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Abstract

We study lifelong learning in linear bandits, where a learner interacts with a
sequence of linear bandit tasks whose parameters lie in an m-dimensional subspace
of Rd, thereby sharing a low-rank representation. Current literature typically
assumes that the tasks are diverse, i.e., their parameters uniformly span the m-
dimensional subspace. This assumption allows the low-rank representation to
be learned before all tasks are revealed, which can be unrealistic in real-world
applications. In this work, we present the first nontrivial result for sequential multi-
task linear bandits without the task diversity assumption. We develop an algorithm
that efficiently learns and transfers low-rank representations. When facing N
tasks, each played over τ rounds, our algorithm achieves a regret guarantee of
Õ
(
Nm
√
τ+N

2
3 τ

2
3 dm

1
3 +Nd2+τmd

)
under the ellipsoid action set assumption.

This result can significantly improve upon the baseline of Õ (Nd
√
τ) that does not

leverage the low-rank structure when the number of tasks N is sufficiently large
and m≪ d. We also demonstrate empirically on synthetic data that our algorithm
outperforms baseline algorithms, which rely on the task diversity assumption.

1 Introduction

Recommendation systems that interact with customers to promote the best items for each user have
been widely adopted around the world. These interactions are often sequential and can be modelled
as linear bandit problems [Abe and Long, 1999, Dani et al., 2008, Rusmevichientong and Tsitsiklis,
2010, Abbasi-Yadkori et al., 2011], where the characteristics of items can be represented as context
vectors, and a user’s preference for an item (i.e., reward) can be modelled using a linear combination
of the context of the item. Even though the problem is typically high-dimensional, different users
may exhibit similar preferences, leading to a low-dimensional underlying reward structure.

Motivated by this observation, there has been growing interest in representation learning within
the context of linear bandits. For instance, in the item recommendation example, each session of
interaction with a user can be seen as a linear bandit task, and similarity across tasks can be captured
by the existence of a global feature extractor that applies to all problem instances.

Formally, we consider a problem where the learner sequentially faces N d-dimensional linear
bandit tasks, each with horizon τ , with a key assumption that the reward predictors of the N tasks,
θ1, . . . , θN , lie in an m-dimensional linear subspace of Rd. The goal of the learner is to minimize
their meta (pseudo-)regret, which is the sum of regret across all tasks (see Equation (1) below), by
exploiting the shared subspace structure.
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One naive approach is to solve each task independently using a base algorithm (such as Lin-
UCB [Abbasi-Yadkori et al., 2011] or PEGE [Rusmevichientong and Tsitsiklis, 2010]); this approach,
which we will henceforth refer to as the individual single-task baseline), would yield an upper bound
on the meta-regret of 0Õ(Nd

√
τ). On the other hand, had the shared m-dimensional subspace been

known beforehand, one would only need to estimate each reward predictor’s projection onto the
subspace; this leads to a meta-regret of Õ(Nm

√
τ). In this work, we focus on the setting where N

and τ are large and m≪ d, the regime in which representation transfer learning would be beneficial.

Despite rich results for multi-task linear bandits in the parallel setting [e.g. Yang et al., 2020, Hu et al.,
2021, Yang et al., 2022, Cella et al., 2023], progresses on multi-task bandits in the sequential setting
have been relatively sparse. This can be attributed to the additional challenge of meta-exploration:
in addition to exploration in each bandit learning task, one also needs to determine when (in which
tasks) to acquire more information on the shared m-dimensional subspace representation. This is in
contrast to the parallel setting, where algorithms that treat all tasks equally can achieve a near-optimal
regret through a reduction to low-rank linear bandits [Hu et al., 2021, Jang et al., 2021a].

Under the assumption that the action sets are well-conditioned ellipsoids, Qin et al. [2022] design
an efficient algorithm with a meta-regret of Õ

(
Nm
√
τ + dm

√
τN
)

. However, it relies on an
additional key assumption that the tasks are “diverse” in the m-dimensional subspace: more formally,
for any subsequence of tasks S, the m-th eigenvalue of the task parameters’ covariance matrix
1
|S|
∑

n∈S θnθ
⊤
n is bounded away from zero (see Tripuraneni et al. [2021] for a related assumption in

the supervised regression setting). However, this task diversity assumption is hard to verify and may
not even hold in practice. Therefore, we raise the question:

Can we design sequential multi-task bandit algorithms with provable low meta-regret without strong
assumptions on task parameters, especially on task diversity?

In this paper, we answer this question positively. Under mild assumptions that the action sets are well-
conditioned ellipsoids and all task parameters have norms upper and lower bounded by constants, we
design an algorithm with a meta-regret of Õ

(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
1, providing

the first nontrivial result for sequential multi-task linear bandit without the task diversity assumption.
To the best of our knowledge, prior to our work, no regret bounds better than that of the individual
single-task baseline (i.e., o(Nd

√
τ)) were known for this setting.

Our algorithm, BOSS, is based on a reduction to a bandit online subspace selection problem. Specifi-
cally, for each new task n, our algorithm chooses a subspace, represented by its canonical orthonormal
basis B̂n, to approximate the ground-truth subspace B and guide exploration. To address the chal-
lenge of meta-exploration, as choosing different B̂n’s leads to learning the projections of θn onto
different subspaces/directions, our algorithm is designed to randomly meta-explore in some tasks and
use them to learn B. Empirically, we demonstrate the effectiveness of our algorithm in a simulated
adversarial environment where the task diversity assumption does not hold.

1.1 Related work

Parallel representation transfer for multi-task linear bandit. The parallel setting where the learner
interacts with N tasks simultaneously in each round was initially studied by Yang et al. [2020].
For the finite action setting, under some distributional assumptions on the action set in each round,
they provide a total regret lower bound of Ω

(
N
√
mτ +

√
mdτN

)
and an algorithm that matches

this up to logarithmic factors. For the infinite action setting, they provide a lower bound for the
problem of Ω

(
Nm
√
τ + d

√
mτN

)
, which holds even under the task diversity assumption. Under

the same task diversity assumption and in the infinite action set setting2, Yang et al. [2022] present
an algorithm with a regret guarantee of Õ

(
Nm
√
τ + d

√
mτN

)
.

1Õ hides polylog(τ,N, d) factor
2Although not mentioned explicitly, a careful examination of Yang et al. [2022] shows that its Lemma 4.2

uses the assumption that σm ((θ1, . . . , θN )) ≥
√

N
m

, which is a task diversity assumption.

2
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Algorithm Prior
info.

Task
diversity Regret guarantee(s)

Indep. PEGE
for each task None No Õ (Nd

√
τ)

Qin et al. [2022] m, τ Yes Õ
(
Nm
√
τ + dm

√
τN
)

, Ω
(
Nm
√
τ + d

√
mτN

)
Bilaj et al. [2024] None Yes at least O

(
N
√
τ(d−m) log

(
1 + m

λA
min(d−m)

))
BOSS (our work) N,m, τ No Õ

(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
Table 1: Comparisons of the settings, assumptions, and regret guarantees in this paper and previous
works. A more comprehensive comparison is available in Table 2 of Appendix A.

For general action spaces, Hu et al. [2021] provide a regret guarantee of Õ
(
N
√
mdτ + d

√
τNm

)
,

albeit using a computationally inefficient algorithm. They also provide an extension for multi-task
linear reinforcement learning under the assumption of low inherent Bellman error.

Unlike previous approaches, Cella et al. [2023] relaxes the requirement to know the subspace rank m
and the need for the task diversity assumption. Assuming that the action sets are finite and drawn
from a specific distribution, by using trace-norm regularization for estimating task parameters and
taking actions in a greedy fashion, they provide a regret upper bound of Õ

(
N
√
mτ +

√
dmτN

)
that matches the lower bound from Yang et al. [2020] up to logarithmic factors.

Sequential representation transfer for multi-task linear bandit. Compared with the parallel setting,
the sequential setting is more challenging, where the learner only interacts with one task at a time;
hence, even after many tasks, the reward predictors of the seen tasks may not span the underlying
m-dimensional subspace. Qin et al. [2022] avoid this challenge by assuming a task diversity
assumption, i.e., any large enough subset of tasks span the underlying m-dimensional subspace in a
well-conditioned manner. With this, they provide a meta-regret guarantee Õ

(
Nm
√
τ + dm

√
τN
)

which nearly matches a lower bound of Ω
(
Nm
√
τ + d

√
mτN

)
. They also extend their analysis to

a nonstationary representation setting where the global feature extractor can change over segments of
tasks. Yang et al. [2022] study the sequential setting with an additional assumption that ∥θn∥ = 1
for all tasks; however, it appears that there may be a non-trivial oversight in the analysis.3

Bilaj et al. [2024] study a related setting where the task parameters are i.i.d. sampled from a distribu-
tion with high variances from a m-dimensional subspace and with low variances in the orthogonal di-
rections. They provide a meta-regret guarantee of at least Õ

(
N
√
τ(d−m) log

(
1 + m

λA
min(d−m)

))
,

where λA
min is the smallest eigenvalue of the empirical covariance matrix of the actions taken. Since

a linear bandit algorithm is expected to converge to pull the optimal arm at the end; λA
min may

be constant when the action space is fixed. Thus, this bound can be as large as Õ(Nd
√
τ). For a

quick reference, see Table 1 for a comparison between our work and most related works. See also
Appendix A for further discussions on related work.

2 Problem setup

We consider a sequence of linear bandit tasks of the same length τ , described by the task parameters
θ1, · · · , θN ∈ Rd chosen by an environment such that they satisfy Assumption 1. The learner solves
N tasks sequentially. In task n, for each time step t = 1, . . . , τ , the learner chooses an action An,t

from the action set A that satisfies Assumption 2 and receives a reward rn,t = A⊤
n,tθn + ηn,t , where

3In the proof of Theorem 5.1 therein, a key inequality, ∥θn− θ̃n∥2 ≤ ∥θn∥2−∥θ̃n∥2, was used (see Equation
(21)); however, this inequality does not hold in general.

3
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Algorithm 1 Meta-Exploration procedure

1: Input: Task index n, exploration length τ1 (a multiple of d)
2: for i ∈ [d] do
3: Let An,t = λ0ei for t = u(i− 1) + 1, · · · , ui, where u = τ1

d
4: end for
5: for time step t← 1, · · · , τ1 do
6: Take action An,t and receive the reward rn,t
7: end for
8: Compute θ̂n := argminθ∈Rd

1
τ1

∑τ1
t=1 (⟨An,t, θ⟩ − rn,t)

2

9: for time step t← τ1 + 1, · · · , τ do
10: Take action An,t ← argmaxa∈A

〈
a, θ̂n

〉
11: end for

ηn,t is independent, mean-zero 1-sub-Gaussian noise. The learner then moves on to task n+ 1 and
repeats the same learning process.
Assumption 1 (Low-rank representation). Let m < d. For task parameters θ1, · · · , θN , there exist (i)
a global feature extractor B ∈ Rd×m with orthogonal columns and (ii) vectors w1, . . . , wN ∈ Rm,
such that θi = Bwi for all i ∈ [N ].

Given a semi-orthonormal matrix U ∈ Rd×m (i.e., U⊤U = Im), denote by U⊥ ∈ Rd×(d−m) a
matrix whose columns constitute an orthonormal basis of the orthogonal complement of span(U),
where we break ties in dictionary order4. We also denote the i-th column vector of U by U(i).

Following Rusmevichientong and Tsitsiklis [2010] and [Qin et al., 2022], we also assume that the
action set A is an ellipsoid and the task parameters have bounded ℓ2 norms:
Assumption 2 (Linear bandits with ellipsoid action sets). The action set A :={
x ∈ Rd : x⊤M−1x ≤ 1

}
is an ellipsoid, where M is a symmetric, positive definite matrix. In addi-

tion, there exist constants θmin and θmax ≤ 1 such that for all tasks n ∈ [N ], θmin ≤ ∥θn∥2 ≤ θmax.

We define the expected pseudo-regret for task n as Rn
τ := τ ·maxa∈A a⊤θn − E

[∑τ
t=1 A

⊤
n,tθn

]
,

and the meta-regret for all N tasks as

Rτ :=

N∑
n=1

Rn
τ =

N∑
n=1

[
τ ·max

a∈A
a⊤θn − E

[
τ∑

t=1

A⊤
n,tθn

]]
. (1)

The learner’s goal is to sequentially interact with each task in a way that minimizes its meta-regret.

3 Algorithm

Unlike in the parallel setting or the sequential setting with a task diversity assumption, here, the
learner cannot directly learn the global feature extractor B. Instead, it needs to reason with the
uncertainty about B learned from the seen tasks.

High-level idea of our approach. To simultaneously learn B online and utilize our (imperfect)
knowledge of it, we solve the sequential multi-task bandit problem using a bi-level approach:

• At the lower level, for each task n, the learner has the option of invoking two base algorithms: one
performs naive exploration that does not incorporate our knowledge on B, using a variant of full-
dimensional linear bandit algorithm (PEGE [Rusmevichientong and Tsitsiklis, 2010], Algorithm 1);
the other tries to incorporate a learned subspace B̂ as prior knowledge to get reduced regret
(Algorithm 2).
Algorithm 1 and 2 can be viewed as performing meta-exploration and meta-exploitation respectively:
Algorithm 1, while ignoring the low-dimension property of the tasks, produces unbiased estimators

4As we will see, other tie-breaking mechanisms would not change our algorithm and analysis; see Definition 9
and the discussion below in Appendix C for more details.

4
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Algorithm 2 Meta-Exploitation procedure

1: Input: Task index n, exploration length τ2 (a multiple of m), and the subspace orthonormal
basis B̂n ∈ Rd×m

2: for i ∈ [m] do
3: Let An,t = λ0B̂n(i) for t = u(i− 1) + 1, · · · , ui, where u = τ2

m
4: end for
5: for time step t← 1, · · · , τ2 do
6: Take action An,t and receive the reward rn,t
7: end for
8: Compute ŵn := argminw∈Rm

1
τ2

∑τ2
t=1

(〈
An,t, B̂nw

〉
− rn,t

)2
9: Let θ̂n := B̂nŵn

10: for time step t← τ2 + 1, · · · , τ do
11: Take action An,t ← argmaxa∈A

〈
a, θ̂n

〉
12: end for

of θn that helps learn the task subspace B; Algorithm 2 allows the learner to achieve a much lower
regret when the subspace B̂ approximately contains θn; however, using it may slow down the
learning of B.

• At the upper level, the learner has two decisions to make for each task n: (1) choosing between
meta-exploration and meta-exploitation; (2) choosing a subspace B̂n to use if performing meta-
exploitation. To this end, we propose Algorithm 3, which aims at making these decisions in a
feedback-driven way to ensure low meta-regret.

We now elaborate on each level in more detail.

The lower level. As mentioned above, Algorithm 1 is for meta-exploration. When invoked in task n,
it can achieve two goals simultaneously: obtaining an unbiased estimate of θn, while maintaining
a reasonable regret guarantee for task n. For the first τ1 steps (line 3 to 6), the learner takes
actions {λ0ei}di=1 that span the action space A, where ei is the i-th canonical vector of Rd and
λ0 =

√
λmin(M) is a constant factor that ensures λ0ei ∈ A (recall Assumption 2).

Then, the learner estimates task parameter θ̂n in line 8 and acts greedily for the rest of the task (line
10). We summarize its guarantee (originally due to Rusmevichientong and Tsitsiklis [2010]) as
follows:
Lemma 3. Fix τ1 to be a multiple of d. Suppose Algorithm 1 is run on task n with the exploration
length τ1. Then, there exists some constants c1, c2 > 0 (that depend on λ0, θmax, θmin, and M ) such
that:

1. The regret on task n is bounded as Rn
τ ≤ c1 ·

(
τ1 + τ · d

2

τ1

)
=: Cinfo;

2. With probability ≥ 1− δ, ∥θ̂n − θn∥ ≤ c2 ·
(
d

√
ln d

δ

τ1

)
=: α.

We defer the proof of this lemma to Appendix D. Lemma 3 reveals a tradeoff between meta-
exploration and regret minimization for task n: if τ1 is larger (say, closer to τ ), θ̂n estimates θn more
accurately; however, this may yield a worse bound on Rn

τ .

On the other hand, Algorithm 2 is for meta-exploitation. It takes a subspace (represented by its
orthonormal basis B̂) as input, and when invoked in task n, it can achieve a lower regret guarantee than
Algorithm 1 when the subspace contains vectors that closely approximate θn. Instead of exploring
Rd, the learner only explores the subspace induced by B̂n (lines 3 and 6). Then, the learner estimates
the low-dimensional task parameter ŵn in line 9 and acts greedily for the rest of the task (line 11).
We summarize its guarantee (originally due to Yang et al. [2020]) as follows:

Lemma 4. Fix τ2 to be a multiple of m. Suppose Algorithm 2 is run on task n with input subspace B̂n

and the exploration length τ2. Then, there exists some constant c > 0 (that depends on λ0, θmax, θmin,

5
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Algorithm 3 BOSS: Bandit Online Subspace Selection for Sequential Multitask Linear Bandits. The
full algorithm 4 is in Appendix A.

1: Input: Task length τ , number of task N , task dimension d, subspace dimension m, and explo-
ration rate p.

2: Initialize: An uniform distribution D0 over the set of experts Eε in Definition 5
3: for n ∈ [N ]: do
4: Randomly draw B̂n from Dn

5: With probability p: Zn = 1, otherwise Zn = 0
6: if Zn = 1 then
7: Exploration procedure in Algorithm 1
8: Update the distribution Dn+1 with the EWA algorithm [Freund and Schapire, 1997], with

learning rate η = ln 2
9: else

10: Exploitation procedure in Algorithm 2 with B̂n

11: end if
12: end for

and M ), such that the regret on task n is bounded as:

Rn
τ ≤ c ·

(
τ2 + τ ·

(
m2

τ2
+ ∥B̂⊤

n,⊥θn∥22
))

.

Specifically, if ∥B̂⊤
n,⊥θn∥2 ≤ 2α, then Rn

τ ≤ 4c
(
τ2 + τ ·

(
m2

τ2
+ α2

))
, where α is defined in

Lemma 3.

Lemma 4 reveals the opportunistic nature of Algorithm 2: if θn is perfectly contained in the subspace
spanned by B̂n, ∥B̂⊤

n,⊥θn∥ = 0 and the regret bound is Rn
τ ≤ O

(
τ2 + τ · m

2

τ2

)
, which can be as low

as O(m
√
τ); on the other extreme, ∥B̂⊤

n,⊥θn∥ can be as large as ∥θn∥ in the worst case, which yields
a trivial linear regret bound. Thus, its regret guarantee hinges on good choices of subspace B̂n as
input. See Appendix E for the proof of Lemma 4.

The upper level. For the upper level, we propose Algorithm 3 that decides (1) when to perform
meta-exploration and (2) the subspace to use if performing meta-exploitation.

For (1), for each task, the learner chooses to explore the subspace with probability p (line 6) or exploit
with the online subspace estimate B̂n (line 9).

For (2), we propose to choose
{
B̂n

}N

n=1
that can optimize the following cost function online5:

Cn(B) :=

{
Chit := τ2 + τ ·

(
m2

τ2
+ α2

)
∥B⊤

⊥θn∥2 ≤ 2α;

Cmiss := τ otherwise.
(2)

The motivation behind this definition of Cn is as follows: according to Lemma 4, Cn(B̂n) is (up to
constant) an upper bound of the regret of the learner at task n, were the learner to invoke Algorithm 2
using B̂n for this task. Therefore, if we can guarantee

∑N
n=1 Cn(B̂n) to be small, then using

Algorithm 2 for all tasks yields a small meta-regret.

An immediate challenge in directly optimizing Cn defined in Eq. (2) is its dependence on unobserved
quantity θn. This challenge is further complicated by the following: (i) at best, we observe θ̂n’s
that are α-approximations of θn (e.g. in those meta-exploration tasks, see Lemma 3); (ii) in meta-
exploitation tasks, we do not have guarantees on how close θ̂n is to θn; note the difference in the
definitions of θ̂n in meta-exploration and meta-exploitation tasks, respectively.

5In the case split of the definition of Cn(B), the value of ∥B⊤
⊥θn∥2 is independent of the choice of B⊥. See

Definition 9 and the discussion below in Appendix C for more details.

6
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To address the challenge (i), we propose to optimize the following surrogate cost function for Cn:

C̃n(B) :=

{
Chit ∥B⊤

⊥ θ̂n∥ ≤ α;

Cmiss otherwise.
(3)

In Lemma 11 of Appendix C, we show that, with high probability, C̃n is an upper bound of Cn (when
θ̂n is close to θn as guaranteed by Lemma 3 in meta-exploration rounds).

With this modification of the optimization objective, challenge (ii) persists: C̃n is only a valid
high-probability upper bound of Cn for all meta-exploration rounds n; to ensure this upper bound
property, we propose to optimize the cost:

C̄n(B) := C̃n(B) · Zn

p
, (4)

where we introduce the importance weighting multiplier Zn

p . Our key observation is that, although
C̄n(B) is no longer an upper bound of Cn(B), the upper bound property holds in-expectation; to see
this, observe that for any fixed B,

EZn

[
C̄n(B)

]
= EZn

[
C̃n(B) · Zn

p

]
≳ EZn

[
Cn(B) · Zn

p

]
= Cn(B),

here, the first equality is from the definition of C̄n(B); the inequality (here, ≳ indicates greater
than up to a negligible constant) uses the above-mentioned property that when Zn = 1, with high
probability, C̃n(B) ≥ Cn(B) (see Lemma 3 and Lemma 11); the second equality is from the fact
that Zn ∼ Ber(p).

Following the online learning literature, we propose to use the exponential weight algorithm (EWA,
aka Hedge) [Freund and Schapire, 1997] to optimize

{
C̄n(B)

}
online. Ideally, we would like to

run EWA with the B =
{
B : B ∈ Rd×m s.t. B⊤B = Im

}
, the set of all m-dimensional subspaces;

however, this is impossible because |B| is infinite. So instead, we propose to run EWA with the expert
set defined as an ε-cover of B:

Definition 5. Eε is said to be a ε-cover over the set of B in the principal angle sense, if:

∀ B ∈ B, ∃B′ ∈ Eε such that ∥B⊤
⊥B′∥F ≤ ε.

Definition 5 is motivated by the well-known fact that ∥B⊤
⊥B′∥F is the Frobenius norm of the sine of

the principal angle matrix between subspaces spanned by B and B′. In Appendix C.1 we show how
to construct Eε and its size |Eε| ≤ (

√
dm/ε)O(dm). In subsequent discussions, we will assume that

BOSS uses such an Eε.

Define a constant shift and scaling of C̄n, ℓn(B) := p
Cmiss

[
C̄n(B)− Chit

Zn

p

]
; we note that any

regret guarantee over sequence {ℓn} immediately translates to a regret guarantee over sequence{
C̄n

}
. By the construction of the expert set Eε, sequence {ℓn} is realizable with high probability:

there exists some Bε ∈ Eε such that
∑N

n=1 ℓn(Bε) = 0; this allows EWA to achieve a constant regret
guarantee, summarized as follows:

Lemma 6. Let ε = α = c2d

√
ln d

δ

τ1
(with c2 defined in Lemma 3) and δ = 1

N2 , where c is a constant

in Lemma 13. Then, assuming that τ ≫ d2, Algorithm 3 chooses a sequence of subspaces
{
B̂n

}
over the expert set Eε, defined in Definition 5, such that:

N∑
n=1

E
[
Cn(B̂n)

]
≤ O

(
NChit +

Cmiss log |Eε|
p

)
= Õ

(
N

(
τ2 + τ ·

(
m2

τ2
+ α2

))
+

τdm

p

)
.

Note that the cumulative cost bound of
{
B̂n

}
has two terms: the benchmark term NChit and the

regret bound term Cmiss
log |Eε|

p . The benchmark term represents the best-case regret bound one can

7
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achieve if, for all task n, the chosen subspace B̂n can well approximate θn (i.e. ∥B̂⊤
n,⊥θ̂n∥ ≤ α) On

the other hand, the regret-bound term depends on a few important factors: first, the cost decreases
when the meta-exploration probability p increases – this matches our intuition that a larger p gives
more frequent feedback to learn about θn, allowing the learned B̂n to adapt faster to θn; second,
the cost depends logarithmically on the size of the expert set ln |Eε|, which is standard in the
online learning from expert advice literature; third, the cumulative cost depends on the range of the
instantaneous costs Cmiss.

Remark 1. The subspace selection game in the upper level resembles the partial monitoring problem
[see Lattimore and Szepesvári, 2020, Chapter 37], where the learner does not directly observe the
loss for its actions but receives signals from an environment according to an observation matrix. Here,
in our subspace selection problem, the learner does not directly observe the chosen subspace’s cost
for most tasks, except when they choose to explore the subspace B. Unlike the traditional partial
monitoring problem, here, the observation would be θ̂n, and the cost Cn(B) depends on the chosen
subspace B and θn. This means that the cost matrix has an infinite number of columns (one for each
B) and the observation depends on the actions of the learner and the environment in a stochastic
fashion, unlike a deterministic dependence in the original partial monitoring setting.

4 Performance Guarantees

We bound the meta-regret of Algorithm 3 in Theorem 7:

Theorem 7. With exploration probability p = min

((
2m

√
τ

N

) 2
3

, 1

)
, by choosing ε = α =

c2d

√
ln d

δ

τ1
(with c2 defined in Lemma 3) , where δ = 1

N2 , τ1 = d ·
⌊
min

(
d
√

τ
p , τ
)
/d
⌋

,

τ2 = m · ⌊
√
τ⌋, the meta-regret of the BOSS algorithm is bounded by:

Rτ ≤ Õ
(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
. (5)

In the meta-regret bound (5), we view the first two terms as the main terms and the last two as
“burn-in” terms. The first term, Nm

√
τ is the cumulative regret bound of the oracle baseline, i.e. the

idealized algorithm that takes advantage of the extra knowledge of B to achieve a O(m
√
τ) regret

for every task. The second term, N
2
3 τ

2
3 dm

1
3 is the main overhead for learning the representation

B; it grows sublinearly in N , and as a consequence, is dominated by the first term when the number
of tasks N is very large (specifically, N ≫ d3√τ

m2 ). Compared with multi-task regret bounds in the
parallel setting [Yang et al., 2020, Hu et al., 2021], our dependence on N is admittedly weaker;
nevertheless, to our knowledge, Theorem 7 is the first nontrivial result in the sequential setting
without task diversity assumptions, which has not been studied before in [e.g., Qin et al., 2022].

For the burn-in terms, the Nd2 term can be interpreted as a constant d2 regret overhead per task; the
τmd term can be interpreted as the learner sacrificing a constant number of tasks (md tasks) to learn
a good representation B. Observe that, in the less favourable situation where N < md or τ < d2, the
burn-in terms would lead to regret bounds worse than the trivial Nτ .

Comparison with the individual single task baseline. Recall that the individual single-task baseline
has a meta-regret of O(Nd

√
τ); our meta-regret guarantee improves over this baseline when τ ≫ d2

and N ≫ m
√
τ . We leave broadening the parameter regimes when our guarantee outperforms the

individual single-task baseline as an important open problem.

Comparison with lower bounds. Qin et al. [2022] showed a lower bound for the problem:
Ω
(
Nm
√
τ + d

√
mτN

)
. We can see that there still exists a gap between our upper bound in

Theorem 7 with this, and the gap is bigger than other solutions with task diversity assumption such as
Qin et al. [2022]; we speculate that this is a price we pay due to not making any assumptions on task
diversity.

We now sketch the proof of Theorem 7 below.

Proof sketch. Denote the pseudo-regret for task n as R̂n
τ := τ maxa∈A ⟨θn, a⟩ −

∑τ
t=1 ⟨θn, An,t⟩.
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We decompose Rτ as follows:

Rτ =

N∑
n=1

E
[
R̂n

τ

]
=

N∑
n=1

E
[
R̂n

τZn + R̂n
τ (1− Zn)

]
=

N∑
n=1

E
[
R̂n

τ | Zn = 1
]
· p+

N∑
n=1

E
[
R̂n

τ | Zn = 0
]
· (1− p)

≤Cinfo ·Np+

N∑
n=1

E
[
Cn(B̂n)

]
=Õ

((
τ1 + τ · d

2

τ1

)
Np+N

(
τ2 + τ ·

(
m2

τ2
+

d2

τ1

))
+

τdm

p

)
=Õ

(
Npτ1 +Nτ

d2

τ1
+

τdm

p
+Nτ2 +Nτ

m2

τ2

)
,

where the first two equalities are by the definition of Rτ and algebra; the third equality uses the
law of total expectation; the inequality uses Lemmas 3 and 4 to bound the first and second terms,
respectively; the fourth equality is due to the definition of Cinfo and Lemma 6; the last equality is by
algebra.

The meta-regret of Algorithm 3 follows from the choices of τ1, τ2, and p – specifically, τ2 balances
the last two terms, whereas τ1 and p aims at balancing the first three terms subject to the constraint
that τ1 ≤ τ and p ≤ 1 – see Appendix G for the remaining details.

Adaptivity to problem parameters. Algorithm 3 requires the knowledge of N and m, the total
number of tasks and the dimensionality of the subspace underlying the task parameters. Below, we
show that knowledge of N can be relaxed.

We can relax the need to know N by using the doubling trick on BOSS. Specifically, in phase i, we
can run our algorithm with the assumption that there are 2i total tasks in this phase. The modified
algorithm has a meta-regret guarantee that is within a constant of the algorithm that knows N . This
implicitly gives an adaptive setting of meta-exploration probability p that is decaying over time.

For m, the requirement can be relaxed to knowing an upper bound of m. Removing this knowledge
requires a change of approach, such as low-rank matrix optimization, as in Cella et al. [2023] or
additional assumption, as in Bilaj et al. [2024]. Cella et al. [2023] is in the parallel setting, which is
not applicable here, and Bilaj et al. [2024]’s guarantee can be as large as O(Nd

√
τ) as discussed in

section 1.1.

5 Experiments

In this section6, we compare the performance of our BOSS algorithm with the baselines on synthetic
environments. The algorithms we evaluate include:

• PEGE: independently solves each task using the PEGE algorithm [Rusmevichientong and Tsitsiklis,
2010]

• PEGE-oracle: The “oracle baseline” that only uses PEGE on the true subspace B, for all tasks

• SeqRepL: our implementation of [Qin et al., 2022], in which B̂n is estimated with SVD and the
tasks for meta-exploration are chosen deterministically at round n = i(i+1)

2 for i = 1, 2, · · · .
• BOSS-no-oracle: Algorithm 3 with Eε set of 100,000 experts drawn uniformly at random from
B.

• BOSS: Algorithm 3 with Eε set as 100,000 experts drawn uniformly at random from B, plus the
ground truth expert B. This algorithm is a better approximation of the original BOSS (Algorithm 3)
since there exists Bε ∈ Eε such that ∥(Bε)

⊤
⊥B∥F ≤ ε.

6The code for our paper can be found at https://github.com/duongnhatthang/BOSS
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The setting is (N, τ, d,m) = (4000, 500, 10, 3). The environment reveals a new subspace dimension
at tasks 1, 2501, and 3501. In this experiment, we assume A is a unit sphere, i.e., M = Id. At each
task n, denote by Bn ∈ Rd×mn the subspace basis that the environment used to generate θn, where
mn is incremented when n = 1, 2501, 3501. θn is chosen in the following way: θn = λ1Bnwn for
some wn ∼ Unif(Smn−1) and λ1 ∼ Unif([0.8, 1]) is a random scaling factor to ensures Assumption
2, where θmin = 0.8, θmax = 1.

The hyper-parameters p, τ1, τ2, and α of all algorithms, where it applies, are tuned. The error bands
in the figures indicate ±1 standard deviation computed over 5 independent runs.

Figure 1a clearly shows the linear dependency of the cumulative regret on N . Observe that BOSS and
its variants outperform both the independent PEGE and the SeqRepL baselines. It is also clear that the
gap between BOSS-no-oracle and BOSS exists because the expert set Bε used in this experiment
does not cover the true B, since even with ε = d√

τ1
≈ 0.5, the theoretical size of the expert set is

|Eε| = (
√
dm/ε)dm ≈ 1130 in this experiment setting which is much larger than the expert set size

used in BOSS-no-oracle.

In Figure 1b, we plot ∥B̂⊤
n,⊥Bn∥F, which measures the closeness of B̂n,⊥ to Bn. When the environ-

ment reveals a new subspace dimension at tasks 1, 2501, and 3501, all algorithms’ estimation B̂n

require updates and converge after a while. Even though BOSS-no-oracle has a worse estimation
of B̂n compared to SeqRepL, it achieves a better regret due to having a better estimation of θ̂n as
shown in Figure 1c.

(a) (b) (c)

Figure 1: Comparing the cumulative regret of BOSS and other baselines. The setting is (N, τ, d,m) =
(4000, 500, 10, 3) and ∥θn∥2 ∈ [0.8, 1] ∀n ∈ [N ] chosen uniformly at random from this interval. The
environment only reveals a new subspace dimension at tasks 1, 2501, and 3501, so there’s no task
diversity assumption.

6 Discussion and Future Work

We study the problem of sequential representation transfer in multi-task linear bandit, where the task
parameters are allowed to be chosen adversarially online. Our BOSS algorithm achieves the regret
guarantee of Õ

(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
without using the task diversity assumption

as in previous works. This opens up many promising avenues for future work. Statistically, it would
be good to design an algorithm that performs no worse than the individual single-task baseline’s
performance in all parameter regimes. In addition, BOSS utilizes the special structure of fixed,
ellipsoid-shaped action spaces to obtain useful information for meta-exploration, extending the algo-
rithm and guarantees to general and time-varying action spaces is an important direction. Practically,
it would also be nice to design parameter-free variants of BOSS that do not require knowing m ahead
of time. Furthermore, BOSS requires maintaining an exponentially large number of experts in Bε; in
the future, we would like to develop more computationally-efficient algorithms. Lastly, it would be
interesting to study relaxations of Assumption 1 (all task parameters lie exactly in a m-dimensional
linear subspace), similar to Bilaj et al. [2024] or the changing subspace setting of Qin et al. [2022].
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Algorithm Setting Prior
knowledge

Task
diversity Regret bound(s)

Indep. PEGE Both None No Õ (Nd
√
τ)

[Hu et al., 2021] Parallel N,m No Õ
(
N
√
mdτ + d

√
τNm

)
[Yang et al., 2020] Parallel N,m, τ Yes

O
(
Nm
√
τ + d

3
2m
√
τN
)

,

Ω
(
Nm
√
τ + d

√
mτN

)
[Yang et al., 2022] Parallel N,m, τ Yes Õ

(
Nm
√
τ + d

√
mτN

)
[Cella et al., 2023] Parallel |At| = K No

Õ
(
N
√
mdτ + d

√
τNm

)
,

Ω
(√

Nτdm
)

[Jang et al., 2021b] Sequential None No Õ
(
Nd
√
τ +N

3
2

√
dτ
)

[Qin et al., 2022] Sequential m, τ Yes
Õ
(
Nm
√
τ + dm

√
τN
)

,

Ω
(
Nm
√
τ + d

√
mτN

)
[Bilaj et al., 2024] Sequential None Yes

at least O
(
N
√
τ(d−m)

· log
(
1 + m

λA
min(d−m)

))
BOSS (ours) Sequential N,m, τ No

Õ
(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3

+Nd2 + τmd
)

Table 2: A comparison of the settings, assumptions, and regret guarantees between our results and
prior works.

A Further discussion on related work

Meta learning bandit problems. Balcan et al. [2022] analyzed a harder problem in the Sequential
setting by dealing with tasks generated by an adversary, and each task is an adversarial linear
bandit problem. By using an online mirror decent base algorithm, they provided a guarantee of
Õ
(
min 1

τ ≤ϵ≤ 1√
τ
N
(
dV̂ϵ
√
τ + ϵτ

)
+N

3
4 τ2d

)
, where V̂ϵ measures the proximity of the optimal

parameters of all N tasks. Balcan et al. [2022]’s results also applies to the sequential meta-learning
with adversarial K-arms bandit, which is further investigated by Azizi et al. [2024]. Their bandit
meta-learning with a small set of optimal arms setting is analogous to the sequential multi-task
representation transfer in linear bandit. The task diversity assumption is equivalent to the Azizi
et al. [2024]’s Efficient Identification assumption; both require a gap to separate the noise from the
problem’s parameters. Our BOSS algorithm also has some high-level similarities with their E-BASS
algorithm.

Bilinear bandits. The bilinear bandit problem described by Jang et al. [2021b] studies a setting
where the learner has (potentially time-varying) sets of left actions and right actions available. It
can take a left action xL and a right action xR and receive reward r = x⊤

LΘxR + η. This reduces
to our setting when the action set of the left action is the task descriptor {ei}i=1,··· ,N and the task’s
parameters have a low-rank structure. When applying their approach to our setting, their guarantee
is Õ

(
Nd
√
τ +N

3
2

√
dτ
)

, which is worse than independently using a classical algorithm, such as
PEGE, for each task. This is due to the fact that Jang et al. [2021b]’s solution does not exploit the
low-rank and the left action structures.
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In Table 2, we comprehensively compare the settings and assumptions of the previous works for the
multi-task bandit representation transfer problem.

B Additional information on Algorithm 3

Algorithm 4 BOSS: Bandit Online Subspace Selection for Sequential Multitask Linear Bandits

1: Input: Task length τ , number of task N , task dimension d, subspace dimension m, learning rate
η, and exploration rate p.

2: Initialize: An uniform distribution D1 over the set of experts Eε in Definition 5
3: for n ∈ [N ]: do
4: Randomly draw B̂n from Dn

5: With probability p: Zn = 1, otherwise Zn = 0
6: if Zn = 1 then
7: Exploration procedure in Algorithm 1
8: Update the distribution Dn+1 with the EWA algorithm
9: For all B ∈ Eε, observe the cost C̃n(B) = I(∥B⊤

⊥ θ̂n∥2 ≤ α)Chit + I(∥B⊤
⊥ θ̂n∥2 >

α)Cmiss
10: The shifted and scaled loss:

ℓn(B) =
p

Cmiss

[
C̃n(B)

Zn

p
− Chit

Zn

p

] ∣∣∣∣∣
Zn=1

=
1

Cmiss

[
C̃n(B)− Chit

]
11: Update: Dn+1(B) = Dn(B) exp(−ηℓn(B))∑

B′∈Eε Dn(B′) exp(−ηℓn(B′))

12: else
13: Exploitation procedure in Algorithm 2 with B̂n

14: Update: Dn+1 = Dn

▷ In this case, ℓn(B) = p
Cmiss

[
C̃n(B)Zn

p − Chit
Zn

p

] ∣∣∣∣∣
Zn=0

= 0

15: end if
16: end for

C Additional details related to Section 3

We first provide more details on the construction of the expert set used in Section 3.

To construct Eε, an ε-cover of B in the principal angle sense (Definition 5) , we do the following:

1. Construct E
ε
2

F , a proper ε
2 -cover over (BS , ∥ · ∥F ), where BS is defined in Definition 8 (see

below). Since B ⊂ BS , E
ε
2

F is an also improper ε
2 -cover over (B, ∥ · ∥F ). 7

2. Construct Eε from E
ε
2

F and show that it is a proper ε-cover over (B, ∥ · ∥F )

3. Show that Eε is a proper ε-cover over (B, ∥ ·⊤⊥ ·∥F ).

We provide the details in Subsection C.1.

Definition 8. E
ε
2

F is said to be an ε
2 -cover over the set of BS = {B : ∥B∥F ≤

√
m} in the Frobenius

norm sense, if:

∀ B ∈ BS , ∃A ∈ E
ε
2

F such that ∥vec(A)− vec(B)∥2 ≤
ε

2

7We follow the convention in Telgarsky [2021] that a proper cover has to be a subset of the ground set, while
an improper cover may not satisfy such property.
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After defining the expert set, to use the EWA algorithm, we need to use a surrogate expert’s cost C̃n

defined in Equation (3), which is a high probability upper-bound of the true cost Cn(B) following
Lemma 11. To construct C̃n, we need to introduce the definition of α-covering in Definition 9.
Definition 9. A subspace (represented by its orthonormal basis) B ∈ Rd×m is said to α-
approximately cover vector ϕ ∈ Rd, if ∥B⊤

⊥ϕ∥2 ≤ α.

Note: the specific choice of B⊥ does not affect the validity of this definition – e.g., ∥B⊥ϕ∥2 are
always the same regardless of the specific choice of B⊥, as long as its columns form a orthonormal
basis of span(B⊥): for any two choices of B⊥ (denoted by B⊥,1, B⊥,2, respectively) there exists
orthonormal V ∈ R(d−m)×(d−m) such that B⊥,1 = B⊥,2V . Therefore,

∥B⊤
⊥,1θn∥2 = ∥V ⊤B⊤

⊥,2θn∥2 = ∥B⊤
⊥,2θn∥2

The following lemma justifies that all valid choices of B⊥ are equivalent up to a (d−m)× (d−m)
orthogonal transformation:

Lemma 10. Let W be a k-dimensional subspace of Rd. Let B, B̂ ∈ Rd×k be matrices whose
columns form an orthonormal basis of W . Then, there exists an orthogonal matrix V ∈ Rk×k such
that B̂ = BV .

Proof. Since B is a basis of W , there exists some V such that B̂ = BV . Since V ⊤V =

V ⊤(B⊤B)V = (BV )⊤(BV ) = B̂⊤B̂ = I , V is an orthogonal matrix.

Next, we justify the use of C̃n as a surrogate cost for the true cost Cn in Lemma 11, which requires
Remark 2.
Remark 2. By the observation that

∥B⊤
⊥ϕ∥2 = ∥B⊥B

⊤
⊥ϕ∥2 = ∥ϕ−BB⊤ϕ∥2 = min

θ∈span(B)
∥ϕ− θ∥,

B α-approximately covers ϕ if and only if there exists some θ in span(B) that is α-close to ϕ. As a
result:

• If θn ∈ span(B) and ∥θn − θ̂n∥ ≤ α, B also α-covers θ̂n;

• If B α-covers θ̂n and ∥θn − θ̂n∥ ≤ α, B also 2α-covers θn.

Lemma 11. If ∥θ̂n − θn∥ ≤ α, C̃n is an upper bound of Cn. Equivalently,

I(∥θ̂n − θn∥ ≤ α)Cn(B) ≤ I(∥θ̂n − θn∥ ≤ α)C̃n(B)

Proof. Recall that

Cn(B) =

{
Chit, ∥B⊤

⊥θn∥ ≤ 2α

Cmiss, ∥B⊤
⊥θn∥ > 2α

, C̃n(B) =

{
Chit, ∥B⊤

⊥θn∥ ≤ 2α

Cmiss, ∥B⊤
⊥θn∥ > 2α

,

First, observe that C̃n(B) ≥ Chit for any B. Then, we conduct a case analysis:

• Case 1: ∥B⊤
⊥θn∥2 ≤ 2α. In this case, Cn(B) = Chit ≤ C̃n(B).

• Case 2: ∥B⊤
⊥θn∥2 > 2α. In this case, Cn(B) = Cmiss. We now show that C̃n(B) = Cmiss.

Indeed,

∥B⊤
⊥θn∥2 ≤ ∥B⊤

⊥ θ̂n∥2 + ∥B⊤
⊥(θ̂n − θn)∥2

≤ ∥B⊤
⊥ θ̂n∥2 + α

=⇒ 2α < ∥B⊤
⊥ θ̂n∥2 + α (∥B⊤

⊥θn∥2 > 2α)

=⇒ α < ∥B⊤
⊥ θ̂n∥2

where the first inequality is by triangle inequality; the second inequality is by the definition
of this case and that ∥B⊤

⊥(θ̂n − θn)∥2 ≤ ∥θ̂n − θn∥ ≤ α.
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In summary, in both cases, Cn(B) ≤ C̃n(B).

To ensure that there exists some B ∈ Eε that can α-cover all θ̂n , we need to choose ε by following
Lemma 12.
Lemma 12. By choosing ε ≤ α, there exists some Bε ∈ Eε such that, for all n, Bε α-approximately
covers θn.

Proof. For any n ∈ [N ], θn ∈ span(B). Hence, θn = PBθn.

Thus,

min
U∈Eε

∥θn − UU⊤θn∥2 = min
U∈Eε

∥U⊥U
⊤
⊥ θn∥2

= min
U∈Eε

∥U⊥U
⊤
⊥BB⊤θn∥2

≤ min
U∈Eε

∥U⊥∥op∥U⊤
⊥B∥F∥B⊤∥2op∥θn∥2

≤ min
U∈Eε

∥U⊤
⊥B∥Fθmax

≤ εθmax.

Hence, assuming that θmax ≤ 1, by setting ε ≤ α, we have that minU∈Eε ∥ϕ− UU⊤ϕ∥2 ≤ α.

C.1 The expert set Eε: construction and size

First, we construct the surrogate set E
ε
2

F , a proper ε
2 -cover over (BS , ∥ · ∥F ). Following Erdogdu

and Vural [2024], we construct it by discretizing the hyper-cube that contains the ball E
ε
2

F . Then

|E
ε
2

F | ≤
(

4m
√
d

ε

)dm
= (dmε )O(dm). Note that for any B ∈ B, ∥B∥F = ∥vec(B)∥2 =

√
m; therefore,

B ⊂ BS , and thus E
ε
2

F is an improper ε
2 -cover of B.

Then, we follow a procedure similar to [Telgarsky, 2021, Remark 15.3] to construct Eϵ as follows:

Eϵ =
{
U(b) : b ∈ E

ε
2

F

}
,

where U(b) := argminB∈B ∥B − b∥F . In words, Eϵ is the collections of “nearest neighbors” of Eϵ

in B. By the definition of Eϵ, Eϵ ⊂ B and |Eϵ| ≤ |E
ε
2

F | ≤ (dmϵ )O(dm).

For the rest of the subsection, we will show that our construction of Eϵ satisfies Definition 5.
Lemma 13.

1. Eε is a proper ε-cover of (B, (A,B) 7→ ∥A−B∥F ).

2. Eε is a proper ε-cover of (B, (A,B) 7→ ∥A⊤
⊥B∥F ).

Proof. For the first item, we consider any B ∈ B. We would like to show that there exists some
element C in Eϵ such that ∥C −B∥F ≤ ε.

We find element C as follows: first, by definition of E
ε
2

F , there exists element b ∈ E
ε
2

F such that
∥B − b∥F ≤ ε

2 . We define C = U(b). Therefore, ∥C − b∥ ≤ ∥B − b∥F ≤ ε
2 . Thus:

∥B − C∥F ≤ ∥B − b∥F + ∥C − b∥F ≤
ε

2
+

ε

2
≤ ε.

Hence, Eε is a proper ε-cover over (B, ∥ · ∥F).

We now prove the second item. It suffices to show that, for A,B ∈ B, ∥A⊤
⊥B∥2F ≤ ∥A−B∥2F.

Following [Vu, 2020], for semi-orthogonal matrices A,B ∈ B, we relate ∥A⊤
⊥B∥F to the orthogonal

Procrustes problem in [Gower and Dijksterhuis, 2004],

min
R∈Rm×m:R⊤R=Im

∥AR−B∥2F.
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With the solution R∗ = A⊤B
(
B⊤AA⊤B

)− 1
2 at the optimum,

∥A⊤
⊥B∥2F =

m∑
i=1

sin2(ϕi) (ϕ is the canonical angle)

= m−
m∑
i=1

cos2(ϕi)

≤ m−
m∑
i=1

(2 cos(ϕi)− 1) (cos(ϕi)
2 ≥ 2 cos(ϕi)− 1)

= 2m− 2

m∑
i=1

cos(ϕi)

= ∥AR∗ −B∥2F. (See [Vu, 2020])

We have ∥A⊤
⊥B∥2F ≤ ∥AR∗ −B∥2F ≤ ∥A−B∥2F.

D Proof of Lemma 3: Regret of Meta-exploration Tasks

We first restate Lemma 3.

Lemma 3. Fix τ1 to be a multiple of d. Suppose Algorithm 1 is run on task n with the exploration
length τ1. Then, there exists some constants c1, c2 > 0 (that depend on λ0, θmax, θmin, and M ) such
that:

1. The regret on task n is bounded as Rn
τ ≤ c1 ·

(
τ1 + τ · d

2

τ1

)
=: Cinfo;

2. With probability ≥ 1− δ, ∥θ̂n − θn∥ ≤ c2 ·
(
d

√
ln d

δ

τ1

)
=: α.

Proof. For the first item, following [Rusmevichientong and Tsitsiklis, 2010, Lemma 3.4], we have

E
[
∥θ̂n − θn∥2

]
≤ c0

d2

τ1
,

where c0 is a constant that depends on λ0 and M . By [Yang et al., 2020, Lemma 17], we have
that maxa∈A ⟨a−An,t, θn⟩ ≤ J∥θn − θ̂n∥2/∥θn∥, where An,t = argmaxa∈A

〈
a, θ̂n

〉
and J =

λmax(M)√
λmin(M)

= λmax(M)
λ0

. Thus,

Rn
τ = E

[
τ max

a∈A
⟨θn, a⟩ −

τ∑
t=1

⟨θn, An,t⟩

]

= E

[
τ1 max

a∈A
⟨θn, a⟩ −

τ1∑
t=1

⟨θn, An,t⟩+ (τ − τ1)max
a∈A
⟨θn, a⟩ −

τ∑
t=τ1+1

⟨θn, An,t⟩

]

≤ λ0θmaxτ1 + (τ − τ1)J
E∥θ̂n − θn∥2

θmin

≤ λ0θmaxτ1 +
J

θmin
· τc0

d2

τ1
.

The proof of the first item is concluded by taking c1 = max(λ0θmax,
Jc0
θmin

).

For the second item, recall that u = τ1
d , and An,1, . . . , An,τ1 are constructed as follows: for each

i ∈ [d] and t ∈ {u(i− 1) + 1, · · · , ui}, An,t = λ0ei.
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Since θ̂n := argminθ
1
τ1

∑τ1
t=1 (⟨An,t, θ⟩ − rn,t)

2, by the closed-form solution of ordinary least
squares, we have

θ̂n = (A⊤
nAn)

−1A⊤
n rn,

where

An :=

A⊤
n,1

· · ·
A⊤

n,τ1

 ∈ Rτ1×d,

and rn := (rn,1, · · · , rn,τ1). Observe that

A⊤
nAn = uλ2

0

d∑
i=1

eie
⊤
i = uλ2

0Id. (6)

Let ηn := (ηn,1, . . . , ηn,τ1). We have

θ̂n = (A⊤
nAn)

−1A⊤
n rn

(a)
=

1

uλ2
0

A⊤
n rn

=
1

uλ2
0

A⊤
n (Anθn + ηn)

(b)
= θn +

1

uλ2
0

A⊤
n ηn,

where both (a) and (b) follow from Eq. (6).

It now suffices to show that
∥∥∥θ̂n − θn

∥∥∥
2
=
∥∥∥ 1
uλ2

0
A⊤

n ηn

∥∥∥
2
≤ O

(
d
√

log(d/δ)
τ1

)
with probability at

least 1− δ. To this end, observe that by the construction of An,

A⊤
n ηn =

 λ0

∑u
t=1 ηn,t
· · ·

λ0

∑τ1
t=τ1−u+1 ηn,t

 .

Since for each n and t, ηn,t is zero-mean and 1-sub-Gaussian, by [Lattimore and Szepesvári, 2020,
Corollary 5.5], for any i ∈ [d], we have

Pr

∣∣∣∣∣∣
ui∑

t=u(i−1)+1

ηn,t

∣∣∣∣∣∣ ≥√2u log(2/δ′)

 ≤ δ′.

Let δ = dδ′ and
Fn :=

{
∀i ∈ [d],

∣∣(A⊤
n ηn)i

∣∣ ≤ λ0

√
2u log(2d/δ)

}
.

Then, by the union bound, Fn happens with probability at least 1− δ. Under the event Fn,

∥θ̂n − θn∥2 =

∥∥∥∥ 1

uλ2
0

A⊤
n ηn

∥∥∥∥
2

=
1

uλ2
0

√√√√ d∑
i=1

(A⊤
n ηn)

2
i

≤ 1

uλ0

√
d · 2u log(2d/δ)

≤ O

d

√
log(d/δ)

τ1

 ,

and the proof of the second item is complete.
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E Proof of Lemma 4: Regret of Meta-exploitation Tasks

We first restate Lemma 4.
Lemma 4. Fix τ2 to be a multiple of m. Suppose Algorithm 2 is run on task n with input subspace B̂n

and the exploration length τ2. Then, there exists some constant c > 0 (that depends on λ0, θmax, θmin,
and M ), such that the regret on task n is bounded as:

Rn
τ ≤ c ·

(
τ2 + τ ·

(
m2

τ2
+ ∥B̂⊤

n,⊥θn∥22
))

.

Specifically, if ∥B̂⊤
n,⊥θn∥2 ≤ 2α, then Rn

τ ≤ 4c
(
τ2 + τ ·

(
m2

τ2
+ α2

))
, where α is defined in

Lemma 3.

Proof. Similar to the approach in [Rusmevichientong and Tsitsiklis, 2010], define J = λmax(M)√
λmin(M)

=

λmax(M)
λ0

. By [Yang et al., 2020, Lemma 17], we have maxa∈A ⟨a−An,t, θn⟩ ≤ J∥θn− θ̂n∥2/∥θn∥,
where An,t = argmaxa∈A

〈
a, θ̂n

〉
. Thus,

Rn
τ = E

[
τ max

a∈A
⟨θn, a⟩ −

τ∑
t=1

⟨θn, An,t⟩

]

= E

[
τ2 max

a∈A
⟨θn, a⟩ −

τ2∑
t=1

⟨θn, An,t⟩+ (τ − τ2)max
a∈A
⟨θn, a⟩ −

τ∑
t=τ2+1

⟨θn, An,t⟩

]

≤ λ0θmaxτ2 + (τ − τ2)J
E∥θn − B̂nŵn∥2

θmin
.

To bound the second term, we use Lemma 14 (subspace-informed estimation). We have

E
∥∥∥B̂nŵn − θn

∥∥∥2 ≤ m2

λ2
0τ2

+ ∥B̂⊤
n,⊥θn∥2.

It follows that

Rn
τ ≤ c ·

(
τ2 + τ ·

(
m2

τ2
+ ∥B̂⊤

n,⊥θn∥22
))

.

In addition, when ∥B̂⊤
n,⊥θn∥2 ≤ 2α,

Rn
τ ≤ λ0θmaxτ2 + (τ − τ2)

J

θmin

(
m2

λ2
0τ2

+ 4α2

)
≤ 4c

(
τ2 + τ ·

(
m2

τ2
+ α2

))
,

where c = max
{
λ0θmax,

J
λ2
0θmin

, J
θmin

}
.

We now present Lemma 14 used in the proof above for subspace-informed estimation; see also [Qin
et al., 2022, Lemma 2] and [Yang et al., 2020, Lemma 18].
Lemma 14 (Subspace-informed estimation). Suppose Algorithm 2 is run on task n with the
exploration length τ2, then E∥θ̂n − θn∥2 ≤ m2

λ2
0τ2

+ ∥B̂⊤
n,⊥θn∥2.

Proof. Without loss of generality, we assume that τ2 is a multiple of m. Since An,t = λ0B̂n(i),

i ∈ [m], and each action repeats ⌊τ2/m⌋ times for t ≤ τ2 , we have
∑τ2

t=1 An,tA
⊤
n,t =

τ2λ
2
0

m B̂nB̂
⊤
n .

Thus,
τ2∑
t=1

B̂⊤
n An,tA

⊤
n,tB̂n =

τ2λ
2
0

m
B̂⊤

n B̂nB̂
⊤
n B̂n

=
τ2λ

2
0

m
Im.
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Then, the OLS estimator is given by

ŵn =

(
τ2∑
t=1

B̂⊤
n An,tA

⊤
n,tB̂n

)−1 τ2∑
t=1

B̂⊤
n An,trn,t

=

(
τ2∑
t=1

B̂⊤
n An,tA

⊤
n,tB̂n

)−1 τ2∑
t=1

B̂⊤
n An,t

(
A⊤

n,tBwn + ηn,t
)

=
m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,t

(
A⊤

n,tBwn + ηn,t
)

=
m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tA

⊤
n,t

(
B̂nB̂

⊤
n + B̂n,⊥B̂

⊤
n,⊥

)
Bwn +

m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tηn,t

(B̂nB̂
⊤
n + B̂n,⊥B̂

⊤
n,⊥ = I)

= B̂⊤
n Bwn +

m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tA

⊤
n,tB̂n,⊥B̂

⊤
n,⊥Bwn +

m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tηn,t

= B̂⊤
n Bwn +

m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tηn,t, (A⊤

n,tB̂n,⊥ = 0)

where the first equality uses the closed-form solution of OLS; the second equality is by the definition
of rn,t; and the other equalities follow from algebraic manipulations.

Now, we have

θ̂n − θn = B̂nŵn −Bwn

= B̂n

(
B̂⊤

n Bwn +
m

τ2λ2
0

τ2∑
t=1

B̂⊤
n An,tηn,t

)
−Bwn

=
(
B̂B̂⊤

n Bwn −Bw
)

︸ ︷︷ ︸
=:s1

+
m

τ2λ2
0

τ2∑
t=1

B̂nB̂
⊤
n An,tηn,t︸ ︷︷ ︸

=:s2

.

For s1, we have

∥s1∥2 = ∥B̂nB̂
⊤
n Bwn −Bwn∥2

= ∥(I − B̂n,⊥B̂
⊤
n,⊥)Bwn −Bwn∥2

= ∥B̂n,⊥B̂
⊤
n,⊥Bwn∥2

≤ ∥B̂n,⊥∥2op∥B̂⊤
n,⊥θn∥2

≤ ∥B̂⊤
n,⊥θn∥2
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For s2, we have

E∥s2∥2 = E

∥∥∥∥∥ m

τ2λ2
0

τ2∑
t=1

B̂nB̂
⊤
n An,tηn,t

∥∥∥∥∥
2

=
m2

τ22λ
4
0

E

[
τ2∑
t=1

(
B̂nB̂

⊤
n An,tηn,t

)⊤
B̂nB̂

⊤
n An,tηn,t

]

=
m2

τ22λ
4
0

E∥ηn,t∥2
τ2∑
t=1

A⊤
n,tB̂nB̂

⊤
n An,t

=
m2

τ22λ
4
0

E∥ηn,t∥2
τ2∑
t=1

A⊤
n,t

(
Id − B̂n,⊥B̂

⊤
n,⊥

)
An,t (B̂nB̂

⊤
n + B̂n,⊥B̂

⊤
n,⊥ = I)

=
m2

τ22λ
4
0

E∥ηn,t∥2
τ2∑
t=1

A⊤
n,tAn,t (A⊤

n,tB̂n,⊥ = 0)

=
m2

τ22λ
4
0

E∥ηn,t∥2τ2λ2
0

=
m2

τ2λ2
0

E∥ηn,t∥2

≤ m2

τ2λ2
0

. (ηn,t is 1-sub-Gaussian noise assumption)

Hence,

E∥θ̂n − θn∥2 ≤ E∥s1∥2 + E∥s2∥2 (Triangle inequality)

≤ m2

τ2λ2
0

+ ∥B̂⊤
n,⊥θn∥2.

F Proof of lemma 6: Regret of the subspace selection game

Lemma 6. Let ε = α = c2d

√
ln d

δ

τ1
(with c2 defined in Lemma 3) and δ = 1

N2 , where c is a constant

in Lemma 13. Then, assuming that τ ≫ d2, Algorithm 3 chooses a sequence of subspaces
{
B̂n

}
over the expert set Eε, defined in Definition 5, such that:

N∑
n=1

E
[
Cn(B̂n)

]
≤ O

(
NChit +

Cmiss log |Eε|
p

)
= Õ

(
N

(
τ2 + τ ·

(
m2

τ2
+ α2

))
+

τdm

p

)
.

Proof. Recall the guarantee of EWA from Freund and Schapire [1997]:

Theorem 15 (Freund and Schapire [1997]). For any sequence of loss vectors ℓ1, · · · , ℓT and the
initial weights of the experts are wi

1 = 1/n for all i ∈ [n] and γ ∈ (0, 1), the EWA algorithm with
learning rate η = − ln(1− γ) generates {pt}Tt=1 such that its expected loss is bounded by

T∑
t=1

⟨ℓt, pt⟩ ≤
− log(1− γ)

γ
ℓt(i) +

lnn

γ
, ∀i = 1, . . . , n;

specifically, if at each round we choose it ∼ pt,

E

[
T∑

t=1

ℓt(it)

]
≤ − ln(1− γ)

γ
· E

[
T∑

t=1

ℓt(i)

]
+

lnn

γ
, ∀i = 1, . . . , n.
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Applying Theorem 15 with T = N , expert set Eε, it = B̂n, loss functions ℓn(B) =
p

Cmiss

[
C̃n(B)Zn

p − Chit
Zn

p

]
, n ∈ [N ], B ∈ Eϵ, and the baseline expert i = Bε, we get:

E

[
N∑

n=1

ℓn(B̂n)

]
≤ − ln(1− γ)

γ
· E

[
N∑

n=1

ℓt(Bε)

]
+

ln |Eε|
γ

.

Using the basic fact that − ln(1−x)
x ≤ 1 + x for x ∈ (0, 1

2 ] we have that, for γ ∈ (0, 1
2 ],

E

[
N∑

n=1

ℓn(B̂n)

]
≤ (1 + γ)E

[
N∑

n=1

ℓn(Bε)

]
+

log |Eε|
γ

.

Define Fn =
{
Zn = 0 ∨ (Zn = 1 ∧ ∥θ̂n − θn∥ ≤ α)

}
and F = ∩Nn=1Fn. Then, when all of our es-

timations θ̂n are accurate, we have: I (F )
∑N

n=1 ℓn(Bε) = 0 for ℓn(B) = p
Cmiss

[
C̄n(B)− Chit

Zn

p

]
and Bε ∈ Eε.

By the definition of Fn, we have: F c
n =

{
Zn = 1 ∧ ∥θ̂n − θn∥ > α

}
. Thus, by Lemma 3, P (F c

n) =

P (∥θ̂n−θn∥ > α | Zn = 1)P (Zn = 1) ≤ pδ, and therefore P (F ) ≥ 1−
∑N

n=1 P (F c
n) = 1−Npδ.

Since Algorithm 3 chooses the learning rate for EWA as η = log(2), thus, γ = 1− exp(−η) = 0.5,
we have

E

[
N∑

n=1

ℓn(B̂n)−
N∑

n=1

ℓn(Bε)

]
≤ E

[
γ

N∑
n=1

ℓn(Bε) +
log |Eε|

γ

]

= E

[
I(F )γ

N∑
n=1

ℓn(Bε) + I(F c)γ

N∑
n=1

ℓn(Bε) +
log |Eε|

γ

]

= E

[
0 + I(F c)γ

N∑
n=1

ℓn(Bε) +
log |Eε|

γ

]

≤ E
[
I(F c)γN +

log |Eε|
γ

]
≤ N2γδ +

log |Eε|
γ

(p ≤ 1)

≤ O (log |Eε|) . (δ ≤ 4 log |Eε|
N2 and γ = 1/2)
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Then,

E

[
N∑

n=1

ℓn(B̂n)−
N∑

n=1

ℓn(Bε)

]
≤ O(log |Eε|)

=⇒ E

[
N∑

n=1

ℓn(B̂n)

]
− E

[
I(F )

N∑
n=1

ℓn(Bε) + I(F c)

N∑
n=1

ℓn(Bε)

]
≤ O(log |Eε|)

=⇒ E

[
N∑

n=1

ℓn(B̂n)

]
− E

[
I(F c)

N∑
n=1

ℓn(Bε)

]
≤ O(log |Eε|)

=⇒ E

[
N∑

n=1

ℓn(B̂n)

]
≤ O(log |Eε|) +N2δ

(p ≤ 1)

=⇒
N∑

n=1

p

Cmiss
E
[
C̄n(B̂n)− Chit

Zn

p

]
≤ O(log |Eε|)

(N2δ ≤ O(log |Eε|))

=⇒
N∑

n=1

E
[
C̄n(B̂n)

]
−NChit ≤ O

(
Cmiss log |Eε|

p

)

=⇒
N∑

n=1

E
[
C̄n(B̂n)

]
≤ O

(
NChit +

Cmiss log |Eε|
p

)
.

Thus,

E
[
C̄n(B̂n)

]
= E

[
C̃n(B̂n) ·

Zn

p

]
≥ E

[
C̃n(B̂n) · I(Fn) ·

Zn

p

]
≥ E

[
Cn(B̂n) · (1− I(F c

n)) ·
Zn

p

]
(C̃n(B)I(Fn) ≥ Cn(B)I(Fn) in Lemma 11)

= Cn(B̂n)− E
[
Cn(B̂n) · I(F c

n) ·
Zn

p

]
≥ Cn(B̂n)−

Cmiss

N2
,

where, for the last inequality, we use the observation that E
[
Cn(B̂n) · I(F c

n) · Zn

p

]
≤

Cmiss
p E [I(F c

n)] ≤ Cmiss
p P (F c

n) ≤ Cmissδ ≤ Cmiss
N2 , since P (F c

n) ≤ pδ ≤ p
N2 .

Hence,

N∑
n=1

E
[
C̄n(B̂n)

]
≤ O

(
NChit +

Cmiss log |Eε|
p

)

=⇒
N∑

n=1

E
[
Cn(B̂n)

]
≤ O

(
NChit +

Cmiss log |Eε|
p

+N · Cmiss

N2

)
= O

(
NChit +

Cmiss log |Eε|
p

)
. (1 ≤ O(log |Eε|) and 1

N ≤ 1 ≤ 1
p )

Substituting Chit and Cmiss in Equation (2) to complete the proof.
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G Theorem 7: meta-regret guarantee

Theorem 7. With exploration probability p = min

((
2m

√
τ

N

) 2
3

, 1

)
, by choosing ε = α =

c2d

√
ln d

δ

τ1
(with c2 defined in Lemma 3) , where δ = 1

N2 , τ1 = d ·
⌊
min

(
d
√

τ
p , τ
)
/d
⌋

,

τ2 = m · ⌊
√
τ⌋, the meta-regret of the BOSS algorithm is bounded by:

Rτ ≤ Õ
(
Nm
√
τ +N

2
3 τ

2
3 dm

1
3 +Nd2 + τmd

)
. (5)

Remainder of the Proof of Theorem 7. Recall that in the proof sketch of Theorem 7 (Section 4), we
have proved that

Rτ ≤ Õ
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τdm

p
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)
.

Now, by the choice of τ2 = m · ⌊
√
τ⌋,
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(
Nm
√
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τ1
+Npτ1 +

τdm

p

)
.

We want to tune the parameters p, τ1 to minimize the meta-regret subjected to the constraint: p ∈ [0, 1]
and τ1 ∈ [0, τ ].

The meta-regret is:
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N

) 2
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)
)

H Additional experiment result

H.1 Adversarial environment for SeqRepL’s deterministic exploration schedule

Figure 2: Comparing the cumulative regret of BOSS and other baselines. The setting is (N, τ, d,m) =
(6000, 2000, 10, 3) and ∥θn∥2 ∈ [0.8, 1] ∀n ∈ [N ] chosen uniformly at random from this interval.
SeqRepL, BOSS, and BOSS-no-oracle uses the same hyperparameters τ1 = 400, τ2 = 50. The
environment only reveals a new subspace dimension at tasks 1, 501, and 1001, and only reveals the
same dimension at Qin et al. [2022]’s deterministic exploration schedule.
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H.2 When the Task Diversity assumption is satisfied

Figure 3: Comparing the cumulative regret of BOSS and other baselines. The setting is (N, τ, d,m) =
(6000, 2000, 10, 3) and ∥θn∥2 ∈ [0.8, 1] ∀n ∈ [N ]. SeqRepL, BOSS, and BOSS-no-oracle uses the
same hyperparameters τ1 = 1000, τ2 = 300. The task diversity assumption is satisfied: each θn is
generated by a linear combinations of the columns in Bn – the subspace spanning θ1, · · · , θn−1. The
performance of SeqRepL and BOSS is almost identical in the left figure.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract, the end of Section 1 (and Section 4 and 5 for elaboration) on
a summary of the contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 4 and Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the necessary assumptions and proof are shown in the main paper and
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will publish the code in the future, including all the hyper-parameters to
reproduce the results in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for our paper can be found at https://github.com/
duongnhatthang/BOSS.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment information is provided in Section 5 and the code with all the
parameters can be found at https://github.com/duongnhatthang/BOSS.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This is shown in Section 5, where we provide a standard deviation error over
five randomized experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The experiment is relatively small and simple, and the paper’s main focus is
the theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and found no violation.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work focus on the theoretical analysis and poses no significant societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. Our dataset is synthetic.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All authors and citations are mentioned, to the best of our knowledge.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

30

37820https://doi.org/10.52202/079017-1193



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t provide any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not require IRB Approvals or Equivalent for Research with
Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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