initialize wi ∈ RT , ξi ∈ ΞT

for j = 1 to T do
Update wi(j) ∼ Gamma

(
α+n
T , 1

)
Update ξi(j) ∼ α

α+np0 +
n

α+npξn

end for
Normalize wi =

wi∑n
j=1 wi(j)

end for
Return: N−1

∑N
i=1 ϕ

(
w⊤

i h(θ, ξi)
)

When α is negligible compared to the sample size n, one can simplify posterior simulation by setting
α = 0. Thus, one obtains a DP(n, pξn) posterior. This distribution enjoys a useful representation

as follows: p ∼ DP(n, pξn) =⇒ p
d
=
∑n

i=1 piξi, with pi ∼ Dirichlet(n; 1, . . . , 1) [see 17,
Section 4.7]. Due to its similarity to the usual bootstrap procedure [12], this distribution is known
as the “Bayesian bootstrap". Algorithm 3 implements the Bayesian bootstrap to approximate the
criterion Vξn(θ). In practice, however, we do not recommend resorting to the Bayesian bootstrap
approximation, since DP(n, pξn) assigns probability 1 to the set of distributions with strictly positive
support on ξn. This goes against the prescription that, as the finite sample ξn provides only partial
information on the true underlying distribution, the statistical DM should be willing to consider a
wider set of distributions other than the ones supported at the sample realizations.
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Algorithm 3 Bayesian Bootstrap Monte Carlo (BBMC) Approximation
Input: Data ξn, model parameters, number of MC samples N
for i = 1 to N do

Initialize wi ∈ Rn

for j = 1 to n do
Update wi(j) ∼ Gamma(1, 1)

end for
Normalize wi =

wi∑n
j=1 wi(j)

end for
Return: N−1

∑N
i=1 ϕ

(
w⊤

i h(θ, ξ
n)
)

C Numerical Optimization and Experiment Details

In this Section, we first describe the SGD algorithm used in practice for our experiments. Then, we
describe in full detail the experiments presented in the paper.

Gradient-Based Optimization. Whether we resort to the SBMC or the MDMC approximation of
Vξn(θ), we are faced with the task of minimizing a criterion of the form

V (θ) =
1

N

N∑
i=1

ϕ

 T∑
j=1

pijh(θ, ξij)

 .

The smoothness and convexity of ϕ make it appealing to minimize the criterion via gradient-based
convex optimization techniques. Indeed, it is enough to assume that θ 7→ h(θ, ξ) is convex and
differentiable (a standard assumption met in many applications of interest) to easily yield the same
properties for V .

In light of this, assuming that θ 7→ h(θ, ξ) is differentiable at every ξij and denoting Hi(θ) :=∑T
j=1 pijh(θ, ξij), the gradient of V is

∇θV (θ) =
1

N

N∑
i=1

ϕ′(Hi(θ))∇θHi(θ) ≡
1

M

M∑
m=1

ℓmϕ′(Hm(θ))∇θh(θ, ξm), (8)

where ℓm ≡ Tpm and the m-indexing is just a recoding of the indices (with a slight abuse of notation
and M ≡ N · T ). That is, the gradient of V (θ) can be written as the average of M terms. Thus,
to minimize V (θ) we propose a mini-batch Stochastic Gradient Descent algorithm which, at each
iteration t, updates the parameter vector as follows:

θt+1 = θt − ηt
1

B

B∑
mb=1

ℓmb
ϕ′(Hmb

(θt))∇θh(θ
t, ξmb

), (9)

for a step-size ηt > 0 and a random subset (mini-batch) of size B from the indices {1, . . . ,M}.
Under standard regularity assumptions [16], in Proposition A.5 (Appendix A) we prove convergence
of the algorithm at usual rates for convex problems.
Remark C.1. Expression (8) provides some insight on how, in practice, distributional robustness is
enforced. Notice that Hi(θ) = Rpi

(θ) is the expected risk computed according to pi, an approximate
realization from Qξn . Thus, in the computation of the overall gradient ∇θV (θ), the gradients
associated to the pi’s that generate higher expected risks receive more weight (being ϕ convex, ϕ′ is
increasing). These weights, then, are reflected into which gradients, in the mini-batch SGD algorithm,
are given more leverage in updating the parameter vector. Thus, the procedure can be thought of as
implementing a “soft worst-case scenario" scheme, whereby distributions in the posterior support are
weighted (in terms of gradient influence) more the worse they do in terms of expected risk.

Mini-Batch Stochastic Gradient Descent Algorithm. For practical optimization, we apply a
modification to the SGD algorithm provided in Equation (9), which helps to reduce the computational
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burden of the procedure. Indeed, recall the formula of the gradient of the criterion V that we need to
optimize:

∇θV (θ) =
1

N

N∑
i=1

ϕ′(Hi(θ))∇θHi(θ)

≡ 1

M

M∑
m=1

ℓmϕ′(Hm(θ))∇θh(θ, ξm).

Clearly, then, implementing the baseline SGD algorithm requires, at each iteration, the evaluation
of multiple Hm(θt) terms, each consisting of T evaluations of the loss function h. To avoid this,
at each iteration we instead sub-sample one index i = 1, . . . , N and update the parameter vector
according to the associated gradient ϕ′(Hi(θ

t))∇θHi(θ
t). The latter is still an unbiased estimator of

the overall gradient of V (θt), but it requires only T evaluations of h (plus those of T gradients of
h, similarly to the baseline algorithm). Finally, to exploit the whole data efficiently, we sub-sample
without replacement and perform multiple passes over the N MC samples. Algorithm 4 summarizes
the procedure.

Algorithm 4 Modified Stochastic Gradient Descent Algorithm
Input: Approximate criterion parameters {(pij , ξij) : i = 1, . . . , N, j = 1, . . . , T}, step size
schedule (ηt)t≥0, starting value θ0, number of passes P , iteration tracker t = 0
for p = 1 to P do

Initialize I = {1, . . . , N}
for j = 1 to N do

Sample uniformly i ∈ I

Update θt+1 = θt − ηt · ϕ′(∑T
ℓ=1 piℓh(θ

t, ξiℓ)
)
·
∑T

ℓ=1 piℓ∇θh(θ
t, ξiℓ)

)
Update I = I \ {i}
Update t = t+ 1

end for
end for
Return: θPN+1

C.1 High-Dimensional Linear Regression Experiment

Setting. In this experiment, we test the performance of our robust criterion in a high-dimensional
sparse linear regression task. The high-dimensional and sparse nature of the data-generating process
is expected to induce distributional uncertainty, and our method is meant to address this. In this
context, we use the quadratic loss function (θ, y, x) 7→ 10−3(y − θ⊤x)2, where the 10−3 factor
serves to stabilize numerical values in the optimization process. Notice that, by the form of the
ambiguity-neutral criterion (2), the multiplicative factor on the loss function does not change the
equivalence with Ridge.

Data-Generating Process. The data for the experiment are generated iid across simulations (200)
and observations (n = 100 per simulation) as follows. For each observation i = 1, . . . , n, the
d-dimensional (d = 90) covariate vector follows a multivariate normal distribution with mean 0 and
such that (i) each covariate has unitary variance, and (ii) any pair of distinct covariates has covariance
0.3:

xi =

xi1

...
xid

 ∼ N (0,Σ), Σ =


1 0.3 · · · 0.3
0.3 1 · · · 0.3

...
...

. . .
...

0.3 0.3 · · · 1

 ∈ Rd×d.

Then, the response has conditional distribution yi|xi ∼ N (a⊤xi, σ
2), with a =

(1, 1, 1, 1, 1, 0, · · · , 0)⊤ ∈ Rd and σ = 0.5. That is, out of 90 covariates, only the first 5 have
a unitary positive marginal effect on yi, and additive Gaussian noise is added to the resulting linear
combination. Together with 100 training samples, at each simulation we generate 5000 test samples
on which we compute out-of-sample RMSE for the ambiguity-averse, ambiguity-neutral, and OLS
procedures.
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Figure 2: Simulation results for the high-dimensional sparse linear regression experiment. Bars report
the mean and standard deviation (across 200 sample simulations) of the test RMSE, L2 distance of
estimated coefficient vector θ̂ from the data-generating one, and the L2 norm of θ̂. Results are shown
for the ambiguity-averse, ambiguity-neutral, and OLS procedures. Note: The left (blue) axis refers to
mean values, the right (orange) axis to standard deviation values.

Robust Criterion Parameters. For each simulated sample, we run our robust procedure setting the
following parameter values: ϕ(t) = β exp(t/β) − β, β ∈ {1,∞}, α = a/n for a ∈ {1, 2, 5, 10},
and p0 = N (0, I), where the β = ∞ setting corresponds to Ridge regression with regularization
parameter α (see Proposition 2.1). Finally, we run 300 Monte Carlo simulations to approximate the
criterion, and truncate the Multinomial-Dirichlet approximation at T = 50.

Stochastic Gradient Descent Parameters We initialize the algorithm at θ = (0, . . . , 0) and set
the step size at ηt = 50/(100 +

√
t). The number of passes over data is set after visual inspection

of convergence of the criterion value. The run time per SGD run is less than 1 second on our
infrastructure (see Appendix D).

C.2 Experiment on Gaussian Location Estimation With Outliers

Setting. In this experiment, we test the performance of our robust criterion on the task of estimating
a univariate Gaussian mean (assuming the variance is known) when the data is corrupted by a few
observations coming from a distant distribution. Clearly, this is a situation where a considerable
level of distributional uncertainty is warranted. In this setting, the loss function h(ξ, θ) = (ξ − θ)2 is
simply the negative log-likelihood associated to the normal model. Notice that the h is convex in
θ and, as in the previous experiment, we pre-multiply it by a factor of 10−3 for numerical stability
reasons.

Data-Generating Process. The data for the experiment are generated iid across simulations (100)
and observations (n = 13 per simulation) as follows. For each simulation, 10 iid samples xi are drawn
from a N (0, 1) distribution (the actual data-generating process we want to learn) and 3 samples are
drawn iid from a N (0, 5) outlier distribution. At each simulation we also generate 5000 test samples
from the data-generating process N (0, 1), on which we compute the out-of-sample average negative
log-likelihood for the ambiguity-averse, ambiguity-neutral, and Maximum Likelihood Estimation
(MLE) procedures – this will be our measure of out of sample performance (see Figure 3).

Robust Criterion Parameters. For each simulated sample, we run our robust procedure setting
the following parameter values: ϕ(t) = β exp(t/β) − β, β ∈ {1,∞}, α ∈ {1, 2, 5, 10}, and
p0 = N (µ0, I), where µ0 = (10 · 0 + 3 · 5)/(10 + 3) is a weighted average of the data-generating
and the outlier means. By the expression of the ambiguity-neutral criterion (2), it is easy to show that
the β = ∞ case leads to the parameter estimate

θ̂ξn =
1

α+ n

α+n∑
i=1

yi,
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Figure 3: Simulation results from the experiment on Gaussian mean estimation with outliers. Bars
report the mean and standard deviation (across 100 sample simulations) of the test mean negative
log-likelihood and the absolute value distance of the estimated parameter from 0 (the data-generating
value). Results are shown for the ambiguity-averse, ambiguity-neutral, and MLE procedures. Note:
The left (blue) axis refers to mean values, the right (orange) axis to standard deviation values.

with yi = xi for i = 1, . . . , n and yi = µ0 for i = n+ 1, . . . , n+ α. That is, the ambiguity-neutral
procedure with concentration parameter α ∈ N is equivalent to the MLE procedure when the original
training sample is enlarged with α additional observations equal to µ0. Finally, we run 300 Monte
Carlo simulations to approximate the criterion, and truncate the Multinomial-Dirichlet approximation
at T = 50.

Stochastic Gradient Descent Parameters. We initialize the algorithm at θ = 0 and set the step size
at ηt = 20/(100 +

√
t). The number of passes over data is set after visual inspection of convergence

of the criterion value. The run time per SGD run is 2 seconds on our infrastructure (see Appendix D).

Results. In Figure 3, we present the results of the simulation study. As for the regression experiment,
the ambiguity-averse criterion brings improvement, across α values and compared to the ambiguity-
neutral and the simple MLE procedures, both in terms of average performance and in terms of
the latter’s variabiliy (see the first row of the Figure). From the second row of Figure 3, it also
emerges that, on average, the ambiguity-averse procedure is more accurate at estimating the location
parameter than the two other methods. Compared to the simple MLE procedure, the variability of the
estimated parameter is also significantly smaller. Taken together, these results confirm the theoretical
expectation that the ambiguity-averse optimization is effective at hedging against the distributional
uncertainty arising in the estimation of corrupted data such as the simulated ones.

C.3 High-Dimensional Logistic Regression Experiment

Setting. In this experiment, we test the performance of our robust criterion on a high-dimensional
sparse classification task using the framework of logistic regression. As in the linear regression
experiment, the high-dimensional and sparse nature of the data-generating process is expected to
induce distributional uncertainty, and our method is meant to address this. In this setting, the loss
function is h(ξ, θ) = log(1 + exp(−y · x⊤θ)). As in the previous experiment, we pre-multiply it by
a factor of 10−3 for numerical stability reasons.

Data-Generating Process. The data for the experiment are generated iid across simulations (200)
and observations (n = 100 per simulation) as follows. For each observation i = 1, . . . , n, the
d-dimensional (d = 90) covariate vector follows a multivariate normal distribution with mean 0 and
such that (i) each covariate has unitary variance, and (ii) any pair of distinct covariates has covariance
0.3:

xi =

xi1

...
xid

 ∼ N (0,Σ), Σ =


1 0.3 · · · 0.3
0.3 1 · · · 0.3

...
...

. . .
...

0.3 0.3 · · · 1

 ∈ Rd×d.

Then, the response has conditional distribution yi|xi ∼ Binary({1,−1}, px), with px = 1/(1 +
exp(−x⊤a)) and a = (1, 1, 1, 1, 1, 0, · · · , 0)⊤ ∈ Rd. That is, out of 90 covariates, only the first 5
have a unitary positive marginal effect on the log-odds. Together with 100 training samples, at each
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Figure 4: Simulation results for the high-dimensional sparse logistic regression experiment. Bars
report the mean and standard deviation (across 200 sample simulations) of the test average loss, L2

distance of estimated coefficient vector θ̂ from the data-generating one, and the L2 norm of θ̂. Results
are shown for the ambiguity-averse, L2-regularized, and un-regularized procedures. Note: The left
(blue) axis refers to mean values, the right (orange) axis to standard deviation values.

simulation we generate 5000 test samples on which we compute the out-of-sample average loss for the
ambiguity-averse, L2-regularized (with regularization parameter α, see below), and un-regularized
procedures.

Robust Criterion Parameters. For each simulated sample, we run our robust procedure setting
the following parameter values: ϕ(t) = β exp(t/β)− β, β = 1, α = a/n for α ∈ {1, 2, 5, 10}, and
p0 = Binary({1,−1}, 0.5)×N (0, I). Finally, we run 200 Monte Carlo simulations to approximate
the criterion, and truncate the Multinomial-Dirichlet approximation at T = 50.

Stochastic Gradient Descent Parameters We initialize the algorithm at θ = (0, . . . , 0) and set
the step size at ηt = 1000/(100 +

√
t). The number of passes over data is set after visual inspection

of convergence of the criterion value. The run time per SGD run is 3 seconds on our infrastructure
(see Appendix D).

Results. In Figure 3, we present the results of the simulation study. As for the regression ex-
periment, the ambiguity-averse criterion brings improvement, across α values and compared to
the L2-regularized and the unregularized procedures, both in terms of average performance and in
terms of the latter’s variabiliy (see the first row of the Figure). From the second row of Figure 3, it
also emerges that, on average, the ambiguity-averse procedure is more accurate and less variable
at estimating the true regression coefficient than the two other methods. Also, our method is able
to more effectively shrink the norm of the coefficient vector towards 0 (see the third row). Taken
together, these results confirm the theoretical expectation that the ambiguity-averse optimization is
effective at hedging against the distributional uncertainty arising in high-dimensional classification
problems (in this experimental setting, tackled via logistic regression).

C.4 Pima Indian Diabetes Dataset Experiment

In this experiment, we use logistic regression for classification on the popular Pima Indians Diabetes
dataset,12 collecting data on 768 women belonging to a Native American group that lives in Mexico
and Arizona. The data consists of a binary outcome (whether the subject developed diabetes or not)
and 8 features related to her physical condition (these features are standardized before running the
analysis).

To test our method, we randomly select 300 training observations and leave out the rest for as a test
sample. Then, we randomly split the training data into 15 folds of size 20 and select, via k-fold cross

12Made available by the National Institute of Diabetes and Digestive and Kidney Diseases and downloaded
from https://www.kaggle.com/datasets/kandij/diabetes-dataset?resource=download.
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validation, the optimal DP concentration parameter α over a wide grid of values. We do the same for
the L1-penalty coefficient used to implement regularized logistic regression with the Python library
scikit-learn [31]. Once the optimal parameters are selected based on out-of-sample risk, we
again randomly split the training sample into the same number of folds, and implement our roubust
DP method, L1-penalized logistic regression, and unregularized logistic regression on each of the
folds.13 This splitting procedure allows us (i) to test and compare the performance of our method in a
setting with scarce data, where distributional uncertainty is most likely present, and (ii) to asses the
sampling variability of the implemented procedures. The run time per SGD run is 19 seconds on our
infrastructure (see Appendix D).

Table 1 reports the results from the described procedure. Unregularized logistic regression performs
quite poorly compared to the other two methods. Instead, the latter yield results in the same orders
of magnitude both in terms of average performance and of performance variability, though our DP
robust method features almost half of the variability produced by L1-regularized logistic regression.

Unregularized L1 Regularized DP Robust
Average 0.0142 0.0007 0.0006
Standard Deviation 0.0127 6.2253e-05 3.9742e-05

Table 1: Comparison of average and standard deviation of the out-of-sample performance (out-of-
sample expected logistic loss) of the three employed methods for binary classification on the Pima
Indian Diabetes dataset.

C.5 Wine Quality Dataset Experiment

In this experiment, we applied linear regression to the popular UCI Machine Learning Repository
Wine Quality dataset [8]. Data consists of 4898 measurements of 11 wines’ characteristics and a
quality score assigned to each wine. The aim is to predict the latter based on the former (both features
and response are standardized before running the analysis). We implement linear regression using our
DP-based robust method (with the squared loss function), OLS, and LASSO (the last two methods
are implemented using scikit-learn [31]).

To test our method, we randomly select 300 training observations and leave out the rest for as a test
sample. Then, we randomly split the training data into 10 folds of size 30 and select, via k-fold cross
validation, the optimal DP concentration parameter α over a wide grid of values. We do the same
for the L1-penalty coefficient used to implement LASSO. Once the optimal parameters are selected
based on out-of-sample risk, we again randomly split the training sample into the same number of
folds, and implement our roubust DP method, LASSO regression, and OLS estimation on each of the
folds. This splitting procedure allows us (i) to test and compare the performance of our method in a
setting with scarce data, where distributional uncertainty is most likely present, and (ii) to asses the
sampling variability of the implemented procedures. The run time per SGD run is 5 seconds on our
infrastructure (see Appendix D).

Table 2 reports the results from the described procedure, whose interpretation is very much in line
with the results of the previous experiment.

Unregularized L1 Regularized DP Robust
Average 0.0014 0.0009 0.0009
Standard Deviation 0.0004 8.0192e-05 6.0076e-05

Table 2: Comparison of average and standard deviation of the out-of-sample performance (out-of-
sample expected squared loss) of the three employed methods for linear regression on the Wine
Quality dataset.

13All of the implementation details (e.g., parameter values), can be found in our code. This holds for the next
two experiments as well.
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C.6 Liver Disorders Dataset Experiment

In this experiment, we applied linear regression to the popular UCI Machine Learning Repository
Liver Disorders dataset[15]. Data consists of 345 measurements of 5 blood test results and the number
of drinks consumed per day by each subject. The aim is to predict the latter based on the former (both
features and response are standardized before running the analysis). We implement linear regression
using our DP-based robust method (with the squared loss function), OLS, and LASSO (the last two
methods are implemented using scikit-learn [31]).

To test our method, we randomly select 200 training observations and leave out the rest for as a test
sample. Then, we randomly split the training data into 10 folds of size 20 and select, via k-fold cross
validation, the optimal DP concentration parameter α over a wide grid of values. We do the same
for the L1-penalty coefficient used to implement LASSO. Once the optimal parameters are selected
based on out-of-sample risk, we again randomly split the training sample into the same number of
folds, and implement our roubust DP method, LASSO regression, and OLS estimation on each of the
folds. This splitting procedure allows us (i) to test and compare the performance of our method in a
setting with scarce data, where distributional uncertainty is most likely present, and (ii) to asses the
sampling variability of the implemented procedures.The run time per SGD run is 15 seconds on our
infrastructure (see Appendix D).

Table 3 reports the results from the described procedure, whose interpretation is very much in line
with the results of the previous two experiments.

Unregularized L1 Regularized DP Robust
Average 0.0012 0.0009 0.0007
Standard Deviation 0.0005 0.0001 6.6597e-05

Table 3: Comparison of average and standard deviation of the out-of-sample performance (out-of-
sample expected squared loss) of the three employed methods for linear regression on the Liver
Disorders dataset.

D Computational Infrastructure

All experiments were performed on a desktop with 12th Gen Intel(R) Core(TM) i9-12900H, 2500
Mhz, 14 Core(s), 20 Logical Processor(s) and 32.0 GB RAM.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper justifies the claims made in the abstract with either theoretical
results, or experimental evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please, refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please, refer to Sections 3 for theoretical propositions and the underlying
assumptions, and Appendix A for proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please, refer to Appendix C for experiment details and to our supplementary
material in the form of code and a README file with instructions on how to run the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please, refer to the code included in the submitted supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please, refer to Appendix C and the submitted code in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Variability in the reported average performance metrics are of direct interest
for the evaluation of our method, so we report measures of variability as separate bars in
plots or separate entries in tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please, refer to Appendices C and D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the Code of Ethics and confirm the adherence of our paper to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to its theoretical and optimization-focused nature, the paper has no direct
foreseeable societal impact beyond that of any generic machine learning paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper only employs simulated or small publicly available datasets, as well
as well-established machine learning techniques.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits all data and software used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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