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Abstract

Multiple Sequence Alignment (MSA) plays a pivotal role in unveiling the evolution-
ary trajectories of protein families. The accuracy of protein structure predictions is
often compromised for protein sequences that lack sufficient homologous informa-
tion to construct high-quality MSA. Although various methods have been proposed
to generate virtual MSA under these conditions, they fall short in comprehensively
capturing the intricate co-evolutionary patterns within MSA or require guidance
from external oracle models. Here we introduce MSAGPT, a novel approach to
prompt protein structure predictions via MSA generative pre-training in the low-
MSA regime. MSAGPT employs a simple yet effective 2D evolutionary positional
encoding scheme to model the complex evolutionary patterns. Endowed by this, its
flexible 1D MSA decoding framework facilitates zero- or few-shot learning. More-
over, we demonstrate that leveraging the feedback from AlphaFold2 can further
enhance the model’s capacity via Rejective Fine-tuning (RFT) and Reinforcement
Learning from AF2 Feedback (RLAF). Extensive experiments confirm the efficacy
of MSAGPT in generating faithful virtual MSA to enhance the structure prediction
accuracy (up to +8.5% TM-Score on few-shot scenarios). The transfer learning
capabilities also highlight its great potential for facilitating other protein tasks.

1 Introduction

The advent of deep learning has significantly propelled progress across various scientific domains,
exemplified by breakthroughs such as AlphaFold series [1, 2] for accurate biomolecular interaction
predictions, AlphaGeometry [3] for intricate geometry and mathematical reasoning to name a
few. Among these, AlphaFold2 (AF2) represents a landmark within structural biology, achieving
an in silico precision of approximately 90% atomic accuracy that rivals wet lab experiments on
protein structure predictions (PSP). The remarkable success of AF2 can be attributed to its innovative
end-to-end use of co-evolutionary information supported by Multiple Sequence Alignment (MSA).
MSA aggregates homologous sequences from vast databases, providing a comprehensive overview
of evolutionary trajectories, which is critical for accurately predicting protein structures [1, 2, 4].
An illustrative example in Figure 1(a) showcases that the correlations analysis among amino acids
(AAs) sites could reveal contacts or conservative regions in the folding structure. Unfortunately,
not all proteins possess a rich set of homologous counterparts. Statistical investigations reveal that
approximately 20% of metagenomic proteins [5] and around 11% of proteins from eukaryotic and
viral origins [6] are classified as "orphan" proteins. This presents a significant challenge for MSA-
search algorithms in constructing high-quality MSA, consequently impeding the performance of PSP
models [2].
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(a) A toy example of MSA. (b) Overall performance comparisons.

Figure 1: (a) The illustration of MSA and (b) performance comparisons between MSAGPT
and advanced baselines on three natural MSA-scarce benchmark.

Drawing on the impressive capabilities of large language models endowed either by the au-
toencoding [7] or the autoregressive language modeling regime [8, 9], protein language models
(PLMs) have been developed to unveil the evolutionary patterns and sequence characteristics in-
trinsic to protein structures. Specifically, generative PLMs [10, 11, 12], trained on vast protein
databases [13, 14, 15, 16] have achieved unparalleled success in generating novel proteins with
desired structural properties. These achievements underscore the efficacy of language models in
identifying evolutionary patterns within individual protein sequences. Inspired by this, subsequent
works [17, 18] attempt to further integrate MSA as the input or by directly generating virtual yet
informative MSA [19, 20, 21] to provide additional evolutionary insights. These approaches usually
adopt customized attentions that merely allow attention aggregated among specific directions, such
as axial attention [22], for separately analyzing the row- and column-wise co-evolutionary patterns in
MSA. However, these attention mechanisms usually have low efficiency in capturing the evolutionary
information in MSA, or even fail to adequately capture intricate co-evolutionary dynamics. Taking
Figure 1(a) as an example, it is imperative to concurrently analyze the pairwise or high-order rela-
tionships of amino acid sites across all homologs to deduce the structural constraints influencing the
folding structures, which may not achieved by customized attention. The limited capacity may result
in compromised performance on the task that highly resorts to co-evolutionary information.

Built upon the insights mentioned above, we introduce MSAGPT, a simple yet effective framework
that prompts protein structure prediction via MSA generative pre-training. This method facilitates de
novo MSA generation, aiding in protein structure prediction in scenarios with limited MSA available.
MSAGPT is characterized by its unique features:

e 2D Evolutionary Positional Encoding. We employ an innovative dual-axis positional encoding
scheme that captures column- and row-wise co-evolutionary information concurrently. This method
provides a comprehensive understanding of complex evolutionary relationships with high efficacy.
enhancing the model’s generative capabilities.

e 1D Zero-/Few-Shot MSA Decoding. With 2D positional encoding, MSAGPT re-formalizes MSA
generation as a one-dimensional sequence generation task, optimized by the simple next-token-
prediction objective. This enables MSAGPT to conduct zero- or few-shot MSA generation under a
flexible in-context learning framework.

o Learning from AlphaFold2 Feedback. MSAGPT further utilizes feedback from AlphaFold?2 to
reduce hallucinations during MSA generation. This approach ensures the generation of reliable and
informative MSA, thus enhancing protein structure prediction.

Extensive experiments conducted on three benchmarks, CAMEO [23], CASP, and PDB [14], demon-
strate the superior capacity of MSAGPT in generating high-quality MSA. Notably, MSAGPT outper-
forms existing MSA generation models on both zero- and few-shot scenarios. Impressively, AF2 with
virtual MSA generated by MSAGPT significantly improves the structure prediction accuracy than that
with natural MSA on cases with limited homologous information. Moreover, the subsequent Rejective
Fine-tuning (RFT) and learning from AF2 feedback (RLAF) stage further enhance the model’s ability
to generate informative and faithful MSA, outperforming the original MSAGPT by a large margin, as
shown in Figure 1(b). Additionally, we demonstrate that virtual MSA can also benefit other tasks.
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Figure 2: The overall framework of prompting protein structure predictions via MSA genera-
tion. Left: The challenge faced by conventional search algorithms on protein with scarce homologous
sequences, resulting in suboptimal alignments. Middle-to-Right: MSAGPT generates informative
and high-quality MSA for such challenging queries, presenting a promising approach to overcoming
these limitations. [M] denotes the sequence separator. [S], [E] are the special tokens to represent
the start or end of MSA generation.

We expect MSAGPT to become integral in supplementing protein-related tasks requiring critical evo-
lutionary information from MSA. The model is available at https://github.com/THUDM/MSAGPT.

2 Related work

Protein Structure Prediction. Proteins are fundamental to the various biological processes that
sustain, grow, and protect living organisms. Groundbreaking deep learning approaches [1, 2, 4]
have been developed to predict the folding structures based on their sequences. These methods have
achieved structure prediction accuracy to conventional wet-lab experiments. The success largely relies
on the utilization of MSA, which are retrieved through search algorithms [24, 25, 26, 27] against vast
databases [13, 14, 15, 16]. However, challenges arise with “orphan” protein sequences, which lack
sufficient homologous sequences for accurate structure prediction. Single-sequence PSP methods [11,
28, 29, 30] are designed to infer folding structures directly from the query protein sequences. Despite
these advancements, the accuracy of predictions from single-sequence methodologies generally falls
short of those derived from MSA-based algorithms.

Protein Language Models. Protein Language Models (PLMs), such as ESM [28, 31], ProGen [10,
32], etc [12, 33, 34] have emerged as a groundbreaking development in computational biology. PLMs
are trained on single sequences, towards understanding protein structural features or enabling the
generation of diverse and realistic protein sequences. MSA Transformer [17] further incorporates
MSA as the input, achieving better performance than these single sequence models, underscoring
the importance of utilizing the evolutionary information from MSA [35, 36, 37]. To enhance MSA
generation, MSA-Augmentor [20], PoET [19] employ the seqs2seqs pre-training, which adopts the
sequential axial attention mechanism to capture the evolutionary data across and within the input
sequences, both horizontally and vertically. EvoGen [21], serving as the meta generative model, aims
at producing virtual MSA for enhancing protein structure predictions. However, it highly resorts to
external structural prediction models to optimize its performance.

Aligning with Human Preferences. Aligning language models with human preferences has been
shown to be effective in improving generation quality [8, 38, 39, 40]. Existing methods typically
employ supervised fine-tuning using human-annotated datasets or reinforcement learning from human
feedback pipelines [38, 39]. Inspired by these, we utilize the feedback from AlphaFold?2 to further
enhance the generation capability of the pre-trained model, which helps mitigate hallucinations and
enables the model to generate accurate and reliable MSA.

3 Preliminary

Definition 1 Multiple Sequence Alignment (MSA). Given the query protein sequence Q € A**F,
where A denotes the set of alphabetic symbols used to represent the 20 basic amino acids and L
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represents the number of amino acids per sequence, the MSA M € AN*L of Q) is comprised of N
homologous protein sequences, which can be obtained either by searching over protein databases or
generating with MSA generation methods.

Problem 1 Prompting Protein Structure Prediction by MSA Generation. Given () with initial
MSA My, € A™*L as the prompt, where n. = 0 indicates the zero-shot MSA generation and n > 0
signifies the few-shot MSA generation, we target at learning a function f to generate virtual MSA
M., € A™*L based on Q and My, such that the structure prediction accuracy based on the

augmented MSA M, € Alntm)xL significantly surpasses that based on the initial MSA M,
Maug = f(Q7 Mnit)a
Hacc(Q; Maug) > ]Iacc(Q7 Mnit)

where the 1. is prediction accuracy comparing the prediction result of AF2 and the ground truth.

In this paper, we mainly focus on improving the structure prediction accuracy in the low-MSA regime,
i.e., the cases that lack a sufficient number of homologous sequences.

4 Methodology

Given a query sequence and its retrieved natural MSA, we aim to comprehensively understand the
co-evolutionary patterns in MSA, such that we can generate informative virtual MSA for prompting
protein structure prediction in the low-MSA regime. Conceptually, the co-evolutionary information is
analogous to the covariance matrix in mathematics, depicting the correlations among amino acids
by comparing pairwise or high-order correlations among amino acid sites in MSA, as depicted in
Figure 1(a). To achieve this goal, MSAGPT contains two key adoptions, distinguishing it from
existing MSA-based PLMs that rely on customized attentions [2, 17, 20, 19]: 2D Evolutionary
Positional Encoding. Introduces an adaptive dual-axis positional encoding scheme that captures
column- and row-wise co-evolutionary information concurrently. And 1D Zero-/Few-Shot MSA
Decoding. Re-formalizes MSA generation as a one-dimensional sequence generation task based on
the proposed 2D positional encoding scheme, which enables MSAGPT to conduct zero- or few-shot
context learning MSA generation framework. The overall framework is illustrated in Figure 2.

4.1 2D Evolutionary Positional Encoding

Vanilla transformers typically use 1D positional embeddings to incorporate absolute and relative
positional information of tokens. However, when dealing with MSA, which represents stacked
homologs, the structure is different. Each row of MSA corresponds to a distinct protein sequence,
while each column represents the evolutionary trajectories of a specific amino acids (AAs) site. To
effectively capture the evolutionary patterns, recent approaches [2, 17, 20] have employed decoupled
axial attentions, which are designed to capture explicit co-evolutionary information along the rows
(protein sequences) and columns (AAs sites). However, these methods often suffer from low efficiency
in capturing the information dynamics or fail to capture the evolutionary information adequately.

In light of this, we introduce a novel two-dimensional evolutionary positional encoding scheme,
illustrated in Figure 2. Given an MSA M € AN*L  we define a 2D positional id matrix
P ¢ N2XNXL ' where the first positional id Py € N'X¥*L jndicates the column position,
ie., Pyfi,-] = {0,1,---,L}, and the second positional id Py indicates the row position, i.e.,
Pi[j,-] =4{0,1,--- , N}. The two positional ids are projected into two vectors added to the input
token embeddings. We utilize the Rotary Positional Encoding (RoPE) [41] technique, specifically
adapting its two-dimensional variant® to suit our 2D positional encoding requirements.

Comparison with Axial Attentions. Considering the 2D positional id (P, P;), the self-attention
among AAs («, ) meets the following unit patterns, as illustrated in Figure 3:

o P = Pf & PP # Pf . Indicates o and [ reside in the same site across dif-

ferent protein sequences, such as the AA pair (A, K) and (P, G), enabling column-

wise self-attention that highlights evolutionary patterns conserved across sequences.
“https://kexue.fm/archives/8397
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Conceptually, the 2D positional encod-
ing encapsulates the explicit row- and
column-wise self-attention patterns with
high efficacy. Moreover, it allows unrestricted information diffusion, that is, enabling any two amino
acids to attend to one another. Such a framework facilitates unveiling complex co-evolutionary
patterns, such as high-order correlations among AAs, that customized self-attentions might overlook.

4.2 1D Zero-/Few-Shot MSA Decoding

Leveraging the 2D evolutionary positional encoding, we further release the stacked MSA decoding
task into the scalable 1D sequence generation framework, without compromising the integrity of
co-evolutionary information. Specifically, we convert the MSA M € AN*L into the flatted 1D
sequence M/ € AN along the row axis to ensure that we can generate the MSA sequentially
during inference. Similarly, the 2D positional id matrix P € N2XV>L ig reshaped into a flattened
format, Pf € N'*2XNL This allows the model to conduct a simple auto-regressive generation
process, as illustrated in Figure 2.

Discussions. Admittedly, introducing 2D positional encoding introduces higher time complexity
in comparison to conventional customized attention mechanisms (from O(N2L) + O(NL?) to
O(N?2L?)). However, it is worth noting that the original stacked nature of MSA poses challenges for
integrating it with acceleration techniques used in large language models, such as Flash Attention [42,
43]. The 1D decoding framework, conversely, can be easily scaled to accommodate in-context learning
frameworks, such as retrieval augmented generation, to further enhance the model’s generation
capability and expand its application range. From a practical standpoint, the high parallelism of
the 1D decoding framework demonstrates superior inference speed, benefiting from techniques like
Flash Attention and KV-cache, while incurring negligible memory overhead compared to customized
attention mechanisms. For further details, please refer to Appendix Section A.4.

5 The Training Pipeline of MSAGPT

The training pipeline involves three successive stages: Stage 1: MSA Generative Pre-Training to
obtain the base MSA generation model; Stage 2: Rejective Fine-tuning (RFT) to instruct the base
model with high-quality MSAs via AF2 annotations, which can reduce generation hallucinations ;
Stage 3: Reinforcement Learning from AlphaFold2 Feedback (RLAF) to further enhance RFT
model’s capabilities based on the feedback of AF2. (See Appendix Section A for training details.)

5.1 Stage 1: MSA Generative Pre-Training

Pre-Training Dataset. We utilize the Uniclust30 MSA dataset from OpenProteinSet [44], which is
processed through an all-against-all search on Uniclust30 [45] using HHblits [46]. This results in
approximately 16 million MSAs (See Appendix A.1 for Details).

Pre-training Objective. We adapt the language modeling objective [47] to the MSA generation task.
The cross-entropy loss for modeling the intrinsic distribution of MSA M/ € A'*NL is defined as:

NXL
Lee =Enys | Y —logp(M][MZ,,0) $))
=0
37508
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where M/ € AN is 1D flatted version of the input MSA and 6 is the learned parameter.

5.2 Stage 2: Rejective Fine-tuning (RFT)

Noted that the pre-trained dataset inevitably contains noisy co-evolutionary patterns, such as large
portions of deletions and insertions, which may mislead the base model to yield hallucinated cases, i.e.,
the linguistically reasonable but intrinsically unfaithful MSA. Thus we select highly-quality MSAs to
further fine-tune the base model via a rejective sampling procedure based on the AF2-annotation.

RFT Dataset. We collect 120,780 protein sequences with structures from Protein Data Bank
(PDB) [14]. For the sequence (), we search its MSA M € ANXL from UniClust30 [45] with
HHblits [46]. Then we sample several MSA subsets m = {my, ma, ..., m; } with replacement, where
m; € A" and n < N. To assure the information density of the sampled data, we filter out the
MSA with depth N fewer than [n x i/2]. Subsequently, we employ AF2 to score the sampled subset
using the structure prediction accuracy I,..(Q, m;). Then the RFT dataset Dggr is defined as:

DRFT = {(Qa mi)‘(HaCC(vai)) > 81 N (Hacc(Qa m’L) - ]Iacc(Qa _)) > 62} (2)

where I,..(Q, —) indicates the prediction accuracy without using MSAs. We set the sampling number
i = 10, the depth of sampled MSA n = 16, #; = 0.9, and f; = 0.2, which results in approximately
60k samples. The base model is fine-tuned on Drer with the same pre-training objective.

5.3 Stage 3: Reinforcement Learning from AlphaFold2 Feedback (RLAF)

We further employ AF2 as the reward model to perform the Reinforcement Learning with AF2
Feedback (RLAF) using Direct Preference Optimization [38] (DPO) to further guide the RFT model
to decode meaningful structure-related MSA patterns that align with the preference of AF2.

RLAF Preference Dataset. For each query @) from the PDB, we use the RFT model to generate
its MSA M € AN*L in zero-shot manner. Then, we also sample several MSA subsets m =

K
{ma, ma,...,m;} and obtain the preference dataset Dppo = {Q(k), m\(vk), ml(k) }k as follows,
=1

Dppo = {(QamWaml)l (]Iacc(vaw) - Hacc(Qa ml)) > 03} 3)

where we set the #3 = 0.3, rendering the number of preference data Dppo = 11k.

RLAF Training Objective. The adapted DPO loss is defined as:

Lpro = E(Q,m.,m)eDoro {— log o <5 log m — Blog MH )

where 7y and 7 are initialized by the RFT model and 7 is frozen while 7y is optimized. During
the RLAF training phase, we found that merely using the DPO loss led to training instability. Thus we
adopt the pre-training loss L. for the chosen answer m,,, as a regularization term with the coefficient
factor A in the total loss to mitigate this issue. The total loss L = Lppg + ALcg, A = 0.1. Another
critical coefficient /3, which measures the penalty intensity for incorrect answers is set to 5 = 0.1.

6 Experiments
6.1 Setup

Benchmarked Dataset. We employ the datasets from CAMEOQO [23], CASP14&15, and PDB [14],
which are esteemed benchmarks in protein structure analysis spanning a diverse array of biological
protein families. For each protein sequence, we search its MSA on UniClust30 database [45] using
HHblits [46]. Given our focus on addressing the challenge presented by cases with limited MSA
information, we establish two specific benchmarks to represent the MSA-scarce conditions:

https://doi.org/10.52202/079017-1184 37509



Table 1: The performance of structure prediction on three natural MSA-scarce benchmarks. avg.
Depth represents the average depth of searched MSA across all query sequences. Compared with the
base model, the RFT and DPO models achieve higher TM-Score while with lower pLDDT values.
(See Appendix Table 5 for more results.)

CAMEO CASP PDB
(avg. Depth = 8.5) (avg. Depth = 4.6) (avg. Depth = 2.6)

| Zero-Shot | Few-Shot | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot
[pPLDDT T™M | pLDDT TM | pLDDT TM | pLDDT TM | pLDDT TM | pLDDT T™M

AF2MSA | 638 554 | 774 714 | 440 32,6 | 542 441 | 552 456 | 61.0 523
EvoDiff 68.0 59.1 [ 70.1 60.1 | 450 295 | 50.6 38.1 | 548 452 | 59.1 472
MSA-Aug. | 67.7 592 | 774 721 | 56.8 36.6 | 63.4 463 | 619 49.8 | 66.0 55.3
EvoGen 66.1 603 | 786 753 | 482 384 | 55.1 485 | 57.6 495 | 628 554

MSAGPT | 70.8 614 | 808 752 | 59.0 398 | 654 51.0 | 68.6 534 | 71.3 59.6
+ RFT 68.0 60.5 | 79.8 764 | 56.8 402 | 640 53.6 | 66.8 534 | 703 60.1
68.9 62.7 | 802 76.7 | 542 437 | 627 57.0 | 645 53.6 | 680 59.7

Model

+DPO 3 24| 422) 14| 22 #5.3)] +2.0) @85)] @67 @3.8)| +5.3) a7
Table 2: Zero-shot evaluation on artificial MSA- Table 3:  Evaluation of selection methods.
scarce benchmark (GDT stands for GDT-TS). Model | CAMEO | CASP | PDB
Model IpTM pLDDT TM GDT LDDT MSAGPT-DPO 76.7 | 57.0 59.7
AF2 MSA 280 696 420 624 670 + pLDDT Selection | 77.5 57.6 60.5
EvoDiff 347 708 440 641 699  Table 4: Evaluation on transfer learning.
MSA-Aug. 332 743 45.8 65.9 71.7

EvoGen 31.7 71.6 44.6 64.6 70.5 Model I CtP I SsP I LocP I MIB

MSAGPT 379 804 507 707 76.1 o Virual MSA | 11.6 | 665 | 583 | 57.5
+RFT & DPO | 37.9 79.7 51.6 71.4 76.9 w/ Virtual MSA | 13.1 69.0 56.4 60.3

Natural MSA-scarce Benchmark. We identify 200 protein sequences with the number of searched
MSA fewer than 20 (8 from cameo, 13 from CASP14&15, 179 from PDB).

Artificial MSA-scarce Benchmark. We collect approximately 8k protein sequences based on the PDB
released before 2024-01-22 without searching MSA.

All MSA from the test set are removed from the pre-train dataset.

Baselines. To assess the performance of MSAGPT, we adopt AF2 as the benchmark MSA-based
PSP algorithm. For MSA generation baselines, we compare MSAGPT, its RFT-version and its
DPO-version with two advanced MSA generation algorithms: EvoDiff [34], which utilizes the
diffusion framework for controllable protein sequence generation. Specifically, we use the EvoDiff-
MSA for the MSA generation, MSA-Augmentor [20], which utilizes a sequences-to-sequences
pre-training architecture incorporating an encoder and a decoder based on the axial attention [17]
and EvoGen [21], which employs a meta generative model framework with customized attention,
leveraging guidance from AF2 to refine its MSA generation. As PoET [19] is designed for mutational
scanning tasks, we don’t take it as the baseline. Additionally, we include the reference model AF2
MSA, which utilizes all the searched natural MSA for prediction.

MSA Generation Pipeline. Given that MSAGPT can perform flexible zero- or few-shot MSA
generation to accommodate different levels of available evolutionary information, we define two
generation settings to evaluate models’ performances under varying conditions:

Zero-Shot Generation. MSA generation is conducted using only the query sequence as input,
emphasizing the model’s ability to infer necessary evolutionary patterns without additional contexts.

Few-Shot Generation. All the searched natural MSA are viewed as the prompt to inform the few-shot
MSA generation process. Then the generated MSA, combined with the initial prompts, serves as
augmented data for structure predictions.
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Figure 5: Ablation study
Figure 4: The effect of different MSA depths and selection methods. with positional embedding
The X-axis indicates the different MSA depths. The Y-axis represents variants.
the TM-Score. The dashed line denotes the non-selection baseline.

Evaluation Metric. We use several widely-used metrics to assess structural similarity between
predicted structures and ground truth: TM-Score, GDT-TS, and LDDT. Additionally, we include
pTM and pLDDT, the corresponding predicted metrics estimated by AF2. All metrics are normalized
from 0 to 100 for comparison, with higher scores indicating higher confidence and usually a more
accurate prediction (see Appendix Section B for details).

6.2 MSAGPT’s Virtual MSAs Reflect the Co-evolutionary Information

Table 1 and 2 showcase the comparative results in two benchmarks across different baselines. Notably,
AF2 MSA, which relies solely on the limited searched MSA without incorporating virtual MSA,
exhibits the worst performance. Predictions enhanced with MSA generated by MSA-Augmentor
or EvoGen surpass the performance of AF2 MSA. This underscores the critical role of high-quality
MSA in enhancing the accuracy of cutting-edge PSP algorithms. Overall, MSAGPT surpasses other
advanced baselines by a large margin on both benchmarks, specifically achieving +1.4% improvement
on CAMEQO, +8.5% on CASP, and +4.7% on PDB, as measured by TM-Score, on the natural MSA-
scarce benchmark. This significant improvement demonstrates not only the superior accuracy and
effectiveness of MSAGPT but also its robustness in handling cases with noisy or low-quality MSA.

Moreover, compared with the base model, the RFT and DPO models achieve higher golden metric
scores, that is, GDT, LDDT, and TM-Score, but with a lower predictive score, that is, the value of
pTM and pLDDT. This discrepancy might arise from the presence of highly confident (according to
pTM and pLDDT) but lower-scored decoys (according to TM-Score), as observed in [21], indicating
that aligning with the preference dataset, which is filtered based on TM-Score, makes the model more
inclined to generate truly informative MSA rather than hallucinated ones.

Statistically, MSAGPT effectively improves the prediction accuracy for 91.0% and 88.9% of protein
sequences with limited MSA when compared to AF2 MSA on Zero-Shot and Few-shot scenarios,
respectively. This significant finding highlights the potential of our MSAGPT framework to uncover
and leverage co-evolutionary patterns within biosequences. Notably, we also discuss the scenario
with abundant natural MSA in the Appendix Section B.2.

6.3 Rethinking the MSA Selection Strategy

We further study the effect of different depths of virtual MSA, as shown in Figure 4(a). We observe a
trend where the relative improvement in structure prediction accuracy decreases as the depth of virtual
MSA increases. The accuracy based on MSA with 64 MSA sequences even underperforms those
based on only 16 or 32 sequences. We hypothesize that increasing the number of virtual MSA beyond
a certain threshold may introduce a dilution effect, where the density of valuable co-evolutionary
signals is compromised by the inclusion of the hallucinated generation noise. To alleviate this,
we explore MSA selection strategies for filtering out low-quality, noise-inducing sequences while
retaining those that contribute positively to the accuracy of structure predictions, as illustrated in
Figure 4(b) (See Appendix Section C for details).

1D Sequence Similarity or Diversity Measure. We first arrange MSA by their similarity to

the query sequence in descending order. The results reveal that prioritizing MSA based on their
high similarity to the query, termed as static similarity (STA-SIM), does not improve prediction
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accuracy compared to the non-selection approach (N/A). On the contrary, the static diversity (STA-
DIV) strategy, which favors MSA with lower similarity rankings, slightly outperforms the baseline,
highlighting the importance of sequence diversity in enhancing MSA quality. Moreover, we employ
the dynamic approach, initially selecting the most (or least) similar MSA to the query sequence and
progressively incorporating additional MSA based on their average similarity to the cumulatively
selected set, termed as dynamic similarity (DYN-SIM) and dynamic diversity (DYN-DIV).

The results further confirm the advantage of fostering diversity within MSA rather than selecting
only the sequences with high similarities to the query sequence. We also inspect the effectiveness of
the widely-adopted MSA trimming (TRIM) strategy [21], which yields a similar TM-Score to the
non-selection baseline, undermining its efficacy in selecting MSA with high quality.

3D Structure Affinity Measure. We assume that the generated sequence with high quality should
exhibit structural congruity with the query sequence, thereby emitting strong co-evolutionary signals.
To validate this, we rank sequences within MSA by their predicted tertiary structures according to the
pTM, a predicted TM score [2], pLDDT, and TM-Score, from highest to lowest. These approaches,
especially when guided by the pLDDT score, consistently select high-quality MSA, evidenced by the
enhanced TM-Score. We compare the non-selection methods (N/A) and pLDDT selection methods
on the three benchmarked datasets on few-shot generation scenarios in Table 3. This confirms our
hypothesis that structural similarity plays a crucial role in effective MSA selections.

6.4 Transfer Learning of MSAGPT

Since protein structures largely dictate their functions, the virtual MSA, enhancing structure prediction,
should similarly benefit other protein tasks. To validate this, we focus on two protein structural tasks:
Contact Prediction (CtP) and Secondary Structural Prediction (SsP) and two protein functional tasks:
Localization Prediction (LocP) and Metal Ion Binding (MIB) [11]. We sample 1,000 sequences from
each benchmark and conduct 5-fold cross-validation (See Appendix Section B.3 for details).

Results. Table 4 demonstrates that incorporating MSA from MSAGPT consistently surpasses merely
using the single sequence on most tasks. Yet, it achieves inferior performance on the LocP task,
which agrees with the observation [48] that protein language models may not present scaling behavior
on several protein functional or property prediction tasks. Nevertheless, the results show the great
potential of MSAGPT to contribute to a wide range of tasks with generated MSA. We are motivated
to explore additional transfer tasks to assess MSAGPT’s utility across various domains further.

6.5 Ablation Study

To understand the effect of various positional encoding strategies on capturing co-evolutionary
patterns, we design four model variants: 1D_gpt: Adopts the standard GPT positional encoding;
1D_2nd: Utilizes only the second-dimensional of the 2D evolutionary positional encoding mechanism;
1D_1st: Utilizes the first-dimensional positional encoding; 2D_full: Implements the 2D evolutionary
positional encoding mechanism (See Appendix Section B for details).

Results. Figure 5 showcases the TM-score distribution across different model variants. The
1D_gpt exhibits the lowest performance, attributed to its simplistic approach of treating the MSA as a
concatenation of homologous sequences, thereby failing to discern any co-evolutionary patterns. Both
the 1D_1Ist and 1D_2nd demonstrate significant improvement over 1D_gpt, by explicitly encoding
column- or row-wise relationships within the MSA, respectively. Notably, the performance of
1D_1st is better than that of 1D_2nd, suggesting that column-wise covariance patterns play a more
crucial role in structural predictions than row-wise patterns. This aligns with the understanding
that the permutation of sequence order does not alter the covariance information among residue
sites [17]. Remarkably, the 2D_full variant, which incorporates the proposed 2D evolutionary
positional encoding, outperforms all other models, which underscores its effectiveness in capturing
the intricate evolutionary information present in MSA.

7 Limitations

In this section, we discuss some limitations that should be resolved in future work.
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Scaling behavior of MSAGPT. While we have showcased the effectiveness of MSAGPT in gen-
erating informative virtual MSA, it is important to note that our pre-training was conducted with a
model containing 2.8 billion parameters. The performance and behavior of MSAGPT , when scaled
concerning dataset size, model size, and total compute resources, remain unknown.

Transfer Learning on a wide range of tasks. While we have demonstrated the transferability of
MSAGPT on several tasks, including protein structure prediction and protein function prediction, its
performance on a broader range of tasks remains an open question. The ability of a model to transfer
its learned knowledge and adapt to new tasks is a critical aspect of transfer learning. While MSAGPT
has shown promising results on the tasks it was evaluated on, it is important to assess its performance
on a more diverse set of tasks spanning various domains and problem types.

8 Border Impact

The aim of this paper is to improve the accuracy of protein structure prediction in cases with limited
homologous sequences. The generated MSA also shows great potential to transfer to other protein-
related tasks. By leveraging the information encoded in the generated MSA:s, it is possible to enhance
the performance of various protein-related tasks beyond structure prediction. However, the generative
MSA may be misused to contaminate the high-quality nature MSA databases. Thus, it is necessary to
train a classifier to distinguish the real from MSAGPT-generated MSA.

9 Conclusion

This paper introduces MSAGPT, a novel approach that prompts protein structure prediction via
MSA generative pre-training, to enable accurate protein structure predictions in situations where
co-evolutionary information is scarce. To meticulously characterize the co-evolutionary patterns
within MSA, MSAGPT designs two innovative techniques: the 2D Evolutionary Positional Encoding
scheme and the 1D Zero-/Few-Shot MSA Decoding mechanisms. The post-alignment learning
from AlphaFold2 feedback further enhances the quality of MSA generation. Empirical experiments
conducted on a variety of benchmarks have demonstrated MSAGPT’s robustness and effectiveness.
In the future, we plan to apply MSAGPT to broader areas, particularly for tasks that heavily rely on
co-evolutionary information, and investigate the aforementioned limitations.
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The overall training pipeline is illustrated in Figure 6.
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Figure 6: The overall training pipeline and the illustration of preference dataset construction
process for SFT and DPO learning stages.

A.1 Pre-Training

To obtain high-quality MSA, we first screen out clusters with sequence lengths from 25 to 2000, and
only retain sequences with the minimum identity of 30% and the largest proportion of gap tokens no
more than 10%. The clusters with more than 10 sequences are left. As the MSA obtained by MSA
search tools, inevitably contain noisy co-evolutionary patterns, such as large portions of deletions,
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Table 5: The performance (pTM, GDT, LDDT) of structure prediction on three natural MSA-scarce
benchmarks.

CAMEO CASP PDB
(avg. Depth = 8.5) (avg. Depth = 4.6) (avg. Depth = 2.6)

Model | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot | Zero-Shot |  Few-Shot

|pTM GDT LDDT pT™M GDT LDDT pT™M GDT LDDT pTM GDT LDDT pT™M GDT LDDT pT™M GDT LDDT

AF2MSA (413 60.8 66.7 [ 582 755 803|312 295 405|408 416 519|403 437 56.6 462 504 628
EvoDiff 542 624 68.1|481 63.0 67.7402 273 384|441 356 46.7|474 433 559|455 450 57.1
MSA-Aug. |47.2 623 683|584 751 80.6(39.1 332 427|443 432 519|448 476 59.8 488 528 652
EvoGen 450 635 688 |61.8 788 828|360 348 449|428 451 54.6|443 470 594 |49.1 53.0 654

MSAGPT |51.4 643 694 | 63.6 788 83.2|40.0 363 455|477 478 56.0|48.6 50.6 533|537 570 69.2
+RFT 48.1 635 68.1|624 79.0 83.1 412 36.1 455|498 498 56.0|48.6 505 624|536 572 69.0
+DPO 494 644 687630 794 835|400 395 481|498 531 60.0 [47.6 509 63.2 (527 578 69.5

insertions, and gaps. Many previous works aim to filter high-quality MSAs by clustering or ranking
them based on predefined rules. One primary rule is to find MSA sequences most similar to the
main sequence with fewer gaps, as these are more likely to represent informative co-evolutionary
patterns. Following this idea, we sample MSA sequences using similarity-based weighted sampling,
where sequences more similar to the query protein are more likely to be selected and ranked higher.
Moreover, we also randomly shuffie the sequences in the selected MSA by a certain proportion to
avoid injecting the order bias.

Regarding the backbone of MSAGPT, we employ the standard transformer decoder framework [47,
49] and train the model with 2.8 billion parameters owning 36 layers, 2560 embedding size, and
40 attention heads. We employ batches of 48 MSAs with each MSA containing 12,288 residues.
We follow BF16 mixed-precision pre-training strategy. We use AdamW [50] as our optimizer with
B1 =0.9, B2 = 0.95, eps = 108 and a learning rate of 1.2 x 10~%4. We use a cosine learning rate
schedule, with a warmup of the first 2.5% steps, and decay the final learning rate down to 10% of the
peak learning rate. We use a weight decay of 0.1 and gradient clipping of 1.0 without dropout. For
the tokenization of the protein data, we use the residue-level tokenizer which is adopted in several
PLMs [28, 11, 10]. To save the GPU memory and accelerate the pre-training process, we substitute
the standard self-attention module with the Flash Attention-v1 [42] in each layer. All models are
trained on 24 A800 GPUs for 254k updates, consuming about 150 billion tokens. This process
consumes approximately 150 billion tokens, requiring around 2.7 x 10'® floating point operations
(FLOPs).

Pre-trained Dataset Figure 7 illustrates the length and depth distribution of the pre-training
dataset. Moreover, we implement a thorough filtering process to eliminate any potential data leakage.
Specifically, we remove all MSAs of sequences in the test sets (CAMEO, CASP, and PDB) from the
pre-training dataset. Furthermore, we ensure that any sequence in the pre-training set with a similarity
greater than 0.9 to a sequence in the test set is excluded. To validate this filtering process, we used
the HHblits [46] tool to retrieve sequences from the test set and calculate their maximal similarity
distribution with sequences in the pre-training dataset. The results, illustrated in Figure 9(b) show that
the maximum similarity is 0.89, confirming that there is no data leakage in the pre-training dataset.

A2 RFT

We fine-tune the base model using the pre-training cross-entropy loss on Dger with training only one
epoch. Specifically, we adopt the same experimental settings as that used in the pre-training stage,
except for the learning rate of 1.0 x 10~ by default. Following the pre-training phase, the model
undergoes a rejective fine-tuning process, which is more energy-efficient. This stage is executed on 8
x A800 GPUs for a single epoch for about two days.

RFT Dataset Filtering Threshold When curating the RFT dataset, we first sample multiple MSA
subsets for each protein structure, and select high-quality MSA subsets based on the following criteria:
(1) the absolute structure prediction accuracy using the MSA subset, as measured by TM-score,
should be larger than 67, and (2) the relative improvement of the prediction accuracy after using the
MSA subset, as compared to single sequence prediction, should be larger than 65. We set 6; = 0.9,
and experiment with different 65 values, as shown in table 7. The RFT model trained with dataset
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Figure 7: The length and depth distribution of the pre-training dataset.
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Figure 8: The correlation between total token length (the protein sequence length multiplied by the
number of generated MSAs) and the inference time (minutes). In most cases (total token length <
20K), the generation time of MSAGPT is lower than the AF2 search pipeline requiring more than 30

minutes. The result shows MSAGPT can generate substantial sequence lengths within practical time,
thus affirming its scalability and efficiency.

filtered by 65 = 0.2 yields the best result, indicating that the relative information gain provided by
MSA is a valuable indicator for curating high quality datasets for RFT. Moreover, 62 = 0.5 results in
a20% decrease in dataset size, leading to inferior RFT model performance, highlighting the necessity
of an intricate balance between data quality and data volumn.

A.3 RLAF

We fine-tune the RFT model using the DPO algorithm on Dppg with training only one epoch.
Specifically, we adopt the batch size of 1 with each MSA subset containing a maximum of 16,384
residues. We also use AdamW [50] with the learning rate of 1.0 x 10~% by default. We linearly
warmup the learning rate from 0 to 1.0 x 1075 over the first 0.1% steps. This stage is also executed
on 8 x A800 GPUs for a single epoch for about one day

Table 6: Performance comparison between different data source and filtering threshold values.

Data Source | nature(0.2) | nature(0.3) | generated(0.3) | nature(0.3)+generated(0.4)
MSAGPT+ RLAF | 62.6 | 645 | 63.5 | 62.7
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Table 7: Performance comparison between different relative improvement threshold 6, values.

Threshold@2 | 0 | 02 | 0.5
MSAGPT+RFT | 61.2 | 62.5 | 61.3
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Figure 9: (a) The distribution of MSA depth of benchmarked datasets and (b) the similarity
distribution of sequences in the test set, as retrieved from the pre-training set using HHblits.

RLAF Dataset. We conducted experiments with different data sources and filtering thresholds
f3—defined as the minimum relative improvement of the good case over the bad case in DPO data
pairs—for the RLAF dataset, as detailed in Table 6. Utilizing only natural MSA subsets sampled from
PDB, we found that higher 63 values lead to improved model performance, suggesting a correlation
between the disparity within data pairs and DPO effectiveness. Interestingly, the quality of MSA
subsets generated by the RFT model surpasses that of natural MSA subsets at a 3 of 0.2. However,
the performance declines when natural MSAs are mixed with generated MSAs, compared to using a
single data source during training. This indicates that maintaining distribution homogeneity is crucial
for effective DPO alignment.

A.4 Inference Efficiency

Generally, it’s vital to consider not just the immediate resource consumption during pre-training
and post-alignment, but also the long-term utilization of these models. Once pre-trained, MSAGPT
demonstrates significant efficiency, capable of generating protein sequences with up to 100,000 amino
acids in under 8 hours. This efficiency underscores the model’s value, especially when amortized
over its application lifespan and subsequent fine-tunings for specific tasks.

Regarding the scalability of the MSAGPT. We present the inference time with different total lengths
(measured by protein sequence length multiply the number of generated sequences.), as shown in
Figure 8.

The result showcases MSAGPT’s ability to generate substantial sequence lengths within practical
time frames, thus affirming its scalability and efficiency.

Table 8: The paired Student’s t-test between MSAGPT and other baselines on three benchmarks
based on the TM-Score, where the p-value less than 0.05 indicates the result is said to be statistically
significant.

CAMEO CASP PDB
Model (avg. Depth = 8.5) (avg. Depth = 4.6) (avg. Depth = 2.6)
| Zero-Shot | Few-Shot | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot

AF2 MSA |0.014 0.023 0.008 0.007 Se-7 8e-9
EvoDiff 0.016 le-5 Se-4 Te-5 0.012 le-8
MSA-Aug. 10.023 0.014 0.044 0.015 6e-6 le-7
EvoGen 0.038 0.027 0.067 0.016 le-8 le-9
MSAGPT | - | - | - | - | - | -
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Table 9: The results of 5-fold cross-validation performance between with or without virtual MSA
generated by MSAGPT on four protein-related tasks.

| 1 | 2 | 3 | 4 | 5 |AVG
Model Top | ACC | ACC | ACC | ACC ]
w/s)
w/o Virtual MSA (CtP) | 114 | 143 | 107 | 99 | 118 | 116

w/ Virtual MSA (CtP) 14.1 13.7 13.4 11.8 12.3 13.1

w/o Virtual MSA (SsP) 67.7 65.8 64.0 68.9 66.2 66.5
w/ Virtual MSA (SsP) 70.5 67.8 67.5 70.5 69.0 69.0

w/o Virtual MSA (LocP) | 56.0 64.5 48.0 59.0 57.0 58.3
w/ Virtual MSA (LocP) | 47.0 58.5 53.5 64.0 59.0 56.4

w/o Virtual MSA (MIB) | 58.0 535 49.5 59.0 67.5 57.5
w/ Virtual MSA (MIB) | 61.5 57.0 63.0 53.0 67.0 60.3

B Experimental Settings

B.1 Evaluation Details

We employ three golden metrics: TM-Score, a widely-used metric for assessing the structural
similarity between predicted structures and ground truth, LDDT, the local distance difference test
score measures how well local interactions in a reference structure are conserved the protein model
being assessed, GDT-TS, the global distance test to represent “total score”, is a measure of similarity
between two protein structures with known amino acid correspondences (e.g. identical amino acid
sequences) but different tertiary structures, and two predicted metrics: pLDDT, the predicted local
distance difference test measuring the local confidence of per-residue and pTM, an integrated measure
of how well AlphaFold2 has predicted the overall structure. All metrics are normalized from O to
100 for comparison, with higher scores indicating higher confidence and usually a more accurate
prediction. where 1 indicates a perfect match between two structures. Each run across 3 independent
runs. For each run, we adopt the different temperatures (T € {0.8, 1.0}) along with different nucleus
sampling factors (P € {0.8, 1.0}), experimenting with varying the number of generated MSAs in 8§,
16, 32, and 64. The final performance is determined by first identifying the predicted structure with
the highest accuracy across these different depths, and then averaging the results across the test set.

B.2 Experiments on MSA-abundant Scenario

We compare the results of query sequences with abundant natural MSAs to those with abundant
natural MSAs augmented by MSAGPT’s generated MSAs on CAMEO set. For this comparison, we
sample 128, 256, and 512 sequences from both the natural MSAs and the generated MSAs, as shown
in Table 10. These results indicate that the inclusion of generated MSAs has no significant effect on
the performance in MSA-abundant conditions, which is consistent with previous findings that when
more than 64 MSAs as input, AF2 predicts a “converged” structure.

B.3 Setup of Transferability of MSAGPT to Other Tasks

We utilized the MSA Transformer [17] as the backbone model with the task-specific heads. We
finetune MSA transformer with the head with Ir = 3e — 5 and batchsize = 16 on all experiments.
All the task benchmarks are obtained following the pipeline in [11]. For each task, we sample 1000
protein sequences with the corresponding labels. Then we use MSAGPT-DPO to generate 32 virtual
MSAs with the generation strategy T=0.8 and P=0.8. Both setups are trained briefly (for one epoch)
for 5-fold cross-validation as shown in Table 9, and we report the average performance.

B.4 Setup of Ablation Study
Experiments are conducted based on models with 150 million parameter size encompassing 30 layers,

20 attention heads, 640 embedding dimensions. These models are trained across approximately 30
billion tokens, amounting to around 40k training steps, maintaining consistency in hyper-parameter
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Table 10: Performance comparison in MSA-abundant scenarios across all 194 cases in the CAMEO
datasets.

#Natural MSA  # Virtual MSA | TM GDT-TS
0 0 | 39.1 28.5
128 0 85.1 82.0
128 128 85.3 82.2
256 0 86.2 83.8
256 256 86.0 83.5
512 0 86.5 84.2
512 512 86.4 84.0

settings with MSAGPT, except for variations in the positional encoding mechanism. The efficacy of
each variant is assessed through zero-shot MSA generation on the CASP test set.

C Selection Strategy Details and pLDDT Evaluation

To evaluate the effectiveness of different selection strategies, we extracted 4, 8, 12, 16, 24, and 32
sequences from 48 zero-shot generated MSA for each method and computed the median TM-scores
(Figure 4(b)) and pLDDT scores (Figure 10) across 33 test cases. The strategies are detailed below.

Static Similarity / Static Diversity Strategy: We select the
top-k generated MSA with the highest / lowest sequence
identity to the query sequence. Sequence identity is deter-
mined by the percentage of identical residues between the
two sequences.

-a— N/A
STA-SIM
~—&— STA-DIV
—o— DYN-SIM
—e— DYN-DIV
TRIM
—— pTM
pLDDT
—a— T™M

Dynamic Similarity / Static Diversity Strategy: Starting
with the MSA most / least similar to the query sequence,
we sequentially incorporate MSA into the selected set ]
based on the highest or lowest average sequence identity Figure 10: The pLDDT curves across

with all sequences already included, until reaching a total diffgrent selection methods. Dashed
of k MSA. red line represents using all generated se-

quences of a given depth. Solid lines rep-
Trimming Strategy: Suggested by EvoGen, this method ~resent selecting a subset of a given depth
filters out MSA with less than 50% coverage or sequence from 48 generated sequences with a spe-
identity to the query sequence above 90% or below 20%. cific strategy. The curves are smoothed
Subsequently, it iteratively selects the MSA with the clos- using the Exponential Moving Average
est sequence identity to the query and an average sequence with alpha=0.3.
identity below 90% with all the chosen MSA.

4 28 32

8 12 16 20 24
Selected MSA Denth

pTM / pLDDT / TM Score Strategy: For each generated

MSA, we remove the gaps and predict its structure using AF2. The structures are then ranked based
on the pTM score (as reported by AF2), the pLDDT score (as reported by AF2), or the TM score
compared to the query sequence’s ground truth structure (calculated by US Align), and the MSA
corresponding to the top-k structures for each metric are selected accordingly.

D Protein Structure Prediction Analysis compared with natural MSA

We present a detailed visual comparison of protein structures predicted by AlphaFold2 (AF2) utilizing
MSA augmented by MSAGPT, against those predicted with natural MSA. This comparison, as
depicted in Figure 12, highlights the remarkable capability of MSAGPTin enhancing the accuracy of
structure predictions to levels that closely rival, and in some cases surpass, those based on naturally
derived MSA.

We delve into a visualized analysis of protein structures predicted using AlphaFold2 (AF2) with
MSA augmented by our proposed model (MSAGPT), alongside those augmented by EvoGen and
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TM-Score = 95.6 TM-Score =29.4 TM-Score =22.5

Figure 11: Visualization of improved structure prediction compared with baseline models.
Ground truth; Pink: Predictions based on MSA generated by MSAGPT; Blue: Predictions from MSA
generated by EvoGen; Green: Predictions utilizing MSA generated by MSA-Augmenter.

MSA-Augmenter. This comparison, visualized in Figure 11, encompasses a spectrum of proteins,
ranging from short sequences with relatively simple structures, like 7mnv_B, to long sequences with
complex configurations, such as 7tdv_B. It includes proteins characterized by multiple beta sheets,
exemplified by 7ywg_B, as well as those rich in alpha helices, such as 7tdv_B. Across these diverse
cases, MSAGPT significantly surpasses both EvoGen and MSA-Augmenter, improving the TM score
to a maximum of 0.9.

By detailed examination, we observe that while the MSA augmented by the baseline models assist AF2
in accurately predicting local structures and folds, they fall short in aligning the global composition
and orientation with the ground truth structure, which is effectively addressed by MSA generated by
MSAGPT. The local structures, which are generally more discernible from the spatial arrangements
of adjacent amino acids, contrast with the global structures whose prediction relies heavily on
comprehensively understanding the co-evolutionary information within MSA. These co-evolutionary
patterns, indicating proximity in three-dimensional space through simultaneous mutations at multiple
positions, are crucial for accurate global structure prediction. These findings underscore MSAGPT’s
impressive capability to comprehensively capture and utilize co-evolutionary information, thereby
significantly enhancing the accuracy of protein structure predictions. More visualization cases about
the predictions based on MSA generated by MSAGPT and the predictions based on the natural MSA
are illustrated in Appendix D.

E Protein Structure Prediction Improvement after DPO

Figure 13 represents the comparison before and after the DPO training, depicting notable enhance-
ments in structure prediction accuracy. Figure 14 and 15 provide an in-depth analysis of the generated
MSA for each case. Specifically, residues 43, 53, 71-79, 105-111, 122, 132 and 157-166 in the
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7vrb_A

TM-Score = 55.8

TM-Score = 70.1 TM-Score = 49.5

Figure 12: Visualization of improved structure prediction compared with nature MSA :
Ground truth; Pink: Predictions based on MSA generated by MSAGPT; Blue: Predictions from MSA
generated by natural MSA.
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TM-Score = 46.6 TM-Score = 78.9

Figure 13: Visualization of improved structure prediction after DPO. : Ground truth;
Blue: Predictions based on MSA generated by MSAGPT; Pink: Predictions based on MSA generated
by MSAGPT-DPO.;

MSA of 7wme_A, along with residues 22-27, 53, and 73 in the MSA of 7sxb_A, display distinct
characteristics pre- and post-DPO training.
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Figure 14: Residue Distribution of Generated MSA for 7wme_A. The red box indicates natural
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colored using the clustal scheme by Jalview.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly made statements to claim the contributions in the abstract and
introduction sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed several limitations of our work in Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work is primarily focused on empirical experiments and extensive val-
idation rather than providing theoretical results. Therefore, the paper does not include a
set of assumptions or proofs for theoretical results since it is not the main emphasis of the
research.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details in the Appendix and the released
model weight at https://github.com/THUDM/MSAGPT to ensure the reproduction of all the
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the implementation details in the Appendix to ensure the re-
production of all the experimental results. Moreover, we also released model weight at
https://github.com/THUDM/MSAGPT to the community.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the implementation details in the main content or the Appendix to
ensure the reproduction of all the experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have presented the results of the paired Student’s t-test between our model
and other baselines on three benchmarks (Table 1) in the Appendix Table 8.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the implementation details in the Appendix and the released
model weight at https://github.com/THUDM/MSAGPT to ensure the reproduction of all the
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and obeyed the NeurIPS Code of Ethics https://neurips.
cc/public/EthicsGuidelines.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have already discussed the broader impact in Section 8.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We have already discussed the broader impact with potential risk in Section 8.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have mentioned all the sources of used data, code, and models, and given
the credited to the corresponding authors or organizations.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the inference script and model weight at
https://github.com/THUDM/MSAGPT.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We don’t include human subjects or crowdsourcing in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We don’t include human subjects or crowdsourcing in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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