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Abstract

The study of modern machine learning models often necessitates storing vast
quantities of gradients or Hessian vector products (HVPs). Traditional sketching
methods struggle to scale under these memory constraints. We present a novel
framework for scalable gradient and HVP sketching, tailored for modern hardware.
We provide theoretical guarantees and demonstrate the power of our methods in
applications like training data attribution, Hessian spectrum analysis, and intrinsic
dimension computation for pre-trained language models. Our work sheds new light
on the behavior of pre-trained language models, challenging assumptions about
their intrinsic dimensionality and Hessian properties.

1 Introduction

Overview In this work, we investigate gradient and Hessian vector product (HVP) sketching to
address the memory constraints inherent in applications that require the storage of numerous such
vectors. Examples of such applications include training data attribution (TDA), eigenvalue estimation,
and the computation of the intrinsic dimension. While previous studies on the intrinsic dimension
have employed the Fastfood Transform to mitigate memory demands, we demonstrate its theoretical
limitations for sketching and its persistent memory bottlenecks on modern accelerators. To resolve
these issues, we propose novel sketching algorithms designed for modern hardware and underpinned
by robust theoretical guarantees. Our experiments on pre-trained language models demonstrate the
scalability of our methods while offering new perspectives on the intrinsic dimension and the Hessian
of generative language models.

Motivation Training data attribution (TDA) [20, 11] and Hessian eigenvalue estimation [12] offer
powerful insights into neural network behavior. TDA requires storing vectors of the same dimen-
sionality N as the network’s parameters for each training point, scaling linearly with dataset size
(O(NT ) for T training points). Similarly, numerically stable Hessian eigenvalue estimation al-
gorithms demand repeated Hessian-vector product (HVP) computations and storage, scaling with
network size and iterations (O(NT ) for T iterations). These memory bottlenecks hinder the study
of large-scale models; to address this, sketching [27] provides a compelling solution. By projecting
gradients or HVPs into lower-dimensional random subspaces, sketching preserves their essential
geometric properties while drastically reducing memory requirements. However, in TDA sketching
has been employed with limited effectiveness. Random projections have been carried out with dense
matrices, that introduce significant scaling constraints (O(ND) memory for a target dimension D)
which necessitate the restriction of gradients to a subset of layers. Current TDA scaling methods
require layer selection, as demonstrated with BERT in [8], where only 15M parameters were used
out of 110M. Beyond the computational cost of dense matrices, our experiments show that layer
selection introduces substantial distortion in the estimation of TDA scores (Sec. 5.2). Recent work
on neural network geometry [14] suggests using the Fastfood Transform for gradient sketching
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(abbr. FFD [13]) with O(N) memory; however, as the Fastfood Transform is a random feature
generation algorithm, it necessitates indirect application in order to sketch gradients. This has both
theoretical and practical consequences. On the one hand, our theoretical analysis reveals that FFD
fails to fully satisfy the algorithmic requirements of sketching (Thm. 3.1). On the other hand, our
experiments (Tab. 3) demonstrate that FFD exhibits unacceptable run-time performance on TPUs.
These limitations, both theoretical and practical, underscore the need for novel sketching algorithms.
To this end, we investigate new sketching paradigms optimized for modern accelerators like GPUs
and TPUs. Our work makes the following contributions:

1. Scalable Gradient Sketching for Modern Accelerators and Networks: We introduce al-
gorithms (AFFD, AFJL, QK) (Sec. 3) designed to overcome performance limitations of
existing sketching techniques with modern neural networks on architectures like GPUs and
TPUs. Our design analysis provides further insights into the effectiveness of our approach.

2. Robust Theoretical Foundations: We establish theoretical guarantees for AFFD and QK
(Thms. 3.2, 3.3) for sketching and demonstrate limitations in the theoretical basis of the
Fastfood Transform (Thm. 3.1). Our analysis further indicates a dimensionality reduc-
tion advantage for AFFD over QK, a finding supported by our TDA experimental results
(Sec. 5.3).

3. Algorithmic Improvements: We propose more efficient algorithms for the intrinsic dimension
estimation and Hessian eigenvalue computation (Sec. 4).

We demonstrate how our methods enable large-scale applications in training data attribution, intrinsic
dimension computation, and Hessian spectra analysis with pre-trained language models. This leads
to the following insights that advance the understanding of pre-trained language models:

1. Limitations of Layer Selection: We demonstrate that layer selection methods yield inaccurate
influence score estimations in training data attribution, so their usage should be avoided
(Sec. 5.2).

2. High Intrinsic Dimension: In contrast to assumptions drawn from classification-based stud-
ies, we demonstrate that the intrinsic dimension of LLMs can approach their full parameter
count (Sec. 5.4). This challenges prevailing beliefs about the intrinsic dimensionality of
these models [14, 1, 17].

3. LLM Hessian Spectra: Our analysis shows distinct characteristics of LLM Hessian spectra
(Sec. 5.5), contrasting with conjectures based on findings related to smaller networks [9, 21,
3, 12].

Paper organization Sec. 2 provides a survey of relevant research in the field, contextualizing our
contributions. Sec. 3 introduces our novel sketching algorithms. We begin with necessary background
material, analyze design choices, and provide a step-by-step implementation tutorial in Appendix B.
Sec. 4 outlines our proposed techniques for efficient intrinsic dimension search and Hessian eigenvalue
computation. Sec. 5 describes our experimental setup: subsections are aligned with Sections 3 and 4
to enhance the connection between theory and empirical results

2 Related Work

Sketching Sketching algorithms have been extensively studied (see surveys [27, 18, 15]). Our
algorithms, AFFD and AFJL, draw inspiration from the seminal FJL algorithm [2] and the FFD
approach [13]. However, these techniques were designed before the era of modern accelerators like
GPUs and TPUs. Therefore, our work revisits their design, optimizing them for modern neural
networks and hardware. Theoretically, while [2] established FJL as a sketching algorithm, their proof
relies on independence assumptions that do not hold in our setting. To address this, we employ more
sophisticated concentration tools tailored to bi-linear forms (Thm. 3.2) and the special orthogonal
group (Thm. 3.3). Recent work on PAC bounds [17] leveraged Kronecker-product decompositions to
accelerate gradient sketching when computing intrinsic dimensionality. Our QK algorithm extends
the concepts introduced in [17]. Importantly, we provide a proof that QK is a sketching algorithm,
absent in [17]. Additionally, we demonstrate that the Kronecker structure used in [17] is not essential
for performance gains, highlighting that the true bottleneck in FFD and FJL is memory access. For a
comprehensive comparison with [17], please refer to Appendix C. Finally, to support our eigenvalue
estimation, we leverage the theoretical guarantees outlined in [25].
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Intrinsic dimension The concept of intrinsic dimension (ID) offers a valuable metric for under-
standing the complexity of learning tasks. Originally employed to analyze loss landscapes [14],
intrinsic dimension has expanded into the study of language models. [1] demonstrated its role in
explaining the generalization power of fine-tuned pre-trained language models. However, their focus
was limited to classification tasks. In contrast, our work extends the analysis of ID to generative tasks.
This distinction is crucial as we identify scenarios where the task’s intrinsic dimension approaches
the full model size, a phenomenon not typically observed in classification settings. Additionally,
while FFD has been used for efficient language model fine-tuning [16], memory constraints limited
their investigation of the intrinsic dimension (ID) in generative tasks to 500k; in other words, because
of scalability contraints, [16] could only work with a target sketching dimension ≤ 500k, which
prevented searching for the true value of ID as we demonstrate on a summarization task where ID
approaches the model dimension. Therefore, our work overcomes this limitation, allowing us to
compute the intrinsic dimension of such tasks.

Scaling up influence functions Scaling influence functions for training-data attribution remains a
crucial research direction. Previous works like [8, 7] have improved index creation, retrieval speed,
and Hessian estimation. However, these approaches can still be computationally demanding. Our work
takes a distinct path, aiming to make influence function calculations fundamentally more efficient. Our
HVP sketching methods seamlessly replace existing HVP and gradient computations in frameworks
proposed within [8, 7, 20]. Furthermore, we offer eigenvector sketching to enhance methods like the
Arnoldi iteration [24]. [19] has proposed to use dense random projections by materializing them in
chunks and on-the-fly; drawbacks of this approach are: (1) the lack of the scalability in the target
sketching dimension and (2) the need of hardware-dependent custom implementations; on the other
hand, our approach removes the requirement for specialized implementations (e.g., custom CUDA
kernels). This flexibility enables easy integration into standard ML workflows using higher-level
languages such as Jax. An orthogonal direction to scaling up via sketching is that of using surrogate
models, compare [5].

Hessian evolution during training Investigating how the Hessian evolves during training has shed
light on the dynamics of deep learning, with seminal works [21, 9] offering intriguing findings.
These studies suggest the progressive disappearance of negative eigenvalues and the confinement of
gradient descent within a small subspace. While [12] developed a numerically stable Hessian analysis
algorithm, its computational demands hinder its application to large-scale models over numerous
iterations. Our work addresses this limitation by introducing sketching techniques to enable the
efficient construction of large Krylov subspaces (e.g., 103-dimensional) for models like GPT-2L
(770M parameters). This advancement significantly surpasses the memory constraints of the method
utilized by [12]: a 3TB fp32 storage requirement would have been necessary for a comparable
analysis using their approach. Consequently, we are uniquely positioned to rigorously examine the
conjectures proposed [21, 9] within the context of pre-trained language models.

3 Design Principles for Efficient Sketching Algorithms

In this section, we explore a design space for more efficient sketching algorithms. To establish a
foundation, we first analyze the performance bottlenecks of existing algorithms, specifically FJL
and FFD, within the context of modern accelerators. This examination highlights two critical design
choices: whether the gradient is sketched implicitly or explicitly, and the kind of pre-conditioner
that is used. Informed by this analysis, we propose three novel algorithms: AFFD, AFJL, and QK.
We then delve into the theoretical underpinnings of AFFD and QK, providing rigorous proofs for
their guarantees. Additionally, we demonstrate that FFD lacks the theoretical foundation required for
sketching. Relevant experimental findings are presented in Sections 5.2 and 5.3.

Dense sketches and FJL A D-dimensional sketch of the gradient of a real-valued function L(θ)
(θ ∈ RN ) is a random projection of the gradient ∇L ∈ RN to RD. To ensure this projection
preserves essential geometric properties, the random projection operator Φ : RN → RD must, with
high probability, concentrate the norm of Φ(x) around the norm of x. Mathematically, for each ε and
δ there exists a large enough target dimension D(ε, δ) so that for D ≥ D(ε, δ):

Prob (|‖Φ(x)‖2 − ‖x‖2| ≥ ε‖x‖2) ≤ δ. (1)

3
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This concept generalizes to sketching higher-order derivatives (see Appendix C). For our purposes,
consider the Hessian vector product operator HVP : RN → RN defined as HVP(u) = ∇2L(θ)(u)
A sketch of the HVP can be obtained as v 7→ Φ(HVP(ΦT v)), v ∈ RD. This sketch defines a linear
mapping RD → RD [25]. While a simple Dense Sketch (using a random D ×N Gaussian matrix)
ensures the norm property, it has O(DN) memory and O(DN2) compute requirements. The FJL
algorithm [2] addresses the compute cost with a sparser projection matrix:

Φ(x) =

√
N

D
·Gs ·HN ·B(x), (2)

where: B ∈ RN×N is a diagonal matrix with Bi,i = ±1 (random signs); HN is the N -
dimensional Walsh-Hadamard transform (Appendix C); Gs is a sparse RD×N Gaussian matrix
with (in-expectation) Θ(D log2M) non-zero entries (M is a parameter). The HN · B component
preconditions sparse inputs x for which (1) might otherwise fail. ImplementingGs efficiently presents
challenges on modern hardware and frameworks like Jax that lack native sparsity support.

FFD: Implicit Gradient sketching The FFD transform, introduced by [13] in the context of kernel
machines, provides a computationally efficient way to approximate high-dimensional feature maps.
As a random feature generator [15], FFD constructs high-dimensional random features (∈ RN ) from
a lower-dimensional input vector (u ∈ RD). Given u ∈ RD, FFD concatenates N

D vectors of the
form:

Φi(u) = σF ·HD ·Gv ·Π ·HD ·B(u) (1 ≤ i ≤ N

D
), (3)

where B and HD are as in (2) (and are both D ×D-matrices), Π is a permutation matrix, Gv is a
diagonal D ×D-matrix with i.i.d. standard Gaussian entries, and σF is a normalization constant
(see [13]; for a practical implementation see the code released by [16]). FFD has the key advantage
of constant memory cost, O(N), regardless of the input dimension D. Since FFD defines a map
RD → RN , direct sketching of a gradient is not possible. To address this, [14] perform what we call
an Implicit Gradient Sketch:

S(∇θ|θ0L) = ∇ω|0L(θ0 + FFD(ω)); (4)

this formulation effectively applies the transpose of FFD to the gradient. While [13] establish certain
properties of FFD, a complete proof of its suitability as a random feature generator is missing.
Additionally, whether the FFD satisfies sketching guarantees (1), remains to be fully investigated
(we will address it in Thm. 3.1).

Explicit sketches. In light of equation (4), it’s natural to consider whether a direct sketch of the
gradient could be achieved using a map Φ : RN → RD. We define this as an Explicit Gradient
Sketch:

S(∇θ|θ0L) = Φ(∇θ|θ0L). (5)

This approach offers flexibility. For random feature generation methods like FFD, Φ needs to be
implemented as the transpose; for sketching algorithms like FJL, the explicit sketch can be applied
directly, while the transpose would be needed for the implicit form (4). In Appendix B, we provide a
Jax-based tutorial on transposing sketching algorithms. Which one is the right approach? Intuitively,
implicit sketches may seem more efficient since they avoid direct gradient materialization. However,
as we’ll demonstrate in Section 5.3, explicit sketches surprisingly offer significant performance
advantages. Table 4 quantifies the substantial wall-time reductions (approximately 70% on average)
across various algorithms when using explicit sketches.

Removing the lookup bottleneck. In both FJL and FFD algorithms, multiplications by Gs and
Π introduce a lookup-based memory bottleneck on modern accelerators. This hinders performance,
as seen in unacceptable early TPU results (compare Tab. 3). To address this, we propose randomizing
the pre-conditioner HN . Efficient implementations of HN leverage the fact that it can be decomposed
using Kronecker products; specifically, HAB = HA ⊗HB , which allows a recursive multiplication
by HN in O(N logN)-time and O(N) storage. We exploit this by permuting rows/columns within
Kronecker factors, reducing memory access costs from O(AB) to O(A+B) in the previous example.
For optimal accelerator usage, we limit factors to roughly 1024 columns. Building on this, we
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modify (3). In the resulting AFFD algorithm (6), we remove Π, use row-permuted factors in Hπ1

N ,
and column-permuted factors in Hπ2

N :

Φ(x) = RD(

√
N

D
·Hπ2

N ·Gv ·H
π1

N ·B(x)), (6)

where RD denotes restriction to the first D coordinates. While all matrices are now N ×N , efficient
Hadamard implementations avoid large matrix materializations (see Appendix B for our Jax code).
We further introduce AFJL (7), where Hπ2

N is removed:

Φ(x) = RD(

√
N

D
·Gv ·Hπ1

N ·B(x)). (7)

This can be seen as replacing Gs in FJL with a diagonal Gaussian matrix. Generalizations with
multiple (Gv, H

π1

N ) pairs are possible but weren’t explored due to the vanilla version’s strong results.
Empirical results on TPUs (Table 3) show the crucial impact of our changes. AFJL achieves a 100x
wall-time reduction over FJL, AFFD a 64x reduction over FFD. While GPU wall-time remains
similar, peak memory usage significantly improves. Appendix A highlights FJL’s scaling issues
beyond D = 220 on GPUs.

Alternative pre-conditioners. To address the smoothing of sparse inputs in sketching algorithms,
[2] introducedHN in (2). The theoretical basis lies in the Heisenberg uncertainty principle, leveraging
the Fourier Transform on a discrete group (see [2]). However, the computationally efficient Fast
Fourier Transform (FFT) shares this desirable property. This raises the question of whether the
FFT might yield performance gains for sketching. We find that replacing HN with the FFT offers
significant advantages. Experimentally, it reduces wall time by 62% on GPUs (Tab 4). Inspired by the
Kronecker product structure enabling efficient HN implementation, we propose another generalized
pre-conditioner, Q. This random N ×N orthogonal matrix has a Kronecker decomposition of K
independent orthogonal matrices of sizes {Bi ×Bi}Ki=1, sampled according to the Haar measure on
SO(Bi). Our approach allows direct application of Q without the additional diagonal matrix B, and
offers a 40% wall time reduction on GPUs (Table 4). This Q pre-conditioner has the potential to
unlock broader optimizations within sketching algorithm design as discussed in the next subsection.

Direct usage of the pre-conditioner Q. Inspired by the design of the pre-conditioner Q, we
introduce a novel sketching algorithm, QK. This ablation explores the direct use of Q to transform
the input, potentially leading to improved efficiency and memory usage. QK is defined as:

Φ(x) =

√
N

D
·Q(x). (8)

Here, Q is a random D × N -orthogonal matrix with a Kronecker product decomposition of K
independent orthogonal matrices of sizes {Di × Bi}Ki=1. Each factor is generated by sampling
from SO(Bi) according to the Haar measure and restricting to the first Di rows. Importantly, QK
generalizes the approach of [17] by employing more Kronecker factors. This offers the potential for
significant memory reductions (Appendix C).

Diagrams. Figure 1 illustrates AFFD, AFJL and QK with diagrams.

Theoretical results We now delve into the theoretical underpinnings of our proposed algorithms,
emphasizing the interplay between theory and experimentation. A key finding is a limitation of the
FFD algorithm:
Theorem 3.1. There are some inputs x for which FFD does not satisfy the sketching property (1).

Note that this limitation is specific to FFD and not inherent to implicit-mode algorithms. This
distinction is important: the explicit-mode formulation allowed to simplify the theoretical analysis
to prove Thm. 3.1. Next, we establish a theoretical guarantee for our AFFD algorithm. Compared
to [2] there is added complexity as independence arguments cannot be used for Gv; we thus apply
the Hanson-Wright inequality for quadratic forms to prove:
Theorem 3.2. AFFD satisfies (1) with

δ = δ1 + 2 exp

(
−Cε2 D

4 log2 2N
δ1

)
, (9)
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Figure 1: Diagram to illustrate our proposed sketching algorithms.

for a universal constant C and for any δ1 > 0.

Finally, we analyze QK. Its structure allows for concentration arguments on orthogonal groups,
leading to:

Theorem 3.3. QK satisfies (1) with

δ = 2
∑
i

exp(−4CDi((1 + ε)1/K − 1)2),

for a universal constant C.

Crucially, the bound in Thm. 3.3 is less favorable than that of Thm. 3.2. This is due to the 1/K-root,
summation over sub-dimensions, and concentration depending on the Di. These theoretical insights
support our experimental findings in Section 5.3, where QK requires higher target dimensions (D) to
achieve performance comparable to AFFD. Because of space constraints the proofs are included in
Appendix C.

4 Expanding the Utility of Sketching Algorithms

In this Section we expand the usage of sketching to other applications.

Improving the search for the intrinsic dimension. The intrinsic dimension (Dint) [14], is the
minimum dimension (D) of a random subspace (V ) where SGD yields at least 90% of the full
model’s performance on a target metric (τ 1). Sketching algorithms, more efficient than FastFood,
already accelerate the search for Dint [17]. Our memory-efficient algorithms enable us to investigate
scenarios where Dint may approach the model dimension. For instance, [16] applied FFD to fine-
tune generative language models but capped the target dimension (D) to 500k due to memory limits.
We propose a novel search algorithm that estimates Dint in a single training run. Current methods
rely on multiple runs across potential Dint values. To streamline, consider a binary search approach
(assuming Dint is a power of 2) starting from an initial guess (Dmin) up to the model parameter
count (N ). This would require dlog2

N
Dmin

e runs. Instead, we propose a single training run where D
increases progressively. The heuristic: a fixed computational budget (c steps) should yield an expected
improvement of at least δ. We start with D = Dmin. If, after c steps, the target metric’s improvement
is less than δ or hasn’t reached τ90, we double D. This yields an estimate D∗ within a factor of 2 of
Dint. A subsequent run with D = D∗/2 verifies if this factor can be eliminated. See Appendix B for
Python code. In Sec. 5.4, we apply this approach to pre-trained language models on classification
and generative tasks. We find that Dint � N for classification, but for the generative task, Dint

depends on the choice of τ and can approach the parameter count N . This finding is significant, as it

1While 90% is common, this is a configurable parameter.
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challenges prevailing assumptions about intrinsic dimensionality in such models [14, 1, 17]. These
studies primarily focused on classification tasks, obtaining generalization bounds like O(

√
Dint)

([1, Eq. 4], [17, Sec. 3]) where Dint was presumed much smaller than the model dimension. Our
results suggest a need for non-linear projection algorithms to achieve lower intrinsic dimensionality
for generative tasks.

Scaling eigenvalue estimation Investigating the Hessian’s spectrum and eigenvectors often relies
on memory-bound iterative algorithms. The Arnoldi algorithm, as used in [12], requires full re-
orthogonalization for stability. This necessitates storing vectors as large as the model itself for each
iteration: a constraint that limits the number of estimable eigenvalues (e.g., Krylov subspaces of
dimension ' 90 in [12]). Inspired by the theoretical work of [25], we propose sketching to address
this memory bottleneck. With a sketching dimension of 106, we can readily construct 1k-dimensional
Krylov subspaces for pre-trained language models like BART, Roberta, and GPT-2L. This represents
a breakthrough because the method in [12] would demand an impractical 3TB of storage for GPT-2L
alone. Our technique enables exploration of conjectures [21, 12, 9] about Hessian structure in the
context of fine-tuning large language models. These conjectures are elaborated in the experimental
results on eigenvalue estimation (Sec. 5.5). Crucially, we find that Hessian spectra in these models
may deviate significantly from behaviors observed in smaller networks.

5 Experiments

To thoroughly evaluate the proposed sketching methods, we present a comprehensive set of exper-
iments. First, we highlight the limitations of existing TDA scaling strategies (Sec. 5.2). Next, we
dissect the impact of specific design choices on our sketches (Sec. 5.3). We then introduce and
validate an algorithm for intrinsic dimension estimation, enabling computational savings (Sec. 5.4)
and show-casing that the intrinsic dimensionality of generative tasks can be large. Finally, we apply
our techniques to explore the evolution of the Hessian spectrum during pre-trained language model
fine-tuning (Sec. 5.5).

5.1 How we define the Training-Data Attribution score.

In TDA there are different ways to measure the similarity score between two examples x and y. In
our experiments we opt for the TDA score defined as∇θL(θ, x) · ∇θL(θ, z) because of its simplicity,
allowing us to iterate on multiple algorithms and layer selection schemes, and being a building block
for more complicated methods. While high correlation with full gradient dot products may not be
the definitive measure of long-term TDA performance [19, 23], it is a practical metric in the short
time range and a building block of more computationally intensive methods like TRAK [19]. For
example, in the short time range, gradient dot products correlate with loss changes and are relevant
to select examples for error correction [23]. Evaluating with the LDS from TRAK would introduce
more hyper-parameters and considerable more computation: one would need at least 50 models
fine-tuned on different subsets of the data; moreover, TRAK itself relies on accurate gradient sketches,
as measured by dot products, as the basic building block as TRAK demonstrates that “preserving
inner products to sufficient accuracy results in a gradient-descent system that approximately preserves
the same evolution as the one corresponding to model re-training” [19, C.2].

5.2 Shortcomings of previous Training-Data Attribution scaling strategies.

Past work [20, 28, 8] tackles the memory bottleneck of Training-Data Attribution by calculating
gradients restricted to a specific layer and potentially applying a Dense Sketch. Here, we demonstrate
that layer selection distorts both influence scores and eigenvalue estimates, while Dense Sketches
exhibit poor scaling characteristics. These findings align closely with the first subsection of Sec. 3.
Furthermore, advice on layer selection lacks consistency: [20] promotes the last layer, whereas [28]
supports using Token Embeddings in NLP tasks. We demonstrate the distortion caused by layer
selection on influence scores (the inner product of two gradients). Considering 212 pairs of points
(x, z), we compute the Pearson correlation r between the TDA score∇θL(θ, x) ·∇θL(θ, z) estimated
using a layer-specific gradient and the ground truth based on the full gradient. We adopt the setup
of [6]: a generative task fine-tuning GPT-2 on the WikiText-103 dataset (BART and zsRE results
in Appendix A). Our findings indicate the unreliability of layer selection (Table 1). Correlations
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Table 1: Layer selection results in unreliable estimates for influence scores and eigenvalue estimation.
The best correlation with ground truth influence scores does not exceed 90% and is quite low for
most layers; the relative error in eigenvalue prediction is always at least 20%.

MODEL LAYER R EIG. ERR.
GPT-2 TOK. EMB. 0.16 0.72
GPT-2 1 0.75 0.24
GPT-2 2 0.89 0.31
GPT-2 3 0.90 0.19
GPT-2 4 0.89 0.24
GPT-2 5 0.78 0.37
GPT-2 6 0.38 0.40

Table 2: Dense projections on the layers do not scale; for each layer we report the wall time for the
maximum dimension that does not result in an OOM.

LAYER GPU WALL (MS) k (MAX VAL BEFORE OOM).
TOK. EMB. 31.2 32
LAYER 1 25.1 128
LAYER 2 24.4 128
LAYER 3 23.9 128
LAYER 4 23.1 128
LAYER 5 22.4 128
LAYER 6 21.7 128

with ground truth rarely exceed 90% and are significantly lower for most layers. In contrast, AFJL
achieves a 98% correlation with a compact D = 213. Extending the analysis to Hessian-based
influence functions by looking into eigenvalue estimation emphasizes the shortcomings of layer
selection. We aim to compute the top 10 eigenvalues of both the full Hessian and those restricted to a
chosen layer. Even with potential differences in magnitude and location, layer selection could still be
valuable if the true eigenvalues were approximated well by applying an orientation-preserving linear
map R1 → R1 to those computed for a particular layer. However, this is not the case, with the relative
mean absolute error at 20% on the best layer (Table 1). Finally, layer selection coupled with dense
projections faces severe scalability limitations. Setting D = 212 within the same setup highlights
this issue. Limited memory forces us to divide the computation into D/k projections to Rk where k
is the smallest power of 2 enabling a dense projection without an Out-of-Memory error. For token
embeddings, we find k = 32, whereas other layers require k = 128 on a V100 GPU. Projecting
to Rk takes ∼ 31ms for token embeddings, resulting in a total of ∼ 4s to project to RD. Other
layers require ∼ 24ms per projection to Rk and ∼ 0.77s to project to RD, see Table 2 for a per-layer
breakdown. Finally, an alternative approach to dense projections is to materialize dense matrices on
the fly in chunks [19]; this has two substantial disadvantages: (1) the runtime scales linearly with the
target dimension (memory is traded off with compute), and (2) specialized kernels are necessary for
efficient implementation, with unclear applicability to TPUs; we include a demonstration of these
limitations in Appendix A.

5.3 Analyzing the Impact of Design Choices

In this section, we analyze the impact of the design choices presented in Sec. 3 on both sketching
quality and performance. Regarding sketching quality, we find that small values of D often lead
to remarkably accurate reconstructions of influence scores. For TDA scores, achieving correlation
r ≥ 0.95 requires the following dimensions: FJL, FFD, AFFD: D = 210; AFJL: D = 212; QK:
D = 214. To reach r ≥ 0.99, simply increase each dimension by a factor of 8. While memory
limitations prevented sketching HVPs with FJL and FFD for eigenvalue estimation, the other
algorithms scaled well. We achieved a relative mean absolute error below 5% with the following
dimensions: AFFD: D = 210; AFJL: D = 212; QK: D = 213. Note that QK requires larger D,
consistent with the theoretical comparisons in Theorems 3.3 and 3.2 (Sec. 3). Regarding perfomance,
we outline here the key findings and refer the reader to Appendix A for a comprehensive analysis
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Table 3: Wall-time T and peak memory usage M comparison on gradient sketches for GPT-2.
Removing look-ups is crucial for TPU performance and decreasing GPU memory utilization.

ALGO GPU (V100) TPU (V2)
T (MS) M (GB) T (MS) M (GB)

FJL 123 6.9 8997 3.0
AFFD 205 3.2 134 2.8
FFD 197 4.1 8694 4.3
AFJL 116 2.9 89 2.7
QK 82 1.7 64 1.1

Table 4: Speed-ups (ratio R of the slowest wall-time to the fastest one) corresponding to changing a
design choice (e.g. implicit to explicit or HN to the FFT.).

ALGO GPU (V100) (R) TPU (V2) (R)
IMPLICIT→ EXPLICIT

FJL 1.96 1.20
AFFD 1.81 2.07
FFD 1.76 1.10
AFJL 1.64 1.67
QK 1.41 2.45

ALGO GPU (V100) (R) TPU (V2) (R)
HN → FFT

AFFD 1.98 1.00
AFJL 1.64 1.00

HN → Q
AFFD 1.45 1.00
AFJL 1.44 1.00

across design choices. First, removing look-ups significantly reduces wall-time on TPUs, while
on GPUs it substantially lowers peak memory usage (reductions of 2.4x for FJL to AFJL, and
1.3x for FFD to AFFD), see Table 3. Second, explicit sketching consistently provides substantial
speed-ups (see Table 4); we conjecture this is due to the fact that implicit sketching results in more
memory accesses. Finally ,while modifying the pre-conditioner doesn’t affect TPU performance, it
significantly improves GPU performance, see Table 4 under the headings HN → FFT and HN → Q.

5.4 Estimating the intrinsic dimension.

Our experiments evaluate the efficiency and accuracy of our intrinsic dimension estimation algorithm
(presented in Sec. 4). We consider two experimental setups: classification, where we fine-tune
Roberta on SNLI with accuracy as the target metric; generation, where we fine-tune BART on XSUM
for text summarization, using Rouge1 and Rouge2 for evaluation. We employ three projection
algorithms: FFD, AFJL (FFT-based variant), and QK. We first validate algorithm consistency
by demonstrate that the algorithm produces consistent estimates of the intrinsic dimension across
multiple runs; we repeat each search experiment with three random seeds obtaining estimates within a
factor of 2 (Appendix B). We then verify that the estimatedD∗ accurately represents the intrinsic
dimension Dint by fine-tuning the model in a D = D∗/2-dimensional subspace and ensuring that
the target metric remains below the τ90 threshold (details in Appendix B). We point out that selecting
good search parameters (c, δ) was relatively straightforward by observing target metric improvement
during full fine-tuning . Regarding computational efficiency, our approach requires significantly
fewer steps than binary or brute-force search. For instance, the XSUM search required only
twice the steps of a full fine-tuning run and the same amount of steps for the classification task.
We finally look at how the intrinsic dimension varies between classification and generation
tasks. For classification, our findings are consistent with prior work [1], were all algorithms yield
Dint = 213 � N . For generation we first observe that the results are metric-dependent: for
Rouge1, FFD and QK estimate Dint = 225 while AFJL yields D = 224; for Rouge2, Dint equals
the full model dimension N ∼ 227. In both cases, however, the intrinsic dimension is close to the full
model dimension: this challenges assumptions about intrinsic dimension in the context of generative
tasks. While prior studies [14, 1, 17] focused on classification with generalization bounds of the form
O(
√
Dint), our results indicate that: generative tasks may exhibit higher intrinsic dimension

and generative models may require new non-linear projections to uncover significantly lower
intrinsic dimensions.
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(a) (b)

Figure 2: left: ratio (RNEG) of the absolute value of the top negative to the top positive eigenvalue;
right: ratio R of the n-th largest positive eigenvalue to the largest positive eigenvalue. We define
outliers when R > 20%, motivated by [12, Fig.2]. Higher-resolution versions for printing can be
found in Appendix A. These results disprove conjectures on the Hessian structure, see Sec. 5.5.

5.5 Hessian Analysis During Pre-trained Language Model Fine-Tuning

In this section, we examine the Hessian’s evolution during pre-trained language model fine-tuning.
Using sketching, as proposed in Section 4, we estimate the Hessian’s eigenvalues and eigenvec-
tors. We fine-tune Roberta and GPT-2L on SNLI (3 classes) and BART on XSUM, employing
AFFD, with a target dimension D = 220, to construct a 1k-dimensional Krylov subspace. This
substantially extends the work of [12] who considered smaller models and smaller subspaces (90-
dimensional Krylov subspace). Spectrum estimation is performed every 1k steps, including initial
steps {0, 10, 50, 100, 150, 200, 250, 500}. Our goal is to see if observations from previous studies
with smaller networks hold in this context:

• Obs1: Negative eigenvalues gradually disappear during training [21, 12].
• Obs2: K − 1 outlier eigenvalues emerge for K-class classification, with the gradient

aligning to their corresponding subspace [9, 21, 3]. Moreover, these outliers, which hinder
optimization, stem from training without normalization [12].

We find that these obervations don’t fully translate to pre-trained language model fine-tuning. Re-
garding Obs1, we compute the ratio (RNEG) of the absolute values of the top negative and positive
eigenvalues; RNEG shows inconsistent behavior across models (Fig.2 (a)). Roberta maintains a higher
RNEG, while GPT-2L and BART see it diminish over time. Regarding Obs2, outlier eigenvalues don’t
strictly adhere to the K − 1 rule. Roberta has more outliers (6), and the gradient-outlier alignment is
less pronounced (27% Roberta, 35% GPT-2L, 8% BART) compared to smaller networks [12, 9]. See
Fig. 2 (b). Moreover, outliers emerge despite layer normalization.

6 Conclusions and Limitations

In this work, we have dissected the theoretical and practical limitations of existing gradient sketching
techniques when applied to modern neural networks and accelerators. Our analysis motivated the
design of novel sketching algorithms, for which we established theoretical guarantees; additionally,
we exposed limitations in the theoretical underpinnings of the Fastfood transform. These methods,
along with refined intrinsic dimension estimation and Hessian eigenvalue computation, provide
an efficient toolkit for model analysis. We successfully apply this toolkit to pre-trained language
models, revealing the need to rethink layer-selection-based influence functions, the high intrinsic
dimensionality of a generative task, and the deviation of LLMs’ Hessian spectra from what observed
in smaller networks. While in Sec. 5.4 we exhibit an example of a generative task with a large intrinsic
dimension, we leave an in-depth study for future work. We tested the efficiency of our sketching
algorithms with Transformers in Sec. 5.3, but results might vary for other model architectures.
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A Appendix: Additional Experimental Results

A.1 Additional results on layer selection

In Table 5 we include the full results of layer selection of GPT-2 and BART: in Sec. 5.2 we restricted
the discussion to GPT-2 because of space constraints; for the purpose of this experiment we consider
the setup of [6]: NLP tasks which consists in fine-tuning GPT-2 on the WikiText-103 dataset and
BART and zsRE.

A.2 Quality of sketches for inner products and eigenvalue estimation

For each algorithm, we report in Table 6 the minimal value of log2D necessary to reach a Pearson
correlation > 0.9x with the ground truth when estimating inner products of gradients using sketches.
As expected from the worse concentration bound, QK requires a larger dimension. We conjecture that
the fact that FFD is effective might be due to the gradient distribution giving 0-measure to the inputs
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Table 5: Most of the time layer selection results in unreliable estimates for influence scores and
eigenvalue estimation. The best layer correlation with ground truth influence scores does not exceed
' 90% and is quite low for most layers. The relative error in eigenvalue prediction is always at least
' 20%.

MODEL LAYER R EIG. ERR.
GPT-2 TOK. EMB. 0.16 0.72
GPT-2 1 0.75 0.24
GPT-2 2 0.89 0.31
GPT-2 3 0.90 0.19
GPT-2 4 0.89 0.24
GPT-2 5 0.78 0.37
GPT-2 6 0.38 0.40
BART TOK. EMB. 0.54 0.20
BART DEC. 1 0.62 0.39
BART DEC. 2 0.88 0.43
BART DEC. 3 0.73 0.28
BART DEC. 4 0.91 0.28
BART DEC. 5 0.84 0.19
BART DEC. 6 0.70 0.18
BART ENC. 1 0.41 0.50
BART ENC. 2 0.45 0.59
BART ENC. 3 0.56 0.48
BART ENC. 4 0.71 0.40
BART ENC. 5 0.91 0.46
BART ENC. 6 0.89 0.16

Table 6: For each algorithm the minimal value of log2D necessary to reach a Pearson r > x where
x = 0.9{5, 8, 9}
for estimating inner products of gradients.

ALGO r > 0.95 r > 0.98 r > 0.99
FJL 10 12 13
AFFD 10 12 13
AFJL 12 13 15
QK 14 16 17
FFD 10 12 14

that FFD would fail to sketch (Theorem 3.1). For AFFD, AFJL and QK we report in Table 7 the
minimal value of log2D necessary to reach a relative mean absolute error err < x when estimating
the top 10 eigenvalues of the Hessian.

A.3 A closer look at FJL vs AFJL

In Sec. 5.3 we pointed out that the FJL’s wall time and memory usage increase with the target
dimension D. We compare the peak memory usage and the wall time of FJL with that of AFJL on
the inner product task of Sec. 5.3 on GPU (V100), see Figures 3,4: FJL’s cost significantly increases
with D and does not scale beyond D = 220.

Table 7: For each algorithm the minimal value of log2D necessary to reach a relative error err < x
where x = 0.2, 0.1, 0.05 in reconstructing the top 10 eigenvalues.

ALGO err < 0.2 err < 0.1 err < 0.05
AFFD 9 10 10
AFJL 12 12 12
QK 13 13 13
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Figure 3: Peak memory usage comparing FJL with AFJL. Results on GPU (V100); for FJL results
with D > 220 are not reported as there were Out-of-Memory errors.

Figure 4: Wall time comparing FJL with AFJL. Results on GPU (V100); for FJL results with
D > 220 are not reported as there were Out-of-Memory errors.
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A.4 Compute cost of sketching gradients

In Table 8 we report the compute costs of sketching gradients in the setup of Sec. 5.3.
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Table 8: Compute costs of sketching gradients in the setup of Sec. 5.3. I=1 denotes that a method is
implicit, F=1 that the FFT is used as a pre-conditioner instead of the Walsh-Hadamard Transform,
and Q=1 that random orthogonal matrices decomposed as a Kronecker product are used as a pre-
conditioner The lowest time and memory costs are in blue and bold and the highest ones in red and
italic. nan indicates a result that was not computed because of XLA compilation errors. For this
benchmark we considered a target dimension D in the range [217, 222]. GPU is V100, TPU is TPUv2.

ALGO I F Q GPU WALL (MS) GPU MEM (GB) TPU WALL (MS) TPU MEM (GB)
FJL 0 0 0 123 6.9 8997 3.0
FJL 0 1 0 85 6.1 9271 4.4
FJL 1 0 0 244 6.7 10958 3.3
FJL 1 1 0 164 6.1 NAN NAN
AFFD 0 0 0 205 3.2 134 2.8
AFFD 0 0 1 142 3.2 134 2.8
AFFD 0 1 0 104 4.2 134 2.8
AFFD 1 0 0 454 3.2 278 3.0
AFFD 1 0 1 237 3.2 278 3.0
AFFD 1 1 0 126 4.2 278 3.0
FFD 0 0 0 197 4.1 8694 4.3
FFD 0 1 0 140 5.6 NAN NAN
FFD 1 0 0 352 4.2 9600 4.7
FFD 1 1 0 239 4.8 NAN NAN
AFJL 0 0 0 116 2.9 89 2.7
AFJL 0 0 1 81 2.9 89 2.7
AFJL 0 1 0 71 3.8 89 2.7
AFJL 1 0 0 231 3.0 149 2.8
AFJL 1 0 1 121 3.1 149 2.8
AFJL 1 1 0 88 4.1 149 2.8
QK 0 0 1 82 1.7 64 1.1
QK 1 0 1 116 1.7 157 1.4
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A.5 Compute cost of sketching HVPs

In Table 9 we report the compute costs of sketching HVPs in the setup of Sec. 5.3.
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Table 9: Compute costs of HVP using sketching. I=1 denotes that a method is implicit, F=1 that
the Fourier Transform is used instead of the Walsh-Hadamard Transform and Q=1 that random
orthogonal matrices decomposed as a Kronecker product are used instead of Hadamard matrices. The
lowest time and memory costs are in blue and bold and the highest ones in red and italic. GPU is
V100, TPU is TPUv2.

ALGO I F Q GPU WALL (MS) GPU MEM (GB) TPU WALL (MS) TPU MEM (GB)
AFFD 0 0 0 397 2.8 158 2.7
AFFD 0 0 1 183 2.8 158 2.7
AFFD 0 1 0 111 3.3 158 2.7
AFFD 1 0 0 627 3.1 268 3.6
AFFD 1 0 1 238 3.1 267 3.6
AFFD 1 1 0 137 3.7 268 3.6
AFJL 0 0 0 230 2.7 108 2.6
AFJL 0 0 1 121 2.7 108 2.6
AFJL 0 1 0 92 3.3 108 2.6
AFJL 1 0 0 345 3.0 191 3.5
AFJL 1 0 1 150 3.0 190 3.5
AFJL 1 1 0 111 3.8 191 3.5
QK 0 0 1 118 1.6 82 1.3
QK 1 0 1 146 1.9 161 1.7
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A.6 Search for the intrinsic dimension

In Table 10 we report the values of D∗ across the 3 seeds used in each search experiment. We see
good agreement within a factor of 2. For SNLI the target accuracy to exceed was τ90 = 80.1%;
for XSUM the value of Rouge1 to exceed was 36.6 while that of Rouge2 was 15.69. In the case
of Rouge2 compressing BART in half would lead to a search with D = 226; in that case the final
values of Rouge2 did not exceed 14.4, so it stayed well-below the required threshold that defines
the intrinsic dimension Dint using a 90% target value of the metric obtained by fine-tuning the full
model.
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Table 10: Values of D∗ returned by the search the intrinsic dimension Dint using 3 different seeds.
This shows the stability of our algorithm which doubles the dimension of the fine-tuning subspace
after some compute budget if the target metric has not improved enough.

TASK METRIC PROJECTION ALGORITHM D∗

SNLI ACCURACY FFD 2{14,13,13}

SNLI ACCURACY AFJL 2{14,13,13}

SNLI ACCURACY QK 2{13,13,13}

XSUM ROUGE1 FFD 2{26,25,25}

XSUM ROUGE1 AFJL 2{24,24,25}

XSUM ROUGE1 QK 2{26,25,26}
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Figure 5: ratio (RNEG) of the absolute value of the top negative to the top positive eigenvalue

Figure 6: ratio R of the n-th largest positive eigenvalue to the largest positive eigenvalue. We define
outliers when R > 20%, motivated by [12, Fig.2]

A.7 Higher resolution version of Fig. 2

Figs. 5 and 6 are high-resolution versions of Fig. 2.

A.8 Comparison to on-the-fly dense random projections

[19] proposes to materialize the full random projection on-the-fly in chunks (we will refer to this
sketching method as TRAK, even though the full TRAK attribution method in [19] is more involved).
This leads to two significant drawbacks: (1) the run-time scales linearly with the target dimension
(memory traded off with compute), and (2) specialized kernels are necessary for efficient implementa-
tion, with unclear applicability to TPUs. Our attempts to implement a competitive version using pure
JAX were unsuccessful due to the lack of control over memory allocation and placement. We have
included a plot (Figure 7) and a table (Table 11) demonstrating the linear runtime growth of TRAK
compared to the constant runtimes of AFFD and QK. The implementation challenges of TRAK are
further highlighted by the fact that our Triton implementation does not outperform the original CUDA
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Figure 7: Our methods exhibit constant wall time with respect to the target dimension D. In contrast,
TRAK’s runtime increases with the target dimension. Efficient implementation of dense random
projections with recomputed projectors is non-trivial; compare the performance difference between
TRAK[CUDA] and TRAK[Triton]. TRAK[CUDA] utilizes the CUDA kernel provided by the original
TRAK authors [19].

Table 11: Wall-time T (ms) Comparison: Our Methods vs. On-the-fly Dense Projections (TRAK)
using a V100 GPU. TRAK requires custom kernels and is thus restricted to GPU computation. Our
methods exhibit constant runtime with respect to the target dimension, whereas TRAK’s runtime
increases substantially as the target dimension grows.

log2(D) TRAK[CUDA] TRAK[TRITON] AFFD[OURS] QK[OURS]
12 359 879 213 84
13 594 2885 207 87
14 1078 6073 207 91
15 2047 12900 215 82
16 3969 - 219 82
17 7812 - 210 91
18 15500 - 209 90

kernel released by the TRAK authors, underscoring the difficulty of efficiently implementing random
projections in chunks.

B Appendix: Implementation details

B.1 Libraries, Compute resources and implementation of FFD and FJL

We use Jax and Hugging Face libraries; experiments in Sec. 5.2 were carried out using one GPU
V100 or a TPUv2 (8 cores). Experiments in Sec. 5.4 used 2 V100s in the classification setting and 2
A100s in the generation setting. Experiments in Sec. 5.5 used 2 A100s. Experiments were performed
on cloud infrastructure and the virtual machines employed for each experiment had at most 32GB
of RAM. We used the Jax profiler tool to extract information about peak memory usage and wall
time. We checked that under multiple runs the wall time estimates reported by the profiler tool stay
within a 10% relative error, while the peak memory usage does not significantly change. For FJL
and FFD the lookup operation is implemented as in previous work [1] storing the permutations or
entries to sample using a vector. Regarding permutations there is an important implementation detail:
if one wants the implementation of FFD to give the same results in implicit and explicit mode the
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permutation used needs to be inverted between the two setups. For FJL, in implicit mode the lookup
operation needs to be transposed and is implemented as an XLA scatter-add.

B.2 HVP in Implicit vs Explicit Form

The implicit implementation of the HVP is easy; one changes the loss to be defined on the image of
the projection Φ as follows:

Limplicit(ω) = L(θ0 + ΦTω), (10)

and then one computes the HVP at the origin ω = 0. For the explicit form of the HVP, one takes a
vector ν in the image of Φ and lifts it to the vector ΦT ν in the parameter space; then one computes
the standard HVP for ΦT ν and applies Φ to the result obtaining again a vector in the image of Φ.

B.3 Step-by-step didactic implementation

We describe a step-by-step didactic implementation in Jax and Flax.

First, we rely on the following modules.

import jax
import jax.numpy as jnp
from typing import Sequence , Tuple
from flax.core import apply
from flax.core import init
from flax.core import nn
import scipy
import functools

The core subroutine is applying pre-conditioners using Kronecker products. One can use the Jax’
einsum operation to write it in a few lines of code.

Listing 1: Kronecker Implemetation
def compute_kronecker_shapes(∗, dimension: int) −> Tuple[int,

...]:
"""Computes shapes to decompose Kronecker products."""

# For realistic use cases, bump it up, e.g. 1024
max_block_size = 32

n = dimension

# Divide n into block sizes
shape = []
while n > 1:
shape.append(min(n, max_block_size))
n //= max_block_size

shape.reverse()
return tuple(shape)

def kronecker_product(
∗, x: jnp.ndarray, matrices: Sequence[jnp.ndarray]

) −> jnp.ndarray:
"""Performs kronecker product using Jax einsum."""

shape = tuple(map(lambda x: x.shape[0], matrices))

y = x.reshape(shape)

num_dims = len(shape)
# Einsum iterative implementation.
for i, m in enumerate(matrices):
y_dims = ’ ’.join(str(j) for j in range(num_dims))
h_dims = f ’ { i }{ num_d ims + 1} ’
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out_dims = y_dims.replace(str(i), str(num_dims + 1), 1)
operands = f ’ { y _ d i m s } , { h _ d i m s }−>{ o u t _ d i m s } ’
y = jnp.einsum(operands, y, m)

return y.flatten()

The next step is implementation of QK which is quite straightforward.

Listing 2: QK Implemetation
def q_init(rng, shape, dtype=jnp.float32):
"""Random orthogonal matrix initializer."""

x = jax.random.normal(rng, shape=shape)
q, _ = jnp.linalg.qr(x, mode= ’ c o m p l e t e ’)
return q.astype(dtype)

# target_dim = D in paper
# input_dim = N in paper
# vec is the N−vector to sketch to a D−vector.
def qk(scope, vec, target_dim , input_dim):
"""Implements QK."""

shapes = compute_kronecker_shapes(dimension=input_dim)
sigma = jnp.sqrt(input_dim/target_dim)
params = []
for i, s in enumerate(shapes):
p = scope.param(f ’ q_ { i } ’, q_init, shape=(s, s))
params.append(p)

return sigma ∗ kronecker_product(x=vec, matrices=params)[:
target_dim]

For using QK in implicit mode we need to transpose QK; we illustrate how this can be carried out in
Flax:

Listing 3: Transpose of QK
# The tranpose of QK.
# vec is a D−vector to lift to an N−vector.
def qk_transpose(scope, vec, target_dim , input_dim):

shapes_1 = compute_kronecker_shapes(dimension=input_dim)
shapes_2 = compute_kronecker_shapes(dimension=target_dim)
sigma = jnp.sqrt(input_dim/target_dim)

params = []
for i, (s_1, s_2) in enumerate(zip(shapes_1, shapes_2)):
p = scope.param(f ’ q_ { i } ’, q_init, shape=(s_1, s_1))
params.append(p.T[:s_2])

return sigma ∗ kronecker_product(x=vec, matrices=params)

The implementation of other algorithms is more challenging; we include an implementation of AFFD;
it is easy to figure out the implementations of the others (note that for FFD one needs to start with
the implementation of the transpose because FFD is defined as a random feature generator).

Listing 4: Implementation of AFFD
def init_hadamard(rng, shape: Tuple[int, int], permute_col: bool)

−> Sequence[jnp.ndarray]:
"""Creates randomly permuted hadamard matrices."""

matrix = jnp.array(scipy.linalg.hadamard(shape[0]))
pi = jax.random.permutation(rng, shape[0])
if permute_col:
matrix = matrix.at[:, pi].get()

else: # permute rows
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matrix = matrix.at[pi, :].get()

return matrix

# target_dim = D in paper
# input_dim = N in paper
# vec is the N−vector to sketch to a D−vector.
def affd(scope, vec, target_dim , input_dim):
"""Implements AFFD."""

shapes = compute_kronecker_shapes(dimension=input_dim)
sigma = jnp.sqrt(input_dim/target_dim)

def init_ber(rng, shape, dtype=jnp.int32):
return jax.random.choice(rng, jnp.array([−1, 1], dtype= ’ i n t 3 2 ’
),

shape)

b = scope.param( ’B ’, init_ber , (input_dim ,))
vec = vec ∗ b
h_1_params = []
for i, s in enumerate(shapes):
h_1 = scope.param(f ’ H_1_ { i } ’, init_hadamard , shape=(s, s),

permute_col=False)
h_1_params.append(h_1)

vec = kronecker_product(x=vec, matrices=h_1_params) / jnp.sqrt(
input_dim)

def init_gauss(rng, shape, dtype=jnp.float32):
return jax.random.normal(rng, shape=shape, dtype=dtype)

g = scope.param( ’G ’, init_gauss , (input_dim ,))
vec = vec ∗ g

h_2_params = []
for i, s in enumerate(shapes):
h_2 = scope.param(f ’ H_2_ { i } ’, init_hadamard , shape=(s, s),

permute_col=True)
h_2_params.append(h_2)

vec = kronecker_product(x=vec, matrices=h_2_params) / jnp.sqrt(
input_dim)

vec = sigma ∗ vec[:target_dim]

return vec

To transpose AFFD, we just need to reverse the above steps and transpose application of the Hadamard
matrices.

Listing 5: Transpose of AFFD
# The tranpose of AFFD.
# vec is a D−vector to lift to an N−vector.
def affd_transpose(scope, vec, target_dim , input_dim):

shapes_1 = compute_kronecker_shapes(dimension=input_dim)
shapes_2 = compute_kronecker_shapes(dimension=target_dim)
sigma = jnp.sqrt(input_dim/target_dim)

h_2_params = []
for i, (s_1, s_2) in enumerate(zip(shapes_1, shapes_2)):
h_2 = scope.param(f ’ H_2_ { i } ’, init_hadamard , shape=(s_1, s_1),
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permute_col=True)
h_2_params.append(h_2.T[:s_2])

vec = kronecker_product(x=vec, matrices=h_2_params) / jnp.sqrt(
input_dim)

def init_gauss(rng, shape, dtype=jnp.float32):
return jax.random.normal(rng, shape=shape, dtype=dtype)

g = scope.param( ’G ’, init_gauss , (input_dim ,))
vec = vec ∗ g

h_1_params = []
for i, s in enumerate(shapes_1):
h_1 = scope.param(f ’ H_1_ { i } ’, init_hadamard , shape=(s, s),

permute_col=False)
h_1_params.append(h_1.T)

vec = kronecker_product(x=vec, matrices=h_1_params) / jnp.sqrt(
input_dim)

def init_ber(rng, shape, dtype=jnp.int32):
return jax.random.choice(rng, jnp.array([−1, 1], dtype= ’ i n t 3 2 ’
),

shape)

b = scope.param( ’B ’, init_ber , (input_dim ,))
vec = vec ∗ b

vec = vec ∗ sigma

return vec

We now turn to a didactic implement of sketching gradients of a loss functions in implicit and explicit
mode. We first make an assumption about the signature of loss and sketching functions

def loss_fn(model_params , batch):
"""Loss function signature."""
pass

def sketch_fn(sketch_params , vec):
"""Sketch function signature."""
pass

def transpose_sketch_fn(sketch_params , vec):
"""Transpose of sketch_fn signature."""
pass

Then here’s how one can implement explicit and implicit gradient sketching in a few lines of code.

Listing 6: Implementation of Implicit and Explicit Gradient Sketching
def explicit_grad_sketch(model_params , sketch_params , batch):
"""Performs an explicit gradient sketch."""

grad = jax.grad(loss_fn)(model_params , batch)
return sketch_fn(sketch_params , grad)

def implicit_grad_sketch(model_params , sketch_params , batch,
target_dim):
"""Performs an implicit gradient sketch."""

def inner_loss_fn(omega):
omega = transposed_sketch_fn(sketch_params , omega)
return loss_fn(model_params + omega, batch)
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omega = jnp.zeros((target_dim ,))
grad = jax.grad(inner_loss_fn)(omega)

return grad

Here’s how one can do the same for the sketched HVP.

Listing 7: Implementation of Implicit and Explicit HVP Sketching
# Note tangent_params is a D−dimensional vector
def explicit_hvp_sketch(model_params , tangent_params ,

sketch_params , batch):
"""Performs an explicit HVP sketch."""

tangent_params = transposed_sketch_fn(sketch_params ,
tangent_params)

loss_ = functools.partial(loss_fn, batch=batch)
grad_fn = jax.grad(loss_)
hvp = jax.jvp(grad_fn, (model_params ,), (tangent_params ,))[1]
return sketch_fn(sketch_params , hvp)

# Note tangent_params is a D−dimensional vector
def implicit_hvp_sketch(model_params , tangent_params ,

sketch_params , batch, target_dim):
"""Performs an implicit HVP sketch."""

def inner_loss_fn(omega):
omega = transposed_sketch_fn(sketch_params , omega)
return loss_fn(model_params + omega, batch)

omega = jnp.zeros((target_dim ,))

loss_ = functools.partial(inner_loss_fn)
grad_fn = jax.grad(loss_)
hvp = jax.jvp(grad_fn, (omega,), (tangent_params ,))[1]
return hvp

B.4 Sketching and model parallelism

We take the case of AFFD, and show how the single device code may be lifted to code employing
model parallelism.

First, we rely on the additional modules.

from jax.sharding import NamedSharding
from jax.experimental import shard_map
from jax.sharding import Mesh
from jax.sharding import PartitionSpec as P
from jax.sharding import NamedSharding as NS
from jax import lax
from jax import tree_util as tu
import numpy as np

We then define the device mesh; we assume 8 cores with 4-way model parallelism and 2-way data
parallelism.

mesh = Mesh(
np.array(
jax.devices()).reshape(2,4), ( ’ d a t a ’, ’ m o d e l ’ ,))

We now lift initialization and application of the FlaX modules to model-parallel code:
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Listing 8: Lift AFFD to model parallel code
# target_dim = D in paper
# input_dim = N in paper
# vec is the N−vector to sketch to a D−vector.

def part_fn(pytree):
"""Partitions each parameter on the last dimension."""

def inner_part_fn(p):
out = (None,) ∗ (p.ndim−1) + ( ’ m o d e l ’ ,)
return P(∗out)

return tu.tree_map(inner_part_fn , pytree)

def init_affd_mp(scope, vec, target_dim , input_dim):
"""Initializes AFFD for model−parallel code."""

# bind dimensional arguments to make jax tracer happy with
# jax.eval_shape.
affd_init_fn = functools.partial(
init(affd), target_dim=target_dim ,
input_dim=input_dim)

_, params_shape = jax.eval_shape(affd_init_fn , rng, vec)
params_part = part_fn(params_shape)

# We need to redefine the input_dim because the code
# is now executed on each model partition.
affd_init_fn = functools.partial(
init(affd), target_dim=target_dim ,
input_dim=input_dim // mesh.shape[ ’ m o d e l ’])

def init_fn(rng, vec):
# different rng on each model slice
rng = jax.random.fold_in(rng, lax.axis_index( ’ m o d e l ’))
out, params = affd_init_fn(rng, vec)
# The vector output is fully replicated and we need to sum
# on the ’model’ partitions
out = lax.psum(out, axis_name= ’ m o d e l ’)
return out, params

return shard_map.shard_map(
init_fn,
mesh=mesh,
in_specs=(P(None,), part_fn(vec)),
out_specs=(P(None,), params_part),
)(rng, vec)

def apply_affd_mp(params, vec, target_dim , input_dim):
"""Applies AFFD for model−parallel code."""

# We need to redefine the input_dim because the code
# is now executed on each model partition.
affd_apply_fn = functools.partial(
apply(affd), target_dim=target_dim ,
input_dim=input_dim // mesh.shape[ ’ m o d e l ’])

def apply_fn(params, vec):
out = affd_apply_fn(params, vec)
# The vector output is fully replicated and we need to sum
# on the ’model’ partitions
out = lax.psum(out, axis_name= ’ m o d e l ’)
return out
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return shard_map.shard_map(
apply_fn ,
mesh=mesh,
in_specs=part_fn((params, vec)),
out_specs=P(None,),
)(params, vec)

We now illustrate how to use the previous code.

# We create the vector x on a single device and partition
# it on the model axis.
rng = jax.random.PRNGKey(0)
target_dim = 128
input_dim = 1024
x = jax.random.normal(jax.random.fold_in(rng, 1), shape=(input_dim

,))
x_mp = jax.device_put(x, NS(mesh, P( ’ m o d e l ’ ,)))

affd_x_mp , affd_params_mp = mesh(init_affd_mp)(
jax.random.fold_in(rng, 3), x_mp, target_dim , input_dim)

# Consistency check
affd_x_mp_2 = mesh(apply_affd_mp)(

affd_params_mp , x_mp, target_dim , input_dim)
assert affd_x_mp_2.shape == affd_x_mp.shape
jnp.linalg.norm(affd_x_mp_2 − affd_x_mp)

B.5 Algorithm for searching the intrinsic dimension

Our algorithm for searching the intrinsic dimension is in Listing 9. Without loss of generality we
assume that the target metric needs to be maximized, e.g. for the loss one might use the negative
loss.

Listing 9: An algorithm that searches the intrinsic dimension
def finetune(model_params , D_max: int, d: int, c: int):
"""Finetune function signature.

Finetunes for c steps in D_max dimensional subspace but
zeros out the last D_max − d components of the gradient.
Returns the updated model_params.
"""
pass

def evaluate(model_params):
"""Eval function signature."""
pass

def search_intrinsic_dimension(
model_params , D_min: int, D_max: int,tau_target: float,
c: int, delta: float):

"""
model_params: initial model parameters.
D_min: start value for the intrinsic dimension.
D_max: maximum allowed value of the intrinsic dimension.
tau_target: desired target metric.
c: number of finetuning steps in which we expect improvement.
delta: minimum expected improvement.
"""

d = D_min
tau_old = evaluate(model_params)
while True:
model_params = finetune(model_params , D_max, d, c)
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tau_new = evaluate(model_params)
if tau_new >= tau_target:
return d

else if tau_new − tau_old < delta:
d = 2 ∗ d
if d > D_max: raise ValueError( " D_max e x c e e d e d ")

tau_old = tau_new

B.6 Hyper-parameters for Sections 5.2 and 5.3

Models were trained with the released code from [6]; then checkpoints were converted to Jax for
benchmarking the sketching algorithms.

B.7 Hyper-parameters for Sec. 5.4

Roberta was fine-tuned with a batch size of 32 for 10k steps with Adam and a constant learning rate
of 2× 10−5. For the search algorithm 9 the learning rate was increased to 10−4, δ = 0.1 and c = 2k
steps.

BART was fine-tuned with a batch size of 32 for 20k steps with Adam and a constant learning rate
of 2 × 10−5. For the search algorithm 9 the learning rate was increased to 10−4; δRouge1 = 0.5,
δRouge2 = 0.5 and c = 2k steps; the total number of steps was increased to 40k.

B.8 Hyper-parameters for Sec. 5.5

We consider the SGD optimizer as in previous work [12]; the batch size was 32, the learning rate set
to 10−5.

C Appendix: Theory

C.1 Definition of Higher order sketches

For higher-order derivatives of L, one can consider sketches of operators. For example the Hessian
vector product is the operator HVP : RN → RN given by HVP(u) = ∇2L(θ)(u), i.e. HVP(u)i =∑

j ∂
2
i,jL(θ)uj . A sketch of the Hessian vector product can then obtained as follows: S(O)(v) =

Φ(HVP(ΦT v)) where v ∈ RD so that we obtain an operator mapping RD → RD. Sketches of
matrices were extensively studied [22] to speed-up evaluation of matrix products. Extending the
HVP-example, for an operator O mapping RkN to RsN the transpose ΦT is applied to the k input
indices and Φ is applied to the output s indices to obtain a mapping S(O) : RkD → RsD via:

(S(O)v)l1···ls =

N∑
t1···ts=1

N∑
i1···ik=1

D∑
j1···jk=1

s∏
β=1

Φlβ ,tβ ·Oi1···ik;t1···ts ·
k∏

α=1

Φjα,iα · vj1···jk . (11)

C.2 Guarantees on distorting distances.

By the method of Johnson-Lindenstrauss [10] one can leverage the equation about concentration of
the sketched norm (1) to prove that, given M points in RN , the distances between their sketches in
RD are distorted by at most a multiplicative factor 1± ε. The point is that concentration arguments
establish, for the δ appearing in (1), a bound of the form δ = O(exp(−ε2β2)): one can thus apply (1)
to the M(M−1)

2 differences between points by requiring that β√
logM

is sufficiently large; this is a
considerable gain replacing a bound in terms of M2 with one involving logM .

C.3 Definition of the Walsh-Hadamard transform.

The Fastfood paper [13] defines HN without scaling, so it is not an isometry; however we follow
the definition with scaling as in Wikipedia so that HN is an isometry. Specifically, N needs to be a
power of 2; then for i ≤ N let ∆(i) denote the vector of 0s and 1s and of length log2N , representing
i in its binary form; then (HN )i,j = 1√

N
(−1)〈∆(i),∆(j)〉, where 〈, 〉 denotes the inner product.
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C.4 Failure of concentration for FFD.

Theorem C.1. There are some inputs x such that FFD(x) does not satisfy (1).

Proof. Intuitively, the problem with FFD is that transposition fails to apply the pre-conditioner
to some bad inputs. Recall that the FFD, when used for sketching, gets transposed because it is
applied in implicit form, i.e. generating random features that perturb the model parameters. The
transposed operation of concatenation gives rise to a sum; specifically, given a unit vector x ∈ RN ,
we decompose it into N/D-blocks of size D, denoting the b-th block by xb. Then

FFD(x) = σ

N/D∑
b=1

BbHΠbGbH(xb); (12)

then choose x such that all blocks xb = 0 for b > 1 and x1 is such that H(x1) = e1, the first
coordinate vector in RD. Then

‖FFD(x)‖22 = σ2g2
1 , (13)

where g1 is the first entry of Gv; then we must have σ2 = 1 and ‖FFD(x)‖2 cannot concentrate
around 1 because g1 has unit variance.

C.5 Comparison to Kronecker products in [17]

[17] proposes two projection operators. The first one is

P⊕ = σ · (I ⊗R1 +R2 ⊗ I) (14)

where I is a vector of ones in R
√
N and Ri is Gaussian of shape D×

√
N so that the memory cost of

P⊕ is O(D
√
N). The second one is

P⊗ = σ ·Q1 ⊗Q2, (15)

where Qi is Gaussian of shape
√
D ×

√
N so that the memory cost of P⊗ is O(

√
D
√
N). Our QK

proposal is more general as it calls for a more general Kronecker decomposition

Q = σ ·Q(1) ⊗Q(2) ⊗ · · · ⊗Q(K); (16)

whereQ(i) is of shapeDi×Bi,
∏
iDi = D (reconstruction of the target dimension) and

∏
iBi = N

(reconstruction of the model dimension). So if we choose K = 2, Di =
√
D and Bi =

√
N we

recover P⊗. Strictly speaking, P⊕ is different from P⊗, but one might reconstruct it by averaging
two of our Q’s (16), both defined with with K = 2: indeed, we select Q1 where Q(1) is the vector
I/
√
N as in (14) and Q(2) is of shape D ×

√
N ; we then select Q2 where Q(2) is I/

√
N and Q(1)

is of shape D ×
√
N ; in other words, to get P⊕ we restrict the sampling of one factor to I/

√
N .

Note that memory-wise our approach is more efficient than [17] as we allow K > 2; memory cost
is O(

∑K
i=1BiDi) which, choosing Bi ' A and Di ' A′ allows for a memory cost O(AA′ logN).

An implementation difference with [17] is that we sample from the special orthogonal group: we
sample a Gaussian of shape Di ×Bi and obtain Q(i) using the QR-decomposition.

C.6 Concentration result for QK: Theorem 3.3

Theorem C.2. Consider the projection algorithm QK where Q decomposes as Q(1) ⊗ · · · ⊗Q(K)

where Q(i) has shape Di ×Bi; then

P
(√D

N
(1−ε)‖x‖2 ≤ ‖Q(x)‖2 ≤

√
D

N
(1+ε)‖x‖2

)
≥ 1−2

∑
i

exp(−4CDi((1+ε)1/K−1)2).

(17)

In particular, as long as each Di is sufficiently large one still obtains a concentration result; the price
to pay for the Kronecker product decomposition is that the concentration probability is dampened by
the number of factors as ((1 + ε)1/K − 1)2 ' ( εK )2.
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Proof. Step 1: Reduction to the case of applying a single factor in the Kronecker product
representation of Q. We assume that Q decomposes as Q(1) ⊗ · · · ⊗Q(K) where Q(i) has shape
Di ×Bi; if we reshape x into a tensor of shape (B1, · · · , BK) indexed by (a1, · · · , aK), the output
Q(x) can be represented as a tensor of shape (D1, · · · , DK) indexed by (b1, · · · , bK):

Q(x)b1,··· ,bK =
∑

a1,··· ,aK

Q
(1)
b1,a1

Q
(2)
b2,a2

· · ·Q(K)
bK ,aK

xa1,···aK . (18)

We now look into applying (18) one step at a time. We reshape x to shape (B1, B2 · · ·BK) ob-
taining a matrix X(1)

a1,c; we then contract it with Q(1)
b1,a1

over a1 to obtain a matrix Y (1)
b1,c

of shape

(D1, B2 · · ·BK). To apply Q(2)
b2,a2

we need to first reshape Y (1) to shape (D1, B2, · · · , BK), then

transpose the first and second indices, and reshape it to a matrix X(2)
a2,c of shape (B2, D1B3 · · ·BK);

we can then contract it with Q(2)
b2,a2

over a2 to obtain a matrix Y (2)
b2,c

of shape (D2, D1B3 · · ·BK). It
should be clear how this procedure can be continued for each i ∈ {3, · · ·K}. Assume that for each i
we can prove that the Frobenius norm (which is the l2-norm if we reshape it to be a vector) of Y (i)

bi,c

concentrates around that of X(i)
bi,c

up to a multiplicative factor
√

Di
Bi

:

P
(√Di

Bi
(1− εi)‖X(i)‖2 ≤ ‖Y (i)‖2 ≤

√
Di

Bi
(1 + εi)‖X(i)‖2

)
≥ 1− δi; (19)

by conditional independence of the matrices Q(i) on one another we get that

P
(√D

N

K∏
i=1

(1− εi)‖x‖2 ≤ ‖Q(x)‖2 ≤
√
D

N

K∏
i=1

(1 + εi)‖x‖2
)
≥

K∏
i=1

(1− δi), (20)

where we used
∏K
i=1Di = D and

∏K
i=1Bi = N .

Step 2: Using concentration of measure on the orthogonal group. The entries of Q(i) are not
independent because of the orthogonality requirement and the fact that the rows need to have l2-norm
equal to 1. We will employ measure concentration without independence; as a reference for notation
and theorems we use [26]. From [26, 2.5.2] we recall the definition of the sub-Gaussian norm of a
real-valued random variable X as:

‖X‖ψ2
= inf{t > 0 : E exp(X2/t2) ≤ 2}; (21)

obtaining a bound on ‖X‖ψ2 is equivalent to a concentration inequality:

P (|X| ≥ t) ≤ 2 exp(−ct2/‖X‖2ψ2
), (22)

for a universal constant c > 0. Note that Q(i) can be sampled on the orthogonal group SO(Bi) by
restricting to the first Di-rows in the case in which Di < Bi (by sampling from O(Bi) and changing
in case the sign of one of the last Bi −Di rows to ensure the determinant is 1), while the result we
are proving is trivial if Di = Bi because then Q(i) is full-rank. We now invoke the concentration of
measure for SO(Bi) [26, 5.2.7]; if f : SO(Bi)→ R is Lipschitz:

‖f(Q(i))− Ef(Q(i))‖ψ2
≤ C ‖f‖Lip√

Bi
, (23)

where C is a universal constant and the Lipschitz constant ‖f‖Lip is computed using the Frobenius
norm on the tangent space. We now define:

f(Q(i)) = ‖Y (i)‖2 =
(∑
bi,c

(∑
ai

Q
(i)
bi,ai

X(i)
ai,c

)2) 1
2

; (24)

which has derivative:
∂f(Q(i))

∂Qbi,ai
=

∑
c Y

(i)
bi,c

X
(i)
ai,c

‖Y (i)‖2
; (25)
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the Cauchy-Schwartz inequality implies that:∣∣∣∣∂f(Q(i))

∂Qbi,ai

∣∣∣∣ ≤ (
∑
c(Y

(i)
bi,c

)2)1/2(
∑
c(X

(i)
ai,c)

2)1/2

‖Y (i)‖2
, (26)

from which it follows that ‖f‖Lip ≤ 1 if one assumes that ‖X(i)‖2 ≤ 1. Note that to derive (20) we
may rescale x by a constant; if we rescale it so that ‖x‖2 = 1 then all the norms of the intermediate
results ‖X(i)‖2, ‖Y (i)‖2 are at most 1 because the matrices Q(i) are orthogonal. We have thus
established

‖f(Q(i))− Ef(Q(i))‖ψ2
≤ C√

Bi
. (27)

Step 3: Replacing Ef(Q(i)) with something simpler to estimate. A drawback of (27) is that the
term Ef(Q(i)) is not easy to estimate. However, using a symmetry argument, it is easy to estimate
E(f(Q(i)))2; indeed the Di variables

∑
c(Y

(i)
bi,c

)2 are identically distributed and if Di = Bi one
would get an isometry; so

E(f(Q(i)))2 =
Di

Bi
‖X(i)‖22. (28)

So we would like to replace Ef(Q(i)) with
√
E(f(Q(i)))2; the intuition why this would work is

that concentration around the mean is equivalent to concentration around the median; so Ef(Q(i))
concentrates around the median Mi; as f(Q(i)) is non-negative, the median of (f(Q(i)))2 is M2

i ; and
this variable concentrates both around the mean and the median, and we have a closed form for the
mean (28). To make this more precise, by the fact that concentration around the mean is equivalent to
concentration around the mean (see [26, 5.1.13]), we have

‖f(Q(i))−Mi‖ψ2 ≤
C√
Bi
, (29)

where the constant C might have changed but is universal. We then just need to show that
|
√
E(f(Q(i))2)−Mi| is O(1/

√
Bi). By the triangle inequality:

|
√
E(f(Q(i))2)−Mi| ≤

√
E|f(Q(i))−Mi|2, (30)

and we can compute the right hand side with the layer cake decomposition:√
E|f(Q(i))−Mi|2 =

(∫ ∞
0

P (|f(Q(i))−Mi|2 ≥ u) du

) 1
2

, (31)

and we apply the concentration inequality (22) to the right hand side to get√
E|f(Q(i))−Mi|2 ≤

(∫ ∞
0

2 exp(−c̃Biu) du

) 1
2

, (32)

which implies that the right hand size is O(1/
√
Bi). We have thus established

P

(∣∣∣∣∣‖Y (i)‖2 −
√
Di

Bi
‖X(i)‖2

∣∣∣∣∣ ≥ t
)
≤ 2 exp(−CBit2). (33)

We now deduce (19) conditional that it holds for j = 1, · · · , i − 1 so that we may assume that

‖X(i−1)‖2 ≥ 1
2 ; then we may take t = εi

√
Di
Bi
‖X(i)‖2 and get (19) with

δi = 2 exp(−4CDiε
2
i ). (34)

Step 4: Choosing the εi. We just aim for εi to be equal and that
∏
i(1 + εi) = 1 + ε; this

is achieved by letting εi = (1 + ε)1/K − 1. In this case we may lower bound
∏
i(1 − δi) by

1− 2
∑
i exp(−4CDi((1 + ε)1/K − 1)2).
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C.7 Concentration result for AFFD

Theorem C.3. Consider sketching with AFFD; then

P
(

(1− ε)‖x‖2 ≤ ‖AFFD(x)‖2 ≤ (1 + ε)‖x‖2
)
≥ 1− δ, (35)

where for each δ1 > 0 we have

δ ≤ δ1 + exp

(
−Cε2 N

2 log 2N
δ1

)
+ exp

(
−Cε2 D

4 log2 2N
δ1

)
. (36)

Note that the first two terms on the right hand side (36) can be made arbitrarily small (especially as
N is typically very large and δ1 will affect C in the third term); thus the effective bound for δ is of
the form δ ≤ exp

(
−Cε2 D

log2N

)
.

Proof. We will again use the notation and conventions from [26]. Let us recall the definition of
AFFD:

Φ(x) = RD(σ ·H2 ·Gv ·H1 ·B(x)); (37)

without loss of generality we will assume that ‖x‖2 = 1.

Step 1: Using the pre-conditioner H1 to distribute the mass of x. Note that H1 is an N × N -
dimensional matrix with entries of the form ± 1√

N
; each entry of the vector H1B(x) is of the

form
∑
i
sibixi√
N

where the {bi}Ni=1 are independent Bernoulli and si = ±1; applying Hoeffding’s
inequality [26, Thm.2.2.2] to each entry of H1B(x) we obtain that:

P

(
‖H1B(x)‖∞ ≥

t∞√
N

)
≤ 2N exp

(
− t

2
∞
2

)
; (38)

intuitively, the norm of each entry of H1B(x) cannot become much larger than a multiple of its
variance 1√

N
: this is the purpose of using a pre-conditioner to distribute the mass of x.

Step 2: Decomposing ‖Φ(x)‖22. We now let u = H1 ·B(x) so that Φ(x) = σRD(H2 ·Gv · u); we
let Π be the permutation associated with rearranging the columns of H2 so that

‖Φ(x)‖22 = σ2
D∑
i=1

 N∑
j=1

Hi,Π(j)gjuj

2

; (39)

in (39) we decompose the effect of the diagonal and the off-diagonal terms obtaining

‖Φ(x)‖22 = σ2
D∑
i=1

N∑
j=1

1

N
g2
ju

2
j︸ ︷︷ ︸

T1

+σ2
D∑
i=1

∑
k 6=j

Hi,Π(k)Hi,Π(j)gjgkujuk︸ ︷︷ ︸
T2

. (40)

We now use the first term T1 to compute σ:

ET1 = σ2
N∑
j=1

D

N
u2
j , (41)

where we used the fact the components of Gv have unit variance; as H1B(x) is an isometry, to have

ET1 = 1 we just need to set σ =
√

N
D .

Step 3: Concentration for
√
T1. If we regard

√
T1 as a function f1(Gv), we have

f1(Gv) =

 N∑
j=1

g2
ju

2
j

1/2

; (42)
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conditional on the good event Egood that ‖H1B(x)‖∞ ≤ t∞√
N

, this function is t∞√
N

-Lipschitz in the
l2-norm of Gv; applying concentration for the Gaussian measure on RN [26, Sec. 5.2.2] we get that
conditional on Egood

P
(
|
√
T1 − 1| ≥ ε

)
≤ exp

(
−C N

t2∞
ε2

)
. (43)

Step 4: Concentration for |T2|. We would like to claim that T2 is small with high probability.
This is the second point in which we use the pre-conditioner H; the intuition is that applying the
pre-conditioner H to Gv further reduces the finite sample correlation of the rows of the resulting
matrix. Let us rewrite T2 as follows:

T2 =
∑
k 6=j

D∑
i=1

N

D
Hi,Π(k)Hi,Π(j)︸ ︷︷ ︸
Bij

ujukgjgk; (44)

so we have reduced T2 to a bi-linear form
∑
j,k Bj,kgjgk; by the Hanson-Wright inequality [26,

6.2.1] we have

P (|T2| ≥ ε) ≤ exp

(
−C min{ ε2

‖B‖2F
,

ε

‖B‖S
}
)
, (45)

where ‖B‖F is the Frobenious norm of B and ‖B‖S is the spectral norm. Let us look at Bj,k
conditional on Egood:

Bj,k =

D∑
i=1

N

D
Hi,Π(k)Hi,Π(j)ujuk. (46)

Recall now that D and N are both powers of 2 and the definition of H in Sec. C.3: if ∆(j)
denotes the binary vector, of length log2N , representing an integer j ≤ N , we have Hi,Π(k) =

1√
N

(−1)〈∆(i),∆(Π(k))〉, where 〈a, b〉 denotes the inner product of two vectors of length log2N . We
thus obtain the bound:

|Bj,k| ≤
t2∞
D

∣∣∣∣∣ 1

N

D∑
i=1

(−1)〈∆(i),∆(Π(k))+∆(Π(j))〉

∣∣∣∣∣ ; (47)

the sum
∑D
i=1(−1)〈∆(i),∆(Π(k))+∆(Π(j))〉 is 0 unless the vectors ∆(Π(j)) and ∆(Π(k)) agree in the

first log2D entries, otherwise varying i ≤ D we can always find two terms in the sum that cancel
each other by flipping the parity of i in the first slot where the vectors ∆(Π(j)) and ∆(Π(k)) differ.
So for each j, there are at most ND possible k-s such that |Bj,k| is non-zero; moreover, as the sum∑D
i=1(−1)〈∆(i),∆(Π(k))+∆(Π(j))〉 is at most D in absolute value, we get

‖B‖2F =

N∑
j=1

N∑
k=1

|Bj,k|2 ≤ N
t4∞
D2

N

D

D2

N2
≤ t4∞

D
; (48)

note that a bound on the spectral norm ‖B‖S is trivial from (47) as we can just take the maximum of
the absolute values of the |Bj,k| which is bounded by t2∞

N . Given the stronger bound for ‖B‖S and
that ε� 1, the minimum in the exponential in (45) is achieved by the term involving ‖B‖2F and we
thus obtain:

P (|T2| ≥ ε) ≤ exp

(
−Cε2 D

t4∞

)
. (49)

Step 5: Picking up constants. Conditional on Egood and on
√
T1 ≥ 1

2 we have:

|
√
T1 + T2 − 1| ≤ |

√
T1 − 1|+ |

√
T1 + T2 −

√
T1| ≤ |

√
T1 − 1|+ 2|T2|. (50)

We can bound the right hand side of (50) by 3ε if Egood and the concentration inequalities for
√
T1

and T2 hold. Thus, by decreasing the constant C by a factor 9, we have

P
(
|
√
T1 + T2 − 1| ≥ ε

)
≤ δ, (51)
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where

δ = 2N exp

(
− t

2
∞
2

)
+ exp

(
−C N

t2∞
ε2

)
exp

(
−Cε2 D

t4∞

)
; (52)

having fixed a small δ1, if we set t∞ =
√

2 log 2N
δ1

, we get

δ ≤ δ1 + exp

(
−Cε2 N

2 log 2N
δ1

)
+ exp

(
−Cε2 D

4 log2 2N
δ1

)
. (53)

Comparison with [4] It seems plausible that Step 4 could be carried out with arguments similar
to those of [4, Lem. 16, Lem. 17] by analyzing the chromatic number of the P -system associated
with H; however we think the method that uses the Hanson-Wright inequality is more simple for this
specific case.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the theoretical justification is provided in Sec. 3 and Sec. 4; the experimental
evidence is provided in Sec. 5.3.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Theorems are stated with the full assumptions in the paper; proofs are provided
in Appendix C. As the proofs can be lengthy, the main proof ingredients (e.g. concentration
for quadratic forms, analysis via explicit sketching) are explained in the paper.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The complete experiment setup is described in Appendix B. Python code of
Jax implementations of the algorithms used is also provided in Appendix B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All datasets and models used are public and can be obtained from HuggingFace.
Python code to implement the proposed algorithms (in Jax) is provided in Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper provides the core ideas for each experimental setup and full
details to reproduce the results are available in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments in Sec. 5.4 require multiple runs to check the consistency and
accuracy of our estimation method for the intrinsic dimension. As the target quantity is
discrete, we have opted to report the values across the random seeds in Appendix A instead of
using error bars. For wall time estimates we checked that on different runs the relative errors
stay withing 10%, while estimates did not change for the peak memory usage (discussion
about using the Jax profiler in Appendix B).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the guidelines.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not foresee societal impacts for this work.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No releases of generative models or datasets.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For the experiments in Sec. 5.2 we used the setup of [6] which has been cited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing, no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing, no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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