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Abstract

Recently, federated multi-view clustering (FedMVC) has emerged to explore clus-
ter structures in multi-view data distributed on multiple clients. Many existing
approaches tend to assume that clients are isomorphic and all of them belong to
either single-view clients or multi-view clients. While these methods have suc-
ceeded, they may encounter challenges in practical FedMVC scenarios involving
heterogeneous hybrid views, where a mixture of single-view and multi-view clients
exhibit varying degrees of heterogeneity. In this paper, we propose a novel Fed-
MVC framework, which concurrently addresses two challenges associated with
heterogeneous hybrid views, i.e., client gap and view gap. To address the client gap,
we design a local-synergistic contrastive learning approach that helps single-view
clients and multi-view clients achieve consistency for mitigating heterogeneity
among all clients. To address the view gap, we develop a global-specific weighting
aggregation method, which encourages global models to learn complementary
features from hybrid views. The interplay between local-synergistic contrastive
learning and global-specific weighting aggregation mutually enhances the explo-
ration of the data cluster structures distributed on multiple clients. Theoretical
analysis and extensive experiments demonstrate that our method can handle the
heterogeneous hybrid views in FedMVC and outperforms state-of-the-art methods.
The code is available at https://github.com/5Martina5/FMCSC.

1 Introduction

Recent advancements in sensors and the internet have allowed many distributed clients to collect
unlabeled data from multiple views/modalities[10, 17, 25]. Utilizing these unlabeled data while
considering the need for data privacy among clients has given rise to an emerging field of federated
multi-view clustering (FedMVC) [8], which enables multiple clients to collaboratively train consistent
clustering models without exposing private data. The clustering models across distributed clients can
be applied in many applications (e.g., recommendation [15] and medicine [5]) and thus FedMVC
attracts increasing research interest [14, 26, 35].

Existing FedMVC methods tend to assume that clients are isomorphic and all of them belong to either
single-view clients or multi-view clients. For instance, FedDMVC [8] assumes that a dataset with V
views is distributed across V single-view clients, each having the same set of samples. FedMVFPC
[14] assumes that the data are distributed among multiple multi-view clients, with each client having
V views and non-overlapping samples among clients. Despite the achieved success, they may
encounter challenges when handling some practical FedMVC scenarios involving heterogeneous
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hybrid views, where different clients are heterogeneous such that single-view clients and multi-view
clients are hybrid.

This scenario is prevalent in real world situations [6, 47], for example, hospitals in metropolitan
areas employ CT, X-ray, and EHR for disease detection, whereas remote areas usually rely on a
single detection method. Similarly, smartphones can simultaneously capture audio and images, but
recording devices are limited to collecting audio data only.

The presence of heterogeneous hybrid views might limit the applicability of previous FedMVC
methods. We decompose these challenges into two issues. (a) Client gap. Multi-view clients collect
multiple views that have the opportunity to learn comprehensive cluster partitions by leveraging
multi-view information. Conversely, single-view clients only own single views and easily obtain
biased cluster partitions if the single view only contains marginal information. (b) View gap. Hybrid
views collected by different clients have quality differences (e.g., images might contain richer visual
information than texts, but texts could have semantic information), and extracting complementary
information from different views across all clients is not trivial.

In this paper, we introduce a novel FedMVC method, namely Federated Multi-view Clustering via
Synergistic Contrast (FMCSC), which can simultaneously leverage the single-view and multi-view
data across heterogeneous clients to mine clustering structures from hybrid views. Figure 1 shows
an overview of our FMCSC framework. First, we note that lacking unified information supervision,
naive aggregation of local models may lead to model misalignment. Therefore, we propose cross-
client consensus pre-training to align the local models on all clients to avoid their misalignment.
Second, to address the client gap, we design local-synergistic contrastive learning that helps to
mitigate the heterogeneity between single-view clients and multi-view clients. In particular, we
leverage feature-level and model-level contrastive learning to align multi-view clients and single-
view clients, respectively. Third, to tackle the view gap, we develop the global-specific weighting
aggregation which encourages global models to learn robust features from hybrid views, further
exploring complementary cluster structures. The local-synergistic contrastive learning and global-
specific weighting aggregation promote each other to explore the data cluster structures distributed
on multiple clients. Overall, FMCSC effectively facilitates all clients in bridging the client gap and
view gap within the heterogeneous hybrid views through theoretical and experimental analysis.

Our main contributions are as follows:

• We propose a novel FedMVC method that can handle the heterogeneous hybrid views and
explain the success mechanism of the proposed method through theoretical analysis from
the perspective of bridging client and view gaps.

• We design local-synergistic contrastive learning and global-specific weighting aggregation,
using mutual information as a bridge to connect local and global models, together to explore
the cluster structures in multi-view data distributed on different clients.

• Theoretical and experimental analyses verify the effectiveness of FMCSC, which shows
excellent clustering performance under various federated learning scenarios.

2 Related Work

Federated multi-view clustering (FedMVC) has emerged to explore cluster structures in multi-view
data distributed on multiple clients. Existing FedMVC methods can be classified into two categories
based on the partitioning of multi-view data among clients. (1) Vertical FedMVC assumes that a
dataset with V views is distributed across V single-view clients, each having the same set of samples.
Robust federated multi-view learning (FedMVL) [16] addresses high communication costs, fault
tolerance, and stragglers. Federated deep multi-view clustering (FedDMVC) [8] focuses on addressing
the challenges of feature heterogeneity and incompleteness. Existing vertical FedMVC methods still
rely on the idealistic assumption that different views of the same sample can be aligned across clients,
which warrants further investigation. (2) Horizontal FedMVC assumes that the data are distributed
among multiple multi-view clients, with each client having V views and non-overlapping samples
among clients. Federated multi-view fuzzy c-means consensus prototypes clustering (FedMVFPC)
[14] utilizes federated learning mechanisms to perform fuzzy c-means clustering on multi-view data.
Horizontal federated multi-view learning (H-FedMV) [5] aims to improve the local disease prediction
performance by sharing training models among clients. Although existing approaches have been

2

37021https://doi.org/10.52202/079017-1168



Single-view clients

Multi-view clients Server

Distribute
models

…

There is a girl
sitting in front of a
rainbow painting.

… …

(c) Global-Specific Weighting  Aggregation

Aggregate
(a) Cross-Client

Consensus Pre-training (b) Local-Synergistic Contrast

Close

Heterogeneous global models

……

…

…

…
…

… … …

…

…
…

…

… …

Figure 1: The framework of FMCSC. Initially, each client conducts cross-client consensus pre-
training to alleviate model misalignment (Section 3.2). Then, all clients begin training using the
designed local-synergistic contrast (Section 3.3) and upload their local models to the server. The
server performs global-specific weighting aggregation and distributes multiple heterogeneous global
models to all clients (Section 3.4). Finally, leveraging global models received from the server, clients
discover complementary cluster structures across all clients.

successful, they may encounter challenges in practical FedMVC scenarios with heterogeneous hybrid
views. Specifically, heterogeneity refers to the differences among clients, where single-view and
multi-view clients coexist. The hybrid views indicate the uncertainty in the number and quality of
views involved in training. Our proposed FMCSC is a variant of horizontal FedMVC, and can handle
such scenarios by bridging the client gap and the view gap among clients.

3 Methodology

The key goal of FMCSC is to bridge client and view gaps. On the one hand, multi-view clients have the
opportunity to learn comprehensive cluster partitions by leveraging multi-view information. Single-
view clients aim to bridge the client gap between themselves and multi-view clients, thereby avoiding
obtaining biased clustering partitions. On the other hand, considering the inherent discrepancies
in data quality among different views, our objective is to extract complementary information from
hybrid views across all clients.

3.1 Problem Definition

We consider a heterogeneous federated learning setting where M multi-view clients and S single-view
clients collaborate to train and mine complementary clustering structures using multiple heteroge-
neous global models

{
f1
g

(
·;w1

)
, . . . , fV

g

(
·;wV

)
, fg (·;w)

}
. Here, fv

g (·;wv) represents the global
model capable of handling the v-th view type, and fg (·;w) represents the global model capable of
handling multi-view data. Each single-view client p ∈ [S] has its private dataset Sp = {xv

i }
|Sp|
i=1 ,

where xv
i represents the i-th sample of the p-th single-view client collected from the v-th view type.

It adopts a small model fp
(
·;wv

p

)
: RDv → Rd based on its local view types. The multi-view client

m ∈ [M ] has its local dataset Mm =
{(

x1
i ,x

2
i , . . . ,x

V
i

)}|Mm|
i=1

, where
(
x1
i ,x

2
i , . . . ,x

V
i

)
represents

the i-th sample of the m-th multi-view client collected from V different view types. It trains a small
model fm (·;wm) : R

∑V
v=1 Dv → Rd based on its local data. For simplicity, we assume that the

output features of all models have the same dimension d.
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3.2 Cross-Client Consensus Pre-training

Multi-view datasets often contain redundancy and random noise. Current mainstream methods employ
self-supervised autoencoder models, such as autoencoder (AE) [13] and variational autoencoder
(VAE) [20] to learn high-level features from raw data. In FMCSC, we employ an encoder-decoder
pair, denoted Ev

ϕv (·) and Dv
θv (·) with learnable parameters ϕv and θv, for each view in each client.

For multi-view client m, we define zvi = Ev
ϕv (xv

i ) ∈ Rdv as the dv-dimensional latent feature of
the i-th sample, and the output of the autoencoder is x̂v

i = Dv
θv (zvi ) ∈ RDv . We calculate the

reconstruction loss between the input xv
i and the output x̂v

i for all samples in this client. Additionally,
the local model of this client consists of V encoder-decoder pairs, which can be pre-trained by
minimizing the reconstruction objective:

Lm
r =

1

|Mm|

V∑
v=1

|Mm|∑
i=1

∥∥xv
i −Dv

θv

(
Ev

ϕv (xv
i )
)∥∥2

2
. (1)

Similarly, for single-view client p that contains a type of view data locally, it is sufficient to construct
an encoder-decoder pair. Pre-training can be performed using the same objective as in Eq. (1):

Lp
r =

1

|Sp|

|Sp|∑
i=1

∥∥xv
i −Dv

θv

(
Ev

ϕv (xv
i )
)∥∥2

2
. (2)

Key Observations: In federated learning, diverse local data distributions frequently lead to model
drift, causing slow and unstable convergence [19, 47]. In FMCSC, single-view clients have never en-
countered data from other view types, thus intensifying the issue of model drift due to heterogeneous
hybrid views. Moreover, the absence of uniformly labeled data across all clients allows the recon-
struction objective of autoencoders to optimize from multiple different directions. In feature space,
this problem manifests itself as angular deviations among features [48], and from the perspective of
model aggregation, it manifests itself as model misalignment. In other words, direct aggregation of
models can blur the feature distinctions captured by local models, leading to inseparability among
features, as shown in Figure 3.

A direct strategy to alleviate model misalignment is through alignment. Based on this naive idea,
we propose that the multi-view client that finishes training first should distribute its network pa-
rameters

{
E1

ϕ1(·), . . . , EV
ϕV (·)

}
and

{
D1

θ1(·), . . . , DV
θV (·)

}
to the remaining clients. Each client

then performs pre-training based on this model, thereby alleviating the model misalignment caused
by unsupervised training. Notably, as pre-training solely involves training the autoencoder, the
construction of local models is inherently dependent on the view type. Therefore, single-view clients
can still refer to the network parameters of multi-view clients. This process facilitates consensus
pre-training among the clients, ultimately leading to the uploading of pre-trained model parameters
to the server. The server initializes global models based on the models uploaded by clients.

3.3 Local-Synergistic Contrast

During pre-training, the features extracted through the reconstruction objective usually contain both
common semantics and view-private information. The latter is often meaningless or even misleading,
leading to poor clustering effectiveness. To mitigate the adverse effects of view-private information,
each client also needs to design a consistent objective during training to learn common semantics.

For multi-view client m, it possesses information from multiple views. Inspired by many previ-
ous works of MVC [40, 42, 44, 45], we employ feature contrastive learning to achieve consis-
tency objectives. Considering the conflict between consistency and reconstruction objectives, we
opt to operate in distinct feature spaces. We refer to the features obtained through the autoen-
coders

{(
z1i , z

2
i , . . . , z

V
i

)}|Mm|
i=1

as low-level features. Moreover, we stack V non-linear mappings{
H1

(
Z1; Ψ1

)
, . . . ,HV

(
ZV ; ΨV

)}
to obtain high-level features

{(
h1
i ,h

2
i , . . . ,h

V
i

)}|Mm|
i=1

. Addi-

tionally, a non-linear mapping H (Z; Ψ) : R
∑V

v=1 dv → Rd is constructed by:

H = H (Z; Ψ) = H
([
Z1,Z2, . . . ,ZV

]
; Ψ

)
, (3)
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where {hi}|Mm|
i=1 = H ∈ R|Mm|×d, and Z ∈ R|Mm|×

∑V
v=1 dv . We aim to preserve the representative

capacity of low-level features to prevent model collapse while learning the common semantics H
among views in the high-level feature space.

In the high-level feature space, the common semantics H are learned from all views and should
be very similar to the common semantics learned from individual views. Based on this, we define{
hi,h

v
j

}v=1,...,V

j=i
as V positive feature pairs, and the remaining

{
hi,h

v
j

}v=1,...,V

j ̸=i
are V (|Mm| − 1)

negative feature pairs. Then, we use cosine similarity to measure the similarity of feature pairs:

sim
(
hi,h

v
j

)
=

〈
hi,h

v
j

〉
∥hi∥

∥∥hv
j

∥∥ , (4)

where ⟨·, ·⟩ is dot product operator. We introduce the temperature parameter τm to moderate the
effect of similarity. Subsequently, the feature contrastive loss is formulated as:

Lm
c = − 1

|Mm|

V∑
v=1

|Mm|∑
i=1

log
esim(hi,h

v
i )/τm∑

j ̸=i e
sim(hi,hv

j )/τm
. (5)

Moreover, multi-view clients aim to assist single-view clients in bridging client gaps and discarding
view-private information detrimental to clustering. They optimize multiple heterogeneous global
models using local data, ensuring that even the global model designed for single-view processing ac-
quires generalized common semantics. Such common semantics are also advantageous for uncovering
complementary clustering structures across clients. Concretely,

min
{wv

m}V
v=1

V∑
v=1

∥fv
m (·;wv

m)− fm (·;wm)∥22, (6)

where fv
m (·;wv

m) represents the local model that can handle the v-th type of view, which is initialized
by the global model fv

g (·;wv). fm (·;wm) represents the local model of multi-view client m, where
multi-view clients possess data of all view types.

For single-view client p, where each sample only has a single view, we design a model contrastive
learning to achieve consistency objectives. Specifically, client p contains data of the v-th view
type {xv

i }
|Sp|
i=1 , with its local model as fp (·;wv). To explore common semantics, we adopt the

same approach as multi-view clients by constructing two non-linear mappings Hv (Zv; Ψv) and
H (Z; Ψ) to obtain high-level features Hv and common semantics H. The global modelfg (·;wv)
after aggregation further enhances its ability to learn generalized common semantics. To encourage
the local model of client p to approach the more generalized global model, we formulate the model
contrastive loss:

Lp
c = − 1

|Sp|

|Sp|∑
i=1

log
esim(hi,h

g
i )/τp

esim(hi,h
g
i )/τp + esim(hi,zv

i )/τp
, (7)

where {hg
i }

|Sp|
i=1 represents the output of the local data after being processed by the global model, and

τp denotes the temperature parameter. The significance of Eq. (7) lies in treating {hi,h
g
i }

|Sp|
i=1 as

positive pairs and {hi, z
v
i }

|Sp|
i=1 as negative pairs. This allows the local model of client p to converge

towards the global model while amplifying the differences between the reconstruction and consistency
objectives in the local model.

During training, the respective total losses for multi-view client m and single-view client p are:

Lm = Lm
r + Lm

c , Lp = Lp
r + Lp

c . (8)

In the optimization of FMCSC, Lm
r and Lp

r are utilized as reconstruction losses to learn representations
for each view individually. Meanwhile, Lm

c and Lp
c are employed to discover common semantics

across views, facilitating the exploration of complementary clustering structures across clients.

3.4 Global-Specific Weighting Aggregation

To bridge the view gap and aggregate heterogeneous models, we design a weighted specific aggrega-
tion strategy on the server, yielding multiple heterogeneous global models.
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Theorem 1. Assume δm, δp ∈ (0, 1) such that p (hv
i | hi) > δm, i = 1, 2, · · · , |Mm| and

p (hg
i | hi) = p (zvi | hi) > δp, i = 1, 2, · · · , |Sp| hold. The following inequality establishes

the relationship between the consistency objectives and the mutual information of the multi-view
client m and single-view client p, respectively:

V∑
v=1

I (H,Hv) ≥ V log |Mm| − δmLm
c ,

I (H,Hg)− I (H,Zv) ≤ −2δpLp
c .

(9)

Proofs of all the theorems in this paper are provided in Appendix C due to space limit. Theorem 1,
Eq. (5), and Eq. (7) indicate that minimizing contrastive loss Lm

c and Lp
c are equal to maximizing

mutual information. Such connection has also been discussed in [42, 51].

Through theoretical analysis, we use mutual information
∑V

v=1 I (H,Hv) and I (H,Hg)−I (H,Zv)
as weights to evaluate the quality of the models from multi-view clients and single-view clients,
respectively. A higher level of mutual information indicates better model quality, leading to higher
weights during aggregation.

Considering the heterogeneity of the models, we aggregate client models with the same architecture
on the server, referred to as specific aggregation. Specifically,

fg (·;w) =

M∑
m=1

αmfm (·;wm) ,

fv
g (·;wv) =

M∑
m=1

αv
mfv

m (·;wv
m) +

S∑
p=1

αpfp
(
·;wv

p

)
,

(10)

where v = 1, 2, · · · , V , αm and αp represent the weights for model aggregation of multi-view client
m and single-view client p respectively. In this scenario, there are a total of M multi-view clients
and S single-view clients, resulting in (V + 1) heterogeneous global models.

For global models that handle multiple view types simultaneously, the expected risk is defined as
LM (f) and optimized by minimizing the empirical risk L̂M (f). Similarly, for global models dealing
with processing a single view type, such as the v-th view type, the expected and empirical risks are
defined as LSv (f) and L̂Sv (f) respectively. Inspired by previous works [23, 37] on the generalization
bound of clustering approaches, we obtain the following theorem by analyzing the generalization
bound of the proposed FMCSC method.
Theorem 2. Suppose that for any x ∈ X and f ∈ F , there exists D < ∞ such that
∥x∥ , ∥fx (x)∥ , ∥fv

z (x)∥ , ∥fv
h (x)∥ ,

∥∥f0
h (x)

∥∥ ∈ [0, D] hold. With probability 1− δ for any f ∈ F ,
the following inequality holds

LM (f) ≤L̂M (f) +
12V D2√
M |Mm|

+ 9V D2

√
log 1

δ

2M |Mm|
,

LSv (f) ≤L̂Sv (f) +
10D2√
Sv |Sp|

+ 8D2

√
log 1

δ

2Sv |Sp|

+

√
4

M |Mm|

(
d log

2eM |Mm|
d

+ log
4

δ

)
+ dF

(
D̃v, D̃

)
+ λv,

(11)

where M is the number of multi-view participating clients, Sv is the number of single-view clients
with v-th view type that participated in the training, |Mm| and |Sp| are the number of samples in

each multi-view client and single-view client, respectively. dF

(
D̃v, D̃

)
measures the difference

between data from the v-th view distribution D̃v and the multi-view data distribution D̃.

Three key implications can be derived from Theorem 2: i) For global models capable of handling
multi-view data, having more samples from multi-view clients, such as increasing the number of
samples per client or adding multi-view participating clients, contributes to the improvement of
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generalization performance. ii) For global models dealing with single-view data, having more
samples from both multi-view and single-view clients enhances their generalization performance,
which is a reflection of multi-view clients helping single-view clients to bridge the client gap. iii)
Although the view gap is mitigated, the high dissimilarity among views still leads to high distribution
divergence dF

(
D̃v, D̃

)
, which impairs the quality of the global model.

Finally, each client applies the K-means [30] on the common semantics H obtained from the
corresponding global model to calculate the cluster centroids and obtain their local clustering results.
For example, for multi-view client m, letting {cj}Kj=1 denote the K cluster centroids, we have:

min
c1,c2,...,cK

|Mm|∑
i=1

K∑
j=1

∥hi − cj∥2 . (12)

The clustering result for the i-th sample is yi = argminj ∥hi − cj∥2. By concatenating clustering
results from all clients, we obtain the overall clustering results.

4 Experiments

4.1 Experimental Settings

Datasets. Our experiments are carried out on four multi-view datasets. Specifically, MNIST-USPS
[34] comprises 5000 samples collected from two handwritten digital image datasets, which are
considered as two views. BDGP [4] consists of 2500 samples across 5 drosophila categories, with
each sample having textual and visual views. Multi-Fashion [41] contains images from 10 categories,
where we treat three different styles of one object as three views, resulting in 10000 samples.
NUSWIDE [9] consists of 5000 samples obtained from web images with 5 views. Considering
the sample quantities, we allocate BDGP to 12 clients, MNIST-USPS and NUSWIDE to 24 clients
respectively, and Multi-Fashion to 48 clients to simulate the federated learning settings.

Comparison Methods. We select 9 state-of-the-art methods, including HCP-IMSC [24], IMVC-CBG
[39], DSIMVC [37], LSIMVC [27], ProImp [22], JPLTD [29], CPSPAN [18], FedDMVC [8] and
FCUIF [36]. Among them, apart from FedDMVC and FCUIF, which are FedMVC methods, all the
other comparison methods are centralized incomplete multi-view clustering methods. To ensure fair
comparisons, we concatenate the data distributed among the clients and use them as the input for
centralized methods. Among these, the data from multi-view clients can be regarded as complete
data, while the data from single-view clients can be considered as missing data.

Implementation Details. For an encoder-decoder pair, the encoder structure is Input- Fc500 −
Fc500 − Fc2000 − Fc20, and the decoder is symmetric with the encoder. Also, we set temperature
parameters τm = τp = 0.5 and use the batch size of 256. The output dimension d is set to 20 for
all local and global models and communication rounds R is set to 5. All experiments in the paper
involving FMCSC that are not mentioned are performed when M/S = 1:1.

4.2 Results and Analysis

Clustering Results. Table 1 presents a quantitative comparison under various heterogeneous hybrid
view scenarios. Each experiment is independently conducted five times, reporting average values and
standard deviations. We construct different scenarios by adjusting the ratio of multi-view clients to
single-view clients. Remarkably, FMCSC achieves exceptional performance in various heterogeneous
hybrid view scenarios, surpassing recent methods. This indicates our ability to achieve satisfactory
clustering performance while preserving data privacy. Furthermore, with the increasing proportion
of single-view clients, all methods exhibit varying degrees of performance decline, aligning with
common expectations. Even when the number of single-view clients is twice that of multi-view
clients, FMCSC still achieves superior clustering performance, which is encouraging.

Ablation Studies. Components A and D represent the consensus pre-training process and weighted
aggregation, respectively. Component B indicates that multi-view clients bring the global models
closer as Eq. (6). Component C indicates that model comparison in single-view clients as Eq.
(7). Table 2 shows that the impact of component A on clustering performance is dependent on
the dataset. Additionally, note that the results in Item-1 are obtained after running four times
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Table 1: Clustering results (mean±std%) of all methods on four datasets. The best and second best
results are denoted in bold and underline.

Multi- / Single- clients M/S = 2:1 M/S = 1:1 M/S = 1:2
Evaluation metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI

M
N

IS
T-

U
SP

S
HCP-IMSC (2022) [24] 80.2±0.0 74.8±0.0 69.8±0.1 79.0±0.2 71.6±0.2 66.9±0.2 76.2±0.1 71.0±0.1 63.6±0.1

IMVC-CBG (2022) [39] 46.6±0.1 40.3±0.2 22.2±0.4 38.9±0.1 35.3±0.3 14.9±0.2 37.3±0.6 31.7±0.4 10.6±0.2
DSIMVC (2022) [37] 55.1±0.1 27.6±0.1 25.0±0.1 54.5±0.1 26.7±0.1 24.4±0.2 54.1±0.2 26.6±0.2 24.0±0.3
LSIMVC (2022) [27] 59.3±0.2 55.2±0.9 38.2±1.7 52.7±0.4 46.5±0.2 25.8±0.5 41.8±0.4 37.1±0.4 14.2±0.5

ProImp (2023) [22] 91.2±0.9 84.4±1.0 80.8±2.1 87.3±0.6 77.9±0.7 73.1±1.0 84.8±0.9 75.9±0.9 66.6±1.8
JPLTD (2023) [29] 40.7±0.1 22.6±0.1 17.3±0.0 40.0±0.2 19.8±0.1 15.2±0.1 32.3±0.1 13.7±0.1 10.1±0.1

CPSPAN (2023) [18] 79.5±2.5 77.3±2.0 70.7±2.2 76.5±2.7 73.7±2.1 66.6±3.0 74.6±3.6 74.5±3.3 64.5±3.5
FedDMVC (2023) [8] 81.1±0.9 81.9±0.9 73.7±1.4 69.9±1.5 72.5±2.9 58.9±2.6 63.1±0.4 62.6±0.5 48.4±0.3

FCUIF (2024) [36] 85.3±0.3 83.2±0.3 75.7±0.5 72.8±1.2 70.3±1.5 64.4±1.8 67.2±0.8 64.4±0.9 53.5±0.8
FMCSC (Ours) 95.1±0.8 87.8±1.2 88.8±1.5 92.9±1.2 84.2±2.2 85.0±2.5 90.1±1.2 79.4±2.6 79.5±3.2

B
D

G
P

HCP-IMSC (2022) [24] 93.1±0.0 81.9±0.0 83.6±0.0 89.8±0.0 73.4±0.1 76.4±0.0 89.5±0.0 72.5±0.1 76.7±0.0
IMVC-CBG (2022) [39] 37.9±0.4 21.0±1.0 10.4±0.1 37.2±0.1 21.0±0.0 7.8±0.0 36.9±0.1 20.4±0.1 6.4±0.0

DSIMVC (2022) [37] 92.5±0.4 81.7±0.8 84.9±0.9 89.5±2.0 76.5±2.0 77.8±2.2 86.1±3.3 70.0±3.9 76.6±3.4
LSIMVC (2022) [27] 44.1±0.5 23.7±0.4 5.7±0.2 39.2±1.3 19.7±0.5 4.8±0.2 35.3±1.6 14.9±1.3 2.8±0.4

ProImp (2023) [22] 91.6±0.3 82.4±3.8 80.0±0.9 90.4±1.5 76.2±0.5 79.3±1.6 75.6±0.5 52.3±2.0 44.6±1.8
JPLTD (2023) [29] 56.5±0.2 41.3±0.1 31.7±0.0 49.4±0.1 33.3±0.0 18.5±0.0 51.0±0.2 34.1±0.1 21.5±0.0

CPSPAN (2023) [18] 78.7±0.6 58.3±1.3 58.6±1.6 57.3±1.3 50.3±2.3 39.4±3.7 52.4±1.5 34.7±1.4 27.1±2.1
FedDMVC (2023) [8] 92.0±0.1 80.2±0.2 84.7±0.1 91.5±0.5 77.1±0.4 80.3±0.7 82.2±0.2 63.4±0.3 61.9±0.3

FCUIF (2024) [36] 93.8±0.1 82.2±0.1 85.1±0.1 90.3±0.2 75.2±0.3 78.4±0.3 85.7±0.2 67.5±0.3 63.2±0.2
FMCSC (Ours) 94.5±0.8 83.9±1.2 86.8±1.5 91.9±1.2 77.3±2.2 81.0±2.5 90.0±1.2 73.3±2.6 76.8±3.2

M
ul

ti-
Fa

sh
io

n

HCP-IMSC (2022) [24] 70.6±0.1 67.4±0.1 57.7±0.1 67.1±0.1 64.7±0.1 53.1±0.1 59.9±0.7 56.4±0.9 41.8±1.1
IMVC-CBG (2022) [39] 46.3±0.0 49.4±0.0 26.3±0.0 43.2±0.1 42.7±0.1 19.2±0.1 38.9±0.2 39.4±0.3 13.5±0.4

DSIMVC (2022) [37] 82.7±1.3 83.6±1.1 74.5±1.1 77.7±1.4 76.7±0.8 66.8±0.8 76.7±1.7 75.8±1.5 66.4±1.4
LSIMVC (2022) [27] 51.1±0.5 49.9±0.1 31.5±0.5 50.2±0.6 52.2±0.1 35.2±0.1 49.9±0.2 48.6±0.0 28.2±0.0

ProImp (2023) [22] 69.1±0.4 66.3±0.3 55.2±0.8 69.0±0.1 64.6±0.2 52.5±0.2 53.9±2.4 50.7±1.5 27.8±1.6
JPLTD (2023) [29] 44.6±0.0 43.4±0.0 36.9±0.1 37.2±0.1 36.6±0.1 29.5±0.1 25.8±0.1 25.1±0.1 16.5±0.1

CPSPAN (2023) [18] 64.1±1.2 71.4±1.3 55.8±1.5 61.6±2.0 69.7±1.3 54.4±1.8 59.3±2.0 68.0±1.8 53.3±1.9
FedDMVC (2023) [8] 67.7±0.3 74.6±0.8 58.0±0.6 66.6±0.4 65.3±0.7 54.3±0.7 57.6±0.7 58.5±0.8 43.2±0.7

FCUIF (2024) [36] 70.7±0.5 79.4±0.5 63.1±0.4 68.4±0.6 71.5±0.4 59.2±0.5 62.5±0.6 61.3±0.5 45.6±0.5
FMCSC (Ours) 92.4±0.1 85.8±0.2 84.7±0.3 90.4±0.6 82.8±0.7 80.9±1.0 87.5±0.6 79.1±0.1 76.3±1.0

N
U

SW
ID

E

HCP-IMSC (2022) [24] 36.1±0.0 8.5±0.0 6.7±0.0 35.3±0.1 8.2±0.0 6.3±0.0 31.3±0.0 6.0±0.1 4.7±0.1
IMVC-CBG (2022) [39] 30.8±0.1 4.8±0.0 3.1±0.0 30.4±0.0 4.6±0.0 2.5±0.0 29.3±0.0 4.0±0.0 1.9±0.1

DSIMVC (2022) [37] 51.1±1.3 25.3±0.8 23.4±0.8 50.6±0.8 22.2±0.7 20.4±0.6 46.7±0.5 18.3±0.6 16.0±0.4
LSIMVC (2022) [27] 37.2±0.2 10.8±0.1 6.8±0.1 36.4±0.3 11.8±0.1 7.0±0.4 33.9±0.4 9.2±0.3 5.8±0.2

ProImp (2023) [22] 38.4±0.1 11.1±0.0 8.3±0.1 37.1±0.4 10.5±0.1 7.6±0.2 34.3±0.7 8.0±0.0 6.1±0.0
JPLTD (2023) [29] 53.0±0.2 25.9±0.2 23.7±0.1 51.5±0.5 22.5±1.0 21.5±0.8 50.0±0.2 19.4±0.1 14.1±0.1

CPSPAN (2023) [18] 33.7±0.2 9.0±0.9 6.2±0.1 33.3±0.3 6.6±0.9 4.4±0.1 29.4±0.6 5.4±1.1 3.2±0.4
FedDMVC (2023) [8] 41.7±0.2 14.4±0.1 12.3±0.1 37.5±0.7 9.8±0.9 7.8±0.5 32.6±0.2 5.8±0.2 4.3±0.2

FCUIF (2024) [36] 45.2±0.3 15.0±0.3 14.1±0.2 40.2±0.5 10.0±0.6 9.2±0.5 38.2±0.4 9.6±0.3 8.2±0.3
FMCSC (Ours) 56.1±0.2 26.3±0.5 23.9±0.4 52.7±0.2 23.0±0.3 21.8±0.4 50.8±0.9 20.1±0.7 18.8±0.8

Table 2: Ablation studies on four datasets when M/S=1:1.
Components MNIST-USPS BDGP Multi-Fashion NUSWIDE

A B C D ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
Item-1 ✓ ✓ ✓ 91.12 82.24 81.63 69.84 48.71 46.29 87.80 79.86 76.61 42.16 12.37 11.16
Item-2 ✓ ✓ ✓ 60.82 39.74 34.28 61.04 30.76 30.14 56.04 34.22 27.75 42.08 10.15 9.06
Item-3 ✓ ✓ ✓ 88.66 76.85 76.84 87.40 68.96 71.09 82.58 74.29 68.82 45.86 15.06 12.64
Item-4 ✓ ✓ ✓ 89.52 78.12 78.31 85.44 64.15 67.26 88.14 79.61 76.91 47.54 15.20 13.79
Item-5 ✓ ✓ ✓ ✓ 92.93 84.18 85.02 91.92 77.29 80.95 90.36 82.81 80.89 52.74 22.97 21.81

Figure 2: ACC vs. τm and τp.

the number of communication rounds compared to FMCSC. Al-
though the initial misalignment of the model on MNIST-USPS and
Multi-Fashion can be mitigated through multiple communication
rounds. Component A still plays a crucial role in our training process,
facilitating consensus among clients during pre-training to alleviate
model misalignment and accelerate convergence effectively. Item-3,
which lacks component C, involves both single-view and multi-view
clients carrying out the same operation of replacing their local mod-
els with global models. We observe a substantial improvement in
Item-3 compared to Item-2, indicating that the success of model com-
parison in component C is attributed to high-quality global models.
This achievement requires collaborative efforts from both multi-view
and single-view clients. Additionally, the inclusion of the weighted
aggregation in component D enhances the benefits of collaborative
training among all clients.
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Parameter Analysis. We investigate the sensitivity of our clustering performance on MNIST-USPS
dataset to two primary hyperparameters in local-synergistic contrastive learning: τm and τp, as
shown in Figure 2. The values of τm and τp are tuned within the range of 0.1, 0.3, 0.5, 0.7, 1.
Our observations include: i) When τm and τp are set to small values, such as 0.1, the clustering
performance of the proposed FMCSC decreases. This may be attributed to an excessive emphasis on
view consistency, potentially resulting in an inseparable intrinsic feature space. ii) As the values of
τm and τp increase, the clustering results gradually recover, and they exhibit insensitivity within the
range of 0.3 to 1. Empirically, we set τm = τp = 0.5 for all datasets.

Qualitative Study on Model Misalignment. To further quantify the impact of model misalign-
ment and the effectiveness of our proposed strategy, we visualize the model outputs, i.e., the
consensus semantics H, both without consensus pre-training and with consensus pre-training.

(a) Without consensus. (b) With consensus.

Figure 3: Visualization on model misalignment.

Figure 3 displays the t-SNE [38] visualizations
generated from a randomly selected multi-view
client, where different colors represent different
classes. In Figure 3 (a), we observe that the out-
put of the global model without consensus pre-
training shows mixed features that cannot be
clearly distinguished. This confirms our view-
point that direct parameter aggregation leads
to model misalignment, manifested as feature
confusion in the feature space. In contrast, Fig-
ure 3 (b) demonstrates that FMCSC produces
more distinct and separable features, mitigating
the negative impact of model aggregation.

(a) ACC vs. Samples per client. (b) ACC vs. Number of clients. (c) Privacy analysis.

Figure 4: (a) Effect of samples per client on generalization performance. (b) Scalability with the
number of clients on Multi-Fashion. (c) Sensitivity under privacy constraints when M/S = 2:1.

4.3 Attributes of Federated Learning

Generalization Analysis. To check the validity of our theory for the proposed method, we
investigate the impact of the number of samples per client and client participation rate on
the generalization performance in the clustering task, as shown in Figure 4 (a) and Table 3.

Table 3: Effect of participation rates on generalization performance.
Client types Participating clients Non-participating clients

Participation rate 50% 70% 90% 50% 70% 90%

D
at

as
et MNIST-USPS 90.64 91.71 92.97 89.11 91.67 92.06

BDGP 88.32 89.48 92.73 85.92 86.63 87.65
Multi-Fashion 87.58 89.46 89.81 87.31 87.48 88.73

NUSWIDE 53.12 53.18 53.58 46.08 51.46 52.51

In this setting, the total
number of clients is fixed.
We find that: i) Increasing
the number of samples per
client effectively raises the
total number of samples in-
volved in training, which en-
hances the model’s general-
ization performance. ii) As
the proportion of participat-
ing clients increases, the accuracy of non-participating clients also improves, and the performance
gap between participating and non-participating clients narrows. These observations are consistent
with the theoretical understanding in Theorem 2, i.e., the generalization performance of the model is
enhanced as both the number of samples per client and the number of participating clients increase.
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Number of Clients. We next consider the effects of changing the number of clients as shown in
Figure 4 (b). It is observed that as the number of clients increases, the performance of FMCSC
experiences a slight decline but remains generally stable. Only when the client number reaches 100,
does a noticeable decline in performance occur, which is attributed to the insufficient number of
samples within each client.

Privacy. FMCSC, by design, does not share any raw data between clients and the server. Only the
model parameters on each client are shared with the server. To further protect client privacy, we
adopt differential privacy [1] by adding noise to the model parameters uploaded from the client to
the server. Figure 4 (c) illustrates the clustering accuracy of FMCSC under different privacy bounds
ε. We observe that FMCSC achieves both high performance and privacy at ε = 50. However, as the
level of noise increases at ε = 10, the performance of FMCSC unavoidably degrades.

5 Conclusion

In this paper, we propose FMCSC that can handle practical scenarios with heterogeneous hybrid views
and explore the data cluster structures distributed on multiple clients. First, we propose cross-client
consensus pre-training to align the local models on all clients to avoid their misalignment. Then,
local-synergistic contrast and global-specific weighting aggregation are designed to bridge the client
gap and the view gap across distributed clients and explore the cluster structures in multi-view data
distributed on different clients. Theoretical analysis and extensive experiments demonstrate that
FMCSC outperforms state-of-the-art methods across diverse heterogeneous hybrid views and various
federated learning scenarios. In future work, we will use the method for more downstream tasks and
some real-world situations, such as medical analysis and financial forecasting.
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We provide more details and results about our work in the appendices. Here are the contents:

• Appendix A: Framework of the proposed algorithm.

• Appendix B: More related work.

• Appendix C: Proofs of Theorem 1 and Theorem 2.

• Appendix D: More details about experimental settings.

• Appendix E: Additional experiment results.

• Appendix F: Broader impacts of our proposed method.

• Appendix G: Limitations of our proposed method.

A Framework of the Proposed Algorithm

Algorithm 1 outlines the execution flow for both clients and the server in FMCSC. Initially, cross-
client consensus pre-training aligns the unsupervised local models of each client (Lines 1-2). During
the training, feature contrastive learning is employed for multi-view clients to explore common
semantics among different views (Lines 5-12). For single-view clients, model contrastive learning
is designed between local models and global models, promoting the extraction of more generalized
common semantics from client models (Lines 13-19). Subsequently, the server develops global-
specific weighting aggregation to aggregate multiple high-quality models (Lines 21-23). Finally,
complementary cluster structures are discovered using the global models across all clients (Line 25).

Algorithm 1 Federated Multi-view Clustering via Synergistic Contrast (FMCSC)
Input: Data with V views distributed among M multi-view clients and S single-view clients,

communication rounds R, Local epoch E.
Output: Overall clustering results.

1: Pre-train all client models by Eqs. (1)-(2).
2: server receives pre-trained models from all clients and initializes the global models.
3: while not reaching R rounds do
4: for c = 1 to (M + S) do in parallel
5: if c ∈ [M ] then ▷ Multi-view clients
6: while not reach the maximum iterations E do
7: Learn common semantics by Eqs. (4)-(5).
8: Optimize the total loss by Eq. (8).
9: end while

10: Optimize multiple global models by Eq. (6).
11: Upload {fv

m (·;wv
m)}Vv=1 and fm (·;wm) to the server.

12: else if c ∈ [S] then ▷ Single-view clients
13: while not reach the maximum iterations E do
14: Learn common semantics by Eq. (7).
15: Optimize the total loss by Eq. (8).
16: end while
17: Upload fp

(
·;wv

p

)
to the server.

18: end if
19: end for ▷ Server
20: Assigning weights to local models by Eq. (9).
21: Aggregate models among all clients by Eq. (10).
22: Distribute multiple global models to each client.
23: end while
24: Calculate the clustering results by Eq. (12).

B More Related Work

Multi-view clustering (MVC) methods leverage consistency and complementary information between
multiple views to enhance clustering effectiveness. Based on their ability to handle missing data,
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existing MVC methods can be classified into two categories. Complete multi-view clustering
[7, 43, 49] which uncovers hidden patterns and structures by leveraging complete multi-view data for
clustering. The success of existing complete multi-view clustering relies on the assumption of sample
integrity across multiple views. However, in real-world scenarios, samples of multi-view are partially
available due to data corruption or sensor failure, which leads to incomplete multi-view clustering
studies [28, 46, 50]. Incomplete multi-view clustering via prototype-based imputation (ProImp) [22]
employs a dual attention layer and a dual contrastive learning loss to learn view-specific prototypes
and recover missing data. Cross-view partial sample and prototype alignment network (CPSPAN)
[18] employs complete data to guide sample reconstruction and proposes shifted prototype alignment
to calibrate prototype sets across views. However, the aforementioned MVC methods assume that
multi-view data are stored within a single entity, thus lacking the concept of heterogeneous clients,
and only addressing the hybrid views scenarios we mentioned.

C Theoretical Analysis

C.1 Proof of Theorem 1

In this part, we want to prove that minimizing contrastive loss Lm
c and Lp

c are equal to maximizing
mutual information. The proof is motivated by [32, 51].

Proof. Lm
c and Lp

c as the contrastive loss, denoting the consistency objectives of the multi-view
client m and single-view client p respectively, i.e.,

Lm
c = − 1

|Mm|

V∑
v=1

|Mm|∑
i=1

log
esim(hi,h

v
i )/τm∑

j ̸=i e
sim(hi,hv

j )/τm
,

Lp
c = − 1

|Sp|

|Sp|∑
i=1

log
esim(hi,h

g
i )/τp

esim(hi,h
g
i )/τp + esim(hi,zv

i )/τp
.

When j ̸= i, we assume that p
(
hi,h

v
j

)
= p (hi) p

(
hv
j

)
, which means that

p(hi,h
v
j )

p(hi)p(hv
j )

= 1. Let

Ni =
∑|Mm|

j=1

p(hi,h
v
j )

p(hi)p(hv
j )

, we can then

I (H;Hv) =

|Mm|∑
i=1

|Mm|∑
j=1

p
(
hi,h

v
j

)
log

p
(
hi,h

v
j

)
p (hi) p

(
hv
j

)
=

|Mm|∑
i=1

p (hi,h
v
i ) log

p (hi,h
v
i )

p (hi) p (hv
i )

+

|Mm|∑
i=1

∑
j ̸=i

p
(
hi,h

v
j

)
log

p
(
hi,h

v
j

)
p (hi) p

(
hv
j

)
=

|Mm|∑
i=1

p (hi,h
v
i ) log

(
p (hi,h

v
i )

p (hi) p (hv
i ) · Ni

· Ni

)

=

|Mm|∑
i=1

p (hi,h
v
i ) log

p(hi,h
v
i )

p(hi)p(hv
i )

Ni
+

|Mm|∑
i=1

p (hi,h
v
i ) logNi.

Since positive pairs are correlated, we have the estimate: p (hi,h
v
i ) ≥ p (hi) p (h

v
i ). In addition,

we assume that there exists a constant δm ∈ (0, 1) such that p (hv
i | hi) > δm, i = 1, 2, · · · , |Mm|

holds. According to [42] and with the estimation, we have p (hi) ≈ 1
|Mm| , i = 1, 2, · · · , |Mm|, and

esim(hi,h
v
j )/τm ∝ p(hi,h

v
j )

p(hi)p(hv
j )

, the following inequality holds:
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V∑
v=1

I (H,Hv) =

V∑
v=1

|Mm|∑
i=1

p (hi,h
v
i ) log

p(hi,h
v
i )

p(hi)p(hv
i )

Ni
+

V∑
v=1

|Mm|∑
i=1

p (hi,h
v
i ) log

|Mm|∑
j=1

p
(
hi,h

v
j

)
p (hi) p

(
hv
j

)


≈
V∑

v=1

|Mm|∑
i=1

1

|Mm|
p (hv

i | hi) log

p(hi,h
v
i )

p(hi)p(hv
i )

Ni
+

V∑
v=1

log

(
|Mm| − 1 +

p (hi,h
v
i )

p (hi) p (hv
i )

)

≥ δm
|Mm|

V∑
v=1

|Mm|∑
i=1

log
esim(hi,h

v
i )/τm∑

j ̸=i e
sim(hi,hv

j )/τm + esim(hi,hv
i )/τm

+ V log |Mm|

≥ V log |Mm| − δmLm
c .

Similarly, we assume that there exists a constant δp ∈ (0, 1) such that p (hg
i | hi) = p (zvi | hi) > δp,

i = 1, 2, · · · , |Sp| holds. And we have p (hi) ≈ 1
|Sp| , esim(hi,h

g
i )/τp ∝ p(hi,h

g
i )

p(hi)p(hg
i )

and

esim(hi,z
v
i )/τp ∝ p(hi,z

v
i )

p(hi)p(zv
i )

, the following inequality holds:

I (H,Hg)− I (H,Zv) =

|Sp|∑
i=1

p (hi,h
g
i ) log

p (hi,h
g
i )

p (hi) p (h
g
i )

−
|Sp|∑
i=1

p (hi, z
v
i ) log

p (hi, z
v
i )

p (hi) p (zvi )

≈
|Sp|∑
i=1

2

|Sp|
p (hg

i | hi) log
p (hi,h

g
i )

p (hi) p (h
g
i )

−
|Sp|∑
i=1

1

|Sp|
p (hg

i | hi) log
p (hi,h

g
i )

p (hi) p (h
g
i )

−
|Sp|∑
i=1

1

|Sp|
p (zvi | hi) log

p (hi, z
v
i )

p (hi) p (zvi )

≤ 2δp
|Sp|

|Sp|∑
i=1

log
p (hi,h

g
i )

p (hi) p (h
g
i )

− 2δp
|Sp|

|Sp|∑
i=1

log

(
p (hi,h

g
i )

p (hi) p (h
g
i )

+
p (hi, z

v
i )

p (hi) p (zvi )

)

≤ 2δp
|Sp|

|Sp|∑
i=1

log
esim(hi,h

g
i )/τp

esim(hi,h
g
i )/τp + esim(hi,zv

i )/τp

≤− 2δpLp
c .

C.2 Proof of Theorem 2

We consider a heterogeneous federated learning setting where M multi-view clients and S single-view
clients. For each multi-view client, we define the empirical risk and its expectation as L̂m(f) and
Lm(f), respectively. Similarly, for each single-view client, the empirical risk and its expectation
are denoted as L̂p(f) and Lp(f). Let f : X → RDv × Rdv × Rdv denotes the function that maps
input samples into reconstruction samples, low-level features and high-level features. Then, the
reconstruction samples, low-level features and high-level features are given by x̂v

i := fx (x
v
i ) ∈ RDv ,

zvi := fv
z (xv

i ) ∈ Rdv , and hv
i := fv

h (xv
i ) ∈ Rdv , respectively. Additionally, we define {xv

i }
V
v=1 :=

xi, then common semantics are denoted as hi := f0
h (xi) ∈ Rd. To prove Theorem 2, we first

introduce the following three lemmas.
Lemma 1. We define the empirical risk L̂m(f) for multi-view client m as

L̂m(f) =
1

|Mm|

V∑
v=1

|Mm|∑
i=1

∥xv
i − fx (x

v
i )∥

2 − log
esim(hi,h

v
i )/τm∑

j ̸=i e
sim(hi,hv

j )/τm


=

1

|Mm|

V∑
v=1

|Mm|∑
i=1

∥xv
i − fx (x

v
i )∥

2 − log
esim(f

0
h(xi),f

v
h(xv

i ))/τm∑
j ̸=i e

sim(f0
h(xi),fv

h(xv
j ))/τm

.
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Let Lm(f) be the expectation of L̂m(f). Suppose that for any x ∈ X and f ∈ F , there exists
D < ∞ such that ∥x∥ , ∥fx (x)∥ , ∥fv

h (x)∥ ,
∥∥f0

h (x)
∥∥ ∈ [0, D] hold. With probability 1− δ for any

f ∈ F , the following inequality holds

Lm(f) ≤ L̂m(f) +
12V D2√
|Mm|

+ 9V D2

√
log 1

δ

2 |Mm|
.

Proof. This proof is inspired by [37]. For simplicity, we define fh (xi,xj) :=
sim

(
f0
h (xi) , f

v
h

(
xv
j

))
/τm and fh (xi) := sim

(
f0
h (xi) , f

v
h (xv

i )
)
/τm, respectively. Then, the

empirical risk and its expectation can be formulated as

L̂m(f) =
1

|Mm|

V∑
v=1

|Mm|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − log
efh(xi)∑

j ̸=i e
fh(xi,xj)

]

=
1

|Mm|

V∑
v=1

|Mm|∑
i=1

∥xv
i − fx (x

v
i )∥

2
+ log

∑
j ̸=i

exp {fh (xi,xj)}

− fh (xi)


=

1

|Mm|

V∑
v=1

|Mm|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − fh (xi)
]
+

1

|Mm|

V∑
v=1

|Mm|∑
i=1

log
∑
j ̸=i

exp {fh (xi,xj)},

and

Lm(f) =

V∑
v=1

Ex

[
∥xv

i − fx (x
v
i )∥

2 − fh (xi)
]
+

V∑
v=1

Ex

log∑
j ̸=i

exp {fh (xi,xj)}

.
Let M̄m be the sample set that different from Mm by only one set of data x̄r := {x̄v

r}
V
v=1. The

empirical risk of the function f on M̄m is denoted as L̂′
m(f). We have

∣∣∣∣∣supf∈F
|Lm(f)− L̂m(f)| − sup

f∈F
|Lm(f)− L̂′

m(f)|

∣∣∣∣∣
≤ sup

f∈F

∣∣∣L̂m(f)− L̂′
m(f)

∣∣∣
≤ sup

f∈F

∣∣∣∣∣ 1

|Mm|

V∑
v=1

(
∥xv

r − fx (x
v
r)∥

2 − ∥x̄v
r − fx (x̄

v
r)∥

2 − (fh (xr)− fh (x̄r))
)∣∣∣∣∣

+ sup
f∈F

∣∣∣∣∣∣ 2

|Mm|

V∑
v=1

log
∑
j ̸=i

exp {fh (xr,xj)} − log
∑
j ̸=i

exp {fh (x̄r,xj)}

∣∣∣∣∣∣
≤ sup

f∈F

1

|Mm|

V∑
v=1

∣∣∣∥xv
r∥

2 − ∥x̄v
r∥

2
+ ∥fx (xv

r)∥
2 − ∥fx (x̄v

r)∥
2
+ 2 ∥xv

r∥ ∥fx (xv
r)∥+ 2 ∥x̄v

r∥ ∥fx (x̄v
r)∥

∣∣∣
+ sup

f∈F

1

|Mm|

V∑
v=1

|fh (xr)− fh (x̄r)|+ sup
f∈F

2

|Mm| (|Mm| − 1)

V∑
v=1

∣∣∣∣∣∣
∑
j ̸=i

(fh (xr,xj)− fh (x̄r,xj))

∣∣∣∣∣∣
≤9V D2

|Mm|
.

Then, we analyze the upper bound of the expectation term E supf∈F |L̂m(f) − Lm(f)|. Let
σ1, . . . , σ|Mm| be i.i.d. independent random variables taking values in {−1, 1} and M̄m be the
independent copy of Mm. We have
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E sup
f∈F

|L̂m(f)− Lm(f)|

≤EMm,M̄m
sup
f∈F

∣∣∣∣∣∣ 1

|Mm|

V∑
v=1

|Mm|∑
i=1

(
∥xv

i − fx (x
v
i )∥

2 − ∥x̄v
i − fx (x̄

v
i )∥

2
)∣∣∣∣∣∣

+ EMm,M̄m
sup
f∈F

∣∣∣∣∣∣ 1

|Mm|

V∑
v=1

|Mm|∑
i=1

(fh (xi)− fh (x̄i))

∣∣∣∣∣∣
+ EMm,M̄m

sup
f∈F

∣∣∣∣∣∣ 2

|Mm|

V∑
v=1

|Mm|∑
i=1

log
∑
j ̸=i

exp {fh (xi,xj)} − log
∑
j ̸=i

exp {fh (x̄i,xj)}

∣∣∣∣∣∣
≤2EMm,σ sup

f∈F

∣∣∣∣∣∣ 1

|Mm|

V∑
v=1

|Mm|∑
i=1

σi ∥xv
i − fx (x

v
i )∥

2

∣∣∣∣∣∣+ 2EMm,σ sup
f∈F

∣∣∣∣∣∣ 1

|Mm|

V∑
v=1

|Mm|∑
i=1

σifh (xi)

∣∣∣∣∣∣
+ 2EMm,σ sup

f∈F

∣∣∣∣∣∣ 2

|Mm| (|Mm| − 1)

V∑
v=1

|Mm|∑
i=1

∑
j ̸=i

σifh (xi,xj)

∣∣∣∣∣∣
≤2V max

v
EMm,σ sup

f∈F

 1

|Mm|

|Mm|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2
]2 1

2

+ 2V max
v

EMm,σ sup
f∈F

 1

|Mm|

|Mm|∑
i=1

[fh (xi)]
2

 1
2

+ 4V max
v

EMm,σ sup
f∈F

 1

|Mm| (|Mm| − 1)

|Mm|∑
i=1

∑
j ̸=i

[fh (xi)]
2

 1
2

,

≤ 12V D2√
|Mm|

,

where the second last inequality is obtained by the Khintchine-Kahane inequality[21]. Thus, according
to the McDiarmid inequality [31], with probability at least 1− δ for any f ∈ F , we have

Lm(f) ≤ L̂m(f) +
12V D2√
|Mm|

+ 9V D2

√
log 1

δ

2 |Mm|
.

Due to the presence of view gaps among different views, let the data from the v-th view follow the dis-
tribution Dv , and the multi-view data follow the distribution D. We analyze the generalization bounds
for fv

m (·;wv
m) in multi-view client m, which is built upon prior works from domain adaptation.

Lemma 2 (Generalization Bounds for Domain Adaptation [2, 3]). Consider the v-th view data
domain Dv and the multi-view data domain D, respectively. Given a feature extraction function
R : X 7→ H that shared between Dv and D. Let F be a set of hypothesis with VC-dimension d. Then,
for every f ∈ F , with probability at least 1− δ:

Lm(f) ≤ Lmv (f) +

√
4

|Mm|

(
d log

2e |Mm|
d

+ log
4

δ

)
+ dF

(
D̃v, D̃

)
+ λv,

where dF

(
D̃v, D̃

)
denotes the divergence measured over a symmetric-difference hypothesis space.

D̃v and D̃ are the induced distributions of Dv and D under R, respectively, s.t. Eh∼D̃v
[B(h)] =

Ex∼Dv
[B(R(x))] given a probability event B, and so for D̃. λv := minf Lmv (f) + Lm(f) denotes

an oracle performance.
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Lemma 3. We define the empirical risk L̂p(f) for single-view client p as

L̂p(f) =
1

|Sp|

|Sp|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − log
esim(hi,h

g
i )/τp

esim(hi,h
g
i )/τp + esim(hi,zv

i )/τp

]

=
1

|Sp|

|Sp|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − log
esim(f

0
h(xi),f

0
g (xi))/τp

esim(f
0
h(xi),f0

g (xi))/τp + esim(f
0
h(xi),fv

z (xv
i ))/τp

]
.

Let Lp(f) be the expectation of L̂p(f). Suppose that for any x ∈ X and f ∈ F , there exists D < ∞
such that ∥x∥ , ∥fx (x)∥ , ∥fv

z (x)∥ ,
∥∥f0

h (x)
∥∥ ,∥∥f0

g (x)
∥∥ ∈ [0, D] hold. With probability 1 − δ for

any f ∈ F , the following inequality holds

Lp(f) ≤ L̂p(f) +
10D2√
|Sp|

+ 8D2

√
log 1

δ

2 |Sp|
.

Proof. For simplicity, we define fg (xi) := sim
(
f0
h (xi) , f

0
g (xi)

)
/τp and fh,z (xi) :=

sim
(
f0
h (xi) , f

v
z (xv

i )
)
/τp, respectively. Then, the empirical risk and its expectation can be formu-

lated as

L̂p(f) =
1

|Sp|

|Sp|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − log
efg(xi)

efg(xi) + efh,z(xi)

]

=
1

|Sp|

|Sp|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2
+ log

(
efg(xi) + efh,z(xi)

)
− fg (xi)

]

=
1

|Sp|

|Sp|∑
i=1

[
∥xv

i − fx (x
v
i )∥

2 − fg (xi)
]
+

1

|Sp|

|Sp|∑
i=1

log
(
efg(xi) + efh,z(xi)

)
,

and
Lp(f) = Ex

[
∥xv

i − fx (x
v
i )∥

2 − fh (xi)
]
+ Ex

[
log

(
efg(xi) + efh,z(xi)

)]
.

Let S̄p be the sample set that different from Sp by only one sample point x̄r. The empirical risk of
the function f on S̄p is denoted as L̂′

p(f). We have

∣∣∣∣∣supf∈F
|Lp(f)− L̂p(f)| − sup

f∈F
|Lp(f)− L̂′

p(f)|

∣∣∣∣∣
≤ sup

f∈F

∣∣∣L̂p(f)− L̂′
p(f)

∣∣∣
≤ sup

f∈F

∣∣∣∣ 1

|Sp|

(
∥xv

r − fx (x
v
r)∥

2 − ∥x̄v
r − fx (x̄

v
r)∥

2 − (fg (xr)− fg (x̄r))
)∣∣∣∣

+ sup
f∈F

∣∣∣∣ 1

|Sp|

(
log

(
efg(xr) + efh,z(xr)

)
− log

(
efg(x̄r) + efh,z(x̄r)

))∣∣∣∣
≤ sup

f∈F

1

|Sp|

∣∣∣∥xv
r∥

2 − ∥x̄v
r∥

2
+ ∥fx (xv

r)∥
2 − ∥fx (x̄v

r)∥
2
+ 2 ∥xv

r∥ ∥fx (xv
r)∥+ 2 ∥x̄v

r∥ ∥fx (x̄v
r)∥

∣∣∣
+ sup

f∈F

1

|Sp|
|fg (xr)− fg (x̄r)|+ sup

f∈F

1

2 |Sp|
|(fg (xr) + fh,z (xr))− (fg (x̄r) + fh,z (x̄r))|

≤8D2

|Sp|
.
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Then, we analyze the upper bound of the expectation term E supf∈F |L̂p(f) − Lp(f)|. Let
σ1, . . . , σ|Sp| be i.i.d. independent random variables taking values in {−1, 1} and S̄p be the in-
dependent copy of Sp. We have

E sup
f∈F

|L̂p(f)− Lp(f)|

≤ESp,S̄p
sup
f∈F

∣∣∣∣∣∣ 1

|Sp|

|Sp|∑
i=1

(
∥xv

i − fx (x
v
i )∥

2 − ∥x̄v
i − fx (x̄

v
i )∥

2
)∣∣∣∣∣∣+ ESp,S̄p

sup
f∈F

∣∣∣∣∣∣ 1
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|Sp|∑
i=1

(fg (xi)− fg (x̄i))

∣∣∣∣∣∣
+ ESp,S̄p

sup
f∈F

∣∣∣∣∣∣ 1
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i=1

(
log

(
efg(xi) + efh,z(xi)

)
− log

(
efg(x̄i) + efh,z(x̄i)

))∣∣∣∣∣∣
≤2ESp,σ sup

f∈F

∣∣∣∣∣∣ 1
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|Sp|∑
i=1

σi ∥xv
i − fx (x

v
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2

∣∣∣∣∣∣+ 2ESp,σ sup
f∈F

∣∣∣∣∣∣ 1

|Sp|

|Sp|∑
i=1

σifg (xi)

∣∣∣∣∣∣
+ 2ESp,σ sup

f∈F

∣∣∣∣∣∣ 1
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i=1

σi (fg (xi) + fh,z (xi))

∣∣∣∣∣∣
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f∈F

 1
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(
[fg (xi)]

2
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2
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2

,

≤ 10D2√
|Sp|

.

Thus, according to McDiarmid inequality [31], with probability at least 1− δ for any f ∈ F , we have

Lp(f) ≤ L̂p(f) +
10D2√
|Sp|

+ 8D2

√
log 1

δ

2 |Sp|
.

Our objective is to collaboratively train all clients to obtain multiple heterogeneous global models
capable of handling different view types. This is manifested in the optimization of multiple global
objective functions. For the global objective of handling multiple view types simultaneously, expected
risk is defined as LM (f), typically optimized in the form of empirical risk minimization, defined as:

L̂M (f) =
1

M

M∑
m=1

L̂m(f).

Similarly, for handling individual view types, such as the v-th view type, the global objective entails
defining the expected risk as LSv (f), with empirical risk defined as:

L̂Sv (f) =
1

Sv

∑
p∈[Sv ]

L̂p(f) +
1

M

M∑
m=1

L̂mv (f).

Now we give the proof of Theorem 2.
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Proof. According to Lemma 1, with probability at least 1− δ for any f ∈ F , we have

LM (f) ≤ L̂M (f) +
12V D2√
M |Mm|

+ 9V D2

√
log 1

δ

2M |Mm|
,

where M is the number of multi-view clients and |Mm| is the number of samples in each multi-view
client. Additionally, we have

1

M

M∑
m=1

dF

(
D̃v, D̃

)
= dF

(
D̃v, D̃

)
=

2

M

M∑
m=1

sup
f∈F

∣∣PrD̃v
[f ]− PrD̃ [f ]

∣∣ .
According to Lemma 2 and Lemma 3, with probability at least 1− δ for any f ∈ F , we have

LSv (f) ≤L̂Sv (f) +
10D2√
Sv |Sp|

+ 8D2

√
log 1

δ

2Sv |Sp|

+

√
4

M |Mm|

(
d log

2eM |Mm|
d

+ log
4

δ

)
+ dF

(
D̃v, D̃

)
+ λv,

where Sv is the number of single-view clients with v-th view type and |Sp| is the number of samples
in each single-view client.

D Experimental Settings

D.1 Datasets

We conduct the experiments on the following public datasets. MNIST-USPS [34] is a widely-used
dataset for handwritten digits (0-9) and consists of 5000 examples with two views of digital images.
The MNIST feature size is 28 × 28, while the USPS feature size is 16 × 16. BDGP [4] comprises 2500
examples related to drosophila embryos, each represented by a 1750-dimensional visual feature and a
79-dimensional textual feature. Multi-Fashion [41] is an image dataset featuring products like Coats,
Dresses, and T-shirts, with images sized at 28 × 28. Following the approach in [10], which constructs
a three-view version using 30,000 images, each instance includes three different images belonging
to the same class. Consequently, the three views of each instance represent the same product with
three distinct styles. NUSWIDE [9] is a web image dataset offering multiple views, including
65-dimensional color histogram, 226-dimensional block-wise color moments, 145-dimensional color
correlogram, 74-dimensional edge direction histogram, and 129-dimensional wavelet texture. We
utilize a total of 5000 samples for the evaluation of our proposed method.

Table 4: The statistics of experimental datasets.
Dataset Clients Sample View Class Dimension

MNIST-USPS 24 5000 2 10 [[28, 28], [16,16]]
BDGP 12 2500 2 5 [1750,79]

Multi-Fashion 48 10000 3 10 [784, 784, 784]
NUSWIDE 24 5000 5 5 [65, 226, 145, 74, 129]

D.2 Implementation Details

The models of all methods are implemented on the PyTorch [33] platform using NVIDIA
RTX-3090 GPUs. For an encoder-decoder pair, the encoder structure follows Input- Fc500 −
Fc500 − Fc2000 − Fc20, and the decoder is symmetric to the encoder. The non-linear mappings{
H1

(
Z1; Ψ1

)
, . . . ,HV

(
ZV ; ΨV

)}
and H (Z; Ψ) adopt network architectures of Fc20 − Fc256 −

Fc20 and Fc20V −Fc256−Fc20, respectively. The activation function is ReLU [12], and the optimizer
uses Adam. For all the datasets used, the learning rate is fixed at 0.0003, the batch size is set to 256,
and the temperature parameters τm and τp are both set to 0.5. Local pre-training is performed for 250
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epochs on all datasets. After each communication round between the server and clients, local training
is conducted for 10 epochs for the BDGP dataset and 25 epochs for other datasets on each client. The
communication rounds between the server and clients are set to R = 5. All experiments in the paper
involving FMCSC that are not mentioned are performed when M/S = 1:1.

We report some results that number of parameters and runtime by FMCSC to give the reader some
information about the computational resources used by the method. Table 5 shows that the number of
parameters and runtime by FMCSC are small and easy to reproduce.

Table 5: Number of parameters and runtime by FMCSC.

Dataset MNIST-USPS BDGP Multi-Fashion NUSWIDE
Number of parameters per client 3.4M-6.7M 3.5M-7M 3.4M-10.1M 2.8M-13.7M

Runtime 763.8s 108.5s 1183.5s 954.7s

D.3 Comparison Methods

We select 9 state-of-the-art methods, including HCP-IMSC [24], IMVC-CBG [39], DSIMVC [37],
LSIMVC [27], ProImp [22], JPLTD [29], CPSPAN [18], FedDMVC [8] and FCUIF [36]. Among
them, apart from FedDMVC and FCUIF, which are FedMVC methods, all the other comparison
methods are centralized incomplete multi-view clustering methods. To ensure fair comparisons, we
simplify the heterogeneous hybrid views scenario in our paper into a hybrid views scenario. Specifi-
cally, we concatenate the data distributed among the clients and use them as input for centralized
methods, as shown in Figure 5. Among these, the data from multi-view clients can be considered

…

Single-view clients

View 1

View 2

View 

Multi-view clients

…

Figure 5: Comparison strategies.

complete data, while the data from single-view clients can be regarded as missing data. It’s worth
noting that in our reported results, our method operates under the heterogeneous hybrid views sce-
nario, whereas the other comparative methods operate under the hybrid views scenario. Although
existing solutions can bypass the challenge of heterogeneous clients by simply concatenating data, the
exposure of raw data, due to privacy concerns, may cause more data owners to refuse to participate
in collaborative training. In contrast, our method can extract complementary clustering structures
across clients without exposing their raw data, offering better privacy protection and performance
improvement than current state-of-the-art methods.

E Additional Experiment Results

E.1 Convergence Analysis

Convergence analysis of the reconstruction loss, consistency loss, and total loss for multi-view clients
and single-view clients is conducted using MNIST-USPS, BDGP, Multi-Fashion, and NUSWIDE. As
illustrated in Figure 6, the increasing number of epochs leads to a gradual convergence of all loss
functions, ultimately reaching a stable state. This clear observation serves as compelling evidence for
the stability and effectiveness of our proposed model.
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(a) MNIST-USPS (b) BDGP

(c) Multi-Fashion (d) NUSWIDE

Figure 6: Convergence analysis on four datasets.

E.2 Attributes of Federated Learning

In this section, we present additional experimental results of FMCSC in various federated learning
scenarios, including the number of clients and privacy. Figure 7 presents the impact of the number
of clients on clustering performance for MNIST-USPS, BDGP, and NUSWIDE. It is observed that,
with an increasing number of clients, the performance of FMCSC shows a slight decline but remains
generally stable. However, on MNIST-USPS, as the number of clients reaches 50, the clustering
performance experiences an unavoidable decrease due to the insufficient number of samples for each
client.

(a) MNIST-USPS (b) BDGP (c) NUSWIDE

Figure 7: Scalability with the number of clients.

Figure 8: Sensitivity under privacy constraints when M/S = 2:1.
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In FMCSC, we assume that all participating parties are semi-honest and do not collude with each
other. An attacker faithfully executes the training protocol but may launch privacy attacks to infer
the private data of other parties. Previous studies have demonstrated that sharing gradients can leak
information about raw data [11]. To address this concern, we utilize differential privacy to further
enhance the privacy guarantee of FMCSC. Differential privacy algorithms aim to introduce noise
during individual data processing to protect against the disclosure of private information [1]. Formally,
let A be a random mechanism that takes dataset D as input and belongs to set S. Assuming D1 and
D2 are two neighboring datasets differing in only one point, A is (ε, δ) differentially private if:

Pr [A (D1) ∈ S] ≤ exp(ε) · Pr [A (D2) ∈ S] + δ (13)

Here, ε and δ quantify the individual impact on the overall output in differential privacy. ε represents
the strength of differential privacy, with smaller values indicating stronger privacy protection at the
potential cost of increased noise. δ ∼ O

(
1

number of samples

)
is used to handle probabilistic exceptional

cases. We implement Laplace noise to achieve differential privacy, and Figure 8 reports the clustering
performance of FMCSC under different privacy strengths ε. Our observations reveal that FMCSC
achieves both high performance and privacy at ε = 50, especially on the BDGP and Multi-Fashion
datasets. However, as the level of noise increases at ε = 10, the performance of FMCSC unavoidably
degrades.

F Broader Impacts

Heterogeneous hybrid views are prevalent in real-world scenarios. Our proposed method extends the
application domain of existing FedMVC approaches to address complex scenarios such as healthcare
and the Internet of Things (IoT). For example, hospitals in metropolitan areas use CT, X-ray, and
EHR for disease detection, whereas remote areas often rely on a single detection method. Similarly,
smartphones can capture both audio and images simultaneously, while recording devices are limited
to collecting audio data only. Furthermore, this research is not expected to introduce any new negative
societal impacts beyond those already known.

G Limitations

Our model addresses heterogeneous hybrid views in FedMVC, but it idealistically categorizes clients
into two types: single-view clients and multi-view clients. In more realistic scenarios, multi-view
clients can be further classified into full-view clients and partial-view clients based on the number of
view types they have. Such a detailed categorization could encourage more heterogeneous devices to
participate in federated learning, thereby enhancing the model’s generalization ability and accelerating
its application in fields like healthcare and finance. We will continue to explore this problem in future
work and apply our findings to real-world scenarios.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we first introduce the relevant concepts of
FedMVC and summarize existing methods, analyzing their shortcomings. Notably, existing
methods assume isomorphic clients, prompting us to propose the concept of heterogeneous
hybrid views. We focus on addressing the client gap and view gap that arise in this scenario.
Our proposed method, which designs local-synergistic contrastive learning and global-
specific weighting aggregation, aims to bridge these gaps and explore cluster structures.
Additionally, we analyze the method’s generalization performance and its effectiveness
across various federated learning scenarios through theoretical and experimental evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please see Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix D.2 for information on reproducing the main experi-
mental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have uploaded the code for the new proposed method and the datasets
used in the experiments in the Supplementary Material. The baseline methods compared in
the paper are open source and can be reproduced directly after following the comparison
strategy mentioned in Appendix D.3.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Appendix D for more experimental setting/details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars in Table 1 and Figure 4 (b), which are standard deviations
of the results obtained after five independent runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and confirm that the paper complies.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cite the original paper that produced datasets see Appendix D.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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